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Abstract. The “computed output sequence’ of a finite automaton is defined as the se-
quence which results from the output sequence when all occurrences of a speeial output
symbol X are deleted. A “computation pair’’ consists of an input sequence and the resultant
computed output sequence, and the “computation’’ of an automaton is the set of all its
computation pairs. The elass of infinite computations is broader than the class of behaviors
of finite automata. Burks has therefore raised the question of the existence of a decision
procedure to determine if two automata have the same computation. In this paper, such a
decision procednre is given.

I. Introduction

We consider a finite deterministic synchronous automaton S with n states

Qus G2, " 5 GQea, W input symbols 81,8, " ;8% ,andp +1 output symbols
, 0, -, 0,, X. For each of the n X m state and inpus pairs (g., 3;) there
is o unigue state and output pair (g, , ) where « is either o,, @2, -+ - , @, or the

special symbol X, such that, if § is in state ¢, and receives input s. , it will enter
state g, and output the symbol «. We write these “transitions” of S as

(e 8:) — (q,, a). (1)

By the output sequence of 8 for a given input sequence we mean the sequence
of output symbols produced including X. By the computed output sequence of 8
we mean the sequence of output symbols after all occurrences of the special
symbol X have been deleted.

II. The Decision Problem

ProprEm'. Can we decide whether or not two antomata S and 7" have the
same computed output sequence for every infinite input sequence, i.e. are eompu-
tationally equivalent?’

SorurioN. We answer this question by providing an effective procedure
which determines whether or not {two automata are computationally equivalent.
In the course of the procedure we make use of the transitions (1), i.e. we assume

* Received November, 1961

1 The author wishes to thank A W Burks and R. F. Shackford for reading the manu-
seript and offering many construective suggestions.

1 This problem came to the author’s attention through = paper by A. W, Burks {1].

# The decision problem for all input sequences reduces to the problem of all finite input
sequences. This in turn reduees to the problem of deciding whether two automata are
behaviorally equivalent This problem has previcusly been solved. Se¢ Burks and Wang
[2], Friedman [4], Moore [5]
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that the internal strueture and behavior of the automaton or an equivalent
automaton are known. IHowever, it is possible to show that we could likewise
proceed by behavioral tests only, provided that an upper bound on the number
of {(behaviorally) distinguishable states is known. For we could then observe the
behavior of the automaton through a multiple experiment of finite length and
then write the transitions for an equivalent automaton (Moore [5]).

II1. Definitions—Computed Output Sequences

Before presenting the decision procedure we require definitions for computed
output sequences, for states of an automaton and also some lemmas on sequences
and on the behavior of a finite antomaton.

Length of a Computed Output Sequence. By the length L of a computed output
sequence we mean the number of occurrences of the output symbols a,
s, * 8, . We note that for an input sequence of length T the correspond-
ing computed output sequence will be of length L = T.

BEquality of Computed Quiput Sequences. If two computed oubtput sequences
are equal they must be both finite or hoth infinite. Two finite computed
output sequences are equal if and only if they are of the same length L,
and for every k = I, the kth symbol of one is identical with the kth symbol
of the other. Two infinite computed output sequences are equal if and only
if for every k the kth symbol of one is identical with the kth symbol of the
other.

Compulaiional BEgquivalence. Two automats 8 and T are computationally
equivalent (8 = T) if and only if for every infinite input sequence the
computed ouiput sequence of S is equal to the compuied cutput sequence
of T.

IV. Definitions for Slates

Connected Slates. State g, is connected to g, iff there exists an input sequence v
of length =1 such that if the automaton is in state g, and is supplied with
v it will then be in state g, . We say that g, is connected to ¢, by the input
sequence v.

Terminal State. A state g, is terminal iff, starting with the automaton in state
g. , there exists at least one infinite input sequence v such that there is no
further computed output.

Finate Stale. A state g, 13 findte iff it is terminal or is connected to some terminal
state g; . It follows from this definition that for any finite state ¢, there
exists at least one infinite input sequence such that the corresponding
computed output sequence is of finite length.

Infinite State. A state g, is infinite i it is not finite, that is if the automaton
is in state g, , then for every infinite input sequence the computed output
sequence is infinite.

