
Relay: A New IR for Machine Learning Frameworks

Jared Roesch Steven Lyubomirsky Logan Weber Josh Pollock

jroesch@cs.uw.edu sslyu@cs.uw.edu weberlo@cs.uw.edu joshpoll@cs.uw.edu

Marisa Kirisame Tianqi Chen Zachary Tatlock

jerry96@cs.uw.edu tqchen@cs.uw.edu ztatlock@cs.uw.edu

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle, WA, USA

Abstract
Machine learning powers diverse services in industry in-

cluding search, translation, recommendation systems, and

security. The scale and importance of these models require

that they be efficient, expressive, and portable across an ar-

ray of heterogeneous hardware devices. These constraints

are often at odds; in order to better accommodate them we

propose a new high-level intermediate representation (IR)

called Relay. Relay is being designed as a purely-functional,

statically-typed language with the goal of balancing efficient

compilation, expressiveness, and portability. We discuss the

goals of Relay and highlight its important design constraints.

Our prototype is part of the open source NNVM compiler

framework, which powers Amazon’s deep learning frame-

work MxNet.

CCS Concepts • Computer systems organization →

Architectures; Neural networks; Heterogeneous (hybrid) sys-
tems; • Software and its engineering→ Compilers; Do-
main specific languages; • Computing methodologies
→ Machine learning;

Keywords intermediate representation, machine learning,

compilers, differentiable programming

ACM Reference Format:
Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock,

Marisa Kirisame, Tianqi Chen, and Zachary Tatlock. 2018. Relay: A

New IR for Machine Learning Frameworks. In Proceedings of 2nd
ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages (MAPL’18). ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3211346.3211348

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

MAPL’18, June 18, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5834-7/18/06. . . $15.00

https://doi.org/10.1145/3211346.3211348

1 Introduction
Machine learning (ML) has dramatically reshaped computer

vision [17, 21], natural language processing, robotics [14],

and computational biology and is continuing to gain trac-

tion in new areas, including program synthesis [6]. Deep

learning (DL) in particular has driven progress in these areas

and is now powering diverse services in industry, including

search, translation, recommendation systems, and security.

Hardware diversity is growing almost as quickly. DL models

are deployed not only in the cloud, but also on a myriad of

devices, from off-the-shelf CPUs and GPUs to specialized

smartphone chips and IOT edge devices.

The rise of GPUs for DL compute has made deep learn-

ing both possible and scalable for many tasks, but a new

generation of applications with greater compute demands

is already upon us. In an attempt to keep up with the ML

community’s insatiable desire for fast and efficient computa-

tion, researchers and industry professionals have introduced

a new generation of diverse hardware accelerators and spe-

cialized architectures such as FPGAs and Google’s TPU [19].

In order to properly schedule, train, and deploy models

in a massively distributed, parallel, and heterogeneous com-

puting environment, scalable systems must be built on top

of specialized hardware to address the challenges of ever-

growing available datasets. Yet even with today’s tools, mod-

ern systems struggle to satisfy machine learning’s increasing

computational demands. Users must balance interdependent

trade-offs at all levels of the DL hardware/software stack.

New hardware might mean dramatically redesigning model

architectures, tweaking precision, tuning hyperparameters,

rewriting kernels, and FPGA or ASIC designs [9]. Adapt-

ing applications and systems to early accelerators demands

substantial rethinking, redesign, and re-implementation to

achieve the best performance. Indeed, multiple projects have

already been undertaken to address this problem, such as

Nvidia’s Axon, Tensor Comprehensions [35], and Halide [30].

As the tools for building state-of-the-art ML systems grow

more complex and varied, it is imperative that models, hard-

ware, and systems be co-designed and tuned by applying

ideas from synthesis and learning.

ar
X

iv
:1

81
0.

00
95

2v
1

 [
cs

.P
L

]
 2

6
Se

p
20

18

https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1145/3211346.3211348

MAPL’18, June 18, 2018, Philadelphia, PA, USA Roesch, et al.

 Frameworks

Computational Graph

High level Data-flow Rewriting

Tensor Operator Description

Schedule

LLVMAccelerators CUDA/Metal/OpenCL

CNTK

CoreML

Figure 1. The present TVM stack, as presented in [9].

1.1 Existing High-Level Representations
An end-to-end stack and programming model for heteroge-

neous hardware would help satisfy the increasing demands

for compute resources and enable machine learning with

specialized accelerators. Research on the lower levels of such

a stack has been realized in the form of the Tensor Virtual

Machine (TVM), a hierarchical multi-tier compiler stack and

runtime system for deep learning, depicted in Figure 1.

This work is focused on redesigning the top level of the

TVM stack, as depicted in Figure 2. This level, known as

NNVM, is based on computation graphs, the most popular

representation of differentiable computation.

Machine learning often relies on computations that are dif-

ferentiable, i.e., computations where it is possible to compute

a mathematical derivative. In order to guarantee this prop-

erty for users’ programs, existing frameworks have limited

programs’ computational expressivity. Frameworks like Ten-

sorFlow represent differentiable computation using static

graphs, which are dataflow graphs with a fixed topology.

Relay

Fusion, Layout Change, Partial Eval,
Traditional Optimizations

Tensor Operator Description

Schedule

Hardware Implementation

 Frameworks
CNTK

CoreML
Relay Python Decorator

Operators

Relay runtime
system

Control

Figure 2. The new TVM stack integrated with Relay.

These graphs are easy to optimize but require users to con-

struct programs in a deeply-embedded domain-specific lan-

guage (eDSL) without high-level abstractions like functions.

A more expressive style popularized by imperative frame-

works like Chainer, PyTorch, and Gluon allows the construc-

tion of graphs with dynamic topologies that can depend on

runtime data and support differentiation of most impera-

tive computations. This expressivity is convenient for the

user but has limited the ability for existing frameworks to

optimize user-defined graphs. Moreover, PyTorch’s model

requires a Python interpreter, making deployment to new

accelerators and FPGAs extremely challenging.

