
A Descriptive Language for Symbol Manipulation* 

ROBERT W. FLOYD 

Armour Research Foundation of Illinois Institute of Technology, Chicago, Illinois 

The algebraic command languages (ALGOL, IT, FORTRAN, UNICODE), al- 
though useful in preparing numerical algorithms, have not in the author's opinion 
proven themselves useful for symbol manipulation algorithms, particularly com- 
pilers. List processors, in fact, have been designed primarily to fill this gap. 
Analogously, the traditional flowchart serves well as a descriptive language for 
numerical algorithms, but does not lend itself to description of symbol manipula- 
tion algorithms in such a way that the intent of the process is clear. I t  will be the 
purpose of this paper to present a more suitable notation for description of com- 
pilers and other complicated symbol manipulation algorithms. 

The algorithms used in formula translation consist principally of the following 
elements: 

(1) A set of linguistic transformations upon the input string, together with 
conditions determining the applicability of each transformation. 

(2) A set of actions, such as the generation of machine language coding, associ- 
ated with each transformation. 

(3) A rule for transfering the attention of the translator from one portion of 
the input string to another. 

The notation presented here greatly simplifies the representation of the first 
and third elements. 

For illustrative purposes, a compilation process for a small subset of ALGOL is 
described below. The subset consists of assignment statements constructed from 
identifiers, the five binary arithmetic operators ( T, × , / ,  4 ,  - ), the two unary 
arithmetic operators (-{-, --), the replacement operator ( : = ) ,  parentheses, and 
the library functions of one variable (sin, exp, sqrt, etc.). The assignment state- 
ment Z to be translated is initially taken in the augmented form ~ A2~ ~ , where 
the characters ~- and ~ serve as termination symbols and a is a pointer which 
indicates the portion of the statement where the translator's attention is cur- 
rently focused. 

The following productions and the associated generation rules respectively 
decompose the original statement in accordance with its structure, and simul- 
taneously create coding to implement the statement. Coding will be represented 
by ALGOL statements with at most one operator, to avoid reference to particular 
computers. 

* Received February, 1961. 

579 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321088.321096&domain=pdf&date_stamp=1961-10-01


580 ROBERT W. FLOYD 

Productlons 

(1) :=  A ~ ~ 
(2) I a A  ~ I A  

(3) XA ~ I A  
(4) I d A  ==> V, a A  

(5) I A a  ~ I a A  
(6) 6 A , v  ~ ¢ , ~ A  
(7) ( A ~  ~ ( ~ A  
(8) ~ T ¢~aA ~ T ~ a a  
(9) ~" 5 ~  ~ ~ ~vA 

(10) #, × ¢ o- A ~ T~,TA 
(11)¢/¢, , -A =:> %o-A 
(12) ~ A ~  ~ tLaA 
(13) 4~ + ¢~ a A ~ % a A  

(14) ,~ --  ¢ a A ~ T~ a A 

(15) + ¢ a A  ~ C a A  
(16) -- ¢~aA ~ T ~ a A  
(17) ~ r h ~  ~ ~ a A  
(18) ~ (~ )  ~ ~ T , a  
(19) ( ¢ )  A ~ ¢ A  
(20) ~ - V ~ - - ¢ ~ I  A ~ ~---¢~-~ A 
(21) ~- V, ~-- ~ A ~ ( empty )  
(22) A ~ ~ a A 

