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Preface. Dr. Hans J. Maehly died on the 16th of November, 1961. Just six weeks before 
his untimely death, Dr. Maehly had joined the Applied Mathematics Division of Argonne 
National Laboratory. Before turning to new problems, he planned to complete the publica- 
tion of his results on rational approximations. These results were obtained from 1958 to 1960 
under Contract Nonr 2406 (00) of the Bureau of Ships and its Applied Mathematics Labora- 
tory, David Taylor Model Basin, with Princeton University. 

In particular,  he planned a series of publications on "Methods for Fit t ing Rational Ap- 
proximations." This series was to consist of three parts:  Part  I, Telescoping Procedures for 
Continued Fractions;  Par t  II ,  Direct Methods; and Part  I I I ,  Indirect Methods. Part  I was 
published in this Journal [8]. Dr. Maehly had iust started to write Par t  I I  when death in- 
terrupted his work. 

Dr. Maehly's interest in Chebyshev-approximations had been stimulated by the work of 
C. Hastings [3], F.  D. Murnaghan and J. W. Wrench [12,13]. Simultaneously with W. Barth 
[2] and others, these authors gave versions of E. Remes' [14] "second algorithm" (1934) for 
the approximation by polynomials. Inspired by the great convergence power of continued 
fractions, Dr. Maehly was mainly concerned with developing algorithms for approximation 
by general rational functions. Following a suggestion of his scientific associate, Dr. K. 
Arbenz, he developed in 1959 a new approach which deviates from Remes' scheme of char- 
acterizing the error curve by its extrema (Part II ,  Section 9). Other significant contributions 
by Dr. Maehly to the subject of rational approximations include "telescoping" of continued 
fractions (Part I) ,  and the "indirect"  methods (Part I I I ) ,  which use single-precision arith- 
metic to produce multi-precision approximations. 

The writer is honored by the invitation of Argonne National Laboratory to prepare the 
posthumous publication of Parts I I  and I I I  of the series mentioned above, and he wishes to 
acknowledge the generous support he received while undertaking this task. In preparing the 
manuscript he cnj oyed the help of Dr. R. F. King, assistant director of the Applied Mathe- 
matics Division. The writer is indebted to Dr. H. C. Thacher, Jr. and C. Mesztenyi for their 
valuable criticisms and suggestions. 

The source material  on which this publication is based consists of a series of Internal 
Reports concerning the Princeton-ONR project and a rough draft by Dr. Maehly of the in- 
troduction and first section of Par t  II .  In addition, the writer had the benefit of many dis- 
cussions with Dr. Maehly while working with him at Princeton on rational approximations. 
These discussions conveyed a fair idea of how he planned to write his series. Although some 
of his later refinements cannot be retrieved for lack of documentation, it  is hoped that  the 
following presentation provides a reasonably complete account of Dr. Maehly's important 
work on methods for rational approximations. 

II. DIRECT METHODS 

II-Introduction 

I n  P a r t  I of t h i s  series [8] we descr ibed  the  te lescoping  of a con t inued  f rac t ion ,  
corresponding to  the  t e lescop ing  of a power  series as  desc r ibed  b y  C. Lanczos  

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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[4]. ri:elescoping methods adjust the coefficients of a truncated e(mtinued fraction 
or power series so as to nearly minimize the maximum error on a given interval. 
In other words, one obtains an approximation which is nearly, but  in general 
not exactly, a Chebyshev approximation. Moreover, telescoping methods require 
that the function to be approximated be given in the form of a continued frac- 
tion or power series. 

By contrast, the methods which we call "direct" call be applied to functions 
given in any form suitable for accurate numerical evaluation. 

The term direct methods is meant to indicate that the coefficients of the Cheby- 
shev-approximant are computed directly. On the other hand, the indirect methods 
to be treated in Part III  determine the corrections required to modify a fixed 
approximant, for instance, the Pad~-approximant, in order to get the Chcbyshev- 
approximant. 

We describe two different direct methods for rational Chebyshev approxima- 
tion. For simplicity, we call them the "First Direct Method" anti the "Second 
Direct Method." The first is an extension of the method which F. D. Murnaghan 
and J. W. Wrench [12,13] developed for polynomial approximation (also known 
as the "Second Algorithm" of E. Remes [14]). For reasons to be explained in this 
paper, we preferred the Second Direct Method for our work at Princeton. It was 
coded by C. Mesztenyi. 

The numbering of sections is a continuation of that used in Part I [8]. 

6. Definitions and Notations 

Let ~(/, m) be the set of rational functions 

Pz(x) po • pl x ~ . . .  ~ Pt x ~ 
= ( 6 . 1 )  

Qm(x) qo + qlx  + . . .  + qmx m 

with real coefficients pi ,  q~. The sum n = l + m will be called the degree of the 
set ~(l,  m). We shall use the notation R , ( x )  to designate an element of (R(l, m). 

Let f ( x )  be a given function, continuous on the interval [a, b], and let g(x) 
be a given weight function, continuous and positive in [a, b]. That rational func- 
tion R~*(x) E (R(1, m)  for which 1 

max I R~(x) - f ( x ) l  = min (6.2) 
I~,bl g(x) 

is called the Chebyshev-approximant, or best-fit rational function with respect to 
the weight function g(x) .  

The weight function allows us the option of minimizing either the absolute or 
the relative error for g(x) -~ 1 and g(x) ~- If(x)I, respectively. Another possi- 
bility is to minimize the absolute error of the reciprocal: 

1 1 
max = min. 
[a.b] I R~(x) f(x) 

1 , ,= m i n "  s t a n d s  for  assumes its i n f i m u m  or is  m i n i m i z e d .  



F I T T I N G  R A T I O N A L  A P P R O X I M A T I O N S  259 

x~ = a 

~*(x) 
) 

) 
X~ = 

Fio. 1 

Here we choose e g(x) ~ f2(x). N[oreover, weight functions may be employed to 
treat the approximation of odd functions (Par t  III ,  Section 14). 

