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Prepared posthumously by Christoph Witzgall®

Preface. Dr. Hans J. Maehly died on the 16th of November, 1961. Just six weeks before
his untimely death, Dr. Maehly had joined the Applied Mathematics Division of Argonne
National Laboratory. Before turning to new problems, he planned to complete the publica-
tion of his results on rational approximations. These results were obtained from 19568 to 1960
under Contraet Nonr 2406 (00) of the Bureau of Bhips and its Applied Mathematics Laborg-
tory, David Taylor Model Basin, with Princeton University.

In particular, he planned a series of publications on *“Methods for Fitting Rational Ap-
proximations.’ This series was to consist of three parts: Part I, Telescoping Procedures for
Continued Fractions; Part II, Direct Methods; and Part 11T, Tndirect Methods. Part T was
published in this Journal [8]. Dr. Maehly had just started to write Part II when death in-
terrupted his work.

Dr. Muehly’s interest in Chebyshev-approximations had been stimulated by the work of
C. Hastings [3], F. D. Murnsghan and J. W. Wrench {12,13]. Simultaneously with W. Barth
(2] and others, these authors gave versions of £, Remes’ [14] “second algorithm” (1934) for
the appreximation by polynomials. Inspired by the greal convergence power of continued
fractions, Dr. Maehly was mainly concerned with developing algorithms for approximation
by general rational funetions. Following a suggestion of his scientific associate, Dr. K,
Arbenz, he developed in 1959 a new approach which deviates from Remes’ scheme of char-
acterizing the error curve by its extrema (Part I1, Seetion9). Other significant contribubions
by Lr. Maehly to the subject of rational approximations include “telézcoping” of continued
frastions (Part I), and the “indireet” methods (Part I1I), which use single-precision arith-
metic to produee multi-precision approximations.

The writer is honored by the invitation of Argonne National Laboratory to prepare the
posthumous publieation of Parts IT and III of the series mentioned above, and he wishes to
acknowledge the generous support he received while undertaking this task. In preparing the
manuseript he enjoyed the help of Dr. R. F. King, assistant director of the Applied Mathe-
maties Division. The writer isindebted to Dr. H. C. Thacher, Jr, and C, Mesztenyi for their
valuable criticisms and suggestions.

The source material on which this publication is based consists of a series of Internal
Reports concerning the Princeton-ONR project and a rough draft by Dr. Maehly of the in-
troduction and first section of Part II. In addition, the writer had the benefit of many dis
cussions with Dr. Machly while working with him at Princeton on rational approximations.
These discussions conveyed a fair idea of how he planned to write his series. Although some
of his later refinements cannot be retrieved for lack of documentation, it is hoped that the
following presentaticon provides a ressonably complete account of Dr. Maehly’s important
work on methods for rational approximations.

1I. DIRECT METHODS

[I-Introduction

In Part I of this series [8] we described the telescoping of a continued fraction,
corresponding to the telescoping of a power series as described by C. Lanczos

* Work performed under the auspices of the U, 8. Atomie Energy Commission.
257


http://crossmark.crossref.org/dialog/?doi=10.1145%2F321172.321173&domain=pdf&date_stamp=1963-07-01

268 IHANS J. MARHLY

[4]. Telescoping methods adjust the coefficients of a truncated couti}med.fraction
or power series so as to nearly minimize the MAXLFIUn eITor on & given wtervl,
In other words, one obtains an approximation which 18 nearly, but in generg)
not exactly, a Chebyshev approximation. Moreover, telescoping methods require
that the function to be approximated be given in the form of a continued frag.
tion or power series.

By contrast, the methods which we ecall “direct”” can be applied to funetions
given in any form suitable for accurate numerical svaluation.

The term direct methods is meant to indicate that the coeflicients of the Cheby.
shev-approximant are computed directly. On the other hand, the indirect methods
to be treated m Part IIT determine the corrections required to modify a fixed
approximant, for instance, the Padé-approximant, in order to get the Chebyshev-
approximant.

We describe two different direet methods for rational Chebyshev approxima.
tion. For simplicity, we call them the “First Direct Method” and the “Second
Direct Method.” The first is an extension of the method which F. ). Murnaghan
and J. W. Wrench [12,13] developed for polynomial approximation (also known
as the “Second Algorithm” of E. Remes [14]). For reasons to be explained in this
paper, we preferred the Second Direct Method for our work at Princeton. It was
coded by C. Meszteny.

The numbering of sections is a continuation of that used in Part T {8].

6. Definttions and Notations
Let ®(l, m) be the set of rational functions

Pz) _ptmat o+ pa (61)

Qulz) @+ qaz+ -+ e
with real coefficients 9, , gx . The sum n = { + m will be called the degree of the
set ® (1, m). We shall use the notation R.(z) to designate an element of ®({, m).
Let f(z) be a given function, continuous on the interval [a, b}, and let g(z)
be a given weight function, continuous and positive in [a, b]. That rational func-
tion R, *(2) € ®(I, m) for which'

max | 2n(z) —f(2)!
{a,6] g(x)
is called the Chebyshev-approcimant, or best-fit rational funetion with respect to
the weight function g(x).
The weight function allows us the option of minimizing either the absolute or

the relative error for g(x) = 1 and g(x) = |f(z)}, respectively. Another possi-
bility is to minimize the absolute error of the reciprocal:

max [ L 1
5]

2. [E@_@

t = min” gtands for assumes ¥s infimum or is minimized.

