

Leveraging the Mob Mentality: An Experience Report on Mob
Programming*

Jim Buchan
School of Engineering, Computer & Mathematical Sciences

Auckland University of Technology
New Zealand

jbuchan@aut.ac.nz

Mark Pearl
MYOB NZ Ltd
Newmarket

New Zealand
mark.pearl@myob.com

ABSTRACT

Mob Programming, or "mobbing", is a relatively new

collaborative programming practice being experimented with

in different organizational contexts. There are a number of

claimed benefits to this way of working, but it is not clear if

these are realized in practice and under what circumstances.

This paper describes the experience of one team's experiences

experimenting with Mob Programming over an 18-month

period. The context is programming in a software product

organization in the Financial Services sector. The paper details

the benefits and challenges observed as well as lessons learned

from these experiences. It also reports some early work on

understanding others' experiences and perceptions of mobbing

through a preliminary international survey of 82 practitioners

of Mob Programming. The findings from the case and the survey

generally align well, as well as suggesting several fruitful areas

for further research into Mob Programming. Practitioners

should find this useful to extract learnings to inform their own

mobbing experiments and its potential impact on collaborative

software development.

CCS CONCEPTS

• Software creation and its engineering → Software creation

and management

KEYWORDS

Mob programming, Mobbing, Collaborative programming

1 INTRODUCTION

The term Mob Programming was first coined in the Extreme

Programming (XP) community in 2003 by Moses Hohman [4] to

describe their practice of code refactoring in a group of more

than two. The term largely fell into obscurity until Woody Zuill

began popularizing it again from 2013 [10]. It was then that

Woody began speaking at developer conferences about how his

commercial development team of about 8 members was

"mobbing" fulltime and the successes they were seeing. Since

then many teams all over the world have begun practicing Mob

Programming, based on Woody’s experiences and explanations.

The book by Zuill and Meadows [9] is viewed as the seminal

work on Mob programming.

Mob Programming or “mobbing” is when 3 or more people

work at a single computer with a large screen to solve code and

problems together. Participants in a mob work collaboratively,

with one of the team using the single keyboard as the “typist”

(sometimes referred to as the “driver”). The typist writes code,

mainly at the instruction of the other team members. The others

in the mob form the problem-solving team. At regular intervals

the typist is swapped, depending on various factors including

time at the keyboard, expertise of the individuals and

knowledge of the current code base. Woody suggest that there

is flexibility about the physical layout and frequency of mobbing

to suit each team’s particular situation.

Mob Programming is a programming practice that leverages

distributed knowledge in real-time and can be seen as taking

pair programming to the next level. Distributed knowledge is all

the knowledge that a group of people possess and might apply

in solving a problem; with Mob Programming the knowledge

and the people are brought together in front of a single

computer.

An overview of the benefits and challenges of mob

programming, based on an analysis of recent literature on Mob

Programming is presented in the paper [1]. This paper also

identifies some strong themes based on a text analysis of 7

articles and the book by Zuill and Meadows. They find that

words such as "learning", "driver", "whole", "retrospective",

"defect", "idea", "keyboard", "rotation" and "whole" are

emphasized in the conceptualization of mobbing in this

literature (p.6). They also identify that more research is needed

in the areas of empirical validation, and theoretical rationale,

which aligns with the areas of future research proposed in this

paper. Given more research like this for mobbing, we could be

in the position to apply a framework for research into mobbing

similar to the one proposed for pair programming in [3].

This paper shares the experiences of a commercial

development team based in New Zealand, who has been

practicing Mob Programming for an extended period of time. It

 Jim Buchan and Mark Pearl

2

complements other experience reports on Mob Programming

such as [8] and [2], adding to the body of empirical knowledge

in this area.