Each rational function R~(x) gives rise to an error curve or error function: 

~ ( x )  = R , , ( x )  - f ( x )  
g(x) (6.3) 

The error curve of the best-fit approximant will be written with an asterisk: 

~*(x) = R=*(x) -- f ( x )  (6.4) 
g(x) 

Extending the theorem of Chebyshev to fractional approximants, N. Achieser 
[1] has shown tha t  R~*(x) is uniquely characterized by ~*(x) assuming its maxi- 
mum absolute value sufficiently often with alternating signs. Arguments x~* for 
which the maximum absolute value is assumed are called critical points. 

In most of the practical applications, the error curve will have standard form; 
that is, it will meet the following additional requirements: 

, 
(i) there are exactly n--t--2 critical points x0* < . ' .  < x.+~; 

(ii) x0* and * * x~+~ coincide with the endpoints, i.e. x0 = a, x~+~ = b; 

~ 5 * ( x )  is continuous, and vanishes only for x = xi*,  i = 1, ---  , n. (iii) 

Figure 1 shows a s tandard form error curve for n = 2. If an error curve ~(x) 
has standard form, then it is necessarily the optimal error curve ~*(x), that  is, 
it corresponds to the Chebyshev-approximant R,,*(x). However, the optimal 
error curve need not  have standard form (compare [9, 10, 19]). Every  method 
for fitting rational approximations discussed in this part  is based on the assump- 
tion that  ~*(x) has standard form. Nonstandard error eurves, in particular the 
ease of odd functions, are discussed in Par t  III ,  Section 14. 

Aotually, one should use g (x) ~ f* (x) R ,* (x) where (R ,,* (x))-1 is the Chebyshev-approxi- 
mant of f-~(x). In practical computation, however, the replacement of R,~*(x) by f(x) is 
permissible since it affects the error curve ~(x) less than roundoff does. 
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l ~(x) 

x, = b 

FiG. 2 

Every standard error curve and its critical points constitute the unique solu- 
tion ~(x) = ~*(x), xi = x~* of the following equations: 

~(z,)= ( -1) 'x ,  i =  0, . . . , n + l  g(z0 =0,  i =  1 , . - . , n ,  

Or 

R~(x~) - -  f ( x ~ )  - -  ( - 1 ) ~ g ( x ~ )  = 0, i = 0, . . -  , n + l  (6.5) 

( R , ' ( x O  - f ' ( x O ) g ( x , )  - ( R , ( x , )  - f ( x ~ ) ) g ' ( x ~ )  = O, i = 1, . . .  , n. (6.6) 

There are 2 n + 2  equations and the same number of unknowns, namely the 
interior critical points x l ,  • "- , x~, the n + l  parameters determining Rn(x), 
and the errvr ampl i tude  ~. Thus our problem consists in solving the above system 
of nonlinear equations. Note that  h need not be positive. 

7. F i r s t  Direct  Method 

This method is a two-stage iteration method. 
Stage i .  A rational function R , ( x )  C (R(l, m )  and an ampli tude h are calcu- 

lated which, for a given set of arguments (guess at  critical points) a = x0 <xi 
< - . .  < x~ < x~+l = b, solve the equations (6.5). 

Stage I I .  The error curve ~(x) corresponding to the R n ( x )  computed in Stage I 
will behave somewhat as indicated in Figure 2. The extrema of ~(x) then yield 
a new guess for the critical points a -- 20 < 2~ < • • • < 2~ < 2n+t = b, on which 
the subsequent Stage I step is based. Thus Stage I I  solves the equations (6.6) 
for given R ~ ( x ) .  

In general, the solution of the equations in each step of both stages will require 
an iterative procedure. We have iterations within an iteration. Characteristic~Uy 
for this kind of situation, the efficiency of our method will depend fundamentally 
on properly balancing these iterations. I t  would be wasteful to carry the inner 
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iterations to a high accuracy at every step. On the other hand, the accuracy of 
the i~mcr iterations must be high enough so as not to spoil the accuracy already 
attained in the overMl iteration. 

For Stage II we recommend a simple searching procedure. This procedure 
will also be used in the Second Direct Method, and will be described in Section 
9. The remainder of this section will be devoted to Stage I. Although Stage II 
poses fewer theoretical problems, it requires more computational work than 
Stage I, because most of the evaluations of the function f(x) occur in this stage. 

The problem of tile first stage is to determine a rational function R,(x) E 
C~(l, m) and an amplitude X such that for given arguments x0 < x~ < . . .  < 
x,~÷~, ordinates y~ = f(x~) and weights w~ = g(xi) > 0 the conditions 

i W .~,,(z~) = y ~ - ~  ( - - 1 ) X  ~ i = 0, . . . , n - l -  1 (7 .1)  

are fulfilled. We might call such a problem an "interpolation problem with 
weighted deviations." It  is closely related to solving the system 

- -  i X " P~(x~) (y~+ ( - 1 )  Xw,)Qm( ,) = 0 i = O, .. , n + l ,  (7.2) 

where Q.~(x) and Pt(x) denote the denominator and numerator, respectively, of 
I~,,(x). For each particular value of X, this is a homogeneous linear system of 
n ÷2  equations for the n + 2  coefficients of P~(x) and Q,,(x). It  has a nonzero 
solution if and only ff its determinant vanishes. This determinant turns out to 
be a polynomial of degree m + l  in X, and for each real root of this equation we 
get a real solution of (7.2). We choose that solution which corresponds to the 
real root of smallest absolute value. 

We have not investigated all the questions which arise in connection with the 
pi'oblem (7.1). As with interpolation by rational functions (compare [10]) a 
solution of (7.2) does not necessarily yield a solution of (7.1). All solutions of 
(7.2) will lead to the same rational function, but there may be inaccessible 
points [10]. Also, the existence of real roots X has not been established in general. 

Moreover, a solution R,(x) without poles in [a, b] is required for Stage II. We 
show that there can be at most one real solution of (7.1) without poles in [a, b]. 
Let P~(x)/Q,~(x), S~(z)/Tm(x) be two different solutions of (7.1) with the 
amplitudes X and ,a, respectively. X and ~ must be different, for otherwise 
P~(z)/@~(x) and Sz(z)/T,~(x) would be equal, too. For xi, i=O, . - .  , n + l ,  

the difference 

P~(x) St(x) _ P~(x)T~(x) -- Q~(x)St(x) (7.3) 
Qm(x) Tm(x) Q~(x)Tm(x) 

i assumes the values ( -  1) w~(X --~) ~ 0, thus being subjected to at least n + l  
changes of sign. The numerator P~(x)Tm(x) - Qm(x)S~(x) of (7.3) is a poly- 
nomial of degree not greater than n, and can account for at most n changes of 
sign. This leaves at least one change of sign to the denominator Q~(x)T~(x), 
that is P~(x)/Q.,,~(x) or S~(x)/Tm(:c) has a pole in In, b]. ~ 

This proof and the following examples have been inserted by the writer, elaborating on 
short discussions with H. J. Maehly and J. Stoer. 
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I t  is probably quite safe to assume that  in most applications there exists a 
bounded solution, and that  it corresponds to the smallest real root ~. This is, 
however, not necessarily true, as is illustrated by the following examples. 

