
DevOps Capabilities, Practices, and Challenges: Insights from a Case
Study

Mali Senapathi
Auckland University of Technology

Auckland, New Zealand
mali.senapathi@aut.ac.nz

Jim Buchan
Auckland University of Technology

Auckland, New Zealand
jim.buchan@aut.ac.nz

Hady Osman
Auckland, New Zealand

hadyos@gmail.com

ABSTRACT

DevOps is a set of principles and practices to improve

collaboration between development and IT Operations.

Against the backdrop of the growing adoption of DevOps in a

variety of software development domains, this paper

describes empirical research into factors influencing its

implementation. It presents findings of an in-depth

exploratory case study that explored DevOps implementation

in a New Zealand product development organisation. The

study involved interviewing six experienced software

engineers who continuously monitored and reflected on the

gradual implementation of DevOps principles and practices.

For this case study the use of DevOps practices led to

significant benefits, including increase in deployment

frequency from about 30 releases a month to an average of

120 releases per month, as well as improved natural

communication and collaboration between IT development

and operations personnel. We found that the support of a

number of technological enablers, such as implementing an

automation pipeline and cross functional organisational

structures, were critical to delivering the expected benefits of

DevOps.

CCS CONCEPTS

• Software creation and its engineering → Software creation

and management

KEYWORDS

DevOps enablers and practices, DevOps benefits and

challenges

1 INTRODUCTION

The DevOps concept [1] emerged to bridge the disconnect

between the development of software and the deployment of

that software into production within large software

companies [2]. The main purpose of DevOps is to employ

continuous software development processes such as

continuous delivery, continuous deployment, and

microservices to support an agile software development

lifecycle. Other trends in this context are that software is

increasingly delivered through the internet, either server-side

(e.g. Software-as-a-Service) or as a channel to deliver directly

to the customer, and the increasingly pervasive mobile

platforms and technologies on which this software runs [3].

These emerging trends support fast and short delivery cycles

of delivering software in the fast-paced dynamic world of the

Internet. As such DevOps has been well received in the

software engineering community and has received significant

attention particularly in the practitioner literature [4]. Annual

'State of DevOps' reports show that the number of DevOps

teams has increased from 19% in 2015 to 22% in 2016 to

27% in 2017 [5].

However, as observed in recent studies, despite their

growing popularity, there is a lack of empirical research on

the actual practice of DevOps beyond a discussion of blog

posts and industrial surveys [6, 7]. Beyond very few case

studies [8], the current literature does not provide much

insight on the actual implementation and practices of DevOps

and their effectiveness in supporting continuous software

development. In this research, we investigate these issues

based on an in-depth exploratory case study. In particular, we

aim to address the following research questions:

• what are the main drivers for adopting DevOps?

• what are the engineering capabilities and

 technological enablers of DevOps?

• what are the benefits and challenges of using

 DevOps?

2 RELATED RESEARCH

The concept of DevOps has been described as ambiguous

and difficult to define [7]. While there is no standard

definition for DevOps, two main opposing views exist in the

blogosphere [6, 7, 9]. One view identifies DevOps as a specific

job description that requires a combination of software

development and IT operations skills, and the other argues

that the spirit of DevOps addresses an emerging need in

contemporary software development rather than a job

position. In an attempt to address this issue, one of the two

main streams of research in DevOps has strived on achieving a

mailto:mali.senapathi@aut.ac.nz
mailto:jim.buchan@aut.ac.nz
mailto:hadyos@gmail.com

 Senapathi, Buchan, and Osman

2

clear understanding of (i) of definitions and characterization

of DevOps and its associated practices [7, 10-13], and (ii) the

benefits and challenges of adopting DevOps [7, 8]. For

example, while Culture, Automation, Measurement, Sharing,

Services have been identified as the main dimensions of

DevOps [10], others have described it as a cultural movement

that enables rapid development with four defining

characteristics: open communication, incentive and

responsibility alignment, respect, and trust [14]. The

significance of cultural change in improving the collaboration

between development and operations in order to accelerate

delivery of changes is stressed [11]. On the contrary, it has

been argued that cultural aspects by themselves cannot be the

defining characteristics of DevOps, but rather act as enablers

to support a set of engineering process capabilities [7].

The second stream of research focuses on understanding

the challenges and benefits associated with adopting practices

such as continuous delivery and continuous deployment,

which serve as the basic building blocks of a working

agile/DevOps implementation [4]. This includes growing

number of empirical studies discussing benefits and

challenges of continuous integration [15, 16], continuous

delivery [17, 18], and continuous deployment [19, 20].

Fitzgerald and Stol [3] label all these continuous activities

together as 'Continuous *' (i.e. Continuous Star) practices and

highlight the need for a more holistic and integrated approach

across all the activities that comprise software development.

According to Dingsøyr & Lassenius [4], all these emerging

topics, i.e. DevOps and continuous practices come under the

umbrella of continuous value delivery.

In summary, while the first stream of research has largely

centered on understanding the conceptual and defining

characteristics of DevOps, the second stream has focused on

understanding the benefits and challenges of adopting some of

the 'Continuous *' practices and argues for an increased

interest in these emerging topics. Little is known about how

DevOps is actually implemented in real software development

practice. Therefore, it is especially pertinent to understand the

use of DevOps in a real product development setting, where

experienced software developers adopted a gradual and

customised approach to its implementation. We believe that

the lessons learned from its implementation in a real software

development context are invaluable, as few such studies have

been published.

Given the above, we used the DevOps definition developed

by [7] as a guiding framework to investigate the

implementation of DevOps in actual practice.