Generation Rules 

i d e n t  ~-- e o n e a t e n a t m n  ( iden t ,  a)  
i d e n t  ~-  X 
V[z] ~ i den t ,  whe re  t h e  a r r a y  V se rves  

as a symbo l  t a b l e  

codeT~  :=  ,~T ¢ ;  J~- -3  + 1  

code  % :=  ~ X .¢; 3 ~--3 + 1 
c o d e T j  = ~ / ¢ ~ ;  3 ~ - - 3 - - k l  

code  T~ :=  ¢ + @ ;  J ~ - - 3  + 1 
code  % :=  ¢ -  ¢;  3 ¢ - 3  + 1 

c o d e T j  = - ¢,, 3~--3 + 1 

code  T~ :=  , ( @ ) ,  3 ~--3 + 1 

code V, :=  
code V, .=  ~; t e r m i n a t e  t r a n s l a t i o n  

In the above productions " I "  is a symbol introduced by the translator which 
serves as a placeholder for the first several characters of an identifier; the charac- 
ters themselves are stored in the word whose name is ' ident'.  The arrow '<--' is a 
placeholder for the character pair ': = ' .  Most of the "productions" are actually 
production schemes, in which lower case Greek letters serve as metalinguistic vari- 
ables. The character a may  stand for any letter or digit, h for any letter, ~ for 
either × or / ,  ~- for either + or - ,  and ~ for any character whatsoever. 
The compiler is assumed to have the ability to generate a class of names ( V1, V2, 
etc.) for identifiers stored in the symbol table, and (T1, T2, etc.) for temporary 
storage locations for partial results; the metalinguistic variable V~ ranges over 
the former class, T~ over the latter. The variables ~b and ~b may take on values 
from either class. The variable 3~ stands for those identifier names V~, continually 
present in the symbol table, which designate library function names (sin, exp, 
sqrt, etc.).  

The production rules may  be interpreted in the following way. Every  charac- 
ter to the right of the pointer A is assumed to be stored on an input medium; the 
character immediately to the right of A, if any, is tha t  which will be brought into 
the machine on the next read instruction. The terminator may  be interpreted as 
an end-of-file marker for the input device, if the marker itself may  be sensed by 
the central computer. Every  character to the left of A is assumed to be stored in 
a push-down list; the character immediately to the left of A is that  at the head 
of the list. Then the second production, Ic~A ~ IA, indicates that  if the character 
T followed by any alphanumeric occurs at the head of the push-down list, the 
alphanumeric character must be adjoined to those characters already stored in 



A DESCRIPTIVE LANGUAGE FOR SYMBOL MANIPULATION 581 

the word ident, and deleted from the head of the push-down list. A production 
like T A¢ ~ I" aA signifies that if the character on the head of the list is ' T' the 
next character, ~, on the input medium must be read and stored on the head of 
the push-down list. Only characters to the left of a and a fixed distance from it 
are eligible for processing; that is, all activity occurs at the head of the push-down 
list. Productions 6-14, 17, 19, and 22 are roughly equivalent to the scan described 
by Samelson and Bauer [2]. 

In general, more than one production might be applicable to a given string; 
reading from the top, the first applicable production must be applied in each 
case. This is much simpler than designing mutually exclusive productions. 
Reference to the example below will clarify the operation of the productions on a 
typical statement. 

Speed of translation might optionally be increased by providing each produc- 
tion with a successor. I t  has been assumed above that after successful application 
of a production, attention returns to the first production, then the second, etc., 
until another is found applicable. The successful application of the ruth produc- 
tion, however, may imply that no production before the nth can next be applica- 
ble, so that testing by the compiler may be reduced by specifying an immediate 
transfer to the nth production. 

Example 

To translate the formula x:=y T z X (u + v), it is rewritten in the augmented 
form ~-A x:=y I" z X (u + v) q. The table below gives the successive trans- 
forms of this string, the numbers of the productions performing the transforma- 
tion, and the associated actions. 

