A Decision Procedure for Computations of Finite Automata*

Joyce Friedman \dagger
The Mutre Corporation, Bedford, Massachusetts

Abstract

The "computed output sequence" of a finite automaton is defined as the sequence which results from the output sequence when all occurrences of a special output symbol X are deleted. A "computation pair" consists of an input sequence and the resultant computed output sequence, and the "computation" of an automaton is the set of all its computation pairs. The class of infinite computations is broader than the class of behaviors of finite automata. Burks has therefore raised the question of the existence of a decision procedure to determine if two automata have the same computation. In this paper, such a decision procedure is given.

I. Introduction

We consider a finite deterministic synchronous automaton S with n states $q_{0}, q_{1}, q_{2}, \cdots, q_{n-1}, m$ input symbols $s_{1}, s_{2}, \cdots, s_{m}$, and $p+1$ output symbols $a_{1}, a_{2}, \cdots, a_{p}, X$. For each of the $n \times m$ state and input pairs $\left(q_{2}, s_{t}\right)$ there is a unique state and output pair $\left(q_{j}, \alpha\right)$ where α is either $a_{1}, a_{2}, \cdots, a_{p}$ or the special symbol X, such that, if S is in state q_{2} and receives input s_{t}, it will enter state q, and output the symbol α. We write these "transitions" of S as

$$
\begin{equation*}
\left(q_{\imath}, s_{t}\right) \rightarrow\left(q_{\nu}, \alpha\right) . \tag{1}
\end{equation*}
$$

By the output sequence of S for a given input sequence we mean the sequence of output symbols produced including X. By the computed output sequence of S we mean the sequence of output symbols after all occurrences of the special symbol X have been deleted.

II. The Decision Problem

Problem ${ }^{1}$. Can we decide whether or not two automata S and T have the same computed output sequence for every infinite input sequence, i.e. are computationally equivalent? ${ }^{2}$

Solution. We answer this question by providing an effective procedure which determines whether or not two automata are computationally equivalent. In the course of the procedure we make use of the transitions (1), i.e. we assume

[^0]that the internal structure and behavior of the automaton or an equivalent automaton are known. However, it is possible to show that we could likewise proceed by behavioral tests only, provided that an upper bound on the number of (behaviorally) distinguishable states is known. For we could then observe the behavior of the automaton through a multiple experiment of finite length and then write the transitions for an equivalent automaton (Moore [5]).

III. Definitions-Computed Output Sequences

Before presenting the decision procedure we require definitions for computed output sequences, for states of an automaton and also some lemmas on sequences and on the behavior of a finite automaton.

Length of a Computed Output Sequence. By the length L of a computed output sequence we mean the number of occurrences of the output symbols a_{1}, a_{2}, \cdots, a_{p}. We note that for an input sequence of length T the corresponding computed output sequence will be of length $L \leqq T$.
Equality of Computed Output Sequences. If two computed output sequences are equal they must be both finite or both infinite. Two finite computed output sequences are equal if and only if they are of the same length L, and for every $k \leqq L$, the k th symbol of one is identical with the k th symbol of the other. Two infinite computed output sequences are equal if and only if for every k the k th symbol of one is identical with the k th symbol of the other.
Computational Equivalence. Two automata S and T are computationally equivalent ($S \equiv T$) if and only if for every infinite input sequence the computed output sequence of S is equal to the computed output sequence of T.

IV. Definitions for States

Connected States. State q_{2} is connected to $q_{\text {, }}$ iff there exists an input sequence γ of length $\geqq 1$ such that if the automaton is in state q_{\imath} and is supplied with γ it will then be in state q_{9}. We say that q_{2} is connected to q_{3} by the input sequence γ.
Terminal State. A state q_{2} is terminal iff, starting with the automaton in state q_{\imath}, there exists at least one infinite input sequence γ such that there is no further computed output.
Finite Slate. A state q_{2} is finite iff it is terminal or is connected to some terminal state q_{j}. It follows from this definition that for any finite state q_{2} there exists at least one infinite input sequence such that the corresponding computed output sequence is of finite length.
Infinite State. A state q_{2} is infinite if it is not finite, that is if the automaton is in state q_{2}, then for every infinite input sequence the computed output sequence is infinite.
Initial State. The state q_{0} is assumed to be the initial state of the automaton. That is if there have been no inputs, the automaton is in state q_{0}.

