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1. Introduction and Viewpoint 

The large newer computers available today and the computers of the future 
will all have features of simultaneous operation. Because of this simultaneity, 
the question of planning a program and the planning of groups of independent 
programs using the simultaneous operation capabilities of the computer becomes 
important. All these questions have been grouped under the heading of multi- 
programming. In this paper we will discuss the sequencing or scheduling aspects 
of multiprogramming. Roughly speaking, the sequencing aspects revolve around 
questions of parts of a computer being idle because the data to be processed in 
one computer part is still being processed elsewhere in the computer; and if we 
have a group of independent programs, how can we stagger the parts of the pro- 
grams through the computer such that some defined objective of all the programs 
is optimized. 

These considerations have been studied partly in a different context: the so- 
called machine shop scheduling [cf. [7] for a general review and further refer- 
ences]. There are features of similarity between machine shop (MS) scheduling 
(S) and multiprogramming (MP) scheduling. There are also features of dis- 
similarity. 

In the simple case of MSS [3], each job has a given order of processing on the 
machines of the MS. This ordering, one for each job, is called a technological 
ordering. The only cases of MSS studied in mathematical detail have assumed 
that each job goes on each machine at most one time. If we liken the machine 
shop to the computer, the program to the job, the computer parts--input 
channels, processing units and output channels--to the machines of the machine 
shop and the ordering of the subparts of the program on the computer parts, 
there appears to be a difference between MPS and MSS as described above. 
Whereas a job (equivalent to a program in MPS) in MSS scheduling goes on 
each machine (computer part) at most once, the subprograms of a program 
(job) can return to the computer part (machine) more than once. The latter 
difference makes for a more complex problem, which has not been studied in 
mathematical detail in the machine shop scheduling context, but has been dis- 
cussed under the name of job-lot MSS [7]. 

In order to gain an insight into MP and see through the maze of intricacies 
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necessary to describe idle t ime on a computer  par t  for one program or a schedule 
of independent programs, we will proceed with simple examples in simple steps. 
First we will consider flow diagrams; then schedule diagrams, which describe the 
technological ordering of the program; and finally Gan t t  or t iming diagrams, 1 
which describe the actual t imes to finish a particular subprogram. We will first 
consider the case of one program. After the one-program case is considered, we 
will consider the scheduling of many  programs as might arise in a single com- 
puter.  

Our aim, as stated before, will be to formulate the problems of MPS.  The  com- 
plex combinatorial and statistical questions will not be discussed here. The 
analysis of these questions is left to future investigations. 

2. One-Program Case 

Let  us consider a computer  which has many  processing units, many  input 
channels and many  output  channels tha t  can operate simultaneously. In  order 
to describe idle t imes on each computer  par t  s we would have to know which 
program par ts  (from now on called subprograms) precede which other sub- 
programs and the t ime it takes to perform each subprogram. A flow diagram does 
not describe all the needed features; it describes the logical flow of the program, 
indicating sequential steps with branching indicating possible simultaneous 
operation. On the other hand, a Gan t t  or t iming diagram indicates the t ime flow 
of the subprograms but  par t ly  hides those subprograms which "de lay"  other 
subprograms. Between these two types of diagrams is another  diagram which 
brings out the features of the possible "delays"  between the subprograms and 
allows for a description which is very useful for combinatorial studies of schedul- 
ing. We consider a simple example to illustrate these features. 

In  Figure 1 we have a flow diagram for a simple problem performed on a com- 
puter  having two input channels, two processors and an output  channel. We 
indicate when the inputs, processing and outputs  are performed. However,  we 
do not clearly distinguish the simultaneous operations; e.g. in box 2 there is a 
s ta tement  about  inputs from channels 1 and 2. Presumably they are to be per- 
formed simultaneously. On the other hand, some statements  in different boxes 
may  indicate simultaneous operation, e.g. s ta tements  in boxes 3 and 4. 