I f l  = 0, m = 1, yo = Xo = - 1 ,  y~ = xl  = O, y2 = x2 = 1, we = wl 

-~ w~ = 1, then 

1 1 1 --1 
R ~ ( x )  -~ X - and R l ( x )  ~ X - 

2z - # 2 '  v /2  2z + ~/2 ' x/2 

are the two solutions of (7.1). Both have poles in the interval [--1, +1].  
I l l =  0, r n =  1, x0 = 1, X l =  2, x~ = 6, y0 = 4, Yl = 5, y~ = - 1 ,  

zv0 = w~ = we = 1, then 

6 6 
R ~ ( x )  ~ - -  X = -- 1 and R ~ ( x )  ~- - ,  X = 2 

- x +  3 '  x 

are the two solutions. The second solution is pole-free in [1, 6], but the absolute 
value of its amplitude X is larger. 

If  m ~ 2, then the determination of the polynomial equation for ~ poses some 
problems, too. Taking into account these facts, we mus t  admit  tha t  our way of 
dealing with Stage I is not quite satisfactory. This is one of our reasons for 
preferring the Second Direct Method, described in Section 9, 

There is another argument  against the First Direct Method.  Obviously, small 
changes of the arguments x~, • • • , x~ do not affect the error curve/~(x) very much, 
since xl, . . .  , x~ are essentially stat ionary points of 8(x). Put t ing  it the other 
way around, the computation of the coefficients of R n ( x )  f rom the arguments 
x~, . . -  , x~ is unstable. 4 

I f  f ( x )  and g ( x )  both have continuous second derivatives, then we may, at 
least theoretically, apply Newton's  method to solve the equations (6.6) 

- - - ( - - ~ ) ' ( x , )  = 0  i =  1, . . .  , n ,  

thereby accomplishing Stage I I .  If  we choose to solve also the equation for X in 
Stage I by  Newton's method, then the resulting algorithm will be quite close to 
the ( 2 n + 2 ) - d i m e n s i o n a l  Newton procedure applied to the system of equations 
(6.5) and (6.6). Since we have quadratic convergence in this case, we may 
expect the same for the First Direct Method. This expectation has been confirmed 
by F. D. Murnaghan and J. W. Wrench [12] and Veidinger [17] for approxima- 
tion by polynomials. For fractionals it is still an open question. Whether  there 

4 This argument was the subject of a controversy between H. J. Maehly and the writer. 
The writer admits that there is an instability, but he considers it a harmless one. The Cheby- 
shev-approximant itself depends in an unstable way on the given data. In other words, two 
equally good approximants may possess quite different coefficients. The writer presumes 
that this is the same kind of instability which has been encountered above. This opinion is 
corroborated by the experiences W. Fraser and J. F. Hart [5] and J. Steer [15] had wish their 
recent realizations of the First Direct Method for general rational approxiraants. The writer 
is greatly pleased by the referee's presenting a neat theoretical argument pertaining to this 
instability problem. This argument is to be found at the end of this paper. 
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is quadratic convergence or not is actually of little practical interest. Conver- 
g~i~ce can be expected only if one starts with a reasonably good guess at the 
initial arguments Xo, x~, . . .  , Xn÷i. But then four or five iteration steps will 
yield a satisfactory approximant. 

8. T~°ansf o~'mation of Fractional into Polynomial Approximation 

The First Direct iYlethod described in the preceding section is an extension 
of the method of F. D. Murnaghan and J. W. Wrench for approximation by 
polynomials [12, 13]. In the polynomiaI case, Stage I presents no particular 
problem since the equation for the amplitude k will be linear. Therefore, it 
might be useful to note that fitting a rational approximant R,~*(x) can be reduced 
to fitting a sequence of polynomials of the same degree. We give a short descrip- 
tion of this technique, since it will be applied in Part III. Also, it should not be 
confused with related techniques employed by H. L. Loeb [6], L. Wittemeyer 
[18] and others. 

We start out choosing two fixed reference polynomials 15z(x), Qm(X). These 
polynomials should have no common factor of positive degree and at least one 
of them should actually reach the degree I or m, respectively. In other words, 
~he representation of the rational function Pz(x)/Q,~(x) in ~(l,  m) should be 
unique up to a constant multiple. We may write for the optimal error curve 

8*(x) -~ ~ L \ Q ~  ~ - ) ]  - -  ~ - ) ) J  (8.1) 

Q,~ (x)Pz(x)  ) Pl(z)  ) = (P~ ( z ) Q ~ ( ) -  - q ~ * ( x ) ( f ( x ) Q ~ ( x ) -  
g(x)Q,~*(x)Om(x) 

where R,,* ( x ) -- P l* ( x ) / Q~* ( x ) denotesthe Chebyshev-approximant of f ( x ) 
with the weight function g(x). Hence 6*(x) = (En*(x) - F ( x ) ) / H ( x )  is also 
the error curve of the polynomial 

E,,*(x) = P~*(X)Qm(X) -- Q.,*(X)Pz(X) (8.2) 

with respect to the function 

F(x)  = Q,~*(x)(f(x)Q,~(x) - P~(x) ) (8.3) 

and the weight function 

H(x)  = g(x)Q~*(x)Qm(x). (8.4) 

Since ~*(x) has standard form, En*(x) is the best-fit polynomial. Thus we have 
reduced our rational approximation problem to a problem of polynomial approxi- 
mation, which may be attacked, for instance, by the method of Murnaghan 
and Wrench. 