Apphcahon of 
Production 

22 
3 
5 
4 

22 
1 

22 
3, 5, 4 

9 
3, 5, 4 

8 
12 
7 

3, 5, 4 
17 

3, 5, 4 
13 
19 
6 

10 
21 

i V1 ~-- 

Vt¢'- 
V~- 

Vl 
Vl 
Vi ~-- 

~elnpty) 

Ymlds With Associated Action 

Z a  := V T Z × (~ + V) -1 
IA := y T z×  (u+v) -~ ident~--'x' 
I : A =  y T z X  ( u + v )  -~ 
V , . a = v  T z X ( u + v ) - q  Vill~-'x' 
v , : = a y  T z×  (u+v)  q 

V l * - - - y A  T z X  (t~ + v) "~ 
V2 T 5 z  X ( u + v )  -q iden t~- - ' y ' ,  V [ 2 ] e - ' y '  
V~ T z a X  (u+v)  
V2 T V~X A (u-4-v) -t iden t* - - ' z ' ,  V[3]~--'z '  
T , X  a (u + v )  -~ codeT,  .= y T z; j ~ 2  
TiX (~u+v) - J  

T , X  ( V 4 +  Av) ~ i den t~ - - ' u ' ,  V [ 4 ] ~ ' u '  
T , X  ( V 4 +  va )  
T1X ( V 4 +  Vs),~ -q i d e n t ~ ' v ' ,  V [ 5 l ~ ' v '  
T1X (T~)A -q code T2 := u + v ;  3 ~ - 3  
T1 X T.. a -q 
T~ X T2 -j a 
Ta ~ A code T~ := T1 X T:  ; 3~"-4 

code x .= Ta 



582  ROBERT W. FLOYD 

The  u n s u i t a b i l i t y  of even  an  ex t ended  a lgebra ic  l anguage  for descr ib ing  the  
ope ra t ion  of a compi ler  m a y  be seen b y  t r a n s l a t i n g  the  first  th ree  p roduc t ions  
in to  an  ex tended  ALGOL, in which  va r iab les  m a y  t a k e  on cha rac t e r s  as  values .  
Assume  t h a t  the  push -down  list  is the  a r r a y  S, where  i is the  cu r ren t  l is t  index.  
T h e n  the  first  th ree  p roduc t ions  are  t r a n s l a t e d  to  the  r a the r  c lumsy  fo rm:  

if S [ * -  1 ]=  ' : ' A S [ * ] =  ' = ' t h e n b e g i n i ' =  z -  1; S[i] := '~--'end 
else if S[~ -- 1] = ' I '  A alphanumeric (S[~]) then 

begin ident = concatenation (ident, S[i]); * := i - 1 e n d  

else if letter (S[*]) then begin ident .= S[z]; S[i] .= ' I '  end, etc 

The  examples  in the  t ex t  and  append ices  are a d a p t e d  f rom an  ALGOL t r a n s l a t o r  
which  the  a u t h o r  is p r o g r a m m i n g  for the  UNIVAC 1105 in the  n o t a t i o n  descr ibed .  
I t  a p p e a r s  t h a t  a t r a n s l a t o r  can be descr ibed  c o m p a c t l y  a n d  prec i se ly  in th is  
no ta t ion ,  and  t h a t  i t  is no t  d i fhcul t  to  t r a n s l a t e  the  p roduc t ions  in to  symbol ic  
a s s e m b l y  language.  

A P P E N D I X  A 

A n  a lgo r i t hm for a b i -d i rec t iona l  scan to  p roduce  efficient coding  was desc r ibed  
b y  the  a u t h o r  [1] in f lowchar t  form. I t  is r ewr i t t en  below, in p roduc t i ons  which  
spec i fy  the i r  successors in the  even t  of successful app l i ca t ion .  Two  a t t e n t i o n  
markers ,  ~ and  V, a re  used  for the  sake of c l a r i t y  to  d i f ferent ia te  be tween  the  
two modes  of scanning.  The  scan encodes  all a s s ignmen t  s t a t e m e n t s  which  do  no t  
con ta in  if c lauses or func t ions  of two  or more  var iab les .  F o r  de ta i l s  of 
the  des ign of the  scan, see [1]. Me ta l i ngu i s t i c  va r i ab le s  have  the  same me a n ing  
as  in the  first  set  of p roduc t ions .  The  add i t i ona l  va r i ab les  ~, C j ,  and  Q~ s t a n d  
re spec t ive ly  for a digi t ,  the  name  of a cons tan t ,  a n d  the  name  of a c o m p u t e d  
address .  The  var iab les  4~ and  ¢ m a y  t a k e  on as va lues  V~, C~, Tk ,  and  Qt .  M 
is a p l aceho lde r  for  a s t r ing  of digi ts ,  N for a dec imal  numbe r ,  and  F for 10 fol- 
lowed b y  an op t iona l  p lus  or minus  sign and  a n y  n u m b e r  of digi ts .  