In  order to s tudy the "delays"  more clearly, we resort to the construction of a 
linear graph which indicates the use of each computer  par t  separately and by 
directed arrows those computer  parts  which must  be finished with a subprogram 

x Flow diagrams have been discussed in the present context. Schedule diagrams have 
been discussed in [2] for simple MSS, and are nothing more than diagrams of partially or- 
dered sets [2]. Gantt diagrams are commonly used in machine shop scheduling (cf. [7] and 
the references given there). 

By computer part we mean a processing unit, an input channel and an output channel. 
We could discuss the intuitive features of multiprogramming in terms of other more de- 
tailed parts of a computer system. However, this detail is not needed to bring out the 
mathematical structure, and hence we stay with the input, process, output terminology. 
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before another subprogram can start.  3 In Figure 2 we have constructed the linear 
graph for the flow diagram of Figure 1. 

In  each node (circle) there is a s ta tement  describing a particular subprogram 
which uses but  one computer  part .  The directed branches leading away from a 
node (say 7) indicates those subprograms which can possibly s tar t  when the 
subprogram for node v is finished. We observe tha t  the directed branches leading 
into a particular node (say 7) come from all the subprograms tha t  can "de lay"  
the subprogram of the node 7. 

We have indicated on each horizontal line the nodes which use each computer  
part .  On the left is written the computer  part .  On the right under the heading m 
(for machine) these computer  parts  are numbered.  Under each node is given a 
triplet of the form (mji). The m refers to the computer  p a r t ; j  refers to the par-  
ticular program;  i refers to the number  of t imes tha t  the computer  par t  m has 
been used up to and including the node (mji) of the program j.  The triplet (mji) 
denotes the " j th  program on the mth  computer  par t  for the i th t ime."  I f  we were 
discussing lob lot machine shop scheduling, we would say tha t  (mji) means the 
" j th  job on the mth machine for the i th t ime."  

Diagrams of the type given in Figure 2 are linear graphs, for the nodes (mji) 
are a set ~ and the branches are a set 4 ~ .  

The linear graph picture contains most  of the information from the discussion 
of timing. All tha t  is needed is the knowledge of the t ime tm, to perform each 
subroutine. The subroutine t ime corresponds to the processing t ime in MSS. 

I t  is an easy ma t t e r  to draw the Gan t t  or t iming diagram from the linear 
graph. Along each horizontal line, one for each computer  part ,  we draw arrows 
in order of performance of subroutines proportional to the t ime of completing 
each subroutine. The tail of any arrow (say 7) is on a vertical line with the 
head of the arrow which represents the finishing of the last subprogram to "de lay"  
the subprogram represented by  the arrow 7- 

We have drawn the Gan t t  or t iming diagram in Figure 3 for the diagram of 
Figure 2 using a given set of processing times tm~ • 

3. Idle and Subprogram Finishing Times for a Single Program 

A diagram or linear graph embodies the properties of a technological ordering. 
The idle t ime before start ing a given subprogram and the t ime to complete a par-  
ticular subprogram are functions defined on the linear graph of the program. 
We proceed to express these functions in terms of the processing times tm3~ of the 
subprograms. 

s In [4] diagrams of the type we are about to consider were considered for MSS. However, 
these diagrams were inferred from the Gantt diagrams. For our purpose the present logical 
development seems more suitable. 

4 Berge [1] uses X for our set ~ and U for our set Cj . The c0J is the terminology taken 
from MSS and the set C~ ; the covering relations have been implied in the MSS study of 
reference [4]. Unfortunately, to confuse matters further, Sisson [8] uses ~II~ for our ~ . 
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FIG. 2. The diagram for the flow diagram of Figure 1 

In order to define these functions we must have a notation to keep track of the 
order of performing the subprograms. We use the binary relation ~,  meaning 
"is started before or at the same time as" relating two subprograms. For example, 
(4j2) g (5j3) means the j th  program on the 4th computer part for the 2nd time 
is started before or at the same time as the j th  program on the 5th computer part 
for the 3rd time. From a diagram such as that given in Figure 2, the binary 
relations can be written down, there being one for each branch and those obtain 
transitively from these order relations. The resulting set with their ordering 
relations ( ~ ,  C~) is partially ordered. 5 

In previous mathematical studies [cf. [3] and [4] for examples and further 
references], the technological ordering has always been taken as a simple ordering 
[5]. In these cases an object j is processed sequentially and if an object is processed 
by itself there is no idle time from machine to machine. However, in the present 
case there may be idle time. 