2 BACKGROUND TO THE CASE

The organization provides a cloud-based financial product suite

that is developed and maintained in-house. It is a well-

established company (over 25 years old) with around 50

development teams. The organization supports self-organizing

teams and different teams work in different ways to suit their

preferences. This paper focuses on the experience of one

development team that has adopted mobbing as one of its

software development practices. The Development Lead came

to the organization with 2 years of experience using mobbing in

another company and has been mobbing with the current

organization for another 18 months.

The initial motivation to encourage mobbing with the current

team was to use it as a means to up-skill members in the team

in coding and testing good practices, as well as for the team to

get a shared understanding of expectations of code quality. The

team’s code base had become fragmented with evidence of very

different approaches to coding and Test-Driven Development

(TDD). Mob Programming was seen as a mechanism to level out

the team members’ skills and get a consistent level of code

quality.

The team has nine members, six Developers and one

Development Lead, one Tester and one Business Analyst (BA).

Apart from one new graduate, the team is quite experienced in

Agile practices and coding with development experience in the

range 4-18 years. When the team was formed the members

were new to each other as a team.

The team are co-located and use a Kanban-style way of

working. They use a physical board to track progress on a

product backlog of work items. Work items are estimated as

they come closer to the top of the backlog and most of the team

are planning for the top 2-3 items of the backlog, with a work

item typically taking 2-5 days to complete. The BA takes a

longer term planning window, considering work for the next 6

months and a coming up with a well-defined timeline of work

for the next 3 months. The BA also re-visits work prioritization

with the Dev Lead and Product Manager every 2 weeks.

The team has a daily standup meeting at 10am every morning.

At this meeting the team collectively identifies what the most

important things are that need to completed for the day based

on external expectations and current work in progress. Team

members indicate individual preferences for how items should

be worked on, whether they are best done as a mob, a pair or

solo work. They then decide collectively who should work on

what. Pair and Mob Programming are the most common modes

of working. A Test-Driven Development (TDD) approach is

taken to developer coding and testing, with the team’s Quality

Analyst focusing on exploratory testing.

Some other development teams in the organization have

experimented with mobbing. Some found it useful and still mob

regularly. Others found it didn’t suit them and have not

continued.

Initially management questioned whether mobbing was an

efficient use of time and resources. Moving the focus from

resource optimization to flow optimization and delivering

outcomes proved more convincing.

3 THE MOBBING SETUP

The mobbing sessions initially took place in a meeting room

separate from the team’s usual workplace. The specific meeting

room depended on availability, but each had a large monitor for

use in mobbing. Team members brought their own keyboards

and a single laptop for use while mobbing. Later, a dedicated

area close to the team’s usual workspace was set up with a

dedicated mobbing machine. In this area there was a 60” screen

with a central desk which everyone sat around, as well as some

partitions to reduce ambient noise.

Most days the team would be involved in mobbing, typically

in two-hour sessions.

During early mobbing sessions, when mobbing was still new

to the team, the team followed a rigid cycle of changing typists

every 10 minutes, with everyone taking turns as the typist.

Later, the team were more intuitive about when to change

typists, either at the request of the current typist or another

developer asking for the opportunity to have the keyboard. Less

experienced developers were given preference for being at the

keyboard to help identify gaps in their knowledge that could

then be addressed.

Generally, it was the only the developers who were involved

in the mobbing sessions, and occasionally the team’s Quality

Analyst and Business Analyst. Early in the mobbing experience

the mobbing activity was kept quite separate from other

activities. As experience was gained, the mobbing became more

organic, with the team switching from pair programming to

mobbing and back seamlessly, for example.

During a mobbing session, occasionally, some solo work

would be needed and an individual mob member or two may

break away from the rest of the mob to do this work on their

own laptop for a few minutes. While all solo work required a

code review, via pull request, before merging with the

production code, this review was not required for pair or mob

programming, since a review had effectively taken place during

the coding in a mob or a pair.

4 OBSERVED BENEFITS AND CHALLENGES

Over the past 18 months, as the team has gained experience

with regular mobbing, a number of challenges have been

addressed and some benefits to the team, have been realized.