3 RESEARCH FRAMEWORK

The following definition encapsulates many of the ideas

and concepts identified by other authors, and added a useful

structure to describe and analyse DevOps and its enablers:

"a set of engineering process capabilities supported by

cultural and technological enablers. Capabilities define

processes that an organisation should be able to carry out,

while the enablers allow a fluent, flexible, and efficient way of

working" [7].

The three core aspects in this definition are DevOps

capability enablers, cultural enablers, and technological

enablers. Table 1 lists the technological and capability

enablers, the focus of this paper. In [7] The cultural and

technological enablers are viewed as supporting the capability

enablers.

Table 1 Enablers of DevOps (adapted from Smed &
colleagues [7]):

Capabilities Collaborative and continuous development
 Continuous integration and testing
 Continuous release and deployment
 Continuous infrastructure monitoring and

optimization
 Continuous user behavior monitoring and

feedback
Service failure recovery without delay
Continuous Measurement

Technological
Enablers

Build automation
Test automation
Deployment automation
Monitoring automation
Recovery automation
Infrastructure automation
Configuration management for code and
infrastructure
Metrics automation

The DevOps capability enablers incorporate the basic

activities of software development (i.e. planning,

development, testing, and deployment) carried out

continuously based on feedback from other activities. For

example, the continuous deployment capability facilitates

deployment of new features a soon as they have been

integrated and tested successfully. This, however, requires the

support of technical practices such as test automation and

effective collaboration between the development and

deployment teams. The feedback data on service

infrastructure performance, as well as how and when the

users interact with the service, is encapsulated by the two

capabilities of infrastructure monitoring and user behavior

monitoring. These capabilities provide valuable input to the

planning and development processes to improve and optimize

the service. Finally, a DevOps organisation should have the

necessary monitoring infrastructure to detect service failures

and the capability to recover from such failures immediately.

The technological enablers support the DevOps capabilities

by automating tasks. Automation facilitates continuous

delivery and deployment by providing a single path to

production for all changes to a given system, whether to code,

 3

infrastructure and configuration management environments

[21], where custom programs or scripts configure and

monitor the service infrastructure. The cultural enablers

relate to behaviours that DevOps teams must exhibit in order

to support the DevOps capabilities in a positive way. They

emphasise the need for extensive collaboration and low effort

communication, shared goals, continuous experimentation

and learning, and collective ownership.

We have added two enablers to the original framework by

Smeds and colleagues [7], related to metrics. We argue that

collecting empirical evidence of achieving (or not) DevOps-

related goals is an important driver for deciding whether to

make changes (or not) to the DevOps implementation.

Technologies and team capability to measure

improvements towards goals are enablers of DevOps

evolution. Automation of metric measurement is a

technological enabler of DevOps in the sense it can support

the team’s capability of continuous measurement of

appropriate metrics. The metrics automation may be

implemented through specific tools, or through

instrumentation of existing tools. Which metrics are

important to continuously measure through automation will

be context dependent.

4 BACKGROUND TO THE CASE

The case organisation is a New Zealand-based software

company in the Finance/Insurance sector that delivers

services for small and medium-sized businesses through a

cloud-based software product suite developed in-house. The

company is high growth and has offices in New Zealand,

Australia, the United Kingdom, the United States and

Singapore. Its products are based on the software as a service

(SaaS) model and sold by subscription. Its products are used

in over 180 different countries.

The software development process is based on Agile values

and principles and implemented through Scrum practices and

roles in general. The teams have 2 to 3 week sprints that

include daily stand-up meetings, sprint planning and sprint

review meetings, and sprint retrospectives.

The development teams are cross-functional, self-

organizing and organised by product functional module. The

roles in the development teams vary from team to team but

typically include Developers, Testers, a Product Owner and an

Agile Facilitator, with shared support from members of the

wider product team.

The company examined in our study was around one year

into DevOps adoption, after establishing the need for a change

by the business in order to remain agile and competitive. Prior

to DevOps implementation the company’s product team was

split into two separate delineated teams: platform and

product development, with the former having exclusive access

to production systems. Prior to DevOps, the company had

been maintaining and developing its aging monolith

application that was hosted in a traditional data center. While

this model was able to serve the company well and contribute

to its success of shipping software quickly in its early stages, it

had numerous shortcomings that quickly became visible to

the business. As a result, the company undertook a number of

fundamental changes. Early on, they commissioned a costly

migration of hosting providers to one that provided on-

demand cloud computing platform. This change allowed

product teams to access and maintain their own independent

infrastructure, and gave them autonomy to work much closer

with engineers to design and build what they needed

providing end-to-end control. A big part of the expense of this

exercise was spent in rewriting large parts of their monolith

application to work in this new platform environment that

scaled independently and had different uptime Service Level

Agreements than before.

From a team perspective, the company introduced an

“embedded operations model” by disbanding the silo of the

operations team and moving platform engineers into product

development teams. Aside from their existing duties, the

product development teams then became responsible for

operations and cost of their own platform with their newly

acquired operations skillset. The focus was on creating cross-

functional teams that had end-to-end capability and incentives

for shipping product and operating it. The creation of such

teams involved investing in acquiring the right skill set.

A number of centralised platform functions (security, data

services, shared components, etc.) were still retained by the

company, however, they were now acting as service providers

to their new internal customer, the product development

team.

5 RESEARCH METHODOLOGY

We adopted a case study methodology as it enables

investigation of a contemporary phenomenon within its

natural setting and is appropriate for contemporary topics

such as DevOps where theory and practice are relatively new

[23].

Data collection involved a series of six in-depth semi-

structured one-on-one interviews, conducted over a six-

month period with interviewees covering the spectrum of the

key roles responsible for DevOps implementation, namely:

Developer (Dev), Tester (T), Release Quality Lead (RQL),

Team Lead Infrastructure (TLI), Training Manager (TM), and

Operations Manager (OM). Interviews were generally of 1-1.5

hour duration, and were followed up by some informal

sessions to clarify and refine issues as they emerged. Smeds's

[7] model was used to develop an interview protocol.