In summary, static graphs are easy to optimize but lack

the expressivity found in higher-level languages; dynamic

graphs provide this missing expressivity but introduce new

compilation and execution challenges, especially on hetero-

geneous hardware and FPGAs.

1.2 Relay
This work proposes Relay, a new high-level intermediate rep-

resentation (IR) and language designed to balance efficient

compilation, expressiveness, and portability by combining

insights from the approaches of static graphs and dynamic

graphs under the aegis of a functional programming lan-

guage.

That is, we design Relay not from the perspective of a com-

putation graph but from that of a programming language for

differentiable computation. This PL perspective will allow

Relay to exploit decades of research in functional program-

ming, type systems, synthesis, rewrite systems, and classical

compiler techniques. Our intent in future work is to demon-

strate that these techniques and features will reduce the cost

of targeting new accelerators and enable more optimizations

to improve training and inference time, energy consumption,

and space utilization.

This paper presents work in progress towards:

• Relay, a new differentiable language for expressing

machine learning models.

• Higher-order automatic differentiation of Relay pro-

grams.

• A shape-dependent tensor type system for Relay.

• A baseline evaluator, and type-specialized operator

compiler built on TVM.

2 Background and Related Work
Current DL IRs, including NNVM’s current representation,

are heavily inspired by dataflow programming and related

computation graph abstractions made popular by previous

frameworks.

For example, TensorFlow [4] is an iteration on previous

work at Google, such as DistBelief [11]. These frameworks

have evolved out of dataflow programming paradigms in

which the abstractions are operators with input and output

Relay MAPL’18, June 18, 2018, Philadelphia, PA, USA

connections. The semantics provided by these languages

have been sketched in previous work [5].

TensorFlow employs a dataflow graph of primitive oper-

ators extended with restricted control edges to represent

differentiable programs. This representation is sufficient for

many state-of-the-art models and provides an implementa-

tion of reverse mode automatic differentiation [4, 7]. Tensor-

Flow can be viewed as a deeply embedded DSL (eDSL), where

the result of executing user’s Python script is a computation

graph which can then be optimized and transformed before

execution. Furthermore, because the graph only exposes

high-level nodes, it is possible for the program to be portable

to heterogeneous devices, and executing a sub-graph on a

given device requires implementation of only those operators

for the device. Unfortunately, this programming model has

limitations. Because the topology is fixed before execution,

TensorFlow does not lend itself well to certain applications.

As an example, unmodified TensorFlow does not support

building models where the shape of the computation graph

is dependent on the input. While there does exist a library

to mitigate this particular problem (see [24]), this pattern

suggests that should new dependencies become of interest in

the future, similar libraries would also have to be written to

address each one, entailing considerable engineering effort.

Dynamic frameworks such as Chainer [34], PyTorch [28],

Gluon, and TensorFlow eager-mode [33] alleviate this prob-

lem by moving from the define-then-run model to the define-

by-run model. PyTorch embeds primitives in Python that

construct dynamic dataflow graphs. Control flow is executed

in the Python interpreter and the dataflow is executed by

the framework code with is implemented as Python exten-

sion. However when using dynamic frameworks information

about control flow is lost, reducing the ability to optimize

them. Additionally, dynamic frameworks need to re-optimize

any time the graph topology changes, costing CPU cycles

and the overhead of moving data between the host and ac-

celerators. This can be solved by transforming the Python

code but is effectively the same as a static framework where

Python is the input IR.

Previous work in higher-order differentiation is relevant

and has informed the Relay design. In particular we have

drawn inspiration from various implementations of auto-

matic differentiation [1, 2, 7, 13, 20, 29, 36]. In particular we

are interested in techniques that can compute higher order

gradients of higher order programs.

Our work is part of the TVM stack [9], which is focused on

compiling efficient kernel implementations for deep learning

frameworks such as MxNet.

Recent research on the TVM stack [9] has been focused on

producing efficient operators (i.e., dense linear algebra ker-

nels), such as generalized matrix multiplication (GEMM) or

convolutions. This line of research has focused on low-level

performance, but demonstrated the need to tune the high-

level computation graph, the operators, and accelerators in

tandem to achieve the best performance. High-level transfor-

mations on the input program are especially important for

the tensorization problem. Tensorization is the analogous

process to vectorization in existing compilers, and involves

the optimizer decomposing and matching programs to the

underlying hardware tensor operations exposed. This prob-

lem is more challenging due to being multi-dimensional,

mixed size, and non-finite, unlike the analogous SIMD prim-

itives.

The TVM stack is designed to enable a series of funda-

mental optimizations:

• High-level optimizations, such as operator fusion and

layout change

• Memory reuse at the graph and operators level

• Tensorized computations

• Latency hiding (traditional hardware provides this ab-

straction, but new accelerators push this burden to the

compiler writers)

There are multiple related engineering efforts, the primary

ones being from Google and Facebook. Facebook has been

building an efficient ML stack composed of many projects in-

cluding Tensor Comprehensions [35] and Glow [31]. Tensor

Comprehensions are positioned in a similar space as TVM ,

but employs different techniques, such as using polyhedral

compilation rather than algorithmic schedules. The Glow

compiler [31] is similar to NNVM and intended to be a com-

piler for high-level computation graphs. Glow’s design is

closer to existing computation graphs, does not appear to be

a full language, and is less focused on full-stack tuning.

TensorFlow’s XLA is very similar to the complete TVM

stack and is focused on providing a lower-level intermediate

representation for TensorFlow’s computation graph. Relay

is designed to replace the user-visible graph with a higher-

level abstraction and make it possible for users to write

frameworks like TensorFlow and PyTorch in pure Python.

3 Language
Relay is a statically typed, purely functional, differentiable

IR. Relay is not a low-level IR intended for writing and op-

timizing high-performance kernels; rather, it is intended to

replace NNVM’s computation graph as the input layer of

NNVM. We allow for primitive operators implemented ei-

ther in external languages such as C or C++ or in lower-level

IRs like TVM or Tensor Comprehensions. Because Relay is

intended as the top layer of the TVM stack [9], we have tight

integration with TVM and use it to implement and optimize

kernels.