Production Successor Gcncratlon Rule 

(1) := a ~ ~- a (22) 
(2) l aA ~ IA (22) iden t  ~-- c o n c a t e n a t i o n  

(ident, a) 
(3) k5 ~ IA (22) ident ~-- X 
(4) I ~  ~ V , ~  (20) V[t] ~-- ident, where array V is a 

symbol table 
(5) M~A :=¢ MA (22) const ~-- 10 X const + value (~), 

where ~t is a digit 
(6) N~A ~ NA (22) const ~-- 10 X const ~ value (~) ; 

dctr ~-- dctr - 1 
(7) M.A ~ NA (22) dctr ~-- 0 
(8) ioTA ~ FA (22) exp ~ 0; sign ~-- 1 
(9) 10--A ~ FA (22) exp ~-- 0; sign ~-- - - i  

(10) ldIA =* FA (22) exp ~-- value (~) ; sign ~-- 1 
(11) F~A ~ FA (22) exp e-- 10 X exp -{- value (~) 
(12) 10Ao, ~ 10aA (8) 



A DESCRIPTIVE LANGUAGE FOR SYMBOL MANIPULATION 

Production Successor 

(13) M~A ~ C : A  (20) 
(14) N~A ~ C:-A (20) 
(15) MF,rA ~ NaA (14) 
(16) NF,~A ~ NaA (14) 
(17) Fo-,~ ~ MFaA (15) 
(18) ~iA ~ M~i~ (5) 
(19) A ~ M.A (7) 
(20) ; A ~ v ; (23) 
(21) ] A ~ V] (23) 
(22) Aa ~ o-~ (1) 
(23) V7(¢) ~ vTk (28) 
(24) V,T (¢) ~ Va¢ (31) 
(25) vVd¢] ~ Q~A (22) 
(26) o-V) ~ Vo-) (26) 
(27) aVl ~ Val (26) 
(28) ave  ~ V~¢ (31) 
(29) Vcr q- ~ ~ Va¢ (31) 
(30) Vo- -- ¢ ~ vaTk (31) 
(31) aV T ~ va  T (26) 
(32) Vz¢ T .¢ ~ VaTs (32) 
(33) ave  ==-~ Van (26) 
(34) V ~ ¢ ~  ~ V~.T~ (34) 
(35) ~W- :=:# V~rr (26) 
(36) V~r¢~r~ ~ voTk (36) 
(37) V , ¢ ]  ~ V] (27) 
(38) v ~ ¢  ~ v , - ¢  (40) 
(39) va¢  ~ ¢ ~ ~A (STOP) 
(40) aV ~ Va (23) 

583 

Generation Rule 

Cbl  ~- eonst  
C[3] ~-- const  X 10 T dc t r  
dc t r  ~-- sign X exp 
dc t r  ~-- dc t r  + sign X exp 
const  ~-- 1 
const  ~- 0 
const  ~ 0 

code ' fnc t ' ,  ¢ , 

code ' , '  , ¢, 0; code '[ ' ,  V, , 0 

code 'minus ' ,  ¢, 0 

code ' T ', ¢, 

code t~, ¢, ¢~ 

code ~-, ¢, ¢ 
code ' , ' ,  ¢, 0 
code '--)', ¢, 
code '--~', ¢, 

A P P E N D I X  B 

A n  ALGOL c o m p i l e r  r e q u i r e s  n o t  o n l y  a f o r m u l a  t r a n s l a t o r  b u t  a l so  a m e t h o d  