= min (62)

} = min.
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Here we choose® g(z) = f*(z). Moreover, weight functions may be emploved to
treat the approximation of odd functions (Part TIT, Section 14).
BEach rational function R.(x) gives rise to an error curve or error function.:

(2) = E_T'(m) _j(m) )

Sz 6.
e (6.3)
The error curve of the best-fit approximant will be written with an asterisk:
Rn* -

Jxtending the theorem of Chebyshev to fractional approximants, N, Achieser
[1] has shown that R,*(z) is uniquely characterized by §*(z) assuming its maxi-
mum sbsolute value sufficiently often with alternating signs. Arguments z,* for
which the maximum absolute value is assumed are called critical points.

In most of the practical applications, the error curve will have standard form;
that is, it will meet the following additional requirements:

(i) there are exactly n+2 critical points To' <o < Th

(i) " and ¥, coincide with the endpoints, i.e.z = a, zra = b;

(1) u&d}é*(w) 15 continuous, and vanishes only for x = o, i=1,--,n
Figure 1 shows a standard form error curve for » = 2. If an error curve &(z)
has standard form, then it is necessarily the optimal error curve 5% (), that is,
it corresponds to the Chebyshev-approximant R.*(x). However, the optimal
error curve need not have standard form {compare {9, 10, 19]). Every method
for fitting rational approximations discussed in this part is based on the assump-
tion that 6“(z) has standard form. Nonstandard error eurves, in particular the
case of odd functions, are discussed in Part IIT, Section 14.

* Actually, one should use g{6) =5 f*(z)Ra*{x) where (R.* (@) Visthe Cheb);shev-a.pproxi-
mant of f~1(x). In practical computation, however, the replacement of Ru"(z) by f(x) is
permissible since it affeets the error curve §(z) less than roundoff does.
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Every slandard error curve and its critical points constitute the unique solu-
tion §(z) = 5 (x), xi= z; of the following equations:

Bz) = (=1Y'\, =0, ,n+l &) =0, i=1 - ,n
or
Bolzd) — flz) — (=Dgla) = 0,i=0, -+, nt+1 (65)
(R’ () — f(2))g() — (Ralzs) — flz))g'(z:) =0, @ =1 -, n (66)

There are 2n-+2 equations and the same number of unknowns, namely the
interior critical points zp, ---, Ts, the n-+1 parameters determining R.(z),
and the error amplitude A. Thus our problem consists in solving the above system
of nonlinear equations. Note that A need not be positive.

7. First Direct Method

This method is a two-stage iteration method.

Stage I. A rational function R.(z) € ®({, m) and an amplitude X are calew-
lated which, for a given set of arguments (guess at critical points} a = @z <a
& -0 & T, < 2aq1 = b, solve the equations (6.5).

Stage I1. The error curve 5(z) corresponding to the R,(z) computed in Stage I
will behave somewhat as indicated in Figure 2. The extrema of 5{x) then yield
2 new guess for the critical pointsa = & < & < -+ < &, < &nga = b, on which
the subsequent Stage I step is based. Thus Stage I solves the equations (6.6)
for given E.(x).

In general, the solution of the equations in each step of both stages will requir¢
an iterative procedure. We have iterations within an iteration. Characteristically
for this kind of situation, the efficiency of our method will depend fundamentally
on properly balancing these iterations. It would be wasteful to earry the inner
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fherations to a high acecuracy at every step. On the other hand, the accuracy of
the inner iterations must be high enough so as not to gpoil the accuracy already
attained in the overall iteration.

for Stage I1 we recommend a simple searching procedure. This procedure
will also be used in the Second Direct Method, and will be described in Section
9. The remainder of this section will be devoted to Stage I. Although Stage 1I
poses fewer theoretical problems, it requires more computational work than
Stage I, because most of the evaluations of the function f(z) oceur in this stage.

The problem of the first stage is to defermine a rational function R,{x) €

w{l, m) and an amplitude A such that for given arguments 2y < & < -+ <
a1, ordinates y; = f(x;) and weights w, = g(z,) > 0 the conditions
Bolze) =we+ (1w i=0,-,n+1 (7.1)

are fulfilled. We might call such a problem an “interpolation problem with
weighted deviations.” Tt is closely related to solving the system

Pz — i+ (=DM Qulz) =0 =0, .-, n+1, (7.2)

where Q..(z) and P,(z) denote the denominator and numerator, respectively, of
.(z). For each particular value of A, this is a homogeneous linear system of
n+2 equations for the n+2 coefficients of P;(2) and &..(2). It has a nonzero
solution if and only if its determinant vanishes. This determinant turns out to
be a polynomial of degree m+1 in A, and for each real root of this equation we
get a roal solution of (7.2). We choose that solution which corresponds to the
real root of smallest absolute value.

We have not investigated all the questions which arise in connection with the
problem (7.1). As with interpolation by rational funclions (compare 10]) a
solution of (7.2) does not necessavily yield a solution of (7.1). All solutions of
7.2) will lead to the same rational function, but there may be inaccessible
points {10]. Also, the existence of real roots A has not been established in general.

Moreover, 2 solution R.(x) without poles in [a, b] is required for Stage II. We
show that there ean be at most one real solution of (7.1) without poles in [a, b).
Let P1(2)/Qu(x), Si(x)/Twlz) be two different solutions of (7.1) with the
smplitudes X and g, respectively. X and u must be different, for otherwise
Puz)/Gn(z) and Si(z}/Tu(x) would be equal, too. For z, =0, -+, n+1,
the difference

Piz) _ Sdz) _ Pilx)Twlz) — Qn{2)8i(z)
Qm(fﬂ) Tou(z) QM{x)Tm(t)

assumes the values ( —1)w (A —g) # 0, thus being subjected to at least n+1
changes of sign. The numerator Piz)Tul) — @u(z)8:i(x) of (7.3) is a poly-
nomial of degree not greater than », and can account for at most n changes of
sign. This leaves at least one change of sign fo the denominator Qu(2)Twn(z),
that is Pu()/@n(x) or Si(x)/Tw(x) has a pole in [a, b).

