Check for
Updates

A Descriptive Language for Symbeol Manipulation®

RosrrT W. Froyp

Armour Research Foundation of Illinois Institute of Technology, Chicago, Illinois

The algebraic command languages (Avncown, IT, FortranN, UnicobE), al-
though useful in preparing numerical algorithms, have not in the author’s opinion
proven themselves useful for symbol manipulation algorithms, particularly com-
pilers. List processors, in faet, have been designed primarily to fill this gap.
Analogously, the traditional flowchart serves well as a descriptive language for
numerical algorithms, but does not lend itself {o description of symbol manipula-
tion algorithms in such a way that the intent of the process is clear. It will be the
purpose of this paper to present a more suitable notation for deseription of com-
pilers and other complicated symbol manipulation algorithms.

The algorithms used in formula translation consist principally of the following
elements:

(1) A set of linguistic transformations upon the input string, together with
conditions determining the applicability of each transformation.

{2) A set of actions, such as the generation of machine language coding, associ-
ated with each transformation.

(3) A rule for transfering the attenfion of the translator from one portion of
the input string to anocther.

The notation presented here greatly simplifies the representation of the first
and third elements.

Tor illustrative purposes, a compilation proecess for a small subset of Arcow is
described below. The subset consists of assighment statements constructed from
identifiers, the five binary arithmetie operators (T, %, /, -+, —), the two unary
arithmetic operators (+, —), the replacement operator (:=), parentheses, and
the library functions of one variable (sin, exp, sqrt, ete.). The assignment state-
ment = to be translated is initially taken in the augmented form | AZ H |, where
the characters | and 4 serve as termination symbols and A is a pointer which
indicates the portion of the statement where the translator’s attention is cur-
rently focuscd.

The following productions and the associated generation rules respectively
decompose the original statement in accordance with its structure, and simul-
taneously create coding to implement the statement. Coding will be represented
by ALcow statements with at most one operator, to avoid reference to particular
computers.

* Reecwved February, 1961.
570

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321088.321096&domain=pdf&date_stamp=1961-10-01

580 ROBERT W. FLOYD

Productiong Generution Rules
1) ;=4 = «— A
2 Taa = JTA ident « concatenation (ident,)
(3)xa = [A jdent « 2
) IoA = V.e A V] < ident, where the array V serves

a8 4 symbol table

@ Tars = JToA
6G)op Ao = oA
@) (Ao = (gA
® ¢ Tveoa = T,oa code T, := ¢ T ¢; jej+1
9 T As = T sA
(10) ¢ X g5 A = T,¢4 code T := ¢ X ¢; g—3+ 1
(1) e /¢Yaa = oA code I, =9 /y; 7—7+1
(12 pA e = ucgA
(M s+ uveaa = T,0A code T, := ¢+ 45 je—3+1
{(14) p — Yo A = 1,cA code Ty :=¢ —¢; pe—7+1
15} + do A = yoa
(16) — ¢y oA = T,cA code T, = —y, 3—3+1
)y v Ae = wo A
18) v (¢) 4 = 7,4 code T) i= v (@), 3¢5 +1
(19) () A = ¢A
(20)+—-V;e—-;,bjA = 4—3{1—‘A code V, := ¢
@21) F Vieyg -] A = (empty) code ¥V, .= y; terminate translation
(22) Ao = oA

In the above produciions “I'" is a symbol introduced by the translator which
serves as a placeholder for the first several characters of an identifier; the charac-
ters themselves are stored in the word whose name is ‘ident’. The arrow “—’ is a
placehalder for the character pair ‘:=". Mozt of the “productions” are actually
production schemes, in which lower case Greek letters serve as metalinguistic vari-
ables. The character & may stand for any letter or digit, A for any letter, u for
cither X or /, = for either 4+ or —, and ¢ for any character whatsoever.
The compiler is assumed to have the ability to generate & class of names (Vi , V.,
ete.) for identifiers stored in the symbol table, and (1", T, ete.) for temporary
storage locations for partial results; the metalinguistic variable V, ranges over
the former class, T', over the latter. The variables ¢ and ¥ may take on values
from either class. The variable v stands for those identifier names ¥, , continually
present, in the symbol table, which designate library function names (sin, exp,
sqrt, ete.).