5 The definitions of the various "ordered"  sets t ha t  we will have occasion to refer to 
will be those given by Birkhoff [2]. By partial ordering we mean tha t  not all elements are 
related and tha t  those elements tha t  are related satisfy a t ransi t ive relation. By a simple 
ordering we mean tha t  every dist inct  pair of elements is related. 



SEQUENCING ASPECTS OF MULTIPROGRAMMI~G 431 

Outpu t  Channel  ~ "~JJ= 

Processor  2 t~jT 

I n p u t  Channel  2 t3j~ ~. 

I n p u t  Channel  1 t4p. > t ,~  

Processor  1 , ,, t~j1 ~_ tsj= ~ ts~l 

FIG. 3. The Gantt or timing diagram for the program of Figure 1 

One other binary relation of use in our discussion is a covering relation, e I f  
two modes (mji) and (m'fi ')  are connected by a directed branch going from 
(raft) to (m'j'i'), we say "(mji) is covered by  (m'j'i ')" and we write this expres- 
sion as (mji) ~ (m'j'~'). 

We are now in a position to give expressions for the idle t ime and completion 
t ime for a given subroutine. Each of these functions is defined in te rms of the 
other and the processing times; and then we give conditions under which we can 
solve for these functions in terms of the processing times. 

Let us denote the idle t ime before processing the (mji) as Im~ ; let US denote 
the completion t ime of the (mji) as T(mji). In  order to obtain an expression for 
the idle t ime we must  know which subprograms can "de lay"  a given subprogram. 
The question of the possible "de lay"  of a given subprogram, say (mji), depends 
on the completion times of all those subprograms which are covered by  the sub- 
program (mji). From those subprograms covered by  (mji), we define the last 
one to be completed as m a x , ,  T(m'j'i '  ~ mji). 

We now define the completion t ime and idle t ime in te rms of each other and 
the known processing times tin, • We take the completion times of (mji) as 

T(mji) = ~ (tm~,, ~- I,~,,) 
, ,~  (3.1) 

(mji')~(ra3s) 

which assumes tha t  a subprogram is started as soon as possible, subject only to 
the "de lay"  tha t  can occur due to the technological ordering. We take 

max T(m'ji '  ~ mji) = max  ~ ]  
,~, ~, , '~ (tm,~, ÷ I,~,j, ,)  (3 .2)  

(m'3i')~(m'j~")..~(m3~) 

s B. Gi~er (of. [7]) calls this relation "next precedence." In [3] explicit use was made of 
the covering relation in the derivation of the idle and completion times for groups of inde- 
pendent technological orderings. 
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which assumes that  a subprogram is started as soon as possible, subject only to 
the "delays" that  can occur due to the technological ordering. The idle time 
Imj, depends on the completion times of those subprograms which cover (mj i ) .  
If there are several subprograms covering (mj i ) ,  then the covering subprogram 
which takes the longest determines the idle time. We have 

m~,x T (m ' j i '  ~ mj i )  -- T ( m j i  - 1) ] 
I~, ,  = max } ; (3.3) 

0 j 

i.e. idle time occurs when the maximum completion time for the subprograms 
which cover (mj i )  is larger than the time to complete the subprogram just prior 
to (mj , )  on the mth computer part.  

In order to solve (3.1)-(3.3)  for the idle and completion times in terms of the 
processing times we must specify those idle times which are given. We take those 
subprograms which do not cover any other subprograms (the starting subpro- 
grams) to have no idle time. 

With these definitions and special values we can solve for the idle and comple- 
tion times in terms of the processing times. We will simply illustrate the solution 
for the technological ordering given in Figure 2. The only subprogram not cover- 
ing another subprogram is (5 j l ) .  Hence 

Is ;z  ~ O. 