3 This proof and the following examples have been inserted by the writer, elaborating on
short diseussions with H. J. Maehly and J. Stoer.

(73)
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1t is probably guite safe to assume that in most appleations there exists 5
bounded seolution, and that it corresponds to the smallest real root A. This is,
however, not necessarily true, as is illustrated by the following examples.

Il=0 m=1 yw=20= =1, n=o =10 =2 =1, w =1y
= wp == 1, then

1 1 =1

1
RI(T) = W , A= \/2 and Rl(x) = 9% - \/2 : A _\/2
are the two sclutions of (7.1). Both have poles in the interval [—1, 1.
fli=0 m=1 wm=1, z1=2, #2=6, rn=4, yp =19, = —1,
wy = w; = W = 1, then
é
Bilx) = By A= o—1 and Riz) =
are the two solutions. The second solution is pole-free in (1, 6], but the absolute
value of its amplitude A is larger.

If m = 2, then the determination of the polynomial equation for A poses some
problems, too. Taking into account these facts, we must adinit that our way of
dealing with Stage I is not quite satisfactory. This is one of our reasons for
preferring the Second Direct Method, described in Section 9.

There is another argument against the First Direct Method. Obviously, small
changes of the arguments 24, - - - , %, do not affect the error curve é(z) very mueh,
singe @y, ++ - , ¥, are essentially stationary points of §(z). Putting it the other
way around, the computation of the coefficients of B.(z) from the arguments
Ty, -+, &y is unstable.*

If f(=) and ¢{z) both have continuous second derivatives, then we may, at
least theoretically, apply Newton’s method to solve the equations (6.6)

(M)l (&) =0 d=1,---,n,
g

thereby accomplishing Stage I1. If we choose to solve also the equation for A in
Stage I by Newton’s method, then the resulting algorithm will be quite close to
the (2n+2)-dimensional Newton procedure applied to the system of equations
(6.5) and (8.6). Since we have quadratic convergence in this case, we may
expect the same for the First Direct Method. This expectation has been eonfirmed
by F. D. Murnaghan and J. W, Wrench [12] and Veidinger [17] for approxima-
tion by polynomials. For fractionals it is still an open question. Whether there

Rl

, A =2

4 This argument was the subject of & controversy between H. J. Machly and the writer.
The writer admits that there is an instability, but he considers it a harmless one. The Cheby-
ghev-approximant itself depends in an unstable way on the given data. In other words, two
equally good approximants may possess quite different coefficients. The writer presumes
that this i3 the same kind of instability which has been encountered above. This opinion is
corroborated by the experiences W. Fraser and .T. F. Hart [5] and J. 8toer [15] had with their
recent realizations of the First Direct Method for general rational approximants. The writer
is greatly pleased by the referee’s presenting e neat theoretical argument pertaining to this
instability problem. Thie argument is to be found at the end of this paper.
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is quadratic convergence or not is actually of little practical interest. Conver-
genee can be expected only if one starts with a reasonably good guess at the
initial arguments 2o, 41, -+, Zo4a. Dub then four or five iteration steps will
vield a satisfactory approximant.

8. Transformotion of Fractionel inte Polynomial Approximation

The Tirst Direct Method deseribed in the preceding section is an extension
of the method of F. D. Murnaghan and J. W. Wrench for approximation by
polynomials {12, 13]. In the polynomial case, Stage I presents no particular
problem since the equation for the amplitude A will be linear. Therefore, it
might be useful to note that fitting a rational approximant R.*(z) can be reduced
{o fitting a sequence of polynomials of the same degree. We give a short deserip-
tion of this technique, since it will be applied in Part IIT. Also, it should not be
confused with related techniques employed by H. L. Loeb [6], L. Wittemeyer
(18] and others,

We start out choosing two fixed reference polynomials Pi(z), Qu(z). These
polynomials should have no common factor of positive degree and at least one
of them should actually reach the degree I or m, respectively. In other words,
the representation of the rational function Py(z)/@.(z) in $i(f, m) should be
unique up to a constant multiple. We may write for the optimal error curve

% 1 P*z)  Pilz) Py(z)

i) = &Tﬁ[(%*{wj - Qm(:c)> B (f (e = Qm(x))]
(PF@)0n(2) — Qu (@) Pil) — Qu' (@) (f(2)Qu(z) — Pi(x))
- 9(2) Q@ (2) Q)

where R, (z) = P:*(2)/Q."(z) denotesthe Chebyshev-approximant of f(z)

with the weight function g(z). Hence §*(z) = (Fa'(z) ~ F{z))/H(z) is alsc

the error curve of the polynomial

(8.1}

B @) = P (2)Qn(z) — @n'(2)Pilx) (8.2)
with respect to the function
F(z) = Q. (z)(f(x)Qn(z) — Pil2)) (8.3)
and the weight function
H(z) = g(2)@n" (#)Un(2)- (8:4)

Since §*(z) has standard form, E,*(x) is the best-fit polynomial. Thus we have
reduced our rational approximation problem to a problem of polynomial approxi-
mation, which may be attacked, for instance, by the method of Murnaghan
and Wrench. _

At the beginning of the iteration however, @w () is not known. Hence we
have to start with a guess for @."(2): Qu(z) = @u'(z). Then cne step of
the method of Murnaghan and Wrench is taken in the direction of the best-fit
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polynomial E,"(x), depending on the particular Choicc of Qu(z). The resulting
polynomial E,(z) determines new polynomials :(z) and @.(x) by virtue of
the linear system

Bulz) = Puz)@nlz) — Qula)Pilz). (8.5)

The new Qn{x) so obtained enters the subsequent iteration step.