Interviews allowed the researchers to explore the

interviewee's view of the DevOps implementation process,

particularly the main drivers, engineering capabilities and

technological enablers, benefits and challenges associated

with adopting DevOps. The responses of the interviewees

included information on multiple projects. All interviews were

 Senapathi, Buchan, and Osman

4

digitally recorded with the permission of the participants and

later transcribed in detail.

The transcribed data were uploaded into the qualitative

analysis tool NVivo. Individual interview transcripts were

analysed for concepts or themes by one researcher. The coded

themes were re-analysed to ensure that they belonged to the

correct category. This continued until the conceptual

categorisation we developed was well-supported by the data.

In order to clarify some details about the pre-DevOps

situation in the organisation and clarify some of the drivers

with the initiators of the DevOps adoption, one of the authors

had a short post-interview conversation with the pre-DevOps

Chief Product Officer and Chief Platform Officer. The outcome

of this discussion provided a better understanding of the main

drivers that motivated the adoption of DevOps in the case

organization. However, it was not included when analysing

the interview data.

6 FINDINGS

Our findings from the analysis of the interview transcripts

are discussed in the following sections. First, we present an

overview of the DevOps journey from perspective of the main

concepts and definitions associated with the meaning of

DevOps in the organisation. This is followed by a description

of the organisation’s main drivers and motivation for adopting

DevOps (i.e. the expected benefits). The technological and

capability enablers of the organisation’s DevOps

implementation are then examined, followed by a discussion

of the benefits of DevOps that the organization has realized so

far. We finish the findings with an analysis of the challenges

that hindered the effective implementation of DevOps.

6.1 The Meaning of DevOps

Interviewees offered a number of interesting perspectives

on the meaning and conceptualization of DevOps, having

experienced its adoption for around a year. The main concepts

are depicted in Figure 1.

At a high level, DevOps was viewed as a journey and a set

of values that guided behavior. It was recognized that DevOps

adoption was incremental and a transitional journey. For

example, the TM describes DevOps as a “period of time where

software developers transition from just handing over their

completed work to system administrators, to actually taking

ownership and responsibility themselves”.

A technical value described by the TL was "looking at

automation as a rule of thumb".

DevOps was commonly described as a way of bringing the

skills and knowledge of operations and development closer,

with greater collaboration and communication.as the RQM

describes it as “…a kind of hands-on, short-term and longer-

term situation where everybody’s working really closely,

communicating really closely, and getting an understanding of

where everything’s at so they’re not just two very segregated

departments [anymore]”. The OM emphasized that DevOps is

about “more natural communications with the people around

you”. The term “embedded Ops” has been adopted in the

organisation to describe the situation where Product teams

have a dedicated Ops specialist as part of the team. At the time

of the interviews not all development teams had transitioned

to this situation.

Product team members tended to view DevOps from the

perspective of an end-to-end product view with broader team

responsibilities and control. As the tester described it, “We

write stuff, we review it, we test it, and we deploy it. And

through that as well as discussion and learning, and that kind of

thing. It’s pretty choice”. The Dev also emphasizes this “team

control” view of DevOps: “you’re not relying on other teams to

do the infrastructure. So, you manage your own infrastructure.

You have control over it.”

He goes on to explain his view of the impact of this

autonomy: “If you wanted to use a specific tooling you can…and

as a Dev it’s a lot easier to code if that’s the right tool for the job

and it’s a lot easier to deploy and everything…. But because you

take care of the environment you are in charge of the cost and

taking care of it. So, you do consciously think about it [more]”.

Interviewees also noted that the team’s understanding of

DevOps included responsibility for writing infrastructure

scripts as well as ownership of post-deployment monitoring of

infrastructure and issue resolution.

The OM describes his view of DevOps space by tracing it

back to the roots of computer engineering:

".. you have to have quite creative mind-set, have this weird

like sort of spatial, cognitive space between science and arts

that comes into play in the way you build these computer

systems. A lot of it's kind of Lego bricks. You can just put things

together and you can see how they interact, and a lot of it's

reusable stuff and that's sort of how you think about building

out an entire environment and a product. Because at the end of

the day it's really becoming like product is the shell and

everything else goes into it to support it."

Figure 1: The Meaning of DevOps

 5

6.2 Drivers for DevOps Adoption

Transforming a traditional product organisation to adopt a

DevOps model can be both an expensive and time-consuming

undertaking. Yet many rapidly growing organisations justify

investment in this transformation because the expected

benefits accrued from the outcomes are greater than the cost

of effort and change to undertake the DevOps implementation

journey. The expected benefits, or drivers, that motivate

DevOps adoption for the case organisation are depicted

graphically in Figure 2 including strategic, tactical and

operational drivers.

Firstly, a strategic view is provided by a short post

interview discussion with the pre-DevOps Chief Product

Officer and Chief Platform Officer. They describe three pre-

DevOps frustrations that motivated the adoption of DevOps

and initiated the work to move away from a centralised

operational model. Firstly, was the frequent frustration

between the company’s operation and product teams who

have had competing priorities because of a “separation in the

wrong part of the value chain. Product teams are required to

ship product quickly, often with networking and operational

changes needed. Operation teams serve requests from many

multiple teams and set their own internal priority without often

taking into account product team timelines. Working as silos

naturally created points of frustration because of lack of

alignment between the two units”.

Secondly, the Operation and Product teams operated under

what was identified as a mismatch of incentives and control.