This section describes these challenges and benefits, together

with some explanations and evidence.

4.1 Benefits

Leveraging the Mob Mentality: An Experience report on Mob

Programming

 3

There were several benefits that accrued over time as a result

of building mobbing into the team’s way of working. These are

now described.

Regular (daily) mobbing reduced the number of in-progress

work items. It was natural with this way of working to finish

work items before starting on others. This appeared to improve

the team’s productivity by changing the workflow to a “pull”

approach to work items and reducing context switching.

Code ownership moved from individual ownership to the

team ownership. For example, team members now refer to

“our” code, rather than “my” code or “your” code”.

The team members have become more consistent in their

approach to coding and code design. Unlike the situation before

mobbing, it is now difficult to distinguish who wrote a

particular piece of code just by looking at the code. There is a

consistent style and approach across the team.

Team members have become more consistent in the tools

used for development and more effective in their use of the

tools. This has increased productivity, with the tools fading into

the background more. For example, changing from team

members using their favoured text editor for coding to one

everyone uses has reduced one of the overheads of changing

typists during mobbing.

The developers gained a broader knowledge of the system,

compared to the more specialized areas they started with.

Previously there was a very clear divide in skills between the

front end code base and the back end services, Now all the

developers are comfortable and capable of working in both the

front end and back end services and in almost any area of the

system. This means work can be shared in the team more easily,

design decisions are better informed, collaboration is easier,

and the risk of knowledge being lost if a team member leaves is

lowered.

The team had more confidence in their new code, particularly

when working on complex areas of the codebase. This resulted

in, for example, the team being more aggressive about releasing

new code into production.Team morale has improved since the

team starting mobbing regularly. Written feedback from team

indicates that regular mobbing was a factor in this. In the

weekly retrospectives team members regularly stated that they

were enjoying mobbing and the learning it was enabling.

Onboarding a new novice team member (a graduate) was

quicker than the team leader’s previous experience with other

similar graduates with no mobbing. For example, her learning

was at an accelerated rate after a few months compared to

experience with others.

Confidence in the predictability of work became higher. In

contrast to mob coding, people working on their own would

often get stuck on a problem for too long before asking for help,

throwing the team’s estimates out. The team were noticeably

better at delivering as estimated with regular mobbing.

4.2 Challenges and risks

There were also several barriers to effective mobbing that were

overcome in order to embed mobbing into the work practice, as

well as a several risks that became apparent as experience was

gained.

It takes some effort to get mobbing going, and of value. People

need to believe that it will be valuable and is worth the extra

overhead and change of mind set. There is a risk that this is not

accepted by all team members. For example, initially one team

member preferred to work on their own, even isolating

themselves with earphones, which added to the effort of

instigating mobbing.

Initially code generation was slower using a mobbing

approach. For example, if someone in the mob had limited

understanding of the area being worked on, the learning

overhead would slow the entire team’s work pace. Over time

this has become less of a problem and in fact contributes to

benefit 5., but there is a risk this can reduce momentum with

mobbing if time pressure becomes the dominant short-term

motivation.

Interpersonal interactions are more frequent and intensified

with mobbing, this can impact the group’s ability to deliver

work. Interpersonal challenges need to be resolved quickly or

they become an insurmountable barrier to mobbing.

Related to the previous risk, there is a risk that an existing

interpersonal challenge between two people is amplified with

regular mobbing. For example, there were two people in the

team who did not work well together and avoided each other,

but with mobbing there was an expectation that they would be

working closely with each other, and so couldn’t avoid each

other. There is a risk that team members who have a preference

to work on their own are more visible and may be perceived as

non-team players and become isolated from the rest of the

team. There is also a risk that a team member who does not

have good interpersonal skills may find it difficult to

communicate with the rest of the team, who may have better

developed interpersonal skills. This may result in that person

feeling isolated.