Thus from (3.1) we have 

T ( t j l )  = t5~1. 

From (3.3) we have 

T(m'ii' 3jl) - T( jO) I. 
I~1 max 

0 

Since there is no 0-th time on the third machine we take T(3j0) = 0 and the 
only subprogram covered by (3 j l )  is (Sj l) .  Hence 

I~j1 = t5~1. 

A similar argument holds for (4 j l ) :  

I4j1 = t5~1. 

Then from (3.1) : 

T ( 3 j l )  = ta~l ~ I3~1 = t ~  ~ tsn 

T ( 4 j l )  -- t4,1 + t ts,~ 
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For (2jl),  we have from (3.1) that 

T(2jl)  = t2: + 12: ; 

but from (3.3) we have: 

im = ~,~ . :T(m'j i '  ~ 2jl)0 -- T(2jO)}_ 

= T(3jl)  

= t3: + t s :  

We can continue on in this manner and solve for all the completion times. 
The idle time before (53'3) is interesting, for there are three subprograms 

covering (533). This idle time is: 

( ( (T (2 j l )  1 } 
max Jmax ~ T ( 4 j 2 ) ~ -  I5: = ~ (T(5j2)J T(5j2) 

0 

( T ( 2 j l )  -- 
max lT(4 j2 )  T(5j2)]  

= 0 T(5j2) I 

~t5,1 -~- t3,1-[- t ~ , t -  (ts,l -'~ t4,1 + ts,,)~ 

4. The Many-Program Case. 

One of the aims of multiprogramming is to schedule a set of programs such 
that the total time to complete all the programs is a minimum. Finite problems 
of this type are extremely difficult and have been successfully solved in very 
special cases [7]. However, another approach to the problem has come to the 
fore in recent years: a technique based on digital simulation [3]. In simulation 
other mathematical questions are of relevance and so far seem to be answerable 
[3, 4]. Many of the relevant questions revolve about combinatorial questions; and 
these questions can be answered via a formulation which brings out the de- 
pendence of idle and completion times on the permutations of each subprogram 
through the computer parts. We proceed to formulate the sequencing questions 
of multiprogramming for a fixed set of independent programs, i.e. technological 
orderings. 

If we had some multiprogramming schedule of a set of independent programs, 
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we could view a particular computer part and note which subprograms were 
processed sequentially in time. The collection of all computer orderings is called 
a schedule ordering. Without going into the mathematical details of formulating 
idle and completion times we will give a simple example of the concept of sched- 
uled ordering and the choices of scheduled orderings which could minimize the 
total completion time of all subprograms. 

In Figure 4 the linear graphs are given for two independent programs. We can 
construct any schedule provided the technological orderings implied by the 
linear graphs are preserved. For example, in Program 1 (211 g (313) and in 
any schedule this relation must be preserved. 

In Figure 5 two schedules are given from which it is easily checked that both 
sets of schedule order relations do not violate the technological order relations. 
This question of nonviolation of order relations is referred to as the consistency 
problem [cf. [4] for a discussion in the case of MSS]. The question of which 
schedule is better revolves around the desire to finish all programs in the shortest 
time. 

When we are given the processing times t ~ , ,  we can determine for any set of 
consistent schedules which schedule(s) gives the minimum time by simply 
drawing the Gantt diagrams and reading off the schedule times. In Figure 6 
the Gantt diagrams are given for the linear graphs of Figure 5 and the Gantt 
diagram when each program is performed separately. For the processing times, 

j - 1  

2 

3 

4 

. 7 - 2  

122 

FIG. 4. Linear graphs for t w o  i n d e p e n d e n t  p r o g r a m s  
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t211 = 5 t212 = "~ 

tan = 1 ta12 = 4 
t4n = 2 t4~2 = 5 

t~21 = 3 t m  = 6 

t221 = 2 t2~2 = 4 

t321 = 1 t3~2 = 3 

t421 ---- 6 t4~2 = 9 

t521 = 1 t5~2 = 4 

t3~a = 2 t,14 = 1 t315 = 3 

~223 ~ 

t323 = 4 t324 = 4 

ta2a = 8 t524 = 4 

t32~ = 1 t32e  ~ 4 t82~ = 2 t32s = 1 

tin, are given in Table I. Both schedules are very much better than each program 
run separately, and there is not much difference in the schedule time between 
the two schedules. 