At the beginning of the iteration however, Qm*(x) is not known. Hence we 
$ ¢ 

have to start with a guess for Q~ (x): Q~(x) ~ Qm (x). Then one step of 
the method of Murnaghan and Wrench is taken in the direction of the best-fit 
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polynomial E,~*(x), depending on the particular choice of Qm(x). The resulting 
polynomial E,,(x) determines new polynomials P~(x) and Q,~,(x) by virtue of 

the linear system 

E~(x) = P~(z)Qm(x) - Q,~(x)P~(x). (8.5) 

The new Q,~(x) so obtained enters the subsequent iteration step. 
The linear system (8.5) has n + l  equations and n + 2  unknowns. Hence there 

is one degree of freedom left. This is due to the fact that P~(x) and Q,~(x) are 
determined only up to a common multiple. Therefore one has to add a scaling 
condition such as Qm(a) = 1, or reqnire that the constant term of Q,~(:c) should 
not be changed, etc. The linear system (8.5) is nonsingular if and only if the 
reference polynomials satisfy the above requirements, numely tha£ the rational 
function 15t(X)/Qm(X) have a uniqne representation in ~(1, m). By definition, 
the system (8.5) is nonsingular if and only if the solution space of the correspond- 
ing homogeneous system is one-dimensional. But if R~(x),S,~(x) solve 
0 = Rz(x)Q,~(x) - S,~(x)P~(x), thenRz(x) /S ,~(x)  = ,Sz(x)/Q,~(x) holds. Thus 
nonsingularity of (8.5) and uniqneness of the representation P,(x) /Qm(x)  are 
equivalent. 

Of course, the reference polynomial Qm(x) should be positive throughout the 
interval [a, b]. Moreover, forming the difference f(x)Q,~(x) - P t (x )  should not 
cause any substantial loss of accuracy, that is Pz(x)/O,~(x) should not be a good 
approximant of f ( x ) .  This qualification will be unnecessary if some other way of 
evaluating the above difference is available. This will be the case for the Com- 
bined Methods procedure to be described in Part III. 

9. Second Direct Method 

If ~*(x) has standard form, then it has exactly n + l  zeros zo* ~ zi* ~ • " <zn, 
within the interval [a, b]. It may therefore be written in the form 

~*(x) = G(x) ~I  (x - z~*). (9.1) 

Characterizing ~(x) by its zeros rather than by its extrema, avoiding the in- 
stability mentioned in the preceding section, has been suggested by K. Arben~ 5 
(compare [7]). We call the resulting method for fitting rational approximations 
the Second Direct Method. 

The Second Direct Method is again a two-stage iteration method. 
Stage I. Let a < zo < . . .  < zn ~ b be a guess at the zeros of the optimal 

error curve ~*(x). To this guess there corresponds an approximant, and there- 
fore an error curve ~(x), by virtue of the condition 

R~(z~) = f ( z~) ,  k = 0 ,  . . . ,  n. (9.2) 

Determining R,,(x) requires only straightforward rational interpolation. 

5 The proposal of Dr. Arbenz as to how to correct the zeros was, however, not quite satis- 
factory and entirely different from Dr. Maehly's proposal described in this section. 
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Stage [I .  The interior extrema x~ < . . .  < x~ are computed and used to 
correct the zeros of ~(x). These corrected zeros a < $0 < . . .  < $, < b then 
reenter Stage I. 

I t  is a decisive advantage of this method tha t  Stage I does not present any 
theoretical problems: any method for rational interpolation may be chosen. 
Hence we shall concentrate on the description of Stage II. 

We describe a method for determining the extrema xi later in this section, but  
consider first the main question: how to correct the zeros zk using the extrema 
x~. For a short variational argument let us denote the error curve by e(x) instead 
of ~(z). Then (9.1) gives (note d(lnlwl) /dw = 1/w for w ~ O) : 

~ l n l e ,  = ~ ( 0 1 n l G [  1 ) 0 1 n ]E l~x .  (9.3) 
k=o Oz~ x - £ ~zk + o---x--- 

We are particularly interested in the variation of the extreme values of e(x). 
These are assumed either at  the ends of our interval, whence ~x = O, or they 
are relative extrema, whence Olel/Ox = 0. In each case, we get 

k=o Ozk x - -  z£ ~zk, i = 0 , . . .  , n + l ,  

where e, = e(xi). 
The correction we propose is based on the assumption that  i f  the error curve 

e( x ) is almost optimal, then the function G( x ) does not depend very much on the 
zeros z~, at  least not  in the neighborhood of an extremum x~. This leads to the 
following expressions: 

lnl  l k=0 xi -- zk' i = 0, - "  , n + l .  (9.4) 

We want the absolute values of the extrema E~ = e(xi) to be equal. Therefore 
we p u t  

lill ,l + a lnl ,I = In N ,  i = O, . . . ,  n + l .  

Substituting this result in (9.4) we obtain the following system of n + 2  linear 
equations for the n + 2  unknowns ln]X[,3z0, • - • , 3z~ : 

In [ X i -t- ~ 5zk - In ]e~ 1, i = 0 , - - .  , n + l .  (9.5) 
k ~ O  X i  N Z k  

Eliminating iX] by  subtracting (9.5) with i = 0 yields 

xo 
~zk = In i = 1 , . - .  , n - t - l ,  

and using the approximation 

In I E, - I t 
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we arrive at the system 

(xo -- x~)Szk -- 2 I e~ I -- I eo I i = t, . . .  , n + l .  (9.6) 
- z )(xo - l I + I l ' 

Either (9.5) or (9.6) can be used for calculating the variations 5z~.. Both systems 
are well-conditioned since they have their largest elements close to the diagonal. 

We still have to describe the method we used for the detcrmina.tion of the 
extrema of the error curve 5 (x), which inevitably carries "noise." This precludes 
the numerical computation of the derivatives 5 r (x) and 5" (x). Hence Newton's 
Method cannot be applied. We settled for just searching in equal distances for 
the largest (smallest) value. The searching was stopped as soon as a value ~(2) 
was found which surpassed its neighbors 5(2 - h), 5(2 + h). Thea these three 
points were interpolated by a parabola whose extremum x was chosen 

{ )h 
Since the bulk of the computation in the direct methods consists in evaluating 
the funct ionf(x) ,  considerable care must be given to the selection of the search- 
ing distance h. In many practical applications, the error curve is approximately 
proportional to the ( n + l ) - t h  Chebyshev-polynomial transplanted from the 
interval [ -1 ,  ~1]  to the interval [a, b]. In these cases, C. Mesztenyi chooses 
different increments h for each extremum during one Stage I I  step. These incre- 
ments are varied in proportion to the distance of the two flanking Chebyshev- 
zeros. 