Our intent is for our new IR to serve as a convenient

means for researchers to implement new differentiable pro-

gramming languages and deep probabilistic programming

languages in the style of Edward and Pyro.

As we discussed in Section 2, most popular machine learn-

ing frameworks construct computation graphs that represent

MAPL’18, June 18, 2018, Philadelphia, PA, USA Roesch, et al.

the user’s program. Since these graphs are essentially a mod-

ified form of an abstract syntax tree (AST), we consider the

transformations and analyses that have been performed on

computation graphs as program transforms and program

analyses. While other DL frameworks also adopt this per-

spective, their graph-based approaches have made it difficult

to bring the full arsenal of traditional compiler and program-

ming languages techniques to bear.

Static typing enables direct compilation of models into em-

bedded hardware and accelerators, which has been demon-

strated in prior work done in the TVM stack [9]. Having

an IR like Relay enables the deployment of richer dynamic

models for applications such as natural language process-

ing. By taking this point of view, we can leverage decades

of programming language research to help us express and

understand these deep learning models not as a restricted

data flow language, but as a full programming language.

3.1 Grammar and Design
The grammar for the full language can be found in Figure 3.

Relay is a functional language with closures, recursion,

conditionals, operators, and tensors. Relay’s IR has two main

design contributions over computation graphs: the addition

of functions and a rich type system that can capture the

relationship of tensor operations.

In order to support higher-order (in the sense of higher-

order functions) differentiable programs, we need to be able

to support computing gradients over arbitrary functions. We

accomplish this by introducing a higher-order, higher-order

(in both senses) reverse mode operator [29]. This operator

allows us to compute nth-order derivatives of higher order

programs, opening up the ability to differentiate over arbi-

trary control structures encoded with functions.

Inspired in part by DLVM [37], a neural network DSL that

supports a CFG-style IR for deep learning programs which

introduces a type system for tensors that is based on constant

tensor shape and types, Relay supports a rich type system

that includes dependent typing for tensor shapes, thereby

allowing function type signatures to specify the relationship

between arguments (such as attributes or other tensors) and

the resulting tensor shapes.

4 System Design
NNVM currently represents DL programs as static computa-

tion graphs containing operators and input/output data flow.

The topology of this graph is fixed, allowing straightforward

compilation to TVM ’s graph runtime.

We first constructed a prototype in Python to validate

our ideas, and to experiment with transformations, such as

partial evaluation and automatic differentiation.

Relay is composed of a series of interoperating essential

modules:

• A Python frontend, which translates Python code into

Relay’s C++ data structures.

• A module for automatic differentiation of Relay pro-

grams.

• A shape-dependent tensor type system.

• A simple evaluator for prototyping and debugging.

• A type-specialized operator compiler built on TVM.

• An efficient runtime system, which is still in progress.

Below, we describe the design and implementation of

the modules that have been prototyped and discuss the in-

progress and yet-to-be-implemented components in 5.

4.1 Frontend
Relay currently has two interfaces: a textual AST that can

be written in Python or C++ and a Python frontend. We

intend to add a JSON serialization interface to allow for easy

integration with other compilers.

The Python frontend is the intended user-facing interac-

tion mode for Relay while the other interfaces allow pro-

grammatic use of Relay’s AST.

The Python interface comprises two pieces: a library and

a pair of decorators. The library contains standard DL op-

erators and some Relay-specific functions. The pair of dec-

orators transforms a subset of vanilla Python code into the

Relay textual AST representation and generates a wrapper

function which will execute that code using one of Relay’s

evaluation mechanisms.

Although the core of Relay is written in C++, we are able

to expose the internals of the system to Python by reusing

TVM ’s node system, which allows low-effort interoperability

between the two languages. We can expose C++ classes in

Python simply by inheriting from a special class and writing

a class stub in Python.

The Python frontend is inspired by many other projects,

which use similar mechanisms to rewrite Python ASTs, such

as Tangent [38] [8].

Targeting Python has significant advantages since it has

become the lingua franca of the DL community, which is

accustomed to Python libraries such as TensorFlow, PyTorch,

and Keras. Using Python as a source language also allows

users to write and extend Relay in the same language they

use to do data processing and deployment.

Figure 4 demonstrates how to use the decorators, and we

will briefly outline their semantics below.

Let us preface our description of the decorators by noting

that not all of the functionality in this example is currently

implemented and this example instead represents the design

and ideal syntax for our frontend.

To illustrate the decorators, we briefly trace how the fron-

tend transforms the program in 4 into Relay. In this program,

three Python functions have been decorated:

• lenet: The declaration of the LeNet model [23].

• loss: The loss function of the model.

Relay MAPL’18, June 18, 2018, Philadelphia, PA, USA

⟨Item⟩ ::= ⟨Operator⟩
| ⟨Definition⟩

⟨Operator⟩ ::= operator ⟨GlobalId⟩ : ⟨Type⟩

⟨Definition⟩ ::= def ⟨GlobalId⟩ ((⟨LocalId⟩ : ⟨Type⟩))* ->

⟨Type⟩ { ⟨Expr⟩ }

⟨Expr⟩ ::= ⟨LocalId⟩
| ⟨GlobalId⟩
| R

| True

| False

| ⟨Expr⟩ ((⟨Expr⟩ (, ⟨Expr⟩)*)?)

| let ⟨LocalId⟩ : ⟨Type⟩ = ⟨Expr⟩ in ⟨Expr⟩
| (⟨Type⟩) ⟨Expr⟩
| ⟨Expr⟩ ⟨BinOp⟩ ⟨Expr⟩
| ⟨UnaryOp⟩ ⟨Expr⟩
| ((⟨Expr⟩ (, ⟨Expr⟩)*)?)

| ⟨Expr⟩ [N]

| [⟨Expr⟩ (, ⟨Expr⟩)*]

| if ⟨Expr⟩ then ⟨Expr⟩ else ⟨Expr⟩
| Zero ⟨Type⟩
| Grad ⟨Expr⟩
| Ref ⟨Expr⟩
| ! ⟨Expr⟩
| ⟨Expr⟩ := ⟨Expr⟩

⟨BinOp⟩ ::= +

| -

| *

| /

| !=

| =

| <

| <=

| >

| >=

⟨UnaryOp⟩ ::= -

| sq

⟨Type⟩ ::= ⟨BaseType⟩
| ⟨Shape⟩
| Tensor (⟨Type⟩ , ⟨Type⟩)

| ⟨Type⟩ -> ⟨Type⟩
| ⟨TypeId⟩
| forall (⟨TypeId⟩ : ⟨Kind⟩) , ⟨Type⟩
| RefType (⟨Type⟩)

| ((⟨Type⟩ (, ⟨Type⟩)*)?)

