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Abstract. The "computed output sequence" of a finite automaton is defined as the se- 
quence which results from the output sequence when all occurrences of a special output 
symbol X are deleted. A "computation pair" consists of an input sequence and the resultant 
computed output sequence, and the "computation" of  a n  automaton is the set of all its 
computation pairs. The class of infinite computations is broader than the class of behaviors 
of finite automata. Burks has therefore raised the question of the existence of a decision 
procedure to determine if two automata have the same computation. In this paper, such a 
decision procedure is given. 

I. Introduction 

We consider a finite determinis t ic  synchronous  a u t o m a t o n  S wi th  n s ta tes  
q0, q l ,  q2, • • • , qn-1, m inpu t  symbols  s l ,  s~, • • • ,sm, and  p -]- i o u t p u t  symbols  
a l ,  a2, - . .  , % ,  X.  For  each of the n X m sta te  and  i n p u t  pairs  (q~, st) there 
is a un ique  state  and  o u t p u t  pair  (q3, a) where a is e i ther  a~, a~, • • • , a~ or the  
special symbol  X,  such tha t ,  if S is in s ta te  q~ an d  receives i n p u t  s t ,  i t  will en te r  
s tate  q~ and  o u t p u t  the symbol  a. We write these " t r ans i t i ons"  of S as 

(q~, st) ~ (q~, c~). (1) 

By  the o u t p u t  sequence of S for a given i n p u t  sequence we m e a n  the  sequence 
of o u t p u t  symbols  produced inc luding  X.  B y  the  computed output sequence of S 
we mean  the sequence of o u t p u t  symbols  af ter  all occurrences of the special 
symbol  X have been deleted. 

I I .  The Decision Problem 

PROBLEM 1. Can  we decide whether  or no t  two a u t o m a t a  S and  T have the  
same computed  o u t p u t  sequence for every infinite i npu t  sequence, i.e. are compu-  
t a t iona l ly  equiva len t?  2 

SOLUTION. We answer this  ques t ion by  provid ing  an  effective procedure 
which determines  whether  or no t  two a u t o m a t a  are computa t iona l ly  equiva len t .  
I n  the course of the procedure we make  use of the t rans i t ions  (1) ,  i.e. we assume 

* Received November, 1961 
t The author wishes to thank A W Burks and R. F. Shackford for reading the manu- 

sempt and offering many constructive suggestions. 
1 This problem came to the author's attention through a paper by A. W. Burks [1]. 
2 The decision problem for all input sequences reduces to the problem of aUfinite input 

sequences. This in turn reduces to the problem of deciding whether two automata are 
behaviorally equivalent This problem has previously been solved. See Burks and Wang 
[2], Friedman [4], Moore [5] 
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tha t  the internal structure and behavior of the automaton or an equivalent 
automaton are known. However, it is possible to show that  we could likewise 
proceed by  behavioral tests only, provided tha t  an upper bound on the number 
of (behaviorally) distinguishable states is known. For we could then observe the 
behavior of the automaton through a multiple experiment of finite length and 
then write the transitions for an equivalent automaton (Moore [5]). 

I I I .  Definitions--Computed Output Sequences 

Before presenting the decision procedure we require definitions for computed 
output  sequences, for states of an automaton and also some lemmas on sequences 
and on the behavior of a finite automaton. 

Length of a Computed Output Sequence. By the length L of a computed output  
sequence we mean the number of occurrences of the output  symbols a l ,  
a2, • • • , a~. We note tha t  for an input sequence of length T the correspond- 
ing computed output  sequence will be of length L ~ T. 

Equality of Computed Output Sequences. If  two computed output  sequences 
are equal they must be both finite or both infinite. Two finite computed 
output  sequences are equal if and only if they are of the same length L, 
and for every k =< L, the kth symbol of one is identical with the kth symbol 
of the other. Two infinite computed output  sequences are equal if and only 
if for every k the kth symbol of one is identical with the kth symbol of the 
other. 