Operation teams were accountable for performance and

uptime, yet development teams were in a better position to

improve it. Conversely, development teams were accountable

for shipping product with great agility and velocity, but

operation teams were in controls of major portions of the

software development lifecycle (SDLC).

Lastly, as the organisation utilized more technological

enablers and in particular automation for more agility, the

need to move to a hosting provider that allowed for

infrastructure as code also grew. This move required a

different skill set that is more aligned to developers in

development teams.

The driver for DevOps adoption most emphasized by

interviewees was to achieve continuous deployment (CD),

"the ability to be able to make a change and have that reflected

in the real world, instantly..." (ITL). As depicted in Figure 2 this

driver relates to more strategic expected benefits including a

higher responsiveness to customers, through faster new

feature delivery and bug fixing. CD also “avoid[s] the outages

needed for large releases” [OM]. SO, changing the pre-DevOps

situation, where new product versions were released several

times a year, to continuous deployment, was viewed as a

strong strategic driver for adopting DevOps.

Another key (tactical) driver for DevOps adoption in the

organisation was to achieve productivity improvements or

“deliver[ing] quality software at speed” [TM]. As seen in Figure

2, this driver relates to other operational drivers. For the OM

and TM, getting the Infrastructure Team and Development

teams out of their work silos and working more closely

together was a strong driver for DevOps adoption. In the pre-

DevOps situation “there was a bottleneck to get stuff into

production because we had to give it to the Ops team” [TM]. The

Infrastructure Team would only understand the infrastructure

needs and put it in place and deploy after the commit. “.. being

able to deliver quality software quickly, you need to have less

points along the journey” [TM], and DevOps realized this.

Avoiding “the double ups and start-stops in communications

between ops and devs dealing with an issue ticket” [OM] was

also an expected benefit related to elimination of work silos

from DevOps adoption.

From the Development Team’s perspective a key

(operational) driver for DevOps adoption was “for the

production team to own the infrastructure” [T]. The

Developer’s perspective has an interesting perceived benefit:

“It just means you are not relying on other teams to do the

infrastructure. You have control over it – choice of tool to use

for example. To get the feel of small startups in a big

organisation” [Dev]. The Development team were also

motivated by the opportunity DevOps adoption provided to

automate more of the testing and infrastructure setup.

 6.3 Technology and Capability Enablers

Enablers are contextual factors that support an effective

implementation of the DevOps way of working. Following the

research framework described in section 3, Figure 3 represent

snapshots of the organisation’s current state of technology

support and team capability support for implementing

DevOps.

The (H), (M) and (L) beside each enabler indicate the level

of maturity of the areas of technical support and level of team

capability in each area. As can be seen from this, generally the

technology is in place to support the implementation of

DevOps to a high degree of maturity. Figure 3 shows there are

Figure 2: Drivers for implementing DevOps

 Senapathi, Buchan, and Osman

6

no big gaps in team capability enablers either, apart from

continuous measurement.

Figure 3 Technological and team capability enablers

The following sub-sections provide more detail of the

situation with regard to these DevOps enablers. The first sub-

section describes the team process capabilities and tool

technology support related to aspects of the CI/CD pipeline,

with more detail on test automation in the following sub-

section. This covers most of the enablers apart from those

related to monitoring, which are discussed next. This covers

aspects of continuous infrastructure monitoring and

optimization and continuous user behavior monitoring and

feedback, as well as service failure recovery without delay.

The final sub-section discusses the metrics used as evidence of

improvement as a result of DevOps adoption.

6.3.1 CI/CD Pipeline. For the case organisation, the main

goal in implementing DevOps was to achieve continuous

delivery and implement the CI/CD pipeline by automating

steps in the software delivery process from commit to deploy.

Figure 4 summarises the state of the continuous delivery

pipeline at the time of this study.

Figure 4 The CD/CI pipeline

Continuous delivery was enabled by implementing a set of

processes and supporting tools such GoCD, TeamCity,

Terraform, and Octopus Deploy. While GitHub was used

companywide as a code repository for both product and

infrastructure, and quality control around any product or

infrastructural changes, Terraform was primarily used for

building infrastructure efficiently. TeamCity was used for

continuous integration and Octopus Deploy to deploy specific

release/version numbers, "… you create a release in that you

pick what you're releasing, like which version numbers... it's a

set process that each release must go to. So, you create the

release and you want release version number 123. So, if you

click "next" on that step, it will roll it to set branch environment

that you've configured for it. At that point you know you can

kick off testing on that…so, they could be auto tests, or manual

tests...then, it might go to the next environment, then it goes

live." [RQL]

Collaborative technologies such as Yammer, FlowDock, and

Confluence were used to foster team collaboration. While

Flowdock was mainly used for team communication (e.g.

keeping in touch, sharing issues/pain points), Yammer was

used to share releases with others and to initiate discussion

on completed tasks and lessons learnt. Release plans and

documentation were stored in Confluence and Jira was used

as an issue tracking system to log and track issues such as

those relating to building a new piece of software or customer

experience.

6.3.2 Monitoring. Basic services such as dashboards were

used to show information about all releases so that everyone

could see in real time mode what was going out.

Companywide dashboards showed details such as the total

number of users on the system and the countries they come

from. There was at least one dashboard associated with every

team to look at the infrastructure that supported that area,

and as part of taking on their self-deploy the teams had to

create dashboards so that they could monitor their piece of

the application. This enabled the teams to report on any

changes made and customer experience.

Monitoring services such as Datadog and Datawatch were

used to monitor metrics such as concurrent user sessions,

database load, and CPU metrics. Most teams set up their own

Flowdock and set up a link which fed back all the alerting from

Datadog into their Flowdock where they could chat real-time

on things such as their next release. New Relic was used as a

dedicated tool for performance monitoring.