Admissible State. A state q_{0} is admissible iff either q_{0} is q_{0} or q_{0} is connected to q_{i}. Otherwise q_{i} is inadmissible.

V. Sequences

We shall have occasion to refer to sequences of input or output symbols. A few definitions and a lemma will be needed.

Null Sequence. The null sequence will be denoted by \wedge.
Concatenation of Sequences. If σ_{1} is any finite sequence, and σ_{2} is any sequence, we write $\sigma=\sigma_{1} \sigma_{2}$ to mean the sequence which consists of the sequence σ_{1} followed by the sequence σ_{2}.
Ultimately Periodic Sequence. A sequence is ultimately periodic iff it is infinite and of the form $\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{2} \cdots$ where σ_{1} and σ_{2} are finite and σ_{2} is not null. We write this sequence $\sigma_{1} \bar{\sigma}_{2}$. The period of $\sigma=\sigma_{1} \bar{\sigma}_{2}$ is the length of σ_{2}.
Reduced Form of an Ultimately Periodic Sequence. An ultimately periodic sequence $\sigma=\sigma_{1} \bar{\sigma}_{2}$ is in reduced form if $\sigma_{1}=b_{1} b_{2} \cdots b_{k}$ and

$$
\sigma_{2}=b_{k+1} b_{k+2} \cdots b_{r}
$$

where (1) $b_{k} \neq b_{r}$ and (2) σ_{2} is a minimum period, i.e. σ_{2} is not $\sigma_{3} \sigma_{3} \cdots \sigma_{3}$ where σ_{3} is shorter than σ_{2}.
Lemma 1. An ultimately periodic sequence has a unique reduced form.
Proof. Any ultimately periodic sequence can be put in reduced form. For suppose $\sigma=\sigma_{1} \bar{\sigma}_{2}$ where σ_{2} is a repetition of some sequence σ_{3}. Then put $\sigma=$ $\sigma_{1} \bar{\sigma}_{3}$. This can be repeated until the minimum period is obtained. If then

$$
\sigma=b_{1} b_{2} \cdots b_{k-1} b_{k} \overline{b_{k+1} \cdots b_{r-1} b_{r}}
$$

where $b_{k}=b_{r}$, we can reduce to

$$
\sigma=b_{1} b_{2} \cdots b_{k-1} \overline{b_{k} b_{k+1} \cdots b_{r-1}}
$$

This absorption process can be repeated until we have either

$$
\sigma=\sigma_{4} \bar{\sigma}_{5} \quad \text { or } \quad \sigma=\bar{\sigma}_{6}
$$

where no further absorption is possible.
If any state $b_{k} b_{k+1} \cdots b_{r \rightarrow 1}$ is a repetition of a sequence $b_{k} \cdots b_{l}$, then at the previous stage $b_{k+1} \cdots b_{T}$ was a repetition of $b_{k+1} \cdots b_{l} b_{k}$. Thus, once a minimum period is obtained, the absorption process cannot affect the length of the period.

It is clear from the construction that the reduced form is unique.

VI. Lemmas Concerning Behavior

Lemmas 2, 3, and 4 are concerned primarily with behavior rather than computation. It is therefore likely that they have previously appeared in the literature in either this or similar form. See Burks and Wang [2], Burks and Wright [3], and Moore [5].

Lemma 2. If q_{2} is connected to q_{3}, then q_{2} is connected to q_{0} by an input sequence of length $\leqq n$, where n is the number of states.

Proof. We show that if q_{2} is connected to q_{3} by an input sequence γ_{1}, of length $L_{1}>n$, it is also connected by γ_{2} of length $L_{2}<L_{1}$. It then will follow that it must be connected by an input sequence γ of length $L \leqq n$.

Consider the sequence of states corresponding to the input sequence γ_{1}. This sequence begins with q_{v}, ends with q_{3} and is of length $L_{1}+1$. Since $L_{1}+1>n$ and there are only n states, some state q_{k} must occur more than once, say as the h th and $(h+l)$-th state $(l>0)$, in the state sequence. Let $\gamma=\gamma_{1} \gamma_{2} \gamma_{3}$ where γ_{1} is of length $h-1, \gamma_{2}$ of length l, and γ_{3} of length $L_{1}-(l+h-1)$. Then the input sequence $\gamma_{1} \gamma_{3}$ of length $L_{2}=h-1+L_{1}-(l+h-1)=L_{1}-l<L_{1}$ connects q_{2} to q,
Q.E.D.