Computational Equivalence. Two automata  S and T are computationally 
equivalent (S  ~ T) if and only if for every infinite input sequence the 
computed output  sequence of S is equal to the computed output  sequence 
of T. 

IV. Definitwns for States 

Connected States. State q, is connected to q~ iff there exists an input sequence 
of length >__ 1 such that  if the automaton is in state q~ and is supplied with 

it will then be in state q: .  We say that  q~ is connected to q~ by the input 
sequence 7. 

Terminal State. A state q~ is terminal iff, starting with the automaton in state 
q~, there exists at least one infinite input sequence ~ such that  there is no 
further computed output.  

Finite State. A state q~ is finite iff it is terminal or is connected to some terminal 
state qj .  I t  follows from this definition that  for any finite state q, there 
exists at least one infinite input sequence such tha t  the corresponding 
computed output  sequence is of finite length. 

Infinite State. A state q~ is infinite if it is not  finite, tha t  is if the automaton 
is in state q~, then for every infinite input sequence the computed output  
sequence is infinite. 

Initial State. The state q0 is assumed to be the initial state of the automaton.  
Tha t  is if there have been no inputs, the automaton is in state q0 • 
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Admissible State. A state q, is admissible iff either q, is qo or qo is connected to 
q,.  Otherwise q~ is inadmissible. 

V. Sequences 

We shall have occasion to refer to sequences of input or output  symbols. A 
few definitions and a lemma will be needed. 

Nul l  Sequence. The null sequence will be denoted by A .  
Concatenation of Sequences. If  ~1 is any finite sequence, and ~2 is any sequence, 

we write ~ = ala2 to mean the sequence which consists of the sequence 
a~ followed by the sequence ~2. 

Ultimately Periodic Sequence. A sequence is ultimately periodic iff it is infinite 
and of the form ~1~202a2 . . .  where ~ and as are finite and ~2 is not null. 
We write this sequence ale2 • The period of ~ = a~2 is the length of as. 

Reduced Form of an Ultimately Periodic Sequence. An ultimately periodic 
sequence a = ~ 2  is in reduced form if ~1 = bib2 . . .  bk and 

as = bk+lb~+2 " "  b, ,  

where (1) bk ~ b, and (2) a2 is a minimum period, i.e. ~2 is not asz3 - . .  as 
where as is shorter than ~2. 

LEMMA 1. A n  ultimately periodic sequence has a unique reduced form. 
PROOF. Any ultimately periodic sequence can be put in reduced form. For 

suppose ~ = ¢~s where as is a repetition of some sequence as. Then put  ~ = 
alas • This can be repeated until the minimum period is obtained. I f  then 

= b i b s . . ,  b~-lbkbk+l . . .  b~-lbr 

where b~ = b, ,  we can reduce to 

¢ = bib2 " '"  bk-lbkbk+l " '"  b~-l. 

This absorption process can be repeated until we have either 

a = a 4 ~ 5  o r  a = # 6 ,  

where no further absorption is possible. 

If  any state bkbk+~ . . .  b~_~ is a repetition of a sequence bk . . .  b~, then at the 
previous stage bk+l . . -  b~ was a repetition of bk+~ . . .  b~b~. Thus, once a mini- 
mum period is obtained, the absorption process cannot affect the length of the 
period. 

I t  is clear from the construction that  the reduced form is unique. 

VI. Lemmas  Concerning Behavior 

Lemmas 2, 3, and 4 are concerned primarily with behavior rather than compu- 
tation. I t  is therefore likely that  they have previously appeared in the Iiterature 
in either this or similar form. See Burks and Wang [2], Burks and Wright [3], 
and Moore [5]. 
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LEMMA. 2. I f  q~ is connected to qj , then q, is connected to q~ by an input  sequence 

of length ~ n, where n is the number of states. 
PROOF. We show tha t  if q~ is connected to q~ by  an input sequence ~1, of 

length L~ > n, it is also connected by  ,~: of length L: < L1. I t  then will follow 
tha t  it must  be connected by  an input sequence ~ of length L ~ n. 