Feature flags were used mainly to control operational

aspects from an infrastructure perspective, for example,

decisions on resources were made by looking at changes over

time by comparing current data with previous trends.

Operations feature flags were also used to monitor unclear

performance implications of query-time executions such as:

"..what is the expected behaviour of this app? Is it 60 seconds

for a query? Is it going to be longer than that? and if we get that

kind of understanding by app, by feature, we can start building

some really focused monitoring and automation around that.

So, we can start responding to those thresholds in ways that will

keep things running smoothly. …". (Dev)

Monitoring user behavior, although its importance was

recognized, was still not very prevalent, as the Tester

explained: "Currently not very much but for some specific

features, like newly developed features, we do think about

monitoring before we develop or when we are developing.

Like once the feature is in production, users start using… what

stats might be helpful for us to determine whether the feature

should have more improvement or it's already good enough or

there is something we haven't thought about…"

Illustrations based on:

https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff

 7

6.3.3 Test Automation. While there were different layers

of test automation, most end-to-end functional testing was

automated, "..I think the percentage might be 40 percent for our

most used features and for our most common functions we do

have auto tests…Unit tests, mostly it's developers. Once they

finish a feature, they will develop unit tests for what's added.

Once it's deployed to our test environment, it's available for QA

to pick up. QA will decide… because from the planning, if we

think it's a good candidate for automation, we will create the

auto test for this feature, like when they are still

developing.."[T].

In terms of full stack end-to-end testing, developers were

involved in doing automated unit testing, whereas mock

integration tests were done in test environment, a replica of

production where all the integration testing and automated

testing would be run, "..because everything is micro serviced

and API-driven we've mocked up API endpoints to test against.

So that allows our test environments to be completely isolated

from the rest of the company so we can make sure that we have

code integrity and no hidden dependencies...and then in our UAT

environments we do proper integration tests and acceptance

testing." [OM]. Tools such as Cucumber and Selenium were

used to write the tests. Terraform and AWS Cloudformation

were used to test Infrastructure as Code, and Selenium for

acceptance testing. According to the operations manager,

managing infrastructure as code via source control was the

philosophy underlying everything that relates to pioneering

the DevOps space.

6.3.4 DevOps Metrics. At the time of the interviews the

organisation had not started systematically collecting metrics,

although the need to track improvements in mean time to

recover and lead time were mentioned. All interviewees

focused on the significant improvements in deployment

frequency. For example, teams started realizing that some

apps which were deployed fortnightly due to restrictions

between dependencies between their apps, "..that dependency

didn't really exist or when it did exist it could be easy avoided.

And what they ended up doing was they split all the three things

out separately and we could essentially deploy that same app as

many times as we wanted it at. I think at one point we even did

seven deployments one week which was quite a big deal…."

(Dev)

6.3.5 Product Architecture. Several of the interviewees

discussed the decision to move to a cloud-based micro-

services architecture as an enabler of the DevOps adoption.

The ability to reduce dependencies between features as

micro-services was seen as a key enabler of fast feature

deployment.

6.4 Benefits Realised

The drivers or expected benefits of adopting DevOps have

been described in section 6.2. Now we describe the benefits

actually realized from the DevOps implementation to date,

identified by interviewees. The findings are summarized in

Figure 5 and discussed in more detail in the following

subsections.

6.4.1 Teams are happier and more engaged. Although not

identified as a driver, this benefit was a strong theme of the

interviewees. As shown in Figure 5, there are a number of

other DevOps-related benefits that have contributed to the

improved team happiness and engagement. Product teams felt

more valued in the new DevOps way of functioning. The

embedded ops did not feel that they were just sitting in the

dark maintaining servers and databases, but could see the

value and impact of their work on real clients. DevOps enabled

the development team to have a more comprehensive view of

the entire landscape, the company, the product and how it is

used by clients. As the Operations manager explained, “You

understand how everything fits together; you understand how it

works; you actually build your own solutions for things that

work for your environment, and not trying to sort of bend an

enterprise-type software to suit your whims"

Interviewees also described how the increased

collaboration with others needed to implement DevOps was

enjoyable and motivating.

Figure 5 Benefits realised from DevOps adoption

Related to this is the decrease in finger pointing in the

teams that was reported by interviewees. This was described

as contributing to a more positive collaborative team

environment. Many of the team members clearly enjoyed

learning about new technologies and were motivated by the

need to learn about the new DevOps technology enablers as

part of their work. The increased responsibilities of the team

to include Ops functions was viewed as a benefit by providing

more team autonomy in their work. “Team ownership and

responsibility is huge, the Devs and QAs have loved it…” [RQM].

The TLA viewed this autonomy as enabling the team to “..build

so much better integrity. You build your own solutions that

work for your own [team] environment”.

 Senapathi, Buchan, and Osman

8

6.4.2 More frequent releases. This DevOps drivers was

front-of-mind for most interviewees and similarly it was a

strong theme as a realized benefit. The benefits accrued from

smaller more frequent releases is described by the RQM:

“More frequent releases [is a benefit]. Because [there are] more

deployers and smaller releases. Easier to contain a release. More

features for end users”. The TM also observed that the smaller

more frequent releases were less risky and resulted in fewer

service outages.

Shared technical knowledge between operations and

development teams is viewed as a benefit from DevOps

adoption that contributed to more frequent releases. It helped

in diagnosing and fixing problems faster. "..even if my focus is

testing, it still helps a lot if I know that Ops and Development

knowledge, technical knowledge. It directly or indirectly affects

my testing job. If I know that I can do it more efficiently and

more easily. If you see a customer reported a ticket and if it

comes to me, if I don't have any knowledge, I will go and find

someone else to fix the problem but if I already know

development knowledge at least I can do an initial

investigation, right?" [T].