The production riles may be interpreted in the following way. FEvery charac-
ter to the right of the pointer A is assumed to be stored on an input medium; the
character immediately to the right of A, if any, is that which will be brought into
the machine on the next read instruction. The terminator may be interpreted as
an end-of-file marker for the input device, if the marker itself may be sensed by
the central computer. Every character o the left of A is assumed to be stored in
a push-down list; the character immediately to the left of A is that at the head
of the list. Then the second production, TaA=s TA, indicates that if the character
‘T’ fallowed by any alphanumeric oceurs at the head of the push-down list, the
alphanumerie character must be adjoined to those characters already stored in

A DESCRIPTIVE ILANGUAGE FOR SYMBOL MANIPULATION 581

the word ident, and deleted from the head of the push-down list. A production
like T Ac = T oA signifies that if the character on the head of the list is ‘ T° the
next character, ¢, on the input medium must be read and stored on the head of
the push-down list. Only characters to the left of A and a fixed distance from it
are eligible for processing; that is, all activity occurs at the head of the push-down
list. Productions 6-14, 17, 19, and 22 are roughly equivalent to the scan described
by Samelson and Bauer [2].

In general, more than one production might be applicable to a given string;
reading from the top, the first applicable production musé be applied in each
case. This is much simpler than designing mutually exclusive productions.
Reference to the example below will clarify the operation of the productions an a
typical statement.

Speed of translation might optionally be increased by providing each produc-
tion with a successor. It has been assumed above that after suceessful application
of a production, attention returns to the first production, then the second, ete.,
until another is found applicable. The successful application of the mth produc-
tion, however, may imply that no production hefore the nith can next be applica-
ble, so that testing by the compiler may be reduced by specifying an immediate
transfer to the nth production.

Ezxample

To translate the formula z:=y T z X (u -+ v), it is rewritten in the augmented
form FAz:=y T 2 X (u +) 1. The table below gives the successive trans-
forms of this string, the numbers of the productions performing the transforma-
tion, and the associated actions.

Ai))phca.tmn of

roduction Yields With Associated Action
22 -.LA:=yTz>((u+u)-{
FlAar=y T 2zX (v ident «— ‘r’
FTia=y 12X (w40

FV L A=y T 2X (ute) V1] — ‘@’
- l"l:=AyTzX(u+v)-|

FVie—Ay zx(u,wi-w)j
FVieya T z2X (v+2)

3,5, 4 FVieV,1 azx (u+u):l ident «— ty’, V2] &= 3
FVie— Vo T 2AX (w4

3, 5, 4 F P e Ve T VeXa(u+e)yd ident — %, V[B]«— %
EVie—=T XA (u+uw) code Ty .=y T 25 j«—2
PV =TI X (Bu+2)
FVie— T X (WA v)

3, 1 -VlH’I’.X(V4+Av)j ident « ‘o', Vid)— %’
F V=T X (V,+4 v a)

3,8, 4 FVieTiX (Vat+ Via - ident +— @, VI[5] «— %@
FVie=TiX (T a4 code Ty :=u-+v; 3+ 3

F Ve T X TzA{

FV, =T X Tz‘, A

~V1¢—~T3~{A code Ty =T, X Ty 34
21 empty) codez .= Th

bt Tk = b (3] []
S lMafMuapnT ol G- e oo

582 ROBERT W. FLOYD

The unsuitability of even an extended algebraic language for describing the
operation of & compiler may be seen by translating the first three productions
into an extended Arcown, in which variables may take on characters as values.
Assume that the push-down list is the array 8, where 1 is the current list index,
Then the first three productions are translated to the rather clumsy form:

if S[p — 1] = 2 A 8[¢] = ‘=’ then begin? ‘=1 — 1; 8] := ‘~’ end
else if 8[» — 1] = ‘I’ A alphanumeric (S[:]) then
begin ident = concatenation (ident, S[{]); 2 :=4 -~ 1end
else if letter (8[¢]) then begin ident .= S[:]; S[i{] .= ‘I’ end, etec

The examples in the text and appendices are adapted from an Arncor translator
which the author ig programming for the Uxtvac 1105 in the notation deseribed.
Tt appears that a translator ean be deseribed compactly and preeisely in this
notation, and that it is not difheult to translate the productions into symbolic
assembly language.

APPENDIX A

An algorithm for a hi-directional scan to produce eflicient coding was described
by the author [1] in flowcharl form. It is rewritten below, in productions which
specify their successors in the event of successiul application. Two atlention
markers, A and V, are used for the sake of clarity to differentiate helween the
two modes of scanning. The scan encodes all assignment statements which do not
contain if clauses or functions of two or more variables. For details of
the design of the sean, see [1]. Metalinguistic variables have the same meaning
as in the first set of productions. The additional variables ¢, C,, and §; stand
respectively for a digit, the name of a constant, and the name of a computed
address. The variables ¢ and may take on as values V,, C,, Tp,and @, . M
is a placeholder for a string of digits, N for a decimal number, and F for 1, fol-
lowed by an optional plus or minus sign and any number of digits.