I I-C onclusions 

Both direct methods can be regarded as modifications of interpolation a!g0- 
rithms, viz., the Second Direct Method as a modification of straightforward 
rational interpolation, the First Direct Method as a modification of "interpola- 
tion with weighted deviations." Since the latter interpolation problem seems 
still to await a completely satisfying solution, the Second Direct Method may 
be preferable. In numerical applications of the Second Direct Method, our scheme 
of correcting the zeros, based on the assumption of small variation of G(x), 
has proved to be quite successful. 

III .  I N D I R E C T  AND C O M B I N E D  METHODS 

IN-Introduction 

The direct methods compute the error curve 5(x) = R,~(x) - f ( x )  of a ra- 
tional approximant Rn(x) "directly," that  is, the functions f ( x )  and R~(x) a~'e 
evaluated independently and subtracted afterwards. Two or three digits should 
be saved for the determination of the error curve. Hence the accuracy required 
for fitting is necessarily two or three digits larger than the accuracy of the ap- 
proximation obtained. In general, one needs double precision to effect a single- 
precision best fit. 
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This restriction can be avoided if a good approximant R~(x) with single-pre- 
cision coef:~icients is known beforehand. Then the idea is to compute corrections 
to these coefficients, again in single precision. The final addition of the eorree 
tions has to be carried out,, of course, in multiple precision. We call methods 
which correct the coef[icients of a given approximant indirect methods. 

The indirect methods to be described in this part require representation of the 
function f(z)  to the full accuracy required by a finite continued fraction with 
sit~gle-precision coefficients: 

= + + . . .  + 
J 

~N X 

I [ 
This function is to be approximated by a rational function R,~*(x) with n < N 
in the sense of Chebyshev. Like the Telescoping Procedures treated in Part I 
[8], this can be regarded as a problem of "economizing continued fractions." 
However, as in Part II  a "true" Chebyshev-approximant is computed. 

The case N = n@l is quite common. The original "Indirect Method" coded 
by C. Mesztenyi refers to it. Since a detailed description of the original Indirect 
Method can be found in [7], we restrict our treatment to the "combined" 
methods, which deal with the general case N > n. These methods employ any 
direct method to determine the correction to the Pad~-approximant in order to 
get the Chebyshev-approximant. Thus combined methods may be viewed as 
modifications of direct methods. We shall distinguish the First Combined Method 
and the Second Combined Method, depending on whether the underlying method 
is the First- or the Second Direct Method. The First Combined Method for 
fractionals, which will be described in Section 12, has been coded by C. Witzgall. 
C. )/~esztenyi programmed the Second Combined Method for polynomials. 

Finally, we want to emphasize the fact that both the original Indirect Method 
and the Combined Methods were effectively used for large scale production of 
rational approximations [11]. 

10. Combined Methods for Polynomials 

The combined methods for polynomial approximation are very simple and 
may serve as an introduction to the more complicated fractional case. 

We assume that f (z )  is given as a high degree polynomial 
N 

f(x) = ~ c~x ~ (10.1) 
k=0 

within the interval [0, b]. We are looking for the polynomial Pn*(x) which ap- 
pl'oximates the functionf(x) best in the sense of Chebyshev, that is, the poly- 

nomial for which 

j r~*(x) - f ( x ) ]  = min 
n l a x  
~o.bj g(x) 

holds, where g(x) > 0 is the weight function. 
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If b is sufficiently small, then the nth Pad6-polynomial P,~(x) = ~ = o  ckx ~ 
is a good approximant for f ( x ) .  Therefore the coefficients of AP.(x) = Pn*(z) 
-- P~(x) will be considerably smaller in magnitude than the coefficients ck, 
k ~ n, of Pn*(X). Hence it will frequently be sufficient to compute AP,(x) in 
single precision in order to achieve double precision for Pn*(x). 

P~*(x) is characterized by the error curve ~*(x) = (P~*(x) -- f (x ) ) /g(z )  
having standard form. Now we may write as well 

~*(x) = AP~(z) -- ( f ( x )  -- P,~(x)) 
g(x) 

This shows that APn(x) is the Chebyshev-approximant of the function f(x) 
-- P~(x) with respect to the weight function g(x).  

Now the crucial point is to find a method for evaluating the difference f(x) 
= f ( x )  - P,~(x) without substantial loss of accuracy. In the polynomial case, 
the solution of this problem is simple enough: F(x)  is just the "tail" of the poly- 
nomial (10.1). Hence 

2/ 

F(x)  = ~ ckx ~. (10.2) 
k ~ n + l  

We may now employ any direct method for determining a single-precison 
best-fit polynomial AP,(x) of the function F(x)  given by (10.2). AP,~(x) then 
is added to the Pad~-Approximant 15,~(x). 

11. Formula for f ( x )  - R , (x )  

Consider a continued fraction 

f ( z ) = + + . . . + x ] ] bl ~bN 

Again, the combined methods consist in splitting off the nth Pad6-approximant 

a~ a~ x I a,~ x ] 
R . ( x ) = _ +  [ - ~ ' + " "  + l  b, 

As before, the crucial point will be to find for R~(x) - f ( x )  a formula which 
can be evaluated without loss of accuracy. 

To solve this problem we refer to the basic formUlae derived in Part  I, Section 
3. There the convergents of a continued fraction 

ao] a~ 
N+ +"" 

were expressed in the form 

P~ a~ ° ~ I  ~ ;  
Q--~= -4- + . . . +  a~ 
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where P, and @ are determined by the reeursion formulae (3.2) 

P~ = a~P~_2 + b~P~-, 

O~ = a~@_~ + b~O~_~ 

starting with (3 .1) :P-2 = 1, P-1 = 0, Q_~ = 0, Q-1 = 1. 
We proceed to derive an expression for the difference P,,/Q, - P,JQ,,, 

between two convergents of the same continued fraction. Putting 

a~+~ I a%+~ a~va~ 
s°+.~ = ~ + ~ ;  + . . -  + lb,v ' 

we may write 

N > n ,  

P N  a~ al ! a ~  .t._ ~_ 1 ~  " (11.4) Q~ + ~ +  ' + Ib° 
Hence alI we need is an expression for the difference between two successive 
eonvergents. According to (3.7) this expression reads 

1 I I  ( -a~) .  
@(Q~i "t-b~la,+l Q,) k=0 

P~+i P~ _ P~+I Q~ - Q~+i P, 
@+1 Q~ Q~+i Q, 

- I I  ( - a~)  = 
Q~+x Q~ 

Applied to (11.4), this formula yields 

p x  P~ _ 1 I X  ( - - a k ) .  