Ingtial Stale. The state o is assumed to be the indizal state of the automaton.
That is if there have been no inputs, the automaton is in state go .



A DECISION PROCEDURE FOR COMPUTATIONS OF FINITE AUTOMATA 317

Admissible State. A state g, is admissible IfT either g, is g4 or ¢ is connected to
¢, . Otherwise g; is inadmisgsible.

V. Sequences

We shall have oceasion to refer to sequences of input or output symbols. A
few definitions and a lemma will be needed.

Null Sequence. The null sequence will be denoted by /.

Concatenation of Sequences. If o, is any finite sequence, and o is any sequence,
we write ¢ = ogy0: t0 mean the sequence which consists of the sequence
a1 followed by the sequence o3 .

Ultimalely Periodic Sequence. A sequence is ultimately periodic iff it is infinite
and of the form oi0w6002 - - - where oy and o are finite and o, is not null.
‘We write this sequence ¢,5; . The period of ¢ = &5 is the length of o».

Reduced Form of an Ullimately Periodic Sequence. An ultimately periodic

sequence ¢ = o7 is in reduced form if &3 = bby - -+ b and
gy = bppabrys -+ b,
where (1) by # b, and (2) ¢; is 2 minimum period, 1.€. o3 is not ooz -+ a3

where o3 is shorter than oy,

Lemma 1. An ullimately periodic sequence has a unigue reduced form,

Proor. Any ultimately periodie sequence can be put in reduced form. For
SUppOSe ¢ = 033, Where o2 is a repetition of some sequence o: . Then put ¢ =
a1é3 . This can be repeated until the minimum period is obtained. If then

o= b]b2 v bt—‘lbkm
where b, = b, , we can reduce {o
g = ble e bh~1m-
This absorption process can be repeated until we have either
O = 0405 or g = gs,
where no further absorption is possible.

I any state bubuss - - - b,y is a repetition of a sequence by - - - b; , then at the
previous stage b1 - - - b, was a repetition of bry - &by . Thus, once a mini-
mum period is obtained, the absorption process cannot affect the length of the
period.

It is clear from the construction that the reduced form is unique.

VI. Lemmas Concerning Behavior

Lemmas 2, 3, and 2 are concerned primarily with behavior rather than compu-
tation. It is therefore likely that they have previously appeared in the literature
in either this or similar form. See Burks and Wang [2], Burks and Wright [3],
and Moore [5].
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Lemva 2. If g, 18 connected o q, , then ¢, is connected fo g, by an fnput sequence
of length <n, where n is the number of stales.

Proor. We show that if ¢. is connected to ¢, by an input sequence v, , of
length I; > n, it is alzo connected by 72 of length s < I . It then will follow
that it must be connected by an input sequence v of length I 5 =.

Consider the sequence of states corresponding to the input sequence v, . This
sequence begins with ¢, , ends with ¢, and is of length 7; 4+ 1. Since L; 4+ 1 > n
and there are only » states, some state ¢, must occur more than once, say as
the Ath and (A -+ [)-th state (I > 0), in the state sequence. Let v = vryzys where
71 is of length & — 1, v, of length I, and 43 of length Iy — (I 4+ h — 1). Then
the input sequence yyy,of length Lo = h — 1+ Li— I+ h— 1) = In — 1 < Iy
connects g, to g, Q.E.D.

Lemma 3. Terminal states can be identified.

Proor. Let the automaton be in state ¢, , and congider all input sequences
of length n and the corresponding state sequences {length z 4~ 1) and computed
output sequences {length =»). Then siate ¢, is terminal if and only if at least
one of the computed output sequences is null.

For suppose the input sequence v of length % produces a null computed output
sequence. Then since there are only 7 states, and the state sequence is of length
7 -+ 1, some state ¢, must occur more than once, say as the kth and (& 4 [)-th
state {{ > 0) in the state sequence. Write the input sequence v as vryzys where
v1 15 of length (k — 1), v; is of length I, and v, is of length (n — (k — 1) — I}.
Then the infinite (ultimately periodic) input sequence v;¥. will produce a null
computed output sequence.

The converse holds immediately, since any infinite input sequence must begin
with one of the finite subsequences considered above.

LeEmva 4. Finile states can be sdeniified.”