Production Successor Generation Rule
[¢}] = A = A 22
2 laA = IA (22) ident «+ concatenation
(ident, «)
(€} AL = JA (22) ident « A
(1) {oA = VoA (20} V{i] « ident, where array Vis a
symbol table
(5) MsA = Ma (22) const < 10 X const + value (8),
where § is a digit
(6) Na&a = NA (22) const «— 10 X const + value (8);
detr « detr — 1
(7) M.A = NA (22) detr — 0
{8) wta = FA (22) exp «— 0; sign « 1
®) w—2a = FA (22} exp «—0; sign « —1
10) 1w3A = FA (22) exp «— value (3); sign«1
an F8A = FaA (22) exp < 10 X exp -+ value (§)
(12) nis = wod (8)

A DESCRIPTIVE LANGUAGE FOR SYMBOL MANIPULATION 583

Production Successor Generation Rule
(13) Moa = C,e (20) Clyl «— const
(14) Nea = (,er (20) Cl7]1— const X 10 T detr
{15) MFoA = NoA (14) detr « sign X exp
(16) NFoA = NoA (i4) detr «— detr 4 sign X exp
an FoA = MFsA (16) const «— 1
(18) 8A = MsA 5) const «—
(19) A = M.A D] const «— O
(20) DA = Vv, {23)
(21) |a = V| (23)
(22) Ao = A (1)
@3 Vv = v (28) code ‘fnet’, ¢ , v
@1) Vo () = V¢ (81)
(25) vF.¢l = QA (22) code ¢, ,¢,0; code ‘[, V,,0
(26) V) = Vg (26)
27) g = Vo] (26)
(@28) oV = Yo (31)
2% Vo 4+ ¢ = Voo (BL)
30) Vo — ¢ = VeTk (31) code ‘minus’, ¢, 0
31 a¥ T = Vo T (26)
(32) Vop T ¥ = VYT (32) code ‘77, o, ¢
(33) Vi = Vou {26)
(34) Vaguny = Vel (34) cade u, ¢, ¢
(38) a¥r = Vow (26)
(306) Vo = VoT% (30) code 7, ¢, ¢
(37) v,¢] = V] (27) code ‘), 4,0
(3R) Ve — ¢ = V¢ {40 code —’, ¢, ¥
(39) Vol — = gA (8TOP) code ‘—', ¢, ¥
(40) ¥V = Vo (23)

APPENDIX B

An ArgoL compiler requires not only a formula translator but also a method
for generating transfers of control and their associated coding. The following
productions represent one possible approach to the translation of the control
words of ALgoL to symbolic assembly lunguage.

Metalingmstic variable May stand for

B any boolean expression
T . or ‘end’
® <, ‘end’, o1 ‘else’
¢ any for clause
A any label
o any character
J ‘" or ‘U
z any basic statement

Pluceliolder May replace
C. an if clause (conditional jump)
7, {if clause){statement) else (unconditional jump)
I, a for clause (subroutine call)

fm the nth label generated hy the translator

584

(1)
2)
(3)
)

(3)
(&)

]

@)

()
(0)

Production

if # then A=), A
JirA= 1A

begin; A= begin A
begin end A== A

Zwd= wA
C, else A= [J A

$A=> FLA
FuwA= wA

MNA= A
- a 4= (empty)

ROBERT W. FLOYD

Generation Rules

Code a conditional jump to L, if Gis false
ne—mn-+ 1.

Assign label I, to the next line of coding
generated,

Generate coding for Z.

Generate coding for unconditional jump
tolm; nemn-+1, assign label L, to
next line of coding

Generate coding goverming a loop, with
exit instruction assumed labeled Ls ;
nemn-+ 1,

Generate uanconditional jump (labeled
I.) to an illegal address

Assign label X to the next line of coding

Terminate compilation.

an Ag=> oA
For example the (augmented) statement
[A begin £, ; if 8, then begin=: ; Z, end else 2 end

is translated through the following steps:

Apphization of production Yields With generated eoding
11, 11, 11 | begin =, ; A if sic.
5 - begin; A if ete cade for T,
3 - begin A if ete.
11,11, 11 - begin if 8; thez A begin cte.
1 k begin ;A begin eic. jump to Lnaf B is false
11,11, 11 I begin C, begin 2. ; A = cte.
B I begin Cy begin; AZ, ete. cade for X,
3 I begin) begin AZ; ete.
11, 11 - begin C; begin Z; end A else ctc
5 r begin C; begin end A else cte. code for =,
4 F begin Cy A else %, end
11 ~ begin C; else A £, end
6 " begin {/:4Zend -| jump to fa; assign
label La
11, 11 - begin U:z, end A
5 - begin U» end & code for T
2 - begin end A -{ assign label [.
4 - a
10 {empty)

REFERENCES
1 Frovp, R. W. An algorithm for coding eflicient arithmctic operations Comm. ACM 4
(Jan. 1961), 42-51.

2 SamwersoN, I0.; anp Baurr, F T, Requential formula translation, Comm ACM 3
(I'eb 1960), 76-83.