Finding a suitable work space and equipment was a challenge

initially. Booking an available meeting room some distance

from the work area and potentially a different room each time,

was too disruptive and unpredictable for mobbing. Even with a

dedicated work space for mobbing, the immoveable furniture

and networking had to be changed to allow the team to all sit at

a desk and see the large screen. In addition, it was initially

difficult to get a large screen and laptop dedicated to mobbing

sessions.

Initially different team members’ laptops were used as the

mobbing machine. The unpredictability of the features specific

to that machine and the mixed familiarity with the editor used

on the machine was a barrier to mobbing effectively.

It was a challenge to predict accurately if a new member of the

team would sustain their motivation to mob, which could be

disruptive to the rest of the team’s mobbing. For example, one

 Jim Buchan and Mark Pearl

4

new team member was active and enjoying mobbing for a few

weeks, but after that lost motivation, and stopped.

The role of the Quality Analyst in mobbing took a while to

understand and stabilize. Initially the Quality Analyst would

join the mob at inappropriate times, such as during intensive

coding sessions, and would be unable to contribute. This

affected the Quality Analyst’s morale negatively. With more

experience, it was found that the Quality Analyst was most

valuable during mobbing sessions that were focused more on

exploring a problem. Also, it was found to be useful when the

Quality Analyst was not part of the mob, but close-by and

available for ad-hoc questions and comments.

5 LESSONS LEARNED

This section summarises the main lessons learned from

reflecting on the experiences of mob programming over the

past 18 months in the case organization. This includes lessons

related to team size and dynamics; elements of the mobbing

process and its evolution; the mobbing work space; the type of

work best suited to mobbing; and long-term productivity.

The size of the mobbing team that emerged as being most

effective with the case team was mobs of 3-4 people. When

forming mobs larger than 4 often people in the mob would self-

exit, feeling they were not contributing much. The trade-off

between increased quality and the reduced pace of larger mob

teams was often perceived not worth it unless complex parts of

the code base were being worked on.

Often people would come and go from a mob during a

mobbing time-box, whether as a break or to do pair or

individual work. Initially these comings and goings could be

disruptive to the flow of the team, but after some experience

and reflection, team members learned to leave and rejoin the

mob quietly and discretely. Another long-term benefit of

mobbing was that members of the team were able to take leave

without there being any major impact on the ability of the team

to continue to deliver work.

New team members need time to adjust to working in a mob.

They can become overwhelmed if just assigned to a mob and

expected to understand when mobbing is appropriate or not. A

combination of independent and mob work, with time for

reflective discussion about mobbing became a good approach

for easing new team members into mobbing.

One of the aspects of the mobbing process is changing who

drives. Swapping the driver had some important principles to

enhance the effectiveness of mobbing. Early in the mobbing

experience there was a tendency to let the “expert” drive for too

long, since they made progress quickly. However, this could

easily lead to the rest of the mob becoming passive spectators,

while they watched the expert solve the problem. Conversely it

would have been easy to avoid the novice driving at all, since

they were often reluctant because of their lack of knowledge

and slowed progress. However, having the novice drive, even

preferentially, had a number of benefits that resulted in

accelerated learning and a more diverse discussion that

included a novice point of view.

Time-boxing mobbing sessions were found to be effective,

with 2 hours a maximum. Individuals in the mob would take

independent regular short breaks every 25-30 minutes worked

which helped keep the team members fresh. Because often

these breaks were taken at different times it allowed a piece of

work to continuously progress towards completion which

further increased the flow of work.

The need for a prescriptive process for mobbing reduced as

the team members’ experience with mobbing increased. As the

team moved from novice to competent and expert in their

mobbing their actions were less determined by rules and

became more intuitive. The team need to be empowered to do

this.

Setting up a suitable work space with the right equipment was

an important success factor for mobbing. Some of the

characteristics of an effective workspace observed are:

1. The mobbing workspace should be close to the non-

mobbing desks and daily workspace of the team. This lowers

the barrier to switching to and from a mobbing mode. It

should include a desk that the entire mob can sit at with a

good view of the central large screen (40-inch screen as a

minimum size). Also, enough desk space is needed for some

mob team members to occasionally work in solo or pair mode.