In DevOps, development teams become a part of taking

ownership of the production environment, gaining an

understanding of infrastructure and the impact of their code,

and better application and code quality were benefits

identified as a result of this. The Dev’s reasoning was “that you

write better code because you know what’s going to happen to

it”. The RQM explained: "…the more understanding that the

Devs and the QAs have over the infrastructure itself, they can

write that quality code, and a better, kind of smarter, code as

well….and so, by the teams getting more of an understanding as

to how that worked, they actually changed the way they wrote

the code". Before adopting DevOps, the operations personnel

were traditional system administrators who looked after the

servers and infrastructure without any feedback back to the

product teams unless something went fundamentally wrong.

By moving from traditional to a cloud hosting platforms,

operations could see the power of being able to do automation

and configuration management. The operations people also

started understanding why the code was written in a certain

way, which helped them to design better infrastructure

solutions.

Having shared knowledge of development and operations,

as well as being co-located, meant that communications

between the developers and operations was more natural and

richer. The ITL describes how this resulted in fewer tickets

being raised because “you don't need a ticket, you go work

within the team, … you have natural communication with the

people around you and it's quite different. It's a big enabler

when you can communicate naturally, I think" [ITL]. He goes

on to describe how the increased face-to-face communications

(rather than email) between Dev and Ops also was a benefit in

clarifying a misunderstanding: “…within a couple of minutes

you've resolved or clarified something that you would have

spent, maybe 15 minutes to half an hour in trying to write out

an email response."

6.5 Challenges in Adopting DevOps

During the year-long journey of DevOps implementation a

number of challenges were identified by interviewees. These

are aspects of implementing DevOps that slowed down the

implementation by inhibiting enablers of DevOps or

increasing the risk of not achieving the goals of DevOps.

Figure 6 summarises the main areas of challenge (rectangular

borders) and related issues. The lines depict hypothesized

relationships of influence.

6.5.1 Having staff with the right technical skills. This

challenge relates to both recruiting new staff with the

technical skills as well as up-skilling and retaining current

staff. The lack of appropriately skilled staff can lead to slowing

down of the DevOps adoption journey because the capabilities

needed are missing at the time of need. As discussed in

section 6.3 in more detail, the skills relate to competency in

writing software as well as understanding infrastructure and

its setup, deployment, post-deployment monitoring,

infrastructure problem solving, and skills in using the

supporting tools.

 Figure 6 Challenges related to DevOps Adoption

The RQL viewed “staffing as probably our biggest challenge”

and that there is a shortage of suitable job seekers and

graduates because, in the opinion of the infrastructure team

lead “the skills set doesn’t exist”. The Training manager

emphasised the challenge of upskilling the entire team so

anyone has the capability to be on call for operational

problems. He described the upskilling of existing staff on the

use of the new monitoring and automation tools and

principles as currently a “bottleneck” to growth in DevOps

adoption. From the team’s perspective the challenge is the

steep learning curve. As one Tester stated, the challenge is

“just keeping up because there are so many new tools and

ideas”. One Developer also noted that, although the developers

are used to learning emerging new technologies frequently,

the challenge is to get enough high quality training to learn the

 9

Ops related technologies and ideas quickly enough to keep up

with work demands.

6.5.2 Resistance to Change and Uncertainty. The transition

to a DevOps way of working needs some motivation to

overcome resistance to this long-term change and effort, and

cope with the uncertainty of how this change will impact them

in the future. As one Developer stated: “I thought I was just

going to write code” and that DevOps “was not what I signed up

for”. The infrastructure team lead notes that it is a slow

process getting the infrastructure experts to be accepted as

part of the team and work effectively, as well as share

knowledge. He states that “you can’t just slam them together

and expect them to work because you’ve got two different skill

sets and cultures initially.” He goes on to observe that

acceptance of the change in mind set related to requiring all

team members to be rostered as on-call for dealing with

operational issues that arise was particularly challenging. The

QA release manager had a view that the sheer volume and

diversity of change related to the transition to DevOps is

challenging for teams. She noted that changes may be needed

in parallel and may be held up because of lack of resources or

dependencies. She also observed that “having so many balls in

the air” related to change can lead to disagreements or

burnout. So resistance to change and uncertainty can slow

down the availability of skilled staff through staff turnover

from burnout or and slow upskilling, as well as slow

acceptance of adoption of DevOps practices.

6.5.3 Changing the Technology Stack and Tools. The

transition of the product to the cloud and a micro-services

architecture was seen as a strong enabler of the adoption of

DevOps and continuous deployment (as well as for other

strategic business reasons). A year into the product re-

architecting, the infrastructure team lead describes this part

of the DevOps journey as having been incredibly complex and

challenging. Similarly, deciding on, experimenting with, and

setting up the tools for the build pipeline including full-stack

testing, as well as automated deployment and monitoring has

been challenging, according to an embedded Ops team

member. He describes it as time-consuming, slow and

technically complex, with “no time for complacency”. The

challenge of changing the technology stack is related to the

challenge of finding the skilled staff to set and use the new

technology stack, as well as the challenge of rapid learning

and coping with this change and the associated uncertainty.

6.5.4 Uncertainty in Responsibilities. The shift in

responsibilities associated with adopting DevOps is gradual

and this has sometimes led to misunderstandings about who

is responsible for what work activities. For example, the

Tester describes the situation where ownership of

infrastructure health is "shifting but not fully shifted yet", and

this has led to misunderstanding: "Sometimes I think you have

taken care of such part, this part, but the other team think,

okay, product team already take care of this bit [and it is

missed]".