QN Q, Q, (Q,,-x + Qf~,N) '=° 

ao = a o ,  a~ = a l x , ' " ,  an = a , , x ,  

= l  b~+l I b,+~ I b~, ' 

Sz(x) = Qn-1, Qm(X) = Q . ,  

For 

( - ~ ) " + '  0H(x) ~ II -~.  
O~(x) Sz(x) + f~T2~S] 

(11.5) 

we get finally 

f ( x )  - l ~ . ( x )  = 

This is the desired expression. 

12. Combined Method for Fractional Approximations 
In this section we describe the combined method which arises from the First 

Direct Method. Except for a few details, this description applies also to other 
combined methods. 



"Fhe Combined Method essentiMiy amounts to choosing the polynomials 
P~(z) ~nd (~,,(x), whose quotient is tile Pad~-approximant Jl.,~(x), as reference 
polynomiMs, and proceeding as outlined in Section 8. There the error curve 
~*(:c) - R,,*(:r) - f ( x ) ) / g ( x )  was conceived as the error curve of the poly- 
~omiM 

~,,*(:c)  = r ? (x ) (~ , , ,~ (z )  - Qm*(x )P~( : c )  (12.1) 

approximating F(x) = @~*(x) ( f (x )Q,~*(x) -  t5~(x)) with H ( x ) =  g(z)Q,,,*(x) 
• Q,~(x) as a weight function. 

ReeM1 that the direct approach deseribed in Section 8 required that thz(x)/ 
Q,~(x) not be a good approximation to f ( x ) .  Now it is just tile other way around: 
we insist that 15L(x)/(~,,(x) be a good approximation. It  is, of course, formula 
(11.5) that makes the difference by enabling us to avoid separate evaluation of 

f (x)  and/?~(z). 
Substituting the correction polynomials aPt(x)  = P~*(x) - Pz(z), zX(~,~(z) 

= Q,~*(x) - Q,,~(x) into (12.1) we get 

E,~*(x) -- AP~(x)Q,~(x) - aQ,,~(x)P~(x). (12.2) 

Thus the corrections APz(x) and AQ,,(x) can be computed directly from (12.2). 
Equation (12.2) does not characterize APt(x) and AQ,,~(x) completely. As we 

have seen in Section 8 there is one degree of freedom left, reflecting ~he fact that 
P~*(x) and Q,~*(x) are determined only up to a common multiple by their quo- 
tient R~*(x). Therefore we normalize P~*(x) and Qm*(X) by requiring that 
Q,~*(x) have the same constant term as the Padd-polynomial Qm(x). This leads 
to the additional relation 

zXQm(0) = 0, (12.3) 

fixing AQ,~(x) and APt(x) .  
Our algorithm involves a two-stage iteration, although the two iterations are 

fused together, so that most of the time the algorithm functions like a one-stage 
iteration. 

Stage I. For a given guess 0 = x0 < - . .  < x~+~ = b at the critical points, 
determine R~(xi) = Pt(x~)/Q,~(x~) such that 

R.(x~) = (f(x~) -- l~,,(x,) ) -t- (-1)~Xg(x,) 

holds for all i. This is again our well-known problem of rational interpolation 
with weighted deviations described in Section 7. Here it is solved, according to 
the proposal of Section 8, by an iteration procedure involving interpolation with 
weighted deviations only for polynomials. 

This iteration runs as follows: start with a guess at  Q~(x). Compute E.(x) 
and X by solving 

E~(x~) = F(x~) + (--1)~XH(x~). (12.4) 
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Determine P~'(x) and Q,,'(x) such that 

E,,(x) = a P , ( x ) ~ ( x )  - AQ,~(z )P , (z ) .  (12.5) 

Replace Q,~(x) by Q,,~(x) + AQ,,~(x), and restart the iteration. 
Stage [I. The extrema of ~(x) = (En(x) - F(x) ) /H(x)  are used as a new 

guess x~ at the critical points, entering Stage I (compare Section 9). 
Inigal Guess. If the interval [0, b] is not too large, then the error-curve is close 

to the polynomial which arises from the Chebyshev-polynomial T~+,(}) if the 
interval [ -  l, + 1] is transformed linearly into the interval [0, b] (compare [9, 19]). 
Therefore we choose the critical points of the transformed Chebyshev-poly- 
nomial as an initial guess: 

( x~ = 1 -  cos ~ ,  i = 0 , . . . , n +  1. 

As an initial guess at Qm*(z) we choose Q,~(x), the denominator of the Pad6- 
approximant R~( x ). 

Experience has shown our initial guess at Q~*(x) to be much poorer than our 
initial guess at the critical points. This suggests the following iteration pattern: 
start with two or three steps of the Stage I iteration, keeping the initial x~. 
By then Q,,~(x) will be close enough to Qm*(x) so that for the sequel one step 
of the Stage I iteration may be combined with one step of the Stage II iteration. 
The combined iteration step then consists in determining E~(x) by (12.4), using 
the resulting error curve for a Stage II correction of x~, and finally correcting 
Q,~(x). 

For the determination of E,~(x) by (12.4) C. Witzgall suggested the following 
modification of Newton's interpolation method (for another method see [13]). 
Consider the two polynomials C~+~(x) and D,,+~(x) which satisfy 

C~+~(x~) = F(x,).  ~ i = 0 , . - .  n + l .  (12.6) 
D~+~(x~) (--1)~H(x,)J 

Then we have 

E,(x) = C,+l(x) -b hDn+l(x), 

where X is uniquely determined since the highest powers of C,~+l(x) and D~+l(x) 
must cancel. 