The linear system (8.5) has n-+1 equations and n+-2 unknowns. IHence thepe
is one degree of freedom left. This is due to the fact that Pi(z) and Q.(a) are
determined only up to a common multiple. Therefore one has to add a scaling
condition such as @m{a) = 1, or require that the constant term of {..(x) should
not be changed, ete. The linear system (8.5) is nonsingular if and only i the
reference polynomials satisfy the above requirements, namely that the rational
function P;(z)/(.(z) have a unique representation in &(I, m). By definition,
the system (8.5) is nonsingular if and only if the solution space of the correspond-
ing homogeneous system is one-dimensional. But if R_;(w),S,,l(w) solve
0 = Ru(2)0nlz) — Sn(z)Pi(x), then Bi(x)/Sx(z) = Py(z)/Wnlx) bolds. Thug
nonsingularity of (8.5) and uniqueness of the representation £7,(x)/(..(x) are
equivalent. .

Of course, the reference polynomial Q.{2) should be positive throughout the
interval [a, b]. Moreover, forming the dilference f ()0,n(z) — Pyx) should not
cause any substantial loss of accuraey, that is P(2)/Q.(x) should not be a good
approximant of f(x). This qualification will be unnecessary if some other way of
evaluating the above difference is available. This will be the case for the Com-
bined Methods procedure to be deseribed in Part TII.

9, Second Direct Method

If 5%(z) has standard form, then it has exactly n-+1 zeros 2t <t < <
within the interval [a, b]. It may therefore be written in the form

*

8% (x) = @(z) }iI«; (z — z"). (9.1)

Characterizing 8(z) by its zeros rather than by its extrema, avoiding the in-
stability mentioned in the preceding section, has been suggested by K. Arbens
(compare [7]). We call the resulting method for fitting rational approximations
the Second Divect Method.

The Second Direct Method ig again a two-stage iteration method.

Stage I. Let a < 20 < -+ < 2z, < b be a guess at the zeros of the optimal
error eurve & («). To this guess there corresponds an approximant, and there-
fore an error curve §(x), by virtue of the condition

Ro(z) = f(z), £=0,---,n. (9.2)
Determining R.{x) requires only straightforward rational interpolation.

% The proposal of Dr. Arbenz as to how to correct the zeros was, however, not quite satis
factory and entirely different from Dr. Maehly’s proposal described in this section.
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Stage I1. The interior extrema x, < --- < z, are computed and used to
correct the zeros of 8(z). These eorrected zeros o < By < -+ <3, < b then
reenter Stage 1.

It is & decisive advantage of this method that Stage T does not present any
theoretical problems: any method for rational interpolation may be chosen.
Henece we shall concentrate on the deseription of Stage IT.

We deseribe a method for determining the extrema z; later in this section, but
consider first the main question: how to correct the zeros z using the extrema
w;. For a short variational argument let us denote the error curve by e(x) instead
of 3(z). Then (9.1) gives (note d(Injw|)/dw = 1/w for w 5= 0):

LS feln G 1 dln|el
§1n | e };}( G~ o) e (9.3)

We are particularly interested in the variation of the extreme values of e(z).
These are assumed either at the ends of our interval, whence ax = 0, or they
are relative extrema, whence 9e//dx = 0. In each case, we get

6]_1’)‘&]:2(6111!6[“_ 1 )5375, ,{:20,...’7@.{.—1’

&=0 0z T - 2

where ¢; = e{x,).

The correction we propose is based on the assumption that if the error curve
e(x) is almost oplimal, then the function ((z) does not depend very much on the
geros 2;, at least not in the neighborhood of an extremum z; . This leads to the
following expressions:

62};

slnje| = — 2 i=0,,n+l. (94)

o — oz

We want the absolute values of the extrema e; = e(z;) to be equal. Therefore
we put

Inle,)] + élnfef =Im |\, ¢=0,---,n+1.

Substituting this result in (9.4) we obtain the following system of n-}-2 linear

equations for the n+2 unknowns InjA|,820, - - -, 92, :
mia +> - e, i=0---,nFL (9.5)
k=0 &y — Zg

Eliminating [\ by subtracting (9.5) with ¢ = 0 yields

Z( 1 —_ 1 )szzln
k=0 \T; — & Xy — Z

and using the approximation

£:

,od=1 met

€

€y

€0

=22

W ]~ lal

|+ |l
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we arrive at the system

{(me — )82 - le| — | ’ i=1,+ ,nl (95)
b (2 — 2 (o = 2) l € l + | £ [

Either (9.5) or (9.6) can be used for caleulating the variations z; . Both systems
are well-conditioned sinee they have their largest elements close to the diagona],
We still have to deseribe the method we used for the determinatbion of the
extrema of the error curve 5(x), which nevitably carries “noise.”” This precludes
the numerical computation of the derivatives &' (x) and 6”(x). Hence Newton’s
Method eannot be applied. We settled for just searching in equal distances for
the largest (smallest) value. The searching was stopped as soon as a value §(z)
was found which surpassed its neighbors 8(Z — &), 8(& + A). Then these thre

points were interpolated by a parabola whose extremum « was chosen

. s ( (54 h) — 8(Z — k) )@
S R Ty Y Y T R R A

Sinee the bulk of the computation in the dircet methods consists in evaluating
the funetion 7{z), considerable care must be given to the seleetion of the search-
ing distance k. In many practical applications, the error curve is approximately
proportional to the (n-4-1)-th Chebyshev-polynomial transplanted from the
interval [—1, 41} to the intervel [g, b]. In these cases, . Mesztenyi chooses
different increments h for each extremum during one Stage IT step. These ince-
ments are varied in proportion to the distance of the two flanking Chebyshey-
ZEr0s.