⟨BaseType⟩ ::= IntType (N)

| UIntType (N)

| FloatType (N)

| BoolType

⟨Shape⟩ ::= Shape ((N (, N)*)?)

⟨Kind⟩ ::= BaseType

| Shape

| Type

Figure 3. The BNF Grammar for the Relay langauge. Each case matches a node in our abstract syntax tree. References

and related operations cannot be included in frontend user code and are only generated by the reverse-mode automatic

differentiation.

• train_lenet: The training loop.

Then we have raw Python code at the bottom for facilitating

training and inference.

Each parameter of the function requires an explicit type

annotation, but the type of local variable assignments can

be left out and later be inferred by the back-end.

Any function call in the relay namespace is converted to

an intrinsic identifier, which must be implemented outside of

Relay and registered with the runtime. TVM is the preferred

mechanism for implementing them.

In order to prevent the passing of model parameters to

every function that needs them, we have two separate decora-

tors: relay and relay_model. The relay decorator declares
a function that can be run without any hidden state (and

thus, no functions that do require hidden state can be called).

The relay_model decorator declares a function that cannot

be run by default and instead must first be instantiated by a

call to relay.create_model. When a model is created for

a relay_model-decorated function, the function’s body is

searched for any calls that require hidden parameters; any

MAPL’18, June 18, 2018, Philadelphia, PA, USA Roesch, et al.

@relay_model
def lenet(x: Tensor[Float, (1, 28, 28)]) -> Tensor[Float, 10]:

conv1 = relay.conv2d(x, num_filter=20, ksize=[1, 5, 5, 1], no_bias=False)
tanh1 = relay.tanh(conv1)
pool1 = relay.max_pool(tanh1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1])
conv2 = relay.conv2d(pool1, num_filter=50, ksize=[1, 5, 5, 1], no_bias=False)
tanh2 = relay.tanh(conv2)
pool2 = relay.max_pool(tanh2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1])
flatten = relay.flatten_layer(pool2)
fc1 = relay.linear(flatten, num_hidden=500)
tanh3 = relay.tanh(fc1)
return relay.linear(tanh3, num_hidden=10)

@relay
def loss(x: Tensor[Float, (1, 28, 28)], y: Tensor[Float, 10]) -> Float:

return relay.softmax_cross_entropy(lenet(x), y)

@relay
def train_lenet(training_data: Tensor[Float, (60000, 1, 28, 28)]) -> Model:

model = relay.create_model(lenet)
for x, y in data:

model_grad = relay.grad(model, loss, (x, y))
relay.update_model_params(model, model_grad)

return relay.export_model(model)

training_data, test_data = relay.datasets.mnist()
model = train_lenet(training_data)
print(relay.argmax(model(test_data[0])))

Figure 4. An example of the Relay Python decorator, which transforms a decorated function into an analogous one in Relay.

The defined model is based on LeNet [23] and is trained and tested on the MNIST dataset.

parameters for these calls are then initialized. Note that mul-

tiple calls to the same functionwill still generatemultiple sets

of hidden parameters. For example, in the lenet function,

conv1 and conv2 both have their own hidden parameters.

Initialization for all model parameters is currently assumed

to be Gaussian with µ = 0 and some small σ .
To train the model, we define the loss function in terms

of our model (i.e., lenet), and in our training loop, we use

relay.grad to calculate the gradients of the parameters with

respect to the output. Then we pipe the resulting gradients

into relay.update_model_params to update our parame-

ters (this example uses vanilla stochastic gradient descent).

While the Relay IR in general is functional, for convenience,

we expose relay.update_model_params as a limited form

of mutation.

When training is finished, relay.export_model returns

a callable version of the trained model that can then be used

in raw Python.

4.2 Automatic Differentiation
In [29], the authors demonstrate that reverse-mode auto-

matic differentiation can be performed in a functional lan-

guage by using a local program transformation that intro-

duces references. Our approach is inspired by their insight

and is closely related to performing forward-mode automatic

differentiation using dual numbers. In the dual number ap-

proach, real values are transformed into pairs (called “dual

numbers”) of the original value and the derivative of the

function at that value. All operations in a function are then

lifted to operate over dual numbers.

Instead of pairing each value with its partial derivative, as

in the forward mode, we pair each real value with a reference

of type real, denoting the reverse-mode partial derivative.

The reverse-mode partial derivative of a real number is the

derivative of that real with respect to the variable repre-

senting the final result of the function [26]. Additionally,

for every reverse-mode AD transformation we perform, we

return a reference to a function from unit to unit, called the

“backpropagator.” For every real number produced before,

the backpropagator is updated to take its partial derivative

Relay MAPL’18, June 18, 2018, Philadelphia, PA, USA

and pass it upstream via the references, according to the

chain rule. The backpropagator then calls the old version

of itself, thus forming a chain of closures to update every

partial derivative. For a more detailed explanation, see [29].

We replace each operation over reals with a transformed

operation that returns the original value and a zero-initialized

reference, then updates the backpropagator to clear the gra-

dient reference, propagate the gradient reference forward,

and call the old backpropagator. To phrase it in more AD-

specific terms, the Wengert list is constructed dynamically

as new reals are created. The Wengert list is represented as

the list of closures that created the backpropagator, and the

operations to update the list are bundled with the list.