Note that the two linear systems (12.6) for the coefficients of C,+~(x) and 
D,,+l(x) differ only with respect to their right-hand sides. Hence both systems 
can be solved simultaneously. In order to improve the condition of the linear 
systems, and for the sake of a more stable evaluation, the polynomials are written 
in Newton form 

n 

C~+l(z)  = ~0 + ~l(x - xo) + " "  + ~ + I ~  ° (x - x~) 

Dn+l(x) = do -t- d,(x - xo) + . . .  + n+lI~ (x - x~). 
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This leads to a triangular linear system with two rightd~and sides for the eoeffi. 
cients dl and ~ .  Clearly X = - d ~ + t / ~ + l .  The resulting polyltomial E~(x) 
again has Newton form 

n--I 

This form guarantees stable evaluation of the error curve. For the computation 
of the corrections A P d x ) ,  AQ,~(x), however, E~(x)  has to be converted after- 
wards into the customary polynomial form. 

The above method for determining the polynomials C~+~(z) and D~+I(x) is 
related to the familiar divided-differences algorithm. However, it uses fewer 
divisions, and is recommended if the division time is larger than 1.5 multiplica- 
tion times. (For similar considerations compare J. W. Tukey and H. C. Thaeher 
[16].) 

13. Linear System f o's" the Correction Polynomials 

The coefficients of the linear system (12.5) are determined by the coefficients 
of the reference polynomials P , ( x )  and Qm(x). In most cases, these coefficients 
display different orders of magnitude. This poses quite a serious problem. We 
solve it by triangularizing the system (12.5) in such a way that it can be solved 
without loss of accuracy. This triangularization is an indispensable part of our 
algorithm and, in fact, of every combined method. 

We refer again to the quantities P,~, Q,, defined in (3.1) and (3.2) for a 
general continued fraction (11.2). We note that we have in addition to the 
formulas in Section 3: 

p+l 

P~,@ - P~Q, = ]~I (-ax)Q,+2,~.  (13.1) 
X=0 

This is true for , = ~ and ~ = ~+1,  and both sides of (13.1) follow the same 
recursion for stepping up ~,. 

For the continued fraction (11.1) the quantities P ~ ,  Q,~ become polynomials 
• Q (ssedefined by 

P<" ~ - ' ( x )  = 0 

Q'": "-~)(x) = 0 

and the recursion 

f c~x  for ~ >  0 p<,, ~ ) ( ~ )  
(ao for ~ = 0 

Q<~' ~)(x) = b~ 

Pc'~)(x) = a~x P<"~-2)(x) + b~P <'' ~-1)(x) 

Q<'~) ( x ) = a z Q  ~' "-2) ( x ) + b~Q ~'~ ~-~) ( x ) . 

Putting P~'>(x) = P<°")(x), Q(~)(x) = Q(°~)(x) we have for the polynomials 
characterizing the Pad4-approximant 

P , ( x )  = P<")(x), (2re(X) = Q<'~)(X). 
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Ia Part I, Section 2, the following representation of the correction polynomials 
in terms of Pad6-polynomials was suggested (2.13a) : 

APE(x) = 70 + x ~ 71~P(k-2)(x) AQ~(x) = x 7kQ(k-~)(x). (13.2) 
k ~ l  k ~ l  

This representation takes the relation AQ~(0) = 0 into account. Formula (13.1) 
yields 

k--1 

p(7~-2) (x) Qm(x) - Q(k-2)(x)P~(x) = ( -- )1°xk-1 I I  a~,Q (~' ~ (x) 
k~O 

for /~= 1, . . . ,  n. By virtue of these formulae we get a triangular linear system 
for the coefficients 7k: 

w ( - z )  ~ I I  ,~Q~'°'~(x) = .E~(x). (13.3) 
k=O ~ 0  

The 7k are obtained in the order of their subscripts, that is 70 first, then 7~, etc. 
For small intervals it follows from (2.13b) that this is also the direction of in- 
creasing modulus: Iv01 < ]wt < " "" < lwl. The solving of the triangular system 
is therefore a stable operation, and may be carried out in single precision. The 
final computation of APt(x) and AQ,~(x), however, requires multi-precision. 

14. Nznstandard Error Curves. Even and Odd Functions 

Even and odd functions f ( x )  require special consideration if they are approxi- 
mated on a symmetric interval [ -b ,  b] with respect to an even weight function 
g(x) (compare Part  I, Section 4). In this case, the Chebyshev-approximant of 
an even function is even, and that of an odd function is odd; since, if R,,*(x) is 
the Chebyshev-approximant of an even function, then the same is true for R** (x) = 
R * ( - x ) .  But the Chebyshev-approximant is unique, which implies R*(x) = 
R * ( - x ) .  A similar argument shows that the Chebyshev-approximant of an odd 
function is odd. 

As a consequence, the Chebyshewapproximant R,~*(x) E (R(2h, 2#) of an 
even function is also the Chebyshev element in the sets (R(2h + 1, 2#), (R(2h, 
2t~ + 1), (R(2h + 1, 2tt + 1). According to the theorem of Achiezer [1], the 
error curve ~*(x) = (R,,*(x) -- f ( x ) ) / g ( x )  must assume its extreme deviation 
with alternating sign in at least one point more than expected. In other words, 
~*(x) usually will not have standard form. The same can be shown for the 
Chebyshev-approximants R,*(x)  E (R(2h + 1, 2tQ of an odd function. 

The case of an even function is easily taken care of by introducing the new 
variable y = x ~ and the functions h(y) = f ( x ) ,  k(y)  = g(x).  Then h(y) is 
approximated on [0, b 2] with the weight function k(y).  Normally, the corre- 
sponding error curve will have standard form. 

In tile case of an odd function, we consider h(y)  = (1/x) f (x) ,  k(y)  = g(x).  
Ttlere is no trouble minimizing the relative error of f ( x ) ,  since the zero of the 
weight function g(x) = f ( x )  will cancel. However, minimizing the absolute 
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~*(y)k(y) 
v~y 

= R*(y) - h(y) 

:~ \ I / y~\ II1~ =b~ 

xR*(x  2) - f ( ~ )  
~*(x) - g(x) 

(R*(y) - h(y))~/y 

k(y) 

/ 
=b 

FIG. 3 FIG. 4 

error o f f (x )  with respect to a strictly positive weight function g(x)  requires a 
modification of the fitting methods. 