Consider the sequence of states corresponding to the input sequence ~'1 • This 
sequence begins with q~, ends with q~ and is of length L~ ~ 1. Since L1 "-t- 1 > n 
and there are only n states, some state qk must  occur more than  once, say as 
the hth and (h ~ 1)-th state (1 > 0), in the state sequence. Let  ~--  71~'2y3 where 
• y~ is of length h -- 1, 72 of length l, and ~3 of length L~ -- (1 + h -- 1). Then 
t he inpu t  sequence ~ l ~  of length L2 = h -  1 + Li -- (l ~ h -  1) = L1 -- l < L1 
connects q~ to q~ Q.E.D. 

I.~EMMA 3. Terminal  states can be identified. 
PROOF. Let the au tomaton  be in state q j ,  and consider all input  sequences 

of length n and the corresponding state sequences (length n -{-- 1) and computed  
output  sequences (length ~ n ) .  Then state q~ is terminal  if and only if a t  least 
one of the computed output  sequences is null. 

For  suppose the input sequence ~ of length n produces a null computed output  
sequence. Then since there are only n states, and the state sequence is of length 
n ~ 1, some state q~ must  occur more than  once, say as the kth and (/c "-b/)- th 
state (1 ~ 0) in the state sequence. Write the input sequence ~ as ~1'2~'3 where 
~1 is of length (]~ -- 1), ~2 is of length l, and ~3 is of length (n --  (k -- 1) -- l). 
Then the infinite (ul t imately periodic) input  sequence 1/J~2 will produce a null 
computed output  sequence. 

The converse holds immediately,  since any  infinite input  sequence mus t  begin 
with one of the finite subsequences considered above. 

LEMMA 4. Fini te  states can be identified. ~ 
PROOF. Consider all input sequences of length n and the corresponding state 

sequences beginning with state q~. Then q~ is finite iff a terminal s tate q, occurs 
in at  least one of the state sequences. For  by  lemma 2, q~ is connected to q~ iff it 
is connected by  an input sequence of length ~ n. 

VII .  Computations of  Fini te  Automata  

THEOREM 1. Given an automaton S and an ul t imately periodic sequence ~ = 

~ff1~2 of output symbols al , a2, • • • , ap , there exists a procedure for  deciding whether 
a is computed for  all infinite input  sequences, i f  S starts in  a given state qJo • 

PROOF 4. By Lemma 4, we can determine if s tate q:0 is finite. I f  so, then a is 
not produced for all infinite input  sequences. 

Burks  and  Wright  [3] give an a lgor i thm for deciding whether  the  computa t ion  of a 
fixed a u t o m a t o n  is finite, infinite or mixed. 

4 This  proof of Theorem 1 is based on a suggest ion by  A. W. Burks  The  proof may  be 
visual ized by  drawing the  s t a t e  d iagram and  represent ing  the  t rans i t ions  A by solid l ines 
and  those of B by do t ted  lines 
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Assume then tha t  state q~0 is infinite. Let  the set of transitions from states  
admissible with respect to q30 of S be divided into two subsets A and B such 
tha t  all transitions of A produce outputs  a l ,  a2, • • • , av and those of B produce 
only X. We now construct f rom S an au tomaton  S '  which is computat ionally 
equivalent to S and which has only transitions which produce a~, a2, • • • , a~.  

Let  the admissible states of S be ql,  q2, • • • , q~-~ • Start ing with q = q~, if 
there are in B one or more transitions to state q, (q~ --~ q, X ) ,  and there are 
transitions in A from q, (q --~ qk, a) ,  then form and add to A all the transitions 
(q~ --~ qk, a) .  I f  there are also in B transitions from q, (q --~ ql,  X ) ,  add the  
transitions (q~ --~ qz, X)  to B. (This cannot be (q~ -~  q~, X ) ,  else ql is inad- 
missible or qJ0 is finite.) Then delete from B the transitions to q. The resulting 
transitions of A and B describe an au tomaton  which is computat ionally equiva- 
lent to S. Continue for q2, • • • , q~-~ • Once the transitions in B to a state q have 
been deleted, no further transitions to q are ever introduced into B. Hence, 
when all q~ have been considered, B is empty  and the resulting transitions in A 
describe a computat ionally equivalent finite au tomaton  S' ,  which has an output  
a l ,  a2, • • • , or a~ at  every transition. From finite au tomata  theory it is known 
tha t  any periodic solution must  have a period and phase of total  length no more 
than  the number  of states of the automaton.  Consequently one can decide not 
only whether the given periodic sequence ~ is produced by  all input  sequences 
to S' ,  but  also whether there is any  ul t imately periodic sequence produced by  
all input sequences. Q.E.D. 