For every generic operation, including control flow and

higher-order functions, we only need to transform the inner

expression and lift the type to accommodate the new expres-

sion. This is identical to what is done in the traditional dual

number approach.

Additionally, we extend the syntax with a gradient node

(Grad expr). In the gradient node, expr should be a function
from a product of reals to real. The transformed expression

is a new function that calculates the result of the original

function bundled with all the partial derivatives. This node

is implemented by transforming the inner AST with our

implementation of reverse mode automatic differentiation.

For every real-type argument, we pass the original argu-

ment bundled with a new zero-initialized reference to the

transformed function. We call the backpropagator, extract

the value in the passed reference, clear the references, and

return the extracted value in a product with the original

result.

This transformation requires us to transform every value

inside the passed function, so the function must not contain

free variables. (This limitation can always be circumvented

by lambda-lifting.) Given a Relay program without free vari-

ables, the transformation always produces a valid Relay pro-

gram, meaning it has the closure property. Thus, we have

a higher-order reverse mode, even on programs containing

closures. We take this approach over that in [29] for three

reasons:

1. Simplicity: Pearlmutter and Siskind’s approach re-

quires reflection on the AST and closure conversion,

which means we would need to implement reflection,

algebraic data types, and closure conversion in our

own language if we were to follow [29].

2. Typing: Additionally, the backpropagators generated
in [29] have types that depend on the free variables

inside closures. This means the types of the backpropa-

gators are dynamic, which would complicate our type

system.

3. Efficiency: Reflection and traversing the AST are not

fast. While Pearlmutter and Siskind propose to use par-

tial evaluation to remove this overhead, it introduces

another layer of complexity.

Currently, we maintain the purity of Relay by only expos-

ing the Grad operation. User code can never interact with the
references that are produced in the above-described process;

the process completely abstracts away the references and

returns only the resulting values. We could also potentially

make the code produced by the transformation pure by typ-

ing it as lazy functional state threads (monads), as presented

in [22].

The implementation of automatic differentiation in Relay

comprises 449 lines of C++ out of a total of approximately

10 thousand lines in the C++ backend.

4.3 A Type System
Our type system is informed by the authors’ previous ex-

perience using and implementing dependent type theory.

We have kept the language of types small, inspired by type

system designs which use small core languages [12, 18].

Our type system allows shape dependency. That is, it al-

lows types to be polymorphic over shapes which can appear

both in expressions and types. This design allows us to cap-

ture important properties at compile-time, though it sheds

the complexity of a traditional dependent type system. Im-

portantly, we have kinding rules which enforce that shapes

and base types are both of a different kind from types of

values— namely tensors, products, and arrow types.

In this paradigm, knowing all values are tensors allows

compiler writers to design and implement optimizations over

the AST in a uniform manner. For example, if a user of Relay

wants to write an optimization that lifts a computation up

one dimension, they can uniformly add a dimension without

needing to handle scalar cases. This is very useful for opti-

mizations that change dimension (e.g., auto-batching, spatial

packing, or layout changes). We discuss possible extensions

to the type system in 5.

The decision to incorporate tensor shape into the type

system, rather than to have it as a separate “analysis,” allows

shape information to be easily stored and reasoned about at

any stage of the optimization pipeline and makes it easier

for users to be explicit about tensor shapes and their desired

effect.

5 Future Work
Relay generalizes NNVM ’s computation graph by moving

from a limited dataflow language to a full programming

language. Relay is intended to act as the top layer of the

TVM stack and serves as its input format. Here we detail

near-term future work.

MAPL’18, June 18, 2018, Philadelphia, PA, USA Roesch, et al.

width ∈ N
∆ ⊢ IntType(width) : BaseType
∆ ⊢ FloatType(width) : BaseType
∆ ⊢ UIntType(width) : BaseType

∆ ⊢ BoolType : BaseType

(BaseType-T)

d1,d2, . . . ,dn ∈ N
∆ ⊢ Shape(d1,d2, . . . ,dn) : Shape

(Shape-T)

∆ ⊢ bt : BaseType ∆ ⊢ sh : Shape

∆ ⊢ Tensor(bt , sh) : Type
(Tensor-T)

∆ ⊢ T : Type ∆ ⊢ U : Type

∆ ⊢ T → U : Type
(Arrow-T)

K ∈ {Shape, Type, BaseType}
∆,T : K ⊢ body : Type

∆ ⊢ forall (T : K), body : Type
(Quantifier-T)

∆ ⊢ T1 : Type
∆ ⊢ T2 : Type

. . .
∆ ⊢ Tn : Type

∆ ⊢ (T1 ×T2 × · · · ×Tn) : Type
(Product-T)

∆ ⊢ T : Type

∆ ⊢ RefType(T) : Type
(Ref-T)

Figure 5. Rules for constructing types, indicating kinds. Reference types are only generated internally by reverse-mode

automatic differentiation and cannot be given in frontend user code. Also note we will eventually define a more complex AST

for shapes.

5.1 Runtime System
Our current evaluator (an interpreter) is a reference im-

plementation used for differential testing and experimen-

tation. This evaluator is not sufficient for experimental eval-

uation, and the main thrust of our current work is its effi-

cient counter part. An interesting aspect of this evaluator is

its use of TVM as a just-in-time compiler to produce type-

specialized tensor operators. The optimized runtime system,

which is intended as the primary way to deploy and execute

Relay programs, is still under heavy development.

Traditional languages have optimized their execution en-

gines’ virtual machines for very specific execution profiles,

with long-lived heap allocations, and relatively small stack

values. DL workloads have a much different execution profile

and often do not execute on traditional CPUs, but rather on

special-purpose devices, such as GPUs and accelerators.

There are many questions about the lifetime of values

and how to handle in-place updates, allocation, reclamation,

and more. The runtime system needs new representations of

the call stack for functions, new allocation patterns around

scopes, and distinct concepts of identity and allocation.

5.2 Optimizations
Relay is designed to provide a whole-program representation

of deep learning programs, allowing us to address problems

such as host slicing [3], dynamic networks, change of layout,

latency hiding, and parallel and distributed scheduling. We

have designed Relay with these goals in mind and to help

address the critical optimizations identified in [9].