2. A dedicated machine for mobbing is needed. This

lowers the friction of getting into mobbing mode since the

machine is always available, and it can be set up with the right

tools and hardware for mobbing, so there is no setup

overhead each time. Prior to a dedicated machine, one of the

mob’s laptops would be used. If they wanted to leave the mob

for solo work for a while, an alternative machine would need

to be found.

3. The mobbing area should have some boundaries and

screens to identify it as a separate area for mobbing and lower

surrounding noise and visual distractions.

Some work was well suited to mobbing and some was not. For

example, mobbing proved to be effective for refactoring code.

Mobbing was also used when there was a need for someone in

the team to share their knowledge with the team. When the

team was starting new work that was complex and how to even

begin was uncertain, the team would mob, switching to pairs

and back as different areas of investigation were identified.

Generally, if the coding involved a high level of complexity or

would have a high impact if in error, the team would mob, and

would not, otherwise. For example a mob would not be involved

in a simple UI change. If the knowledge was already shared and

complexity low, pair programming was the usual mode. Very

occasionally a time pressure to deliver multiple work streams

to a very tight deadline was a factor in deciding not to mob.

There were several factors related to the team’s long-term

productivity that were impacted by regular mobbing. This

included a reduction in multi-tasking, fewer interruptions, a

Leveraging the Mob Mentality: An Experience report on Mob

Programming

 5

higher level of code craft, less technical debt, and fewer delays

because of unavailable information.

Another lesson, in hindsight, is that identifying the needs of

the sponsors of the team as well as the needs of the team are

important. We identified the individuals in the teams needs but

did not identify clearly the needs of the organization on the

team. If we had, we would have probably had more support for

mobbing from the start.

6 OTHER PRACTITIONERS: A PRELIMINARY
SURVEY

Having reflected on the experience of mobbing in the case

organization, we wanted to get an idea if others were

implementing mobbing in a similar way to us and if they had

similar experiences and perceptions of it. This section reports

on an informal survey of practitioners of mobbing around the

world. Questions were asked about the individual and team

context; their mobbing practice; the importance of personality;

and the perceived benefits. The survey was conducted online

and participants were invited through word of mouth. A few

mobbing practitioners known to the authors were invited to

participate and invite their own contacts to participate. The

survey was available online for 1 month in October 2017 and 82

respondents completed the survey in this time (available at
https://myobfuturemakersacademy.typeform.com/to/rHHOrV)

6.1 The Respondents

Most of the respondents were Developer/Coder (72%) or Team

Leaders (12%). A few Testers (5%) and Business Analysts (1%)

also participated in the survey. 10% of the participants

classified themselves as a role other than these.

Almost half of the participants had 1 or more years of

experience mobbing (49%) with 5% over 5 years’ experience.

12% of those surveyed had less than 3 months experience with

mobbing, with the rest between 3 and 12 months’ experience.

The personality traits of the respondents is not strongly

skewed towards introversion or extroversion, with a slight bias

towards introverts. Almost half the respondents (47%)

considered themselves to be introverts, with 9% of them

labelling themselves strong introverts. Almost one third of the

participants (32%) perceived themselves as extroverts with 9%

being strong extroverts (9%). 22% did not consider themselves

to be particularly introverted or extroverted.

6.2 The Context

Typically mobbing was used by teams using an Agile software

development process such as Kanban (56%) and Scrum (17%),

with the rest (18%) grouped into “Other”. The software

development teams which the respondents belonged to

typically had 4-8 team members (71%). Some teams were

larger, with 9 or more members (22%) and a few had 2 or 3

team members.