Lemma 3. Terminal states can be identified.
Proof. Let the automaton be in state q_{3}, and consider all input sequences of length n and the corresponding state sequences (length $n+1$) and computed output sequences (length $\leqq n$). Then state q, is terminal if and only if at least one of the computed output sequences is null.

For suppose the input sequence γ of length n produces a null computed output sequence. Then since there are only n states, and the state sequence is of length $n+1$, some state q_{2} must occur more than once, say as the k th and $(k+l)$-th state $(l>0)$ in the state sequence. Write the input sequence γ as $\gamma_{1} \gamma_{2} \gamma_{3}$ where γ_{1} is of length $(k-1), \gamma_{2}$ is of length l, and γ_{3} is of length $(n-(k-1)-l)$. Then the infinite (ultimately periodic) input sequence $\gamma_{\gamma} \bar{\gamma}_{2}$ will produce a null computed output sequence.

The converse holds immediately, since any infinite input sequence must begin with one of the finite subsequences considered above.

Lemma 4. Finite states can be identified. ${ }^{3}$
Proof. Consider all input sequences of length n and the corresponding state sequences beginning with state q_{j}. Then q_{j} is finite iff a terminal state q_{\imath} occurs in at least one of the state sequences. For by lemma $2, q_{\text {, }}$ is connected to q_{i} iff it is connected by an input sequence of length $\leqq n$.

VII. Computations of Finite Automata

Theorem 1. Given an automaton S and an ultimately periodic sequence $\sigma=$ $\sigma_{1} \bar{\sigma}_{2}$ of output symbols $a_{1}, a_{2}, \cdots, a_{p}$, there exists a procedure for deciding whether σ is computed for all infinite input sequences, if S starts in a given state $q_{j_{0}}$.

Proof ${ }^{4}$. By Lemma 4, we can determine if state q_{20} is finite. If so, then σ is not produced for all infinite input sequences.

[^1]Assume then that state $q_{2_{0}}$ is infinite. Let the set of transitions from states admissible with respect to $q_{j_{0}}$ of S be divided into two subsets A and B such that all transitions of A produce outputs $a_{1}, a_{2}, \cdots, a_{p}$ and those of B produce only X. We now construct from S an automaton S^{\prime} which is computationally equivalent to S and which has only transitions which produce $a_{1}, a_{2}, \cdots, a_{p}$.

Let the admissible states of S be $q_{1}, q_{2}, \cdots, q_{n-1}$. Starting with $q=q_{1}$, if there are in B one or more transitions to state $q,\left(q_{\imath} \rightarrow q, X\right)$, and there are transitions in A from $q,\left(q \rightarrow q_{k}, a\right)$, then form and add to A all the transitions $\left(q_{2} \rightarrow q_{k}, a\right)$. If there are also in B transitions from $q,\left(q \rightarrow q_{l}, X\right)$, add the transitions $\left(q_{i} \rightarrow q_{i}, X\right)$ to B. (This cannot be $\left(q_{i} \rightarrow q_{i}, X\right)$, else q_{i} is inadmissible or $q_{\mu_{0}}$ is finite.) Then delete from B the transitions to q. The resulting transitions of A and B describe an automaton which is computationally equivalent to S. Continue for q_{2}, \cdots, q_{n-1}. Once the transitions in B to a state q have been deleted, no further transitions to q are ever introduced into B. Hence, when all q_{2} have been considered, B is empty and the resulting transitions in A describe a computationally equivalent finite automaton S^{\prime}, which has an output a_{1}, a_{2}, \cdots, or a_{p} at every transition. From finite automata theory it is known that any periodic solution must have a period and phase of total length no more than the number of states of the automaton. Consequently one can decide not only whether the given periodic sequence σ is produced by all input sequences to S^{\prime}, but also whether there is any ultimately periodic sequence produced by all input sequences.
Q.E.D.