for  g e n e r a t i n g  t r a n s f e r s  of c o n t r o l  a n d  t h e i r  a s s o c i a t e d  c o d i n g .  T h e  f o l l o w i n g  

p r o d u c t i o n s  r e p r e s e n t  one  p o s s i b l e  a p p r o a c h  t o  t h e  t r a n s l a t i o n  of t h e  c o n t r o l  

w o r d s  of ALGOl, tO s y m b o l i c  a s s e m b l y  l a n g u a g e .  

Metahngmstm variable May stand for 

any  boolean expression 
r ' ; '  or ' end '  
co ';', ' end ' ,  or ' e l s e '  
¢ any for clause 
X any  label 

any  charac ter  
J 'C' or 'U'  
E any  basic s t a t emen t  

Placeholder May replace 

C,, an if clause (condit ional  jump)  
U,~ (if c lause)(s tatement)  e l s e  (uncondit ional  jump)  
F,, a for clause (subroutine call) 
L,, the n t h  label generated by the  t rans la to r  



584 ROBERT W. FLOYD 

Production 

(1) if ¢~ then 5 ~  C~ 

(2) J , ~ z ~  ~ 

(3) begin;  A ~  begin 
(4) begin end A ~  A 
(5) ~ A ~  ~A 
(6) C, e l se  A ~  U,A 

(7) e z ~  F,,z~ 

(8) F~wA~ o~A 

(9) X : A ~  A 
(10) ~- A "~ ~ (empty) 
(11) a ~  ~a 

F o r  e x a m p l e  t h e  ( a u g m e n t e d )  s t a t e m e n t  

~- A begin Z~ ; if ~ then begin ~ ; 

is t r a n s l a t e d  t h r o u g h  t h e  f o l l o w i n g  s t eps :  

Apphcatlon of production gtelds 

11, 11, 11 begin ~l ; A if etc. 
5 begin; A if etc 
3 begin A if etc. 

l l ,  11, l l  begin if ~l then A begin etc. 
1 begin C1A begin etc. 

11, 11, 11 begin Ci begin ~2 ; A Z~ etc. 
5 begin Ci begin; AZ2 etc. 
3 begin C, begin AE, etc. 

11, 11 begin Cl begin Za end A e l se  etc 
5 begin C~ begin end A else etc. 
4 begin C~ A e l se  ~4 end -~ 

t l  begin Ci else A .~4 end 
6 begin U2AZ4end -~ 

Generation Rules 

Code a conditional lump to L,, if ¢~ is false 
n ~ - n + l .  

Asmgn label L~ to the next hne of coding 
generated. 

Generate coding for Z. 
Generate coding for unconditional jump 

toL,~;  n * - - n +  1, assign labe lL ,  to 
next line of coding 

Generate coding governing a loop, with 
extt instructmn assumed labeled L,~ ; 
n ~ - - n - k l .  

Generate unconditional jump (labeled 
L,) to an illegal address 

Assign label X to the next line of coding 
Terminate  compilation. 

Za end else ~4 end-~ 

With generated coding 

code for Xl 

jump to Ll if/~l is false 

code for Z2 

code for Za 

lump to L2 ; assign 
label Li 

11, 11 ~- begin U2Z4 end A -~ 
5 I begin U2 end A -~ code for Z4 
2 begin end A -~ assign label L2 
4 k -t 

10 (empty} 

R E F E R E N C E S  

1 FLOYD, R . W .  An algorithm for coding efficient ar i thmetic  operations Comm. A C M  .4 
(Jan. 1961), 42-51. 

2 SAMELSON, K.;  AND BAUER, F L Sequential  formula translat ion.  Comm A C M  8 
(Feb 1960), 76-83. 