We proceed to discuss the question of determining the processing times of the 
subprograms and the technique of scheduling a set of programs for a long pro- 
duction run on a computer. 

5. Some Technical Questions Involved in Multiprogram Scheduling 

Since a feasible approach to scheduling problems has appeared [5], we can look 
to the day when multiprogram scheduling can be performed and the schedule 
executed on a large scale digital computer. Various interesting questions arise 
when we a t tempt  to multiprogram a set of programs: (i) How do we determine a 
subprogram size? (ii) How are the processing times of each subprogram deter- 
mined? (iii) How is the computer used to muRiprogram a set of programs and 
then execute this schedule? (iv) How do we determine before running a set of 
multiprogrammed schedules whether the capacity of the computer will be 
exceeded? 

The question of subprogram size is difficult to determine at present for essen- 
tially no experience in multiprogramming is as yet  available. Subprogram sizes 
would have to depend part ly on the computer system and part ly on the types of 
problems envisaged. There is some thought about the subprogram size for the 
IBM 709 input-output  system [7], but  as yet  there is no general discussion of this 
problem. 

Let  us assume that  some system of subprogram size is determined, i.e. the 
translation of an algebraic code will be performed if the program has indicated 
subprograms of a suitable size. The time to execute each subprogram (the proc- 
essing time t,~,) will be of a stochastic nature: the subprogram times will depend 
on the amounts of data involved in input, output  and processing, and even if the 
total amount  of data  involved were known, convergence rates of iterative proc- 
esses would affect the subprogram time. The tendency to have algebraic trans- 
lation systems with variable dimension statements may  add to the difficulty in 
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determining subprogram times. Presumably some information will have to be 
supplied by the algebraic translation system for the running code which can be 
interpreted by a master program which computes the subprogram times for 
given data. The master program will then multiprogram a given set of programs. 
I t  is easy to state these desires, but we will have to expend great effort to achieve 
these desires. 

There is one case in which subprogram times can be determined experimentally. 
In a data processing center the production runs are of known (experimental) 
length because of the repetitiveness of the work and the known amount of data 
used in each run. I t  is true that some variation in data occurs, but a simple 
argument using a Central Limit Theorem will show that a large variation from 
the expected processing time is very unlikely and hence it can be assumed that 
the subprogram processing time is the expected subprogram processing time. 

(Since we can have idle time for each program separately, we may desire the 
algebraic translation system to choose a set of subprogram sizes for a program 
such that the total running time of this program is a minimum. We have not 
formulated this problem, similar to economic job lot sizes in MSS, because it adds 
complications to an already formulated complex problem. This problem, how- 
ever, is worthy of study. How to "best schedule" one program and then multi- 
program a set of "best scheduled" programs is not clear. Special cases could be 
studied from the point of view of decision theory under uncertainty.) 

Suppose the very difficult questions of subprogram times have been overcome. 
What needs to be multiprogrammed? First, a program is needed to determine the 
multiprogram schedule; second, a program is needed which can direct the 
sequencing of the subprograms through each computer part. 

The first question has been answered for the case of flow shop scheduling [5] 
and is believed applicable to all scheduling problems. The procedure is to sample 
schedules randomly and choose the best schedule after a number of trials. The 
number of trials is determined by decision theoretic methods. There is, however, 
one big difference: the computer which does the multiprogram scheduling also 
executes the programs. Just how to formulate this point needs careful con- 
sideration. 

The question of traffic control of all the subprograms needs investigation. A 
program will have to be devised which retains control over the flow of subpro- 
grams. Presumably each subprogram on completion transfers control back to the 
master traffic control program. 

The question of a computer's capacity to execute a set of programs simul- 
taneously has received some attention. This problem is by no means understood 
and will require a great deal of study before it can be settled. 
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