VI I I .  Joint Automaton S T  

Let  S and T be au tomata  with n8 and nt states respectively and having in 
common m input symbols and p ~ 1 output  symbols a l ,  a2, . . .  , a~ and X.  
Form the combined au tomaton  S T  whose N = n8 X nt states q~ are pairs of 
states (q s, q t) of S and T and whose output  is an ordered pair (a~, as).  The  
initial state q0 of S T  is (q08, qot). The transitions of S T  are obtained from those 
of S and T as follows: I f  (q~8 , s,) --~ (q~, , al) is a transition of S and (q~, , s~) --~ 
(q~,, as) is a transition of T then (q~, st) --~ (q : ,  ( a l ,  a2)) is a transition of 
ST,  where q~ = (q~,, q~L) andq~ = (q~,,q~t) .  

The computed output  of S T  is an ordered pair of sequences a, and at of the 
symbols a l ,  a2, - - .  , av .  We write this ((r8, at).  

Value of the Computed Output of ST.  Let the computed output  (~8, at) be 
expressed as ( az i ,  ~ ) ,  where the leading symbol (if any) of a~ differs from the 
leading symbol (if any) of a2. Then the value v of the joint computat ion is 
(o"i, ~2). We may,  of course, have v = ( A ,  A ) .  

THEOREM 2. I f  there is some finite input sequence ~ to S T  for which the value of 
the computed output is (~1, ~2) where neither ~1 nor ~2 is null, then S and T are 
not equivalent. 

PROOF. I f  the value of the computed output  is (~1, ~ )  then the computed 
output  itself is ( ~ ,  ~o2) where ~ is a string of finite length L ~ 0. Then the 
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computed output  sequences of S and T for y differ in the ( L +  1)- th place and 
are thus not equal. 

THEOREM 3. If the initial state qo is connected to any state q~ -- (qj', q~*) by 
several different input sequences for which the corresponding computed output pairs 
have two or more distinct values, then from these values we can determine either 
(1) that S ~ T or (2) that S ~ T only i f  S starting at stale q3 ~ computes an ulti- 
mately periodic sequence a~ and T similarly computes (r,, where a~ and at can be 
determined from the values. 

PROOF. 
1. I f  any  of the values are ( a l ,  as) where al ~ A and a2 ~ A ,  then S --- T 

by the previous theorem. 
2. Consider any  two values. They  must  then  be either ( A ,  A)  and (a, A)  

or ( a l ,  A )  and (as ,  A )  or ( a j ,  A )  and ( A ,  a2) or cases symmetr ic  to these 
in S and T. We take each pair in turn. 

(a) The values a t  q3 are ( A ,  A )  and (~, A ) ,  corresponding to y~ and 
y~ respectively, (or ~ A ) .  Then by  construction there exist output  strings 
aj and ¢2 such tha t  the computed outputs  for .~ and y2 are respectively (a~, a~) 
and (a~a, a2). Let  ~ be any  infinite input string. Then "fly produces a computa-  
tion (aja~, alat) and "r2y produces (a2aa,, ¢2at). Then a necessary condition 
for equivalence of S and T is tha t  alcr~ = a~a~, hence as = a~, and ~2o'a~ = 
asa, ,  hence ~ra, = ~r,. But  this will be satisfied iff ~, = ~r~ = ~. 

(b) Similarly for ( a l ,  A )  and (as ,  A )  w e h a v e t h a t  for a l l input  sequences 
start ing a t  state q~ the sequences ~, and a, must  be produced where: 

a lO ' s  ~ at~ 

a2ffs ~ O ' t .  