7 DISCUSSION

Overall, the findings presented in the previous section align

well with findings from other research in DevOps and provide

more empirical support for this body of knowledge. In this

section, the findings are compared with literature and

implications for educators, practitioners and researchers

discussed.

7.1 Meaning of DevOps

It is useful to have a consistent and clear understanding of

the meaning of the term “DevOps” within an organization. If

the meaning is not shared within an organisation, this

increases the risk of misunderstandings, goal misalignment,

and missed benefits. We found that the conceptualization

DevOps was quite consistent and well developed in the

organisation and aligned well with other researchers’ findings.

While Smeds & colleagues define DevOps as enabling

capabilities, supported by cultural and technological enablers

[7], others argue that the perceived meanings of DevOps

depends on whether the emphasis is on the underlying goal

for adopting DevOps or on the processes and practices

through which collaboration between development and

operations is achieved [26]. Findings from this study bridges

these two views: while the main goal for adopting DevOps was

to achieve continuous deployment of quality software, DevOps

was seen as a way of integrating the processes, practices, roles

and skill sets of development and operations closer together

to align the incentives of the key personnel/roles

(development, operations, and testing) involved in delivering

software [12, 21]. Team traits and behaviors such as team

ownership and team responsibility, and a number of

technological tools and practices relating to automation,

monitoring, and deployment were also important to the

shared meaning of DevOps capabilities central to the meaning

of DevOps in [7].

7.2 Drivers and realised benefits

In the organisation it was a business driver related to

overcoming the limitations and frustrations of the current

situation as well as the need to enhance the company’s agility

and competitive advantage that initiated the change to

DevOps. This then translated into team drivers related

improving speed, quality and release frequency. In agreement

with the findings from the literature, the case organisation

experienced some expected benefits of DevOps adoption such

as increased frequency of quality deployments, improved

quality assurance, and increased collaboration between

development and operation teams [8]. In addition, the

findings also reveal the influence of some key relationships

between the realized benefits. For example, benefits such as

high autonomy, learning new technologies, feeling valued, and

motivating collaboration contributed to improved team

morale and engagement. And while benefits such as improved

 Senapathi, Buchan, and Osman

10

code quality, natural communications, and knowledge sharing

contribute positively to improved deployment frequency, the

benefits of improved frequency of releases and improved

application quality in turn contribute to improving customer

experience.

7.3 Enablers

The technical and capability enablers aligned well with

those suggested by Smeds and colleagues [7]. Furthermore,

they were generally implemented to a reasonable level. The

architecture switch to cloud-based delivery and micro-

services was also seen as an important technical enabler by

the interviewees. The additional technical enabler of

automated measurement and capability enabler of continuous

measurement were not implemented to at this stage of the

DevOps adoption case, at the time of the interviews. This was

reflected in the low visibility and qualitative nature of the

benefits accrued from adopting DevOps.

One clear theme from the interviews was that the adoption

of the technical enablers that supported the capability

enablers was a complex, gradual process taking considerable

effort and resources. This is reflected in some of the technical

challenges case identified by the interviewees.

7.4 Challenges

A number of main challenges in adopting DevOps have

been identified in the literature: lack of clear definition[7, 8],

insufficient communication [8], deep-seated company culture

[8], organisation structure, and geographical distribution [7].

However, not all of those challenges were evidenced in the

findings of this case study. For example, the lack of clear

definition was not perceived as a major challenge, as there

was a company-centric understanding (embedded ops) and

consensus about the meaning of DevOps. Challenges related

to geographic distribution was not applicable as the

development and operations work in the company was not

distributed. However, there were other aspects that either

slowed down the implementation by inhibiting enablers of

DevOps or increasing the risk of not achieving the goals of

DevOps. For example, interviewees highlighted challenges

related to (i) recruiting new staff with appropriate technical

skills and training, (ii) providing high quality training to

existing staff, and (iii) retaining current staff who had the

relevant qualification, skills and experience. Other challenges

associated with shifting responsibilities and the volume and

diversity of change related to the transition to DevOps were

perceived to create resistance to change and uncertainty.

Provisioning appropriate technologies and tools such as cloud

hosting platform, a micro-services architecture, and

experimenting with automated deployment and monitoring

was also perceived as extremely complex and challenging.

Similar to the relationships between realized benefits, the

findings also highlight the influence of relationships between

the challenges. For example, the challenge of changing the

technology stack is related to the challenge of finding the

skilled staff, as well as the challenge of coping with change and

the associated uncertainty.

8 THREATS TO VALIDITY

There are likely to be researchers' biases influencing the

interpretations of the qualitative analyses of the interview

data. To reduce this bias, the data analysis was collaborative

and the results were discussed between two researchers until

consensus was reached. The high-level categorisations were

also reviewed by a member of the case organisation.

Construct validity relates to ensuring there is a shared

understanding of the language and terminology among the

interviewees and other researchers so that the interview

questions were interpreted in the manner intended. One

researcher conducted all the interviews using the same

interview guide for each interview. This consistent interview

protocol included explaining the purpose of the survey,

inviting clarification questions at any stage, and explaining the

main terminology. Prior to the interviews, the interview

questions were reviewed for ambiguities and biases by the

researchers and a pilot interview was conducted with an

expert from industry.

To avoid leading the interviewees to answers or guessing

expected conclusions, the interviewer retained a neutral

stance about interviewees' explanations and descriptions. The

second author (and interviewer) has had involvement with

the case organisation for several years and so there was

already a basis for mutual trust. This could lower the

likelihood of the interviewees being influenced by the

presence of the researcher.

The external validity of case studies is generally low

because of the uncertain effects of changing contextual

variables such as project and team characteristics. The

findings from our single case study could hardly be claimed to

be generalizable to other contexts. The qualitative findings

can be considered as hypotheses, rather than facts that are

valid in general, and form the basis of future research.