VIII. Joint Automaton ST

Let S and T be automata with n_{s} and n_{t} states respectively and having in common m input symbols and $p+1$ output symbols $a_{1}, a_{2}, \cdots, a_{p}$ and X. Form the combined automaton $S T$ whose $N=n_{s} \times n_{t}$ states q_{2} are pairs of states ($q_{2}{ }^{3}, q_{2}{ }^{t}$) of S and T and whose output is an ordered pair $\left(\alpha_{2}, \alpha_{3}\right)$. The initial state q_{0} of $S T$ is $\left(q_{0}{ }^{s}, q_{0}{ }^{t}\right)$. The transitions of $S T$ are obtained from those of S and T as follows: If $\left(q_{v_{s}}, s_{\mu}\right) \rightarrow\left(q_{s_{s}}, \alpha_{1}\right)$ is a transition of S and $\left(q_{2_{t}}, s_{\mu}\right) \rightarrow$ $\left(q_{7}, \alpha_{2}\right)$ is a transition of T then $\left(q_{2}, s_{\mu}\right) \rightarrow\left(q_{\nu},\left(\alpha_{1}, \alpha_{2}\right)\right)$ is a transition of $S T$, where $q_{2}=\left(q_{2_{s}}, q_{2_{t}}\right)$ and $q_{v}=\left(q_{s s}, q_{v_{t}}\right)$.

The computed output of $S T$ is an ordered pair of sequences σ_{s} and σ_{t} of the symbols $a_{1}, a_{2}, \cdots, a_{p}$. We write this (σ_{s}, σ_{t}).

Value of the Computed Output of $S T$. Let the computed output $\left(\sigma_{s}, \sigma_{t}\right)$ be expressed as ($\sigma \sigma_{1}, \sigma \sigma_{2}$), where the leading symbol (if any) of σ_{1} differs from the leading symbol (if any) of σ_{2}. Then the value v of the joint computation is (σ_{1}, σ_{2}). We may, of course, have $v=(\wedge, \wedge)$.

Theorem 2. If there is some finite input sequence γ to $S T$ for which the value of the computed output is $\left(\sigma_{1}, \sigma_{2}\right)$ where neither σ_{1} nor σ_{2} is null, then S and T are not equivalent.

Proof. If the value of the computed output is (σ_{1}, σ_{2}) then the computed output itself is ($\sigma \sigma_{1}, \sigma \sigma_{2}$) where σ is a string of finite length $L \geqq 0$. Then the
computed output sequences of S and T for γ differ in the $(L+1)$-th place and are thus not equal.

Theorem 3. If the initial state q_{0} is connected to any state $q_{3}=\left(q_{3}{ }^{3}, q_{3}{ }^{t}\right)$ by several different input sequences for which the corresponding computed output pairs have two or more distinct values, then from these values we can determine either (1) that $S \not \equiv T$ or (2) that $S \equiv T$ only if S starting at state $q^{{ }^{8}}$ computes an ultimately periodic sequence σ_{s} and T similarly computes σ_{t}, where σ_{s} and σ_{t} can be determined from the values.

Proof.

1. If any of the values are $\left(\sigma_{1}, \sigma_{2}\right)$ where $\sigma_{1} \neq \wedge$ and $\sigma_{2} \neq \wedge$, then $S \equiv T$ by the previous theorem.
2. Consider any two values. They must then be either (\wedge, \wedge) and (σ, \wedge) or $\left(\sigma_{1}, \wedge\right)$ and $\left(\sigma_{2}, \wedge\right)$ or $\left(\sigma_{1}, \wedge\right)$ and $\left(\Lambda, \sigma_{2}\right)$ or cases symmetric to these in S and T. We take each pair in turn.
(a) The values at q_{3} are (\wedge, \wedge) and (σ, \wedge), corresponding to γ_{1} and γ_{2} respectively, $(\sigma \neq \wedge)$. Then by construction there exist output strings σ_{1} and σ_{2} such that the computed outputs for γ_{1} and γ_{2} are respectively (σ_{1}, σ_{1}) and ($\sigma_{2} \sigma, \sigma_{2}$). Let γ be any infinite input string. Then $\gamma_{1} \gamma$ produces a computation ($\sigma_{1} \sigma_{s}, \sigma_{1} \sigma_{t}$) and $\gamma_{2} \gamma$ produces ($\sigma_{2} \sigma \sigma_{s}, \sigma_{2} \sigma_{t}$). Then a necessary condition for equivalence of S and T is that $\sigma_{1} \sigma_{\mathrm{s}}=\sigma_{1} \sigma_{\mathrm{t}}$, hence $\sigma_{\mathrm{s}}=\sigma_{\mathrm{t}}$, and $\sigma_{2} \sigma \sigma_{\mathrm{s}}=$ $\sigma_{2} \sigma_{t}$, hence $\sigma \sigma_{s}=\sigma_{t}$. But this will be satisfied iff $\sigma_{s}=\sigma_{t}=\bar{\sigma}$.
(b) Similarly for $\left(\sigma_{1}, \Lambda\right)$ and $\left(\sigma_{2}, \Lambda\right)$ we have that for all input sequences γ starting at state q_{g} the sequences σ_{s} and σ_{t} must be produced where:

$$
\begin{aligned}
\sigma_{1} \sigma_{s} & =\sigma_{t} \\
\sigma_{2} \sigma_{s} & =\sigma_{t}
\end{aligned}
$$

If σ_{1} and σ_{2} are of the same length, S and T are not equivalent since σ_{t} must begin both with σ_{1} and with σ_{2}. Let σ_{1} be longer than σ_{2}. Then we must have $\sigma_{1}=\sigma_{2} \sigma_{3}$ for some finite non-null σ_{3}. But this gives

$$
\begin{aligned}
\sigma_{2} \sigma_{3} \sigma_{s} & =\sigma_{t} \\
\sigma_{2} \sigma_{s} & =\sigma_{t}
\end{aligned}
$$

which gives

$$
\begin{aligned}
\sigma_{2} \sigma_{3} \sigma_{s} & =\sigma_{2} \sigma_{s}, & & \text { so that } \\
\sigma_{t} & =\sigma_{2} \sigma_{s}, & & \text { so that } \\
& & \sigma_{t} & =\sigma_{2} \bar{\sigma}_{3}
\end{aligned}
$$

(c) Similarly $\left(\sigma_{1}, \wedge\right)$ and $\left(\Lambda, \sigma_{2}\right)$ gives

$$
\begin{aligned}
\sigma_{1} \sigma_{s} & =\sigma_{t} \\
\sigma_{s} & =\sigma_{2} \sigma_{t}
\end{aligned}
$$

or

$$
\begin{aligned}
\sigma_{s} & =\sigma_{2} \sigma_{1} \sigma_{s} \\
\sigma_{t} & =\sigma_{1} \sigma_{2} \sigma_{t}
\end{aligned}
$$

so that

$$
\begin{aligned}
\sigma_{s} & =\overline{\sigma_{2} \sigma_{\mathrm{j}}} \\
\sigma_{t} & =\overline{\sigma_{1} \sigma_{2}}
\end{aligned}
$$

Thus, from any two of the values it can be determined that for all infinite input sequences starting at q_{3} the joint computed output of the form ($\sigma_{1} \bar{\sigma}_{3}, \sigma_{2} \bar{\sigma}_{4}$) must be produced (or else $S \neq T$).
3. Suppose now there are more than two values, that is, there is a finite input sequence γ connecting q_{0} to q, such that the value of the corresponding joint computed output is ($\sigma_{\sigma}, \sigma_{\sigma}$).

Then a necessary and sufficient condition that no infinite input sequence beginning with γ will produce unequal computations for S and T is that

$$
\sigma_{5} \sigma_{1} \bar{\sigma}_{3}=\sigma_{6} \sigma_{2} \bar{\sigma}_{4}
$$

This is clearly decidable by putting both sides into the reduced form for ultimately periodic sequences.
Q.E.D.

IX. Decision Procedure

In the decision procedure we construct for each state q_{k} of $S T$ a set V_{k} of values and give three conditions which the sets V_{k} must satisfy. Each of these conditions is shown to be necessary. Finally, it will be proved that the conditions are sufficient: if each of the sets V_{k} meets all three conditions, then S and T are computationally equivalent.

Construction of the Sets V_{k}. We construct for each (admissible) state q_{k} of $S T$ a set of values V_{k} such that if $v \in V_{k}$ then there exists a finite input sequence γ such that if $S T$ starts in the initial state q_{0} and γ is input, the resulting state is q_{k} and the value of the computed output sequence is v.