TI-Conclusions

Both direct methods can be regarded as modifications of interpolation algo-
rithms, viz., the Second Direct Method as a modification of straightforward
rational interpolation, the First Direct Method as a modification of “interpols-
tion with weighted deviations.” Since the latter interpolation problem seems
still to await a completely satisfying solution, the Second Thirect Method may
be preferable. In numerical applications of the Second Direct Method, our seheme
of correcting the zeros, based on the assumption of small variation of G{z),
has proved to be quite suceessful.

IIT. INDIRECT AND COMBINED METHODS
TIT-Tntroduction

The direct methods compute the error curve §{z) = R.(z) — f{x) of a 13-
tional approximant R,(r) “directly,” that is, the functions f(z) and R.(x) are
evaluated independently and subtracted afterwards. Two or three digits should
be saved for the determination of the error eurve. Hence the accuracy required
for fitting is necessarily two or three digits larger than the aceuracy of the ap-
proximation obtained. In general, one needs double precision to effect a single-
precigion best fit.
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This restricsion can be avoided if a good approximant B, (x) with single-pre-
cision coeflicients i known beforehand. Then the idea is to compute corrections
to these voellicients, again in single precision. The final addition of the correc-
tions bas to be carried out, of course, in multiple precision. We eall methods
which correct the ecefficients of & given approximant indirect methods.

The mdirect methods to be deseribed in this part require representution of the
function f{&) to the full acewracy required by a finite continued {raction with
single-precision coeflicients:

oo ____;@j T ay T |

fa) “)0 + b + <+ '—bN-— .
ThLis funetion is to be approximated by a rational function R, (x) with n < N
in the sense of Chebyshev. Like the Telescoping Procedures treated in Part I
8], this can be regarded as a problem of “economizing continued fractions.”
However, as In Part IT a “true” Chebyshev-approximant is computed.

The case N = n+1 is quite common. The original “Indirect Method” coded
ny C. Mesztenyi refers to it. Since a detailed description of the original Indirect
Vethod can be found in [7], we restrict our treatment to the ‘“combined”
methods, which deal with the general case N > n. These methods employ any
direct method to determine the correction to the 1’adé-approximant in order to
get the Chebyshev-approximant. Thus combined methods may be viewed as
modifications of direct methods. We shall distinguish the First Combined Method
and the Second Combined Method, depending on whether the underlying method
is the Tirst— or the Second Direct Method. The First Combined Method for
[ractionals, which will be deseribed in Section 12, has been coded by C. Witzgall.
. Mesztenyi programmed the Second Combined Method for polynomials.

Finally, we want to emphasize the fact that both the original Indirect Method
and the Combined Methods were effectively used for large sesle production of
rational approximations [11].

10. Combined Methods for Polynomials

The combined methods for polynomial approximation ure very simple and
may serve as an introduetion to the more complicated fractional case.

We assume that f(2) is given as a high degree polynomial

»

fley = 2 e (10.1)

==t}

within the interval [0, b). We are looking for the polynomial P, (x) which ap-
proximates the function j(z) best in the sense of Chebyshev, that is, the poly-
nemial for which
max BT —f@ ]
(0.1 g(x)
holds, where g{z) > 0 is the weight function.

min
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If b is sufficiently small, then the nth Padé-polynomial P, (z) = > e et
is & good approximant for f(z). Therefore the coefficients of AP.(2) = P.*(y)
— P,(x) will be considerably smaller in magnitude than the coefficients ¢,
k £ n, of P,"(2). Hence it will frequently be sullicient to compute AP, (z) in
smgle precision in order to achieve double preubmn for P. (sc)

P.*(x) is characterized by the error curve § (x) = (P, ) — 7))/ gz
having standard form. Now we may write as well

AP, () = (f(2) — Pa(2))

g()
This shows that AP,{z) is the Chebyshev-approximant of the function f{z)
-- P.(z) with respect to the weight function g(x).

Now the erucial point is to find a method for evaluating the difference f(z)
= f(z) — P,{x) without substantial loss of accuracy. In the polynomial case,
the solution of this problem is simple enough: F(z) is just the ‘“tail”’ of the poly.
nomial (10.1). Henee

() =

Flz) = ZS ez’ {10.2)

kran-+1

We may now employ any direct method for determining a single-preeison
best-fit polynomial AP.(z) of the function #(x) given by (10.2). AP,(z) then
is added to the Padé-Approximant P.(z).

11. Formula for f(z) — R,(x)
Congider a continued fraction

_auf o T an T
J(2) L el

Again, the combined methods consist in splitting off the nth Padé-approximant
Rn(x):Fﬂ_]. i +...+Eﬂ_‘ﬂ_
be | b | b,

As befare, the erucial point will be to find for R,(z) — f(z) a formula which
can be evaluated without loss of accuracy.