9 CONCLUSION

Our study presents findings of an in-depth exploratory case

study that investigated DevOps implementation in a New

Zealand product development organisation. Our investigation

explored the meaning of DevOps, the main drivers, enablers,

and benefits and challenges of adopting DevOps. For the case

organisation, DevOps was “embedded ops”, which implied

optimal team combinations in which operations could be

embedded within a team of developers and testers or spread

across a few teams. The meaning of DevOps as expressed by

the interviewees, was seen as a way of integrating the roles

and skill sets of development and operations closer together

to align the incentives of the key roles involved in delivering

 11

software. The support of team traits and behaviors such as

team ownership and team responsibility, and technological

enablers such as implementing an automation pipeline and

cross functional organisational structures, were critical to

delivering the expected benefits of DevOps.

The realized benefits of DevOps adoption included

increased frequency of quality deployments, and increased

collaboration between development and operation teams. The

influence of key relationships between the realized benefits

was identified. For example, while benefits such as high

autonomy, motivating collaboration, and feeling valued

contributed to improved team morale and engagement,

benefits such as improved code quality, natural

communications, and knowledge sharing were found to

contribute positively to improved deployment frequency.

The case organisation experienced a number of challenges

that slowed down the DevOps implementation process. These

included challenges related to recruiting new staff with

appropriate technical skills and training, providing high

quality training to existing staff, and retaining current staff

who had the relevant qualifications, skills and experience.

Challenges associated with shifting responsibilities and the

volume and diversity of change created some resistance to

change and uncertainty. Provisioning appropriate

technologies and tools such as cloud hosting platform, a

micro-services architecture, and experimenting with

automated deployment and monitoring were also identified as

challenges.

REFERENCES
[1] Debois, P. DevOps Days Ghent, DevOps Days, 2009.
[2] Debois, P. Devops: a software revolution in the making? Cutter IT Journal, 24,
8 (2011).
[3] Fitzgerald, B. and Stol, K.-J. Continuous software engineering: A roadmap and
agenda. Journal of Systems and Software, 123 (2017), 176-189.
[4] Dingsøyr, T. and Lassenius, C. Emerging themes in agile software
development: Introduction to the special section on continuous value delivery.
Information and Software Technology, 77 (2016), 56-60.
[5] PuppetLabs and DORA 2017 State of DevOps Report. City, 2017.
[6] Roche, J. Adopting DevOps practices in quality assurance. Communications of
the ACM, 56, 11 (2013), 38-43.
[7] Smeds, J., Nybom, K. and Porres, I. DevOps: a definition and perceived
adoption impediments. AGIE 2015, Springer, 2015, 166-177.
[8] Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare, L. E., Tiihonen, J. and
Männistö, T. DevOps Adoption Benefits and Challenges in Practice: A Case Study.
Springer, Cham, 2016, 590-597.
[9] Clear, T. THINKING ISSUES: Meeting employers expectations of devops roles:
can dispositions be taught? ACM Inroads, 8, 2 (2017), 19-21.
[10] Erich, F., Amrit, C. and Daneva, M. Report: Devops literature review.
University of Twente, Tech. Rep (2014).
[11] Dyck, A., Penners, R. and Lichter, H. Towards definitions for release
engineering and DevOps. In Proceedings of the Proceedings of the Third
International Workshop on Release Engineering (Florence, Italy, 2015). IEEE
Press.
[12] Lwakatare, L. E., Kuvaja, P. and Oivo, M. Dimensions of DevOps. Springer,
City, 2015.
[13] Jabbari, R., bin Ali, N., Petersen, K. and Tanveer, B. What is DevOps?: A
Systematic Mapping Study on Definitions and Practices. XP2016, ACM, 2016.
[14] Walls, M. Building a DevOps Culture. O'Reily Medis, Inc., 2013.
[15] Eck, A., Uebernickel, F. and Brenner, W. Fit for continuous integration: How
organizations assimilate an agile practice (2014).
[16] Ståhl, D. and Bosch, J. Modeling continuous integration practice differences
in industry software development. Journal of Systems and Software, 87 (2014),
48-59.

[17] Chen, L. Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32, 2 (2015), 50-54.
[18] Chen, L. Continuous Delivery: Overcoming adoption challenges. Journal of
Systems and Software, 128 (2017), 72-86.
[19] Claps, G. G., Svensson, R. B. and Aurum, A. On the journey to continuous
deployment: Technical and social challenges along the way. Information and
Software technology, 57 (2015), 21-31.
[20] Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mäntylä, M.
V. and Männistö, T. The highways and country roads to continuous deployment.
IEEE Software, 32, 2 (2015), 64-72.
[21] Humble, J. and Molesky, J. Why enterprises must adopt devops to enable
continuous delivery. Cutter IT Journal, 24, 8 (2011), 6.
[22] Runeson, P. and Höst, M. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering, 14, 2
(2009), 131.
[23] Yin, R. K. Case study research: Design and methods. Sage publications, 2003.
[24] Fitzgerald, B., Hartnett, G. and Conboy, K. Customising agile methods to
software practices at Intel Shannon. European Journal of Information Systems,
15, 2 (2006), 200-213.
[25] Lee, A. S. and Baskerville, R. L. Generalizing generalizability in information
systems research. Information systems research, 14, 3 (2003), 221-243.
[26] Lwakatare, L. E., Kuvaja, P. and Oivo, M. Relationship of DevOps to Agile,
Lean and Continuous Deployment: A Multivocal Literature Review Study. Springer,
City, 2016.

	ABSTRACT(
	CCS CONCEPTS
	KEYWORDS
	DevOps enablers and practices, DevOps benefits and challenges
	REFERENCES