I f  a~ and as are of the same length, S and T are not equivalent since as must  
begin both with al and with a~. Let  al be longer than  a2. Then we must  
have ¢1 = asa3 for some finite non-null ~ .  Bu t  this gives 

which gives 

(e) 

~ 2 a 3 a s  -~ a t  

a2ffs = a t  

a2~3a~ = a2a~, so tha t  

at = asa~, so tha t  

Similarly ((rl, A )  and ( A ,  as) gives 

GGIa8 ~ aS 

0"8 : a 2 a t  

o r  
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so that  

O's ~ 6r2(Tl 

O't ~ f f lO '2 .  

Thus, from any two of the values it can be determined that  for all infinite 
input sequences starting at qj the joint computed output  of the form (a1~3, a2~4) 
must be produced (or else S ~i T) .  

3. Suppose now there are more than two values, tha t  is, there is a finite input 
sequence ~ connecting q0 to q~, such that  the value of the corresponding joint 
camputed output  is (as,  a6). 

Then a necessary and sufficient condition that  no infinite input sequence 
beginning with ~, will produce unequal computations for S and T is tha t  

0"50"1~ 3 ~ ff6(T2ff4. 

This is clearly decidable by putt ing both sides into the reduced form for 
ultimately periodic sequences. Q.E.D. 

IX. Deczsion Procedure 

In the decision procedure we construct for each state qk of S T  a set Vk of 
values and give three conditions which the sets Vk must satisfy. Each of these 
conditions is shown to be necessary. Finally, it will be proved tha t  the conditions 
are sufficient: if each of the sets Vk meets all three conditions, then S and T 
are computationally equivalent. 

Construction of the Sets V~. We construct for each (admissible) state qk of 
S T  a set of values Vk such that  if v E Vk then there exists a finite input sequence 

such that  if S T  starts in the initial state q0 and ~ is input, the resulting state 
is qk and the value of the computed output  sequence is v. 

Let  v0 ° = ( A ,  A ) .  For each admissible state qk of ST, k > O, let v~ ° be the 
value of a joint computed output  obtained by some input sequence ~k, for which 
the corresponding state sequence starting at  initial state q0 ends in q~. By  Lemma 
2 we can select some v3 ° = (a l ,  a2) where both al and a2 are of length -<N, 
where N is the number of states of ST. 

Form the sets Vk as follows: 
(1) For  a l lk ,  v2 C Vk. 
(2) If  [(q~, st) -~ (qk, ( a l ,  a2))] is a transition of ST, and v: ° = (/~1,/~2), 

then the value of (/~c~1 ,/~a2) is in V~ . 
Then it is clear tha t  if (a l ,  ~2) E Vk the value (~1, a2) occurs at  q~ for either 

the input sequence 'yk of step (1) or 7~s~ for some j and r. 
Likewise, it follows from the construction that  if (~x, ~2) E V~ then ~1 and 

~2 are each of length =<N -t- 1, because v~ ° is of length at most N 

Necessary Conditions. Having constructed the sets Vk, we can now state 
three conditions for S --- T. These conditions will be given and each one proved 
to be necessary. I t  will then be shown that  together they are sufficient. Tha t  is, 
S --= T iff conditions 1, 2, and 3 are satisfied. 
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CONDITION 1. If  for any k, V~ contains a value (~1, ~2) in which neither 
~rl nor as is null, S is not equivalent to T ( S  ~ T) .  The necessity of this condition 
follows from Theorem 2. 

CONDITION 2. I f  for any terminal state q (which can be identified by Lemma 
3), Vk contains a value (~, A)  or ( A ,  a) where ~ # /k, then S ~ T. For  there 
exists an infinite input sequence with no further computed output  so that  the 
computed output  sequences of S and T are of unequal length and hence unequal. 

Definition. Using the sets Vk, we distinguish two classes of states of ST:  
Class I states qk for which V~ has only one distinct value and Class I I  states for 
which Vk has two or more distinct values. (The only states of S T  not in either 
of these classes are inadmissible states, which can never be reached.) 