Proor. Consider all input sequences of length » and the corresponding state
sequences beginning with state ¢, . Then g, is finite iff a terminal state g, oecurs
in at least one of the state sequences. For by lemma 2, g, is connected to ¢, iff it
1s connected by an input sequence of length =#.

V1I. Compuiations of Finite Automata

THEOREM 1. Given an auiomaton S and an ullimately periodic sequence o =
152 of output symbols ay , az, - - - , ap , there exists @ procedure for deciding whether
¢ 16 computed for all infindle input sequences, if S starts in a given state g, .

Proor*. By Lemma 4, we can determine if state g,, is finite. If so, then ¢ is
not produced for all infinite input sequences.

3 Burks and Wright (3] give an algorithm for deciding whether the computation of a
fixed automaton is finite, infinite or mixed.

¢ This proof of Theorem 1 is based on a suggestion by A. W, Burks The proof may be
visualized by drawing the sbate dizgram and representing the transitions 4 by solid lines
and those of B by dotted lines
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Assume then that state g,, is infinite. et the set of transitions from states
admissible with respeet 1o g,, of S be divided into two subsets A and B such
that all transitions of A produce outputs a, , @, -+« , @, and those of B produce
only X. We now construct from S an antomaton S which is computationally
equivalent to 8 and which has only fransitions which produce a;, 02, -, a; -

Let the admissible states of 8 be ¢, g2, +** , Gua - Starting with ¢ = g1, if
there are in B one or more transitions to state g, (g. — ¢, X), and there are
transitions in A from g, (¢ — q: , @), then form and add to 4 all the transitions
{g. — g1, a). If there are also in B transitions from ¢, (g — ¢, X}, add the
transitions (¢, — ¢i, X) to B. (This cannot be {g, — ¢., X), else g: is inad-
missible or g,, is finite.) Then delete from B the transitions to ¢. The resulting
transitions of 4 and B describe an automaton which is computationally equiva-~
lent to 5. Coniinue for gz, - - - , gu—1 . Once the transitions in B {0 a state q have
been deleted, no further transitions to ¢ are ever introduced into . Hence,
when all ¢, have been considered, B is empty and the resulting transitions in A
describe a computationally equivalent finite automaton 8°, which has an output
a, Gz, -, OF 0, at every transition. From finite automata theory it is known
that any periodic solufion must have a period and phase of total length no more
than the number of states of the antomaton. Consequently one can decide not
only whether the given periodic sequence o is produced by all input sequences
to &', but also whether there is any ultimately periodic sequence produced by
all input sequences. QGE.D.

VIII. Joint Aulomaton ST

Let S and T be automata with n, and n, states respectively and having in
common m input symbols and p -~ 1 output symbols a:, @z, -+, @, and X.
Form the combined automaton ST whose N = n, X n, states ¢. are pairs of
states (g.°, ¢.)) of § and T and whose output is an ordered pair (a. , «,). The
initial state g of 87 is (g, go’). The transitions of ST are obtained from those
of S and 7 as follows: If (g., , s,) — (g,, , &) is a transition of § and (g., , 5,) —
(g, , az) i3 a transition of T then (g., 8.} — (g,, (o, a)) is a transition of
ST, where g. = (g,,, ¢..) and ¢, = {g,,, 45}

The computed cutput of ST is an ordered pair of sequences ¢, and o, of the
symbols a1, @, - -+, a@p . We write this (¢, , a0).

Value of the Computed Output of ST. Let the computed output (o, , o) be
expressed as (a1, ooy), where the leading symbol (if any) of ¢, differs from the
leading symbol (if any) of oo . Then the value v of the joint computation is
(o1, 02). We may, of course, have » = (A, N\).

TueoreM 2. If there 4s some finite inpul sequence v to ST for which the value of
the compuied oulput is (o1, o2) where neither oy nor o 1s null, then S and T are
not equtvalent.

Proow. If the valuc of the computed output is (ov, o») then the computed
output itself is (oay, oo;) Where ¢ is a string of finite length I, = 0. Then the
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computed output sequences of 8 and T’ for « differ in the (L-- 1)-th place and
are thus not equal.

TuroreM 3. If the initial state o 15 connected to any state ¢, = (q,', ¢,") by
several different input sequences for which the corresponding computed output pairs
have two or more distinct values, then from these values we can delermine either
(1) that 8 2 T or (2) that 8 = T only +f S starting at stute q,° compules an ulti-
mately pertodic sequence o, and T similarly compules ¢, , where o, and o, can be
determined from the values.