To solve this problem we refer to the basic formulae derived in Part I, Section
3. There the convergents of a continued fraction

were expressed in the form
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where £, and @, are determined by the recursion formulae (3.2)
Pv = avpvfﬂ ‘,,]_ bypvfl

Qﬂ = GVQ:PQ + byQyml

starting with (3.1): Py =1, Py =0, Q3=0, Q,=1
We proceed to derive an expression for the difference £n/Qn — Pu/@., N > 0,
between two convergents of the same continued fraction. Putiing

fnm=lﬁf:1+3f"—”—:§+ g

'n+1 N

we ey write
E‘_Y s dof ,_j ] J n+1N
On 7)_01 } T + - (11.4)

Henee all we need is an expression for Lhe dﬁerence between two successive
convergents. According to (3.7) this expression reads

Puo Po_Pun@Q — QP

wal QV B Qv—H Q
H ( a) = ! H ('-ak)=
qutl Qr Reas(l Qy (Q'__I + bH"l Q) k=0
Gri1
Applied to (11.4), this formula yields
Py P, i hu
Z}; “Q: k];]:o (—a).
Q-n-—i +
fn+1N
For
Qp = dpy a = &, qp = Gy &,

Opt1 & [23 +2$ ox &
j Ty wiz) = n+ - e = s
n-r. bN

Si{z) = QH, Qm(I) =@,
we get finally
J(z) — Ru(z) =

(=)™ :

II =
= Qm(m) (11.0)
3. (m(m) + (x))

This is the desired expression.

12. Combined Method for Fractional Approwimations

Tn this section we deseribe the combined method which arises from the First
Direct Method. Tixcept for a few details, this descr iption applies also fo other
combined methods.



270 HANS J. MAEHLY

The Combined Method essentially amounts o choosing the polynoniak
Py and Q.{2), whose quotient is the Padé-approximant f0,(x), as reference
polynomials, and proceeding as outlined in Section 8. There the error curve
) = RO — 7lz))/olz) was conceived as the error eurve of the poly-
ol

B2 = PE@)@n(z) — Qu (2)Pi{x) (12.1)

approximating Fla) = Qm*(ar) (f(m)Qm*(m)—— Px)) with H{(z) = g(23Q,.5 ()
-(.(2) as a weight function.

Recall that the direct approach described in Section 8 required that Pi(z)/
@ n(x) not be a good approximation to f(x). Now it is just the other way around:
we insist that P,(2)/Q..(2) be a good approximation. It is, of course, formula
{11.5) that makes the difference by enabling us to aveid separate evaluation of
[(z) and R.(z).

Substituting the correction polynomials AP (z) = P (z) — Pi(z), AQ.(x)
= Q% (z) — Q.(z) into (12.1) we get

E*z) = AP(&)@n(z) — AQ.(x)Pi(z). (12.2)

Thus the corrections AP;{x) and AQ,.(2) can be computed directly from (12.2),

Bquation (12.2) does not characierize AL{(x) and AQ,(x) completely. As we
have seen in Section 8§ there is one degree of freedom left, reflecting the fact that
PF(x) and Q. () are determined only up to a common multiple by their gquo-
tient X, *(z). Therefore we normalize P;*(x) and Q. (z) by requiring that
Q.. (2) have the same constant term as the Padé-polynomial @.(z). This leads
to the additional relation

AQw(0) = 0, (12.3)

fixing AQn(z) and AP (x).

Our algorithm involves a two-stage iteration, although the two iterations are
fused together, so that most of the time the algorithm functions like a one-stage
iteration.

Stage I. For a given guess 0 = xp < -+ < &y = b at the critical points,
determine R, (z;) = Pi{z:)/Q@n(z;) such that

Ru(z) = (f{x) = Ralz)) + (—1)ng()

holds for all 7. This is again our well-known problem of rational interpolation
with weighted deviations described in Section 7. Here if is solved, according to
the proposal of Seetion 8, by an iteration procedure involving interpolation with
weighted deviations only for polynomials.

This iteration runs as follows: start with a guess at Q,.(x). Compute Ea.(z)
aud M by solving

Ea(z) = Fla) + (—DH(z,). (12.4)
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Determine P (2) and Q.. (z) sueh that
B.(z) = AP 2)Qn(x) — AQ.(z)P.(z). (12.5)

Replace Q.(x) by Qu{z) + AG.{x), and restart the iteration.

Stage II. The extrema of 6(x) = (E.(2} — F(x))/H(x) are used as a new
guess z; ab the critical points, entering Stage I (compare Section 9).

Instial Guess. I the interval [0, b] is not too large, then the error-curve is close
to the polynomial which arises from the Chebyshev-polynomial T,(£) if the
interval [ 1, +1]is transformed linearly into the interval [0, b] (eompare [0, 19]).
Therefore we choose the critical points of the transformed Chebyshev-poly-
pomial as an initial guess:

x,:(l—cosnil)g, 1=0+--,n+ 1.
As an initial guess at G, (2) we choose @.(r), the denominator of the Padé-
approximant B, (x).

Experience has shown our initial guess at Q..%(x) to be much poorer than our
initial guess at the critical points. This suggests the following iteration pattern:
start with two or three steps of the Stage I iteration, keeping the imtial ;.
By then @..(x) will be close enough to 0.7 (z) so that for the sequel one step
of the Stage I iteration may be combined with one step of the Stage II iteration.
The combined iteration step then consists in determining E.(x) by (12.4), using
the resulting error curve for a Stage II correction of x;, and finally correcting
Qnlz).

For the determination of £,{z} by (12.4) C. Witzgall suggested the following
modifieation of Newton's interpolation method (for another method see [13]).
{ongider the two polynomials Cpii(z) and D,y (x) which satisfy

0,,+1(.’L'{) = F(:Bz) i
Dop(z0) = (—1)H(zs)

i

} it=0,---,nt+1l (12.6)

Then we have
En(z) = Copa(z) + ADpul2),

where \ is uniquely determined since the highest powers of Cria(z) and Dpia(x)
must eancel.