Let $v_{0}{ }^{0}=(\wedge, \wedge)$. For each admissible state q_{k} of $S T, k>0$, let $v_{k}{ }^{0}$ be the value of a joint computed output obtained by some input sequence γ_{k}, for which the corresponding state sequence starting at initial state q_{0} ends in q_{k}. By Lemma 2 we can select some $v_{j}{ }^{0}=\left(\sigma_{1}, \sigma_{2}\right)$ where both σ_{1} and σ_{2} are of length $\leqq N$, where N is the number of states of $S T$.

Form the sets V_{k} as follows:
(1) For all $k, v_{k}^{0} \in V_{k}$.
(2) If $\left[\left(q_{3}, s_{r}\right) \rightarrow\left(q_{k},\left(\alpha_{1}, \alpha_{2}\right)\right)\right]$ is a transition of $S T$, and $v_{0}{ }^{0}=\left(\beta_{1}, \beta_{2}\right)$, then the value of $\left(\beta_{1} \alpha_{1}, \beta_{2} \alpha_{2}\right)$ is in V_{k}.
Then it is clear that if (σ_{1}, σ_{2}) $\in V_{k}$ the value (σ_{1}, σ_{2}) occurs at q_{k} for either the input sequence γ_{k} of step (1) or $\gamma_{j} s_{r}$ for some j and r.

Likewise, it follows from the construction that if (σ_{1}, σ_{2}) $\in V_{k}$ then σ_{1} and σ_{2} are each of length $\leqq N+1$, because $v_{3}{ }^{0}$ is of length at most N

Necessary Conditions. Having constructed the sets V_{k}, we can now state three conditions for $S \equiv T$. These conditions will be given and each one proved to be necessary. It will then be shown that together they are sufficient. That is, $S \equiv T$ iff conditions 1,2 , and 3 are satisficd.

Condition 1. If for any k, V_{k} contains a value (σ_{1}, σ_{2}) in which neither σ_{1} nor σ_{2} is null, S is not equivalent to $T(S \not \equiv T)$. The necessity of this condition follows from Theorem 2.

Condition 2. If for any terminal state q (which can be identified by Lemma $3), V_{k}$ contains a value (σ, \wedge) or (\wedge, σ) where $\sigma \neq \wedge$, then $S \not \equiv T$. For there exists an infinite input sequence with no further computed output so that the computed output sequences of S and T are of unequal length and hence unequal.

Definition. Using the sets V_{k}, we distinguish two classes of states of $S T$: Class I states q_{k} for which V_{k} has only one distinct value and Class II states for which V_{k} has two or more distinct values. (The only states of $S T$ not in either of these classes are inadmissible states, which can never be reached.)

Condition 3. If V_{k} is a class II state, then by Theorem 3 it is a necessary condition for $S \equiv T$ that certain specified ultimately periodic sequences $\sigma_{s}=$ $\sigma_{1} \bar{\sigma}_{2}$ and $\sigma_{t}=\sigma_{3} \bar{\sigma}_{4}$ be produced by every infinite input sequence from state $q_{k}=$ $\left(q_{k}{ }^{s}, q_{k}{ }^{t}\right)$. Theorem 1 provides a method for determining if this condition is met. Since ultimately periodic sequences are by definition infinite, it follows that if Condition 3 is met, then all Class II states are infinite for both S and T.

One further theorem is needed before the sufficiency of these conditions can be proved.

Theorem 4. Consider an arbitrary finite input sequence γ and suppose that having started initially in state q_{0}, state q_{3} has been reached through the state sequence $q_{0} \cdots q_{2} q_{1}$ and that the value of the computed output sequence is v. Then either $v \in V$, or the state sequence $q_{0} \cdots q_{2}$ has included at least one Class II state.

Proof by Induction. Either q_{0} is of Class II or it has only one value v_{0}. Suppose that after a finite number t of inputs $S T$ is in q_{l} with a value $v \in V_{l}$. Let the $(t+1)$-th input be s_{τ} so that the transition is $\left(q_{l}, s_{\tau}\right) \rightarrow\left(q_{\mu}, \alpha\right)$ for some μ. If q_{l} is in Class I, then $v=v_{l}$ and hence by the construction of V_{μ}, the resulting value is in V_{μ}. Otherwise q_{l} is in Class II.