CONDITION 3. If  Vk is a class I I  state, then by Theorem 3 it is a necessary 
condition for S ~ T that  certain specified ult imately periodic sequences ~ = 
~1~2 and at = z3a4 be produced by every infinite input sequence from state qk = 
(qk ~, qkt). Theorem 1 provides a method for determining if this condition is met. 
Since ultimately periodic sequences are by  definition infinite, it follows tha t  if 
Condition 3 is met, then all Class I I  states are infinite for both S and T. 

One further theorem is needed before the sufficiency of these conditions can 
be proved. 

THEOREM 4. Consider an arbitrary finite input sequence .y and suppose that 
having started initially in state qo, state q~ has been reached through the stale se- 
quence qo " "  q,qj and that the value of the computed output sequence is v. Then 
either v E V: or the state sequence qo • • • q, has included at least one Class I I  state. 

PROOF BY INDUCTION. Either  q0 is of Class I I  or it has only one value v0. 
Suppose that  after a finite number t of inputs S T  is in q, with a value v C V, .  
Let  the (t --~ 1)-th input be s, so that  the transition is (q , ,  s,) ~ (q , ,  a) for 
some ~. If  qz is in Class I, then v = vz and hence by the construction of V , ,  the 
resulting value is in V , .  Otherwise qz is in Class II .  

PROOF OF SUFFICIENCY. We now prove tha t  the procedure is sufficient, 
tha t  is if conditions 1, 2, and 3 are met,  S and T are computationally equivalent. 
To do this, we must show that  if the conditions are met, the computations of S 
and T are both  finite or both  infinite and that  they are equal. 

1. There is no infinite input sequence for which the computed output sequence 
of S ~s finite and that of T infinite or vice versa. 

For  suppose there were an input sequence ~ such tha t  after t inputs the 
complete finite computed output  sequence of S had been produced and S T  
was in state q, .  Clearly q~ is terminal for S. Suppose the value of the joint 
computed output  is v. Then  v C V~, for by Theorem 4 the computed output  
sequence at  q~ can have no values other than those of V~ unless the state 
sequence has included a Class I I  state. But  all Class I I  states are infinite for 
both S and T and therefore cannot be connected to the state q~ which is a 
terminal state of S. 

Now since the computed output  sequence of T is infinite for the input se- 
quence ~, after some number t2 of inputs its length will exceed its length after 
t inputs by 2 ( N  W 1). Thus, after t~ inputs, S T  will be in some state qj with 
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a value ( A ,  ~) where ~ is of length > N  "4- 1. But  all values in V~ are of 
length =<N "4- 1, so tha t  v $ V~ and thus a Class I I  s tate must  have occurred 
in the state sequence. But  this is impossible since all Class I I  states are in- 
finite for both  S and T. 

2. I f  for some infinite input sequence the computed output sequences are both 
finite, they are equal. 

For  after the computed output  sequences are complete S T  is always in 
some state q~ which is terminal for both  S and T. Thus,  no Class I I  s tate was 
included in the state sequence, and hence, by Theorem 4, the value of the 
joint computed output  must  be in V~. But  by  Condition 2, V~ contains only 
( A ,  A ) .  So the joint computed output  is (a, a) .  

3. I f  for some infinite input sequence the computed output sequences are 
both infinite, they are equal. 

I f  the state sequence for some input sequence contains any  Class I I  states, 
a first Class I I  state q, is reached by a sub-sequence ~ ,  with a value v C V, .  
Then by  Condition 3 it has been determined tha t  for any  infinite input  se- 
quence beginning with .y~ the computed output  sequences are the same. 

If, on the other hand, the state sequence contains only Class I states, the 
computed output  sequences are again equal. For if not equal, a value v = 
(z~, ~2) where neither al nol ~2 is null would occur. But  by  Condition 1, this 
v is not in any V~ and by  Theorem 4 no new values are ever introduced by a 
sequence of Class I states only. Q.E.D.  
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