Proor.

1. If any of the values are (a1, 69) where oy # A and gz # A, then S = T
by the previous theorem.

2. Consider any two values. They must then be either (A, A) and (s, A\)
or (o1, A) and (o3, A) or {a, A) and (A, o) or cases symmetric to these
in S and T. We take cach pair in turn.

(a) 'The values at ¢, are (A, A) and (s, A), corresponding to ¥; and

v: respectively, (& # A). Then by construction there exist output strings

#; and o3 such that the computed outpuss for v; and v, are respectively (o4 , o)

and (o:0, 03). Let y be any infinite inpus string. Then v,y produces a computa-

tion (oy0;, o) and vy produces (o:00,, vzo:). Then a necessary condition
for equivalence of 8 and 7 is that o0, = oy0v, hence o, = oy, and oo, =

ows: , hence oo, = 0. But this will be satisfied iff ¢, = o: = 4.

(b) Similarly for (o, A) and (o2, /) we have that for all input sequences

v starting at state ¢, the sequences ¢, and ¢, must be produced where:

G10; = O¢
Gody = O¢ .

If & and oy ave of the same length, 8 and T are not equivalent since ¢, must
begin both with o, and with s:. Let o be longer than oy . Then we must
have oy = oyr; for some finite non-nuil 45 . But this gives

dogds0y — Jy
TFadg = Ty
which gives
U030, = 030, , so that g, = O3
Ot = 020, so that o = 090y .

{c) Similarly (a1, A) and (/\, &) gives

O30, = 0Oy
s — 020y
or
Gy = Ga010g

gr = J1030
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so that

7. = 00
oy = E .

Thus, from any two of the values it can be determined that for all infinite
input sequences starting at ¢, the joint computed output of the form (o153 , o2d4)
must be produced {or else 8§ = T).

3. Suppose now there are more than two values, that is, there is 2 finite input
sequence  connecting go to ¢, , such that the value of the corresponding joint
computed output is (o5, o).

Then a necessary and sufficient condition that no infinite input sequence
beginning with ¥ will produce unequal computations for S and 7' is that

Os0103 = Ogdafs .

This is clearly decidable by putting both sides into the reduced form for
ultimately periodic sequences. QE.D.

IX. Decision Procedure

In the decision procedure we construct for each state gr of ST a set V; of
values and give three conditions which the sets V3 must satisfy. Each of these
conditions is shown to be necessary. Finally, it will be proved that the conditions
are suflicient: if each of the sets V; meets all three conditions, then § and 7
are computationally equivalent.

Construction of the Sets V. We construct for each (admissible) state g, of
ST a set of values V), such that if v € V, then there exists a lnite input sequence
v such that if ST starts in the initial state go and v is input, the resulting state
is gz and the value of the computed output sequence is v.

Let vd = (A, A). For each admissible state g, of ST, & > 0, let ¢, be the
value of a joint computed output obtained by some input sequence vi , for which
the corresponding state sequence starting at initial state ¢ ends in ¢ . By Leroma
2 we can select some v,ﬁ = (g1, o2) where both &, and ¢, are of length <N,
where & is the number of states of ST

Form the sets V; as follows:

(1) Forallk,u’¢c Vy.

(2) T [(g,, ) — (g, (on, ou))] is a transition of 8T, and v,” = (B, fa),

then the value of (Bicr , Beaw) isin V5.

Then it is clear that, if (e, a2) € Vi the value (o1, #2) occurs at ¢ for either
the input sequence +;, of step (1) or «,s, for some j and r.

Likewise, it follows from the construction that if (o, , g2) € V; then oy and
o are each of length =N 4+ 1, because .’ is of length at most N

Necessary Conditions. Having constructed the sets Vi, we can now state
three conditions for 8 = 1'. These conditions will be given and each one proved
to be necessary. It will then be shown that together they are sufficient. That is,
S = T iff conditions 1, 2, and 3 are satisfied.
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ConpItioN 1. If for any k, Vi contains a value (oq, ¢2) in which neither
a1 Dot o¢ is null, § is not equivalent to T(S # 7). The necessity of this condition
follows from Theorem 2.