We envision the ability to add other systems’ features as

optimization passes over Relay programs, for example im-

plementing auto-batching from DyNet[25], operator fusion

as done in the current NNVM framework, or change of lay-

out for Tensors. Auto-batching relies on the ability to know

about a set of transformations between unbatched operations

and batched operations, inserting the appropriate aggregate

instructions such as summing in the correct places. Given

type information it is possible to extend certain programs

with an extra batch dimension, inserting the appropriate

operators to preserve typing and semantics.

5.3 Software Engineering
The previous version of Relay supported both a step debug-

ger and the ability to compile Relay programs to Python

for debugging and differential testing against other machine

learning frameworks. We used this to test automatic dif-

ferentiation by compiling Relay programs to Python, using

the ‘autograd’ Python library to compute the gradient, then

checking the gradient’s results using property-based testing

[10].

5.4 Numerical Accuracy
ML workloads have proven exceptionally robust to issues of

rounding error [15]. Given this tolerance for low-accuracy

arithmetic, we are eager to adapt recent techniques for auto-

matically rewriting numerical code to improve accuracy at

the cost of performance (e.g., Herbie [27]), to instead trade

off accuracy for improved compute. By adapting tools like

Herbie and STOKE [32] to the context of machine learning

inference and training, Relay will further support develop-

ers striving to maximize compute on platforms built around

IEEE-754 floating point arithmetic. Moving forward, we hope

to further extend these tools and target specialized numerical

Relay MAPL’18, June 18, 2018, Philadelphia, PA, USA

i ∈ Z
∆; Γ ⊢ i : Tensor(IntType(32), Shape())

(Type-Int-Literal)

f ∈ R
∆; Γ ⊢ f : Tensor(FloatType(32), Shape())

(Type-Float-Literal)

b ∈ {True, False}
∆; Γ ⊢ b : Tensor(BoolType, Shape())

(Type-Bool-Literal)

∆ ⊢ s = Shape(d1,d2 . . . ,dn) ∆ ⊢ b : BaseType
∆; Γ ⊢ t1 : Tensor(b, s) ∆; Γ ⊢ t2 : Tensor(b, s)

. . . ∆; Γ ⊢ tm : Tensor(b, s)
∆; Γ ⊢ [t1, t2, . . . , tm] : Tensor(b, Shape(m,d1,d2, . . . ,dn))

(Type-Tensor-Literal)

∆; Γ ⊢ p1 : T1 ∆; Γ ⊢ p2 : T2 . . . ∆; Γ ⊢ pn : Tn

∆; Γ ⊢ (p1,p2, . . . ,pn) : T1 ×T2 × · · · ×Tn
(Type-Product)

∆; Γ ⊢ p : T1 ×T2 × · · · ×Tn
i ∈ [0,n)

∆; Γ ⊢ p[i] : Ti
(Type-Projection)

∆; Γ ⊢ d : T ∆; Γ, id : T ⊢ b : T ′

∆; Γ ⊢ let id = d in b : T ′ (Type-Let)

op ∈ {-, sq} ∆ ⊢ b : BaseType ∆ ⊢ s : Shape
∆; Γ ⊢ t : Tensor(b, s)

∆; Γ ⊢ UnaryOp(op, t) : Tensor(b, s)
(Type-UnaryOp)

op ∈ {+, -, *, /} ∆ ⊢ b : BaseType ∆ ⊢ s : Shape
∆; Γ ⊢ t1 : Tensor(b, s) ∆; Γ ⊢ t2 : Tensor(b, s)

∆; Γ ⊢ BinaryOp(op, t1, t2) : Tensor(b, s)
(Type-Noncomp-BinaryOp)

op ∈ {=, !=, >, <, >=, <=}
∆ ⊢ b : BaseType ∆ ⊢ s : Shape

∆; Γ ⊢ t1 : Tensor(b, s) ∆; Γ ⊢ t2 : Tensor(b, s)
∆; Γ ⊢ BinaryOp(op, t1, t2) : Tensor(BoolType, s)

(Type-Comp-BinaryOp)

∆; Γ,p1 : T1,p2 : T2, . . . ,pn : Tn , f : (T1 ×T2 × · · · ×Tn) → T ′

⊢ body : T ′

∆; Γ ⊢ def f (p1 : T1,p2 : T2, . . . ,pn : Tn) -> T ′,body
: (T1 ×T2 × · · · ×Tn) → T ′

(Type-Function-Definition)

∆; Γ ⊢ f : (T1 × · · · ×Tn) → T ′

∆; Γ ⊢ a1 : T1 ∆; Γ ⊢ a2 : T2 . . . ∆; Γ ⊢ an : Tn

∆; Γ ⊢ f (a1,a2, . . . ,an) : T ′

(Type-Call)

∆; Γ ⊢ c : Tensor(BoolType, Shape())
∆; Γ ⊢ b1 : T ∆; Γ ⊢ b2 : T
∆; Γ ⊢ if c then b1 else b2 : T

(Type-If)

∆ ⊢ b : BaseType ∆ ⊢ s : Shape
∆; Γ ⊢ Zero Tensor(b, s) : Tensor(b, s)

(Type-Zero)

∆; Γ ⊢ autodiff(e) : T
∆; Γ ⊢ Grad e : T

(Type-Gradient)

∆; Γ ⊢ n : T

∆; Γ ⊢ Ref n : RefType(T)
(Type-Ref)

∆; Γ ⊢ r : RefType(T)
∆; Γ ⊢ !r : T

(Type-Val-Ref)

∆; Γ ⊢ r : RefType(T) ∆; Γ ⊢ v : T

∆; Γ ⊢ r := v : ()
(Type-Set-Ref)

Figure 6. Rules for deriving types of expressions and definitions. The unit type, (), is syntactic sugar for a product type with
zero members. Note that these type rules assume that all type variables in quantifiers have already been concretely instantiated.