Proof of Sufficiency. We now prove that the procedure is sufficient, that is if conditions 1,2 , and 3 are met, S and T are computationally equivalent. To do this, we must show that if the conditions are met, the computations of S and T are both finite or both infinite and that they are equal.

1. There is no infinite input sequence for which the computed output sequence of S is finite and that of T infinite or vice versa.

For suppose there were an input sequence γ such that after t inputs the complete finite computed output sequence of S had been produced and $S T$ was in state q_{2}. Clearly q_{2} is terminal for S. Suppose the value of the joint computed output is v. Then $v \in V_{2}$, for by Theorem 4 the computed output sequence at q_{2} can have no values other than those of V_{2} unless the state sequence has included a Class II state. But all Class II states are infinite for both S and T and therefore cannot be connected to the state q_{2} which is a terminal state of S.

Now since the computed output sequence of T is infinite for the input sequence γ, after some number t_{2} of inputs its length will exceed its length after t inputs by $2(N+1)$. Thus, after t_{2} inputs, $S T$ will be in some state q, with
a value (\wedge, σ) where σ is of length $>N+1$. But all values in V, are of length $\leqq N+1$, so that $v \notin V$, and thus a Class II state must have occurred in the state sequence. But this is impossible since all Class II states are infinite for both S and T.
2. If for some infinite input sequence the computed output sequences are both finite, they are equal.

For after the computed output sequences are complete $S T$ is always in some state q_{2} which is terminal for both S and T. Thus, no Class II state was included in the state sequence, and hence, by Theorem 4 , the value of the joint computed output must be in V_{2}. But by Condition 2, V_{2} contains only (\wedge, \wedge). So the joint computed output is (σ, σ).
3. If for some infinite input sequence the computed output sequences are both infinite, they are equal.

If the state sequence for some input sequence contains any Class II states, a first Class II state q_{\imath} is reached by a sub-sequence γ_{1}, with a value $v \in V_{\imath}$. Then by Condition 3 it has been determined that for any infinite input sequence beginning with $\gamma_{1} \gamma$ the computed output sequences are the same.

If, on the other hand, the state sequence contains only Class I states, the computed output sequences are again equal. For if not equal, a value $v=$ (σ_{1}, σ_{2}) where ncither σ_{1} nol σ_{2} is null would occur. But by Condition 1, this v is not in any V_{\imath} and by Theorem 4 no new values are ever introduced by a sequence of Class I states only. Q.E.D.

REFERENCES

1. Burks, Arthur W Computation, behavior, and structure in fixed and growing automata. Behavioral Scl 6 (1961), 5-22.
2 Bures, Arthur W, and Hao Wang. The logic of automata. J. ACM 4 (1957), 193-218 and 279-297.
2. Burks, Arthur W., and Wright, Jesse B. Sequence generators and digital computors. University of Michigan, Ann Arbor (Feb. 1961)
3. Friedman, Joyce. Some results in Church's restricted recursive arithmetic, J. Symbolic Logic 22, (1957), 337-342.
4. Moore, Edward F. Gedanken-experıments on sequential machines. In C. E. Shannon and J. McCarthy (Eds), Automata Studies, pp. 129-153, Princeton Univ. Press, 1956.

[^0]: * Received November, 1961
 \dagger The author wishes to thank A W Burks and R. F. Shackford for reading the manuscript and offering many constructive suggestions.
 ${ }^{1}$ This problem came to the author's attention through a paper by A. W. Burks [1].
 ${ }^{2}$ The decision problem for all input sequences reduces to the problem of all finite input sequences. This in turn reduces to the problem of deciding whether two automata are behaviorally equivalent This problem has previously been solved. See Burks and Wang [2], Friedman [4], Moore [5]

[^1]: ${ }^{3}$ Burks and Wright [3] give an algorithm for deciding whether the computation of a fixed automaton is finite, infinite or mixed.
 ${ }^{4}$ This proof of Theorem 1 is based on a suggestion by $\Lambda . W$. Burks The proof may be visualized by drawing the state diagram and representing the transitions A by solid lines and those of B by dotted lines