The simplest modification consists in choosing the unbounded weight function 
( k ( y ) ) / ~ / ~  for the approximation of h(y)  in [0, b2]. In this case, the first ex- 
tremum y0 lies ill the interior of the interval [0, b~], its exact position unknown 
(compare Figures 3 and 4). Hence in the First Direct Method and its corre- 
sponding combined method, y0 must be treated in the same way as the other 
extrema yl ,  • • • , Y. of ~(x), that  is, it must  be corrected in Stage II. As an 
initial guess at the critical points y0*, " '"  , y~*+l , we use 

y, = (b cos n + 2 + i ) 2 
2 n + 3  lr , i = O , . . ' , n + l .  

This modification was proposed and coded by C. Witzgall for the First Com- 
bined Method. 

Another scheme does not use the transformation y = x 2. I t  works on the origi- 
nal nonstandard error curve ~*(x) = (xRn*(x ~) -- f ( x ) ) / g ( x )  in the interval 
[0, b] (not [ -b ,  b]). We shall roughly describe the resulting modifications (com- 
pare also Part  I, Section 3). 

In the First Direct Method a guess 0 < x0 < . . .  < x ~  = b ~,~t the critical 
points is used to determine an approximant xR~(x  ~) by solving the following 
interpolation problem with weighted deviations (Section 7) : 

Rn(x2)  = f(x,__) + ( - 1 ) ' ~  g(x,)  i = O, . . .  , n + 1. 
Xi Xi 
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In the Second l)irect Method one encounters the interpolation problem: 

z k t ~ , , ( z 2 )  = f ( z k )  /~ = 0, . . . ,  n .  

Ill the combined methods, the function f ( x )  is represented by the continued 
fraction 

| b0 I b~ I b;-"  

The quantities P~,, Q,~ become polynomials in x: P("' ~) (x), Q("' ~)(x). Putting 
P(~)(x) = ( l /z)  P(°~)(x), Q(~)(x) = Q(°~)(x), S~(x ~) = Q(n--1)(X), Qm(Z 2) = 
Q(~)(x), Pl(x 2) =P(~)(x), we have instead of (11.5): 

( - 1 )~+~z ~+~ I I  J ' ( z )  - z ~ + ( z  ~) . . . . . .  - - ~  ~ o ~ ,  
- , ( 2 Q m ( x )  Q,~(x ) i & ( x  ) -4- "~ k=o 

. A + ~ , ~ ( z D /  

Where 

I bn+l I bn+~ I b~ " 

The polynomial E(x)  will be odd, that is, divisible by x. The system (13.3) then 
is to be replaced by 

W ( - x ' )  k I~i ax Q(k.~)(x) = -1E(x),  
k=0 X=0 X 

with (compare (4.8a)) 

zXP~(x ~) = vo + x: ~ w pCk-2)(x) 
k=2 

zxQ,,(x 2) ~ x 2 = x w  + ~ v k  Q(Ck-~)(x). 
k ~ 2  

III-Conclusions 

The indirect methods described in this part have proved to be quite effective 
for actual computation on a small computer such as the IBM 650. Using single 
precision only, they yielded up to triple-precision approximations. This is, how- 
ever, possible only for small intervals, where the Pad6-approximant is suffi- 
ciently accurate. As the interval gets larger, the combined methods, for instance, 
will adopt the behavior of direct methods. 

The application of the combined methods and of the original Indirect Method 
requires that the functions f(x) be given by a power series or a continued fraction 
whose coefficients can be expressed in single precision. Thus the indirect methods 
described in this part cannot replace the direct methods. 

I~EFEREE'~d NOTE. Footnote No. 4 in Section 7 expresses a difference of 
opinion between the author and the writer concerning the inherent instability 
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of the First Direct Method. The following argument  pertains to this cou- 
troversy. 

The number X is a function of the trial critical points ( x l ,  ' " " , x , , )  vi~ equation 
(6.5). We may  therefore write X = X(x~, . . .  , x,~). By Achieser's Generaliza. 
tion of de la Vall6e-Poussin's Theorem [1, p. 52], X(xl*, • , zT,*) 7~ X(x~, . . . ,  
x,) ,  and consequently the function X(:c~, . . . ,  x~) has an absolute maximum 
at (xl*, " .  , x~*). Therefore OX/Ox -~ 0 at (x~*, - . .  , x~*). If a certain non- 
degeneracy assumption is made about the data, it can be proved tha t  the coeitL 
eients of P / Q  are insens i t ive  to slight changes in ( x l ,  . .  • , z , , ) .  This proof goes 
as follows: 

Equation 6.5 gives us (0 =< i N n + l )  
l 

Z p ~ x / =  [(-1)'Xg(x,) + j(z,)] ~ ~ /  
j=o 1~o 

Differentiation gives us (/c ~ i, 1 =< k __< n) 

~ Opi • 
~=0 ~xk x,' = [(--1)'Xg(x,) + f (x , ) ]  ~ Oqj ) ,  Oh , 

j=o Ox~ ~7~ i~o 

, OA 
Evaluating at  (x~* • .. , x~*) and remembering O~k = 0 we see tha t  the vector 

U = \Ox~ ' ' Oxk ' Oxk ' ' O x J  

(in which the derivatives are evaluated at  (xl*, • • - , x , ,* ) )  is orthogonal to the 
n +  1 vectors 

V, = (1, x,*, (x,*) ~, . . .  , ( x ,* )  ~, c~, c~x,*, . . .  , c,(x,*)~), 

where 0 ~ i =< n + l ,  i # k, c~ = - [ ( - 1 )  ~ hg(x~*) + f(x~*)]. The setof 
vectors {V0, - . .  , V~+l} is linearly dependent because of the choice of h. Make 
the nondegeneracy assumption tha t  every set of n +  1 vectors V, is independent. 
Then U is orthogonal to a set of vectors having rank n +  1. If  the approximation 
is normal ized ,  say, by fixing one coefficient, then U is really a vector of just 
n +  1 components, and must therefore vanish. The insensitivity of the coefficients 
to slight inaccuracies in x ~ , . . - ,  x~ is obviously an advantage,  numerically 
speaking. 
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