6.3 Mobbing in Practice

The size of a typical mob was a fixed number between 3 and 5

people (81%), with half of the respondents in mobs of 4. A few

mobs were larger with 3 respondents (4%) working in mobs of

7 or more. The size of the mob was unpredictable and varied

frequently for 13% of the respondents. Two of those surveyed

worked in a mob of two people.

Around half (51%) of the respondents felt their predominant

mode of doing software development work was in a mob. This

compared to one third mostly working in pairs and 16% view

working alone as their usual way of working.

Just over half (51%) of those surveyed work in a mob most

days with 15% mobbing at least once a week. Another 7 (9%)

participants worked in a mob at least a few times a month, while

26% described their use of mobbing as sporadic.

In a day that teams did mob, two thirds (67%) of the teams

mobbed for most of the day, while the other third worked in

mob for only a couple of hours in a typical day.

6.4 Personality Traits

There have been some observations that mobbing may not be

effective if the personality traits of individuals are not suited to

close collaboration, particularly introverted people [7]. For this

reason, perceptions of high and low impact personality traits

were investigated in the survey. When asked to pick one

personality trait of team members that has the biggest impact

on being effective in working in a mob, 57% of respondents

chose “Openness to new experience”, 17% “Agreeableness”,

13% “Conscientiousness”, and 2% selected “Emotional

stability”. No respondent chose “Degree of extroversion” as

important and 11% thought that a personality trait other than

those listed has the biggest impact.

When asked the converse question, which personality trait

has the least impact on effectiveness in working in a mob, the

results aligned with the previous question with “Degree of

extroversion” being viewed as the least impactful by 67% of the

respondents and “Openness to new experience” by none of

them. Between these extremes were “Conscientiousness (13%),

“Emotional stability” (11%) and “Agreeableness” (9%).

6.5 Benefits

When asked the general question if they saw value in doing mob

programming, 100% of the respondents answered in the

positive.

The participants were presented with a list of five potential

benefits of Mob Programming and asked to indicate which ones

they thought applied to their experiences of mobbing. The

benefits presented in the survey were based on those found in

[6]. 89% of the respondents indicated that learning from others

was a benefit. An increase in code quality and the opportunity

to share with others were viewed as benefits in the experience

of 79% of the participants. Team participation (73%) and

 Jim Buchan and Mark Pearl

6

quicker problem solving (51%) were also seen as benefits in

mobbing. Some respondents (15%) thought there were other

important benefits.

7 DISCUSSION

The results of the survey are discussed and compared with the

related findings from the case organization in this section.

Mob Programming is most strongly associated with an Agile

way of working in the survey participants, and is the context of

mobbing with the case organization. This is not surprising since

it embodies the Agile values of collaborative programming, and

could be viewed as a natural extension of Pair Programming

from eXtreme Programming practice.

The usual mob size for the case organization (3-4) aligned

well with the experience of those surveyed as discussed in

Section 5. The team size 3-4 also aligns with other research

suggesting that the optimal team size for collaborative complex

problem solving is 3-5people [5].

The regularity, frequency and amount of time spent Mob

Programming with the survey participants leaned towards

daily mobbing for extended periods of time, as was the situation

with the case team, where it became the default mode of

programming.

In the survey, the mobbing teams were balanced between

introverts and extroverts and also considered this distinction as

unimportant to effective mobbing. This does not support the

view that introversion may be a barrier to mobbing.

For effective mobbing the survey respondents clearly

considered it important that the team members were open to

new experiences and agreeable. The former may relate to the

experimental nature of mobbing for teams, with practice and

principles still in their early stages of experience. This implies

that team members need a willingness to try out mobbing, even

with some uncertainty in the process and the outcomes.

Agreeableness may align with the case study where it was

observed that mobbing amplified any problematic

relationships between mob members since this way of working

assumed everyone worked closely together. Agreeableness may

also imply a willingness to listen to others’ ideas, accept that

someone else’s idea may be better than yours, and sometimes

compromise your ideas.