Note that the two linear systems (12.6) for the coefficients of Capu(z) and
D, (z) differ only with vespect to their right-hand sides. Hence both systems
can be solved simultaneously. In order to improve the condition of the linear
systems, and for the sake of a more stable evaluation, the polynomials are written
in Newton form

Cpia(z) = éo 4 &z — @) + -+ + én+1_1=10 (x — x3)

Dyaalz) = dy + di(x — ) + - + (/zni.]_‘l,:ln (2 — z4).
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This leads to & triangular linear system with two right-hand sides for the coeffj.
cients d; and ¢;. Clearly X = —&uy1/duys . The resulting polynomial E.(x)
again has Newton form

71

) = &+ & (x —x) + - + énq (& = =),

This form guarantees stable evaluation of the ervor curve. For the computation
of the corrections AF(x), AQ,.(x), however, £,{x) has to be converted after.
wards into the customary polynomial form.

The above method for determining the polynomials Chyy(z) and D(z) i
related to the familiar divided-differences algorithm. However, it uses fewer
divisions, and is recomnmended if the division time is larger than 1.5 multiplica-
tion times. {For similar congiderations compare J. W. Tukey and H. C. Thacher

[16].)

13. Linear System for the Correction Polynomaals

The coefficients of the linear system (12.5) are determined by the coefficients
of the reference polynomials Pi(x) and @.(z). In most cases, these coefficients
display different orders of magnitude. This poses quite a serious problem. We
solve it by triangularizing the system (12.5) in such a way that it can be solved
without loss of accuracy. This triangularization is an indispensable part of our
algorithm and, in fact, of every combined method.

We refer again to the quantities P, &, defined in (5.1) and (3.2) for a
general continned fraction (11.2). We note that we have m addition to the
formulas In Section 3.

o+l
P — PO = :\II(J (=an)0use, o (131)
This is true for ¥ = pand » = u+1, and both sides of (13.1) follow the same
recursion for stspping up ».

For the continued fraction (11.1) the quantities Py, , @, become polynomialg

P¥(z), (*(z)defined by

ar for w>0
e for u=10

P{»"J‘U(x) = (} P(Ji. .u)(';;) — {

I
i

(e, w—1} Lo, w)
Qe =0 QW (1) = by
and the recursion
PeNx) = o PP (@) + b P )
Q{#’v’)(z> - ():,,EQ(#’ v—23<x) + byQ(u, r—‘l)(l_)_
Putting PY{x) = P™(z), QY(«) = Q™ (z) we have for the polynomials
characterizing the Padé-approximant

Piz) = PV(x), Qulz) = Q™).
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In Part I, Section 2, the following representation of the correction polynomials
in terms of Padé-polynomials was suggested (2.13a):

AP z) = yo+ & ;Zl P ) AQelz) = kzan““_”(x). (18.2)
- =]

This representation takes the relation AQ,(0) = 0 into account. Formula (13.1)
yields

2, 5 (5—2 75 k, k1 . K
P @) En(z) = Q¥ P @)Pi2) = (=) [T @™ (2)

for k=1, - -, n. By virtue of those formulae we get a triangular Linear system
for the ecellicients y:

=z k-

X H”‘[ 'l "‘*Q(k'")(x)] = En(3). (13.3)

The v, are obtained in the order of their subscripts, that is v, first, then v, , etc.
For small intervals it follows from (2.13b) that this is also the direction of in-
areasing modulus: [ye] < jvi) < -+ < [va). The solving of the triangular system
is therefore a stable operation, and may be carried out in single precision. The
final computation of AP{zx) and AQ.(x), however, requires multi-precision.

14. Nonstandard Error Curves. Even and Odd Functions

Fven and odd functions f(z) require special consideration if they are approxi-
mated on a symmetric interval [—&, b] with respect to an even weight function
5{z) (compare Part I, Section 4). In this case, the Chebyshev—apprexummt of
an even function is even, and that of an odd funetion is odd; since, if B,"(z) is
the Chebyshev-approximant of an evenfunction, then the same is true forR’“’ (z)=
E*({—z). But the Chebyshev-approximant is unique, which implies R¥(z) =
B*(—2). A similar argument shows that the Chebyshev-approximant of an odd
function is odd. ‘

As a consequence, the Chebyshev-approximant R (2) € R(2A, 2p) of an
even function is also the Chebyshev element in the sets ®R(2A + 1, 2u), ®(2A,
2 4+ 1), ®R(2\ + 1, 2u + 1). According to the theorem of Achiezer [1], the
error curve 8°(z) = (Rs"(z) — f(z))/g(x) must assume its extreme deviation
with alternating sign in at least one point more than expected. In other words,
5*(z) usually will not have standard form. The same ean be shown for the
Chebyshev-approximants B, (x) € ®(2\ 4 1, 2u) of an odd function.

The case of an even funetion is easily taken care of by introducing the new
variable y = «* and the functions h{y) = f(z), k(y) = g(x). Then A(y) is
approximated on [0, b%] with the weight function k(y). Normally, the corre-
sponding error curve will have standard form.

In the case of an odd function, we consider h(y) = (L/z)f(x), k(y) = g(=z).
There is no trouble minimizing the relative error of f(x), since the zero of the
weight function g(x) = f(z) will cancel. However, minimizing the absolute



274 FANS J. MARHLY

SORG) o R¥(z) — by) wt

LY - xR (?éf ()k}:,zﬁ?)