CoxpiTion 2. If for any terminal state ¢ (which can be identified by Lemma
3}, V. contains a value (o, A) or (A, ¢) where o # A, then S # T. Tor there
exists an infinite input sequence with no further computed output so that the
computed output sequences of S and T are of unequal length and hence unequal.

Defingtion. Using the sets ¥V, , we distinguish two classes of states of ST
Class I states gi, for which V; has only one distinet value and Class II states for
which V; has two or more distinet values. (The only states of ST not in either
of these classes are inadmissible states, which ean never be reached.)

Conprrion 3. If Vi is a elass IT state, then by Theorem 3 it is a necessary
condition for 8 = T that certain specified ultimately periodic scquences o, =
o182 and o¢ = o354 be produced by every infinite input sequence from state ¢,=
(g:', ¢i"). Theorem 1 provides a method for determining if this condition is met.
Bince ultimately periodic sequences are by definition infinite, it follows that if
Condition 3 is met, then all Class II states are infinite for both S and 7.

Oune further theorem is needed before the sufficiency of these conditions can
be proved.

TaroreEM 4. Consider an arbitrary finite dnput sequence v and suppose that
havng started indtially in state qo , state g, has been reached through the state se-
guence gy - -+ G4, and that the value of the computed outpul seguence 18 ». Then
etther v € V, or the stale sequence gy - - - @. has tneluded af least one Class 11 state.

Proor BY InpvuctioN. Either gy is of Class 11 or it has only one value v, .
Suppose that after a finite number ¢ of inputs ST is in ¢; with a value v £ V.
Let the (¢ 4 1)-th input be s, so that the transition is (g, s;) — (g., «) for
some . If ¢; 35 in Class T, then # = »; and hence by the eonsfruction of ¥, , the
resulting value is in V, . Otherwise ¢; is in Class IT.

Proor oF SUrFICIENCY. We now prove that the procedure is sufficient,
that is if conditions 1, 2, and 3 are met, S and T" are computationally equivalent.
To do this, we must show that if the conditions are me¢, the computations of S
and T are both finite or both infinite and that they are equal.

1. There is no infinite input sequence for which the compuled outpul sequence
of S 15 finite and that of T infintte or vice versa.

For suppose there were an input sequence v such that after { inpuis the
complete finite computed output sequence of S had been produced and ST
wasg in state g. . Clearly g, is terminal for S. Suppose the value of the joint
computed output is v. Then » € V,, for by Theorem 4 the computed output
sequence at g, can have no values other than those of V. unless the state
sequence has included a Class II state. But all Class 11 states are infinite for
both S and T and therefore cannot be connected to the state ¢, which is a
terminal state of S.

Now since the computed output sequence of 7T is infinite for the input se-
quence v, after some number & of inputs its length will exceed its length after
¢ inputs by 2(N 4 1). Thus, after & inputs, ST will be in some state g, with
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a value (A, o) where ¢ is of length >& - 1. But all values in V, are of
length N + 1, so that ¢ € V, and thus a Class II state must have occurred
in the state sequence. But this is impossible since all Class 1I states are in-
finite for hoth S and T.

2. If for some infinite tnpul sequence the compuied oulpul sequences are both
Jindte, they are equal.

For after the computed ouiput sequences are complete ST is always in
some state g, which iz terminal for both S and T'. Thus, no Class II state was
included in the state sequence, and hence, by Theorem 4, the value of the
joint computed cutput must be in V., . Bui by Condition 2, V, containg only
(A, ). 8o the joint computed output iz (o, ).

3. If for some infintle tnpul sequence the computed oulpul sequences are
both tnfinite, they are equal.

If the state sequence for some input sequence contains any Class IT states,
a first Class IT state g, is reached by a sub-sequence v, , with a value v € V', .
Then by Condition 3 it has been determined that for any infinite input se-
quence beginning with v,y the computed output sequences are the same.

If, on the other hand, the state sequence contains only Class I states, the
computed output sequences are again equal. For if not equal, a value » =
(o1, o2) where neither o, nol oy is null would oceur. But by Condition 1, this
# is not in any V, and by Theorem 4 no new values are ever introduced by a
sequence of Class I states only. Q.E.D.
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