The emphasis that the survey participants placed on learning

and sharing from others as positive outcomes of mob

programming aligns well with the team in the case study. This

is illustrated by the new graduate in the case organization, who,

after six-months of mobbing, notes she has:

“…learned a lot from mobbing with more experienced

developers, without me knowing it. I guess the results are only

seen a bit later. Overall, mobbing has really helped my current

team deliver, spread and solidify our skills/knowledge.

It is informative to contrast this with her initial experience

where, after only two weeks of mobbing she feels she is “not

bringing value to the team… they work too fast for me so I’m not

given time to come up with a solution myself.”

The additional benefit of quicker problem solving when Mob

Programming, identified strongly by survey participants, is also

supported by the team in the case organization. As one

developer put it: “Mobbing was a great way to perform

collaborative problem solving and context sharing”.

8 CONCLUSION

This paper describes the process, experiences, benefits and

challenges of Mob Programming for a team in a software

product-driven organization. Lesson learned over the past 18

months of Mob Programming, as well as success factors, are

drawn from the experience so far. This provides some guidance

for others experimenting with Mob Programming in a similar

context. Overall Mob Programming in the case team has been

positive, has become the usual way of working, and has shown

promising potential long-term benefits. A preliminary online

survey of 82 Mob Programming practitioners around the world

shows general alignment with the case team’s experience and

perceptions.

Reflecting on the team’s experience and the survey results has

suggested several areas that need further investigation. In what

contexts is it better to code in a mob or a pair or solo? What are

the perceptions of the mob team members on the value of

mobbing? Are there any theories from other disciplines

underpin mobbing practice and explain and predict outcomes?

Some quantitative empirical evidence of the benefits of

mobbing (or otherwise) would be informative.

REFERENCES
[1] Balijepally, V., Chaudhry, S. and Nerur, S.P. 2017. Mob Programming - A
Promising Innovation in the Agile Toolkit. AMCIS. (2017).
[2] Boekhout, K. 2016. Mob Programming: Find Fun Faster. Agile Processes, in
Software Engineering, and Extreme Programming. Springer International
Publishing. 185–192.
[3] Gallis, H., Arisholm, E. and Dyba, T. 2003. An Initial Framework for Research
on Pair Programming. ISESE. (2003).
[4] Hohman, M.M. and Slocum, A.C. 2003. Mob Programming and the Transition
to XP. EXtreme programming perspectives. Addison-Wesley.
[5] Laughlin, P.R., Zander, M.L., Knievel, E.M. and Tan, T.K. 2003. Groups perform
better than the best individuals on letters-to-numbers problems: Informative
equations and effective strategies. Journal of Personality and Social Psychology. 85,
4 (2003), 684–694.
[6] Pyhäjärvi, M. and Falco, L. 2016. The Mob Programming guidebook.
https://leanpub.com/mobprogrammingguidebook. Accessed: 2018-03-26.
[7] Schartman, M. My Experience With Mob Programming: 2014.
http://engineering.appfolio.com/appfolio-engineering/2014/03/17/my-
experience-with-mob-programming. Accessed: 2018-03-26.
[8] Wilson, A. 2015. Mob Programming - What Works, What Doesn’t. Agile
Processes, in Software Engineering, and Extreme Programming. Springer
International Publishing. 319–325.
[9] Zuill, W. and Meadows, K. 2016. Mob Programming.
https://leanpub.com/mobprogrammingguidebook. Accessed: 2018-03-26.
[10] Zuill, W. 2014. Mob Programming – A Whole Team Approach,
https://www.agilealliance.org/wp-
content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf. Accessed: 2018-
03-26.

https://leanpub.com/u/maaretp
https://leanpub.com/u/llewellynfalco
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf
https://www.agilealliance.org/wp-content/uploads/2015/12/ExperienceReport.2014.Zuill_.pdf

	ABSTRACT
	CCS CONCEPTS
	KEYWORDS
	Mob programming, Mobbing, Collaborative programming
	REFERENCES