(B2 — hDvy
kv

) [ X7 /i‘xﬁ}
L5 xf\]fxrzb

F1a. 3 Fig. 4

error of f(z) with respect to a strictly positive weight funetion g(z) requiresa
modification of the fitting methods.

The simplest modification consists in choosing the unbounded weight function
(k(y))//y for the approximation of A(y) in [0, %l In this case, the first ex-
tremum %, lies in the interior of the interval [0, b], its exact position unknown
(compare Figures 3 and 4). Hence in the First Direct Method and its corre-
sponding combined methed, ¥, must be treated in the same way as the other

extrema 1, + -, Yn of 8(z), that is, it must be corrected in Stage II. As an
initial guess at the critical points " , + -+, ¥h1, We use
B n+24+i Y\ . _
y.-"(bCOSmT), E—O’-- ,n'i’l

This modification was proposed and coded by C. Witzgall for the First Com-
bined Method.

Another scheme does not use the transformation 4 = a®. Tt works on the origi
nal nonstandard ervor curve 8 (x) = (2R, (z") — f(z))/g(z) in the interval
[0, L] (not [—b, 6]). We shall roughly describe the resulting modifications {com-
pare also Part I, Section 3).

In the First Direct Method a guess 0 < @0 < -+ < 2, = b at the critical
points is used to determine an approximant xR,{z”) by solving the following
interpolation problem with weighted deviations (Section 7):

]

Rn(xiz)=30(7@-+(m1)ixgi‘”‘—‘) i=0, - ,n 4 1.
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In the Second Iirect Method one encounters the interpolation problem:
ZkRﬂ(Zkg) = f(2) k=20,---,n

Tn the combined methods, the funetion f(z) is represented by the continued
{rastion

i 9 2
Fx) = :_"‘0‘”!+ﬂf_|+ ce ‘?‘?z‘ff__‘_
i by [ b | by
The quantitics Py, , Q. become polynomials inz: P* " (z), Q% "(z). Putting
POy = (0/1) PO, Q) = @V @), Sileh) = @7 0(z), Guiad) =
G"(z), Puz")=P"(z), we have instead of (11.5):

fle) — aR, (%) = (“1)%1"”2%; = InIak,
~ 2 2 N k=0
0ut) (e + 2l )

where

) | bn+l ‘ bn+2

2 9
fn~'rl,N(3/'2) _ %1 ] + Upt+2 & l Lot \agm‘z ‘
N

The polynomial % {x) will be odd, that is, divisible by 2. The system (13.3) then
is to be replaced by

];;Zb()vk [(—-:L?)Jc )‘I—:l) o, Q(k,'n)(m)] » 1 E(_’,c)’

Tz

with {eompare (4.8a))

AP; (11’1'2)

]

yo + & kz:;m P* 7 (z)

AGu (&) = 2’y + 2 é v Q7 ().

I1I-Conclusions

The indirect methods described in this part have proved to be quite effective
for actual computation on a small computer such as the IBM 650. Using single
precision only, they yielded up to triple-precision approximations. This is, how-
ever, possible only for small intervals, where the Padé-approximant is suffi-
ciently accurate. As the interval gets larger, the combined methods, for instance,
will adopt the behavior of direct methods.

The application of the combined methods and of the original Indirect Method
requires that the functions f(z) be given by a power series or a continued {raction
whose coefficients can be expressed in single precision. Thus the indirect methods

deseribed in this part cannot replace the direct methods.
*® Ed *

L

Rererip's Nore. TIootnote No. 4 in Section 7 expresses a difference of
opinion between the author and the writer concerning the inherent instability
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of the First Direct Method. The following argument pertains to this coy.
troversy.

The number X is a function of the trial criticalpoints (@, - - -, #.) via equation
(6.5). We may therefore write A == Az, ---, 2.). By Achieser’s Generaliga.
tion of de la Vallée-Poussin's Theorem [f, p. 62], Mat™, -+ #.") = M, -1
), and consequently the function Mzy, -, ) has an absolute maximyy
at (;cl*, coo, 2a). Therefore aN/dx = 0 at (rc-L*, <o, 2, ) I & certain nep.
degeneracy assumption is made about the data, it can be proved that the coeffi.
cients of /@ are insensitive to slight changes in (2, , -~ -, z,,}. This proof goes
as follows:

Equation 6.5 givesus (0 < ¢ < n-+1)

: - n
;mﬁ- = [(=D) %2 + flas)) ;)qjxf.

I

Differentiation givesus (b = 4, 1 = & = n)

t . d . . - m .
> 9 = [~ 1)) + Flan)] Z%-’ x|+ (wl)iz%g(x.v) ;0 s e,

i=0 9%z =0 9z
. % ® . 3A
Evaluating at (2", - -+, . ) and remembering 3 = 0 we see that the veetor
bep ! ’ ax ’ s’ ’ dxy

(in which the derivatives are evaluated at (z,*, - - |, z,%)) is orthogonal to the
n-+1 vectors

Vi= (1, &5 @* -, @™ e L e, e:(2*)™),

where 0 £ @ £ n+l, @5k o= —[(—=1)" M(2*) + f(z*)]. The set of
vectors { Vg, ---, Vi is linearly dependent because of the choice of ). Make
the nendegeneracy assumption that every set of n41 vectors V, is independent,
Then U is orthogonal to a set of vectors having rank n+4-1. If the approximation
is normalized, say, by fixing one coefficient, then U is really & vector of just
n—+1 components, and must therefore vanish. The insensitivity of the coefficients
to slight inaccuracies in x,, --+, z, is obviously an advontage, numerically
speaking.
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