Additionally, in the rule for gradient, “autodiff” is the automatic differentiation AST transformation on expression e; rather
than attempt to capture the entire semantics of the transformation in that inference rule, we explain the transformation in 4.2.

representations including mixed width and fixed point com-

putations; blocked floating point; non-standard, accelerator-

specific numerics; and emerging alternate standards (e.g.,

the work on unums and posits [16]).

5.5 Type System Extensions
One planned type system extension is handling tensors with

partially-specified shapes, that is, shapes where some dimen-

sions are unknown. This is useful for many NLP applications,

where the data may be jagged in one or more dimensions

and not representable with a fixed shape.

One other extension is expanding the type system to track

individual tensors’ data layouts. This is motivated by the

MAPL’18, June 18, 2018, Philadelphia, PA, USA Roesch, et al.

difficulties we have encountered writing change-of-layout

optimizations, which both must infer existing layouts and en-

sure all uses are transformed. These types of errors have led

to hard-to-debug code that silently produces incorrect results

or crashes. By making these change-of-layout operations ex-

plicit, it would be possible to perform optimizations in that

style around automatic boxing and unboxing of values.

A more significant extension would be an integrated effect

system, allowing us to segregate code manipulating different

resources such as random number generators, state, I/O and

so on. This kind of change is more radical and for now is left

as an analysis that must be performed by the compiler.

6 Conclusion
We describe an in-progress implementation of Relay: a new

IR for efficient compilation and execution of machine learn-

ing models. We are designing Relay to be the core of the

second version of NNVM and to address key challenges both

researchers and engineers face using today’s computation

graphs. Our initial prototype implements our vision of how a

researcher might write models in Relay, with the ergonomics

of vanilla Python as well as the advantages enjoyed by sys-

tems like PyTorch and TensorFlow. Relay’s implementation

is still in flux, and we are focused on exploring topics in sec-

tion 5. We believe Relay to be an important part of the TVM

stack that will facilitate both current and future research

efforts.

Acknowledgments
This work was supported in part by the Center for Appli-

cations Driving Architectures (ADA), one of six centers of

JUMP, a Semiconductor Research Corporation program co-

sponsored by DARPA. The authors would also like to thank

Calvin Loncaric, Pavel Panchekha, Vinod Grover, and Eunice

Jun for discussion, insightful comments, and feedback on

earlier drafts.

References
[1] [n. d.]. DeepDarkFantasy - A Programming Language For Deep Learn-

ing. ([n. d.]). https://github.com/ThoughtWorksInc/DeepDarkFantasy
[2] [n. d.]. DeepLearning.scala. ([n. d.]). https://github.com/

ThoughtWorksInc/DeepLearning.scala
[3] [n. d.]. Swift for TensorFlow. ([n. d.]). https://www.tensorflow.org/

community/swift
[4] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.

TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[5] Martin Abadi, Michael Isard, and Derek G. Murray. 2017. A Compu-

tational Model for TensorFlow (An Introduction). http://dl.acm.org/
citation.cfm?doid=3088525.3088527

[6] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian

Nowozin, and Daniel Tarlow. 2016. DeepCoder: Learning to Write

Programs. CoRR abs/1611.01989 (2016). arXiv:1611.01989 http://arxiv.
org/abs/1611.01989

[7] AtilimGunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,

and Jeffrey Mark Siskind. 2015. Automatic differentiation in machine

learning: a survey. CoRR abs/1502.05767 (2015). arXiv:1502.05767

http://arxiv.org/abs/1502.05767
[8] Oliver Breuleux and Bart van MerriÃńnboer. 2017. Automatic differ-

entiation in Myia. (2017). https://openreview.net/pdf?id=S1hcluzAb
[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Yan,

Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: End-to-End Compilation Stack for Deep

Learning. In SysML 2018. https://arxiv.org/abs/1802.04799
[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’00). ACM, New York, NY, USA, 268–279. https:
//doi.org/10.1145/351240.351266

[11] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Quoc V. Le, Mark Z. Mao, MarcâĂŹAurelio Ranzato, Andrew Senior,

Paul Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large Scale Distributed

Deep Networks. In NIPS. https://research.google.com/archive/large_
deep_networks_nips2012.html

[12] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and

Leonardo de Moura. 2017. AMetaprogramming Framework for Formal

Verification. Proc. ACM Program. Lang. 1, ICFP, Article 34 (Aug. 2017),
29 pages. https://doi.org/10.1145/3110278

[13] Conal Elliott. 2009. Beautiful differentiation. In International Con-
ference on Functional Programming (ICFP). http://conal.net/papers/
beautiful-differentiation

[14] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine.

2016. Deep Reinforcement Learning for Robotic Manipulation. CoRR
abs/1610.00633 (2016). arXiv:1610.00633 http://arxiv.org/abs/1610.
00633

[15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish

Narayanan. 2015. Deep Learning with Limited Numerical Precision.

CoRR abs/1502.02551 (2015). arXiv:1502.02551 http://arxiv.org/abs/
1502.02551

[16] Gustafson and Yonemoto. 2017. Beating Floating Point at Its Own

Game: Posit Arithmetic. Supercomput. Front. Innov.: Int. J. 4, 2 (June
2017), 71–86. https://doi.org/10.14529/jsfi170206

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep

Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).

arXiv:1512.03385 http://arxiv.org/abs/1512.03385
[18] Simon Peyton Jones. [n. d.]. Into the Core - Squeezing Haskell into

Nine Constructors. ([n. d.]). https://www.youtube.com/watch?v=uR_
VzYxvbxg

[19] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris

Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,

Robert Hagmann, Richard C. Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James

Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,

Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony,

Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy

Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy

Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn,

Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy

Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick

Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,

https://github.com/ThoughtWorksInc/DeepDarkFantasy
https://github.com/ThoughtWorksInc/DeepLearning.scala
https://github.com/ThoughtWorksInc/DeepLearning.scala
https://www.tensorflow.org/community/swift
https://www.tensorflow.org/community/swift
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://dl.acm.org/citation.cfm?doid=3088525.3088527
http://dl.acm.org/citation.cfm?doid=3088525.3088527
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1502.05767
https://openreview.net/pdf?id=S1hcluzAb
https://arxiv.org/abs/1802.04799
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://research.google.com/archive/large_deep_networks_nips2012.html
https://research.google.com/archive/large_deep_networks_nips2012.html
https://doi.org/10.1145/3110278
http://conal.net/papers/beautiful-differentiation
http://conal.net/papers/beautiful-differentiation
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
https://doi.org/10.14529/jsfi170206
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://www.youtube.com/watch?v=uR_VzYxvbxg
https://www.youtube.com/watch?v=uR_VzYxvbxg

Relay MAPL’18, June 18, 2018, Philadelphia, PA, USA

and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a

Tensor Processing Unit. CoRR abs/1704.04760 (2017). arXiv:1704.04760

http://arxiv.org/abs/1704.04760
[20] Edward Kmett, Barak Pearlmutter, and Jeffrey Mark Siskind. 2008. ad:

Automatic Differentiation. (2008). https://github.com/ekmett/ad
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-

geNet Classification with Deep Convolutional Neural Networks. In

Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., USA,

1097–1105. http://dl.acm.org/citation.cfm?id=2999134.2999257
[22] John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional

State Threads. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation (PLDI ’94). ACM,

New York, NY, USA, 24–35. https://doi.org/10.1145/178243.178246
[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based

learning applied to document recognition. Proc. IEEE 86, 11 (1998),

2278–2324. https://doi.org/10.1109/5.726791
[24] Moshe Looks, Marcello Herreshoff, and DeLesley Hutchins. 2017.

Announcing TensorFlow Fold: Deep Learning With Dynamic

Computation Graphs. https://research.googleblog.com/2017/02/
announcing-tensorflow-fold-deep.html. (7 February 2017).

[25] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed

Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chi-

ang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,

Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna

Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke

Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and

Pengcheng Yin. [n. d.]. DyNet: The Dynamic Neural Network Toolkit.

([n. d.]). https://arxiv.org/abs/1701.03980
[26] Christopher Olah. 2015. Calculus on Computational Graphs: Back-

propagation. (2015). http://colah.github.io/posts/2015-08-Backprop/
[27] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary

Tatlock. 2015. Automatically Improving Accuracy for Floating Point

Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15), Vol. 50.
ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/2737924.
2737959

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

https://openreview.net/pdf?id=BJJsrmfCZ
[29] Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode

AD in a Functional Framework: Lambda the Ultimate Backpropagator.

ACM Trans. Program. Lang. Syst. 30, 2, Article 7 (March 2008), 36 pages.

https://doi.org/10.1145/1330017.1330018
[30] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Re-

computation in Image Processing Pipelines. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 519–530.

https://doi.org/10.1145/2491956.2462176
[31] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman

Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish

Nadathur, Jakob Olesen, Jongsoo Park, Artem Rakhov, and Misha

Smelyanskiy. 2018. Glow: Graph Lowering Compiler Techniques for

Neural Networks. CoRR abs/1805.00907 (2018). arXiv:1805.00907

https://arxiv.org/abs/1805.00907
[32] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Opti-

mization of Floating-point Programs with Tunable Precision. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’14). ACM, New York, NY, USA,

53–64. https://doi.org/10.1145/2594291.2594302

[33] Asim Shankar and Wolff Dobson. 2017. Eager Execution: An

imperative, define-by-run interface to TensorFlow. (2017). https:
//ai.googleblog.com/2017/10/eager-execution-imperative-define-by.
html

[34] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. 2015.

Chainer: a Next-Generation Open Source Framework for Deep Learn-

ing. In Proceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in The Twenty-ninth Annual Conference on Neural Information
Processing Systems (NIPS). http://learningsys.org/papers/LearningSys_
2015_paper_33.pdf

[35] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew

Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-

Agnostic High-Performance Machine Learning Abstractions. (2018).

arXiv:1802.04730 https://arxiv.org/abs/1802.04730
[36] MuWang and Alex Pothen. 2017. An Overview of High Order Reverse

Mode. (2017). https://openreview.net/pdf?id=Hkmj6tzRZ
[37] Richard Wei, Vikram S. Adve, and Lane Schwartz. 2017. DLVM: A

modern compiler infrastructure for deep learning systems. CoRR
abs/1711.03016 (2017). arXiv:1711.03016 http://arxiv.org/abs/1711.
03016

[38] Alex Wiltschko. 2017. Tangent: Source-to-Source Debug-

gable Derivatives. (2017). https://ai.googleblog.com/2017/11/
tangent-source-to-source-debuggable.html

http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://github.com/ekmett/ad
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1145/178243.178246
https://doi.org/10.1109/5.726791
https://research.googleblog.com/2017/02/announcing-tensorflow-fold-deep.html
https://research.googleblog.com/2017/02/announcing-tensorflow-fold-deep.html
https://arxiv.org/abs/1701.03980
http://colah.github.io/posts/2015-08-Backprop/
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/2491956.2462176
http://arxiv.org/abs/1805.00907
https://arxiv.org/abs/1805.00907
https://doi.org/10.1145/2594291.2594302
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html
https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1802.04730
https://openreview.net/pdf?id=Hkmj6tzRZ
http://arxiv.org/abs/1711.03016
http://arxiv.org/abs/1711.03016
http://arxiv.org/abs/1711.03016
https://ai.googleblog.com/2017/11/tangent-source-to-source-debuggable.html
https://ai.googleblog.com/2017/11/tangent-source-to-source-debuggable.html

	Abstract
	1 Introduction
	1.1 Existing High-Level Representations
	1.2 Relay

	2 Background and Related Work
	3 Language
	3.1 Grammar and Design

	4 System Design
	4.1 Frontend
	4.2 Automatic Differentiation
	4.3 A Type System

	5 Future Work
	5.1 Runtime System
	5.2 Optimizations
	5.3 Software Engineering
	5.4 Numerical Accuracy
	5.5 Type System Extensions

	6 Conclusion
	Acknowledgments
	References

