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1. Introduction 

In deciding which of the many  possible predictor-corrector procedures should 
be used in practice, one is mainly concerned with choosing the predictor for- 
mula, the corrector formula, the step-size and the rule for iterating with the cor- 
rector formula. One would like to make these choices in such a way that  the re- 
quired calculation carl be carried to within some prescribed accuracy, at mini- 
mum cost. 

The purpose of this paper is to present a s tudy of how the relationship be- 
tween accuracy and cost depends on the choice of predictor-correetor formulas 
and on the i teration rule. 

We assume tha t  the differential equations being considered are fairly com- 
plicated. The cost will then be proportional to  the number of evaluations per 
step multiplied by the total  number of steps. By an evaluation we mean an 
evaluation of the function f ( t ,  x) tha t  appears in the initial-value problem being 
considered, namely, in 

t 
x = f ( t ,  x ) ,  x(to) = Xo. (1) 

In Section 2 some theoretical results are obtained which serve mainly to indi- 
cate that  the best procedures will involve only one evaluation of f and one appli- 
cation of the corrector formula per step, unless extra iterations are needed to 
make the procedure stable. 

In Section 3 experiments are described for determining whether or not extra 
iterations are needed. We use 1, 2, 3 and 4 iterations with each of a representa- 
tive set of predictor and corrector formulas. We use each method with a range 
of different step-sizes and with a fairly wide var ie ty  of differential equations. 

Conclusions are given in detail in Section 4. Of course, we do not expect one 
particular method to be best in every situation. However, it turns out tha t  only a 
very few methods are consistently good. Each involves a second iteration per 
step, which appears to be needed for stability, and each has a high step-number, 
which is needed for accuracy. We recommend particularly the predictor and 
corrcctor formulas of the Adams type, with truncation errors which are propor- 
tional to h s or h 9, where h is the step-size. At each step there should be two evalu- 
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ations of the function and two applications of the corrector formula. The step. 
size must be chosen according to certain accuracy and stability criteria which 
depend on the differential equation being solved. 

It should be emphasized that our conclusions are based on the assumption 
that f(t, x) is relatively complicated, so that the cost depends only on the total 
number of evaluations. We also consider only general-purpose procedures, and 
we therefore rule out any procedures which are applicable only in restricted 

circumstances. 

2. Theoretical Resntlts 

We write the predictor formula as 
k k + l  

yo = E + h E  b,*y:_,, (2) 
i = l  i = l  

and the cor~'eetor formula as 
k k 

Y~ = E a~y,~_~ + h E  b.,.y',,_~. (3) 
i=i i=0 

The corrector formula contains the term hboy~', whereas there can, of cours% 
be no corresponding term hbo*y.' in the predictor formula. Instead~ we have 

, t 
included the extra term hbk+ lye-k-1 in the predictor. This will be convenient 
later when we will want the predictor and eorrector formulas to have truncation 
errors of the same degree, l~[eanwhile we will drop the limits from the summa- 
tion signs and understand them to be as given in (2) and (3), unless otherwise 
specifically noted. 

A predictor-corrector procedure consists in first using (2) to "predict" an 
approximation to x,  = x(t ,) ,  next using f(t ,  x) to evaluate an approximation 
to x~ r, and then using (3) to "correct"; one can then evaluate again, correct 
again, and so on until one decides to move on from t, to t~+~. Since we are as- 
suming f to be complicated, the cost of correcting is negligible and we therefore 
finish with an application of the corrector before moving to the next value of t. 
In an obvious notation we can denote the procedure, for a particular pair d 
predictor-corrector formulas, by P(EC) m, where the number of iterations is 
m = 1, 2, 3, . . . .  We assume that  m is the same for each step. 

We want to study the way in which the relationship between accuracy and 
cost depends on the choice of predictor-corrector formulas and on the choice 
of m. To this end we first derive an expression for the propagated error, which 
will indicate how this error depends on the various factors involved. 

Truncation errors and roundoff errors are defined in the following way. T,*, 
the truncation error in the predictor formula, is defined by 

* T * (4) Ea,  x _,+hZ * '  = b ~ x ~ _ . { +  ~ , 

while T~, the truncation error in the corrector formula, is defined by 

x~ = ~ aix~_i + h ~ bix'~_{ + T~ . (5) 
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Let z,~,j denote the rounded result obtained from the j t h  application of the 
t 

eorrec~or formula at  t,~, and let z~,j = f ( t~ ,  z,.i). I t  is convenient to let z~,o de- 
note the rounded result obtained from the predictor at t~. Then r~*, the roundoff 
error in the predictor, is defined by 

Zn 0 E * * , ai  Zn-i,m + h E * ' = b l  Z~--~.m--1 - -  r ~  , ( 6 )  

whil( ~ r,~,j, the roundoff error in the j t h  application of the eorrector, is defined by 

z.~,~ Z a~zn-t,.~ + hboz.,~_l + h ~ ' - -  = ' b~z._~,~_~ r~, i .  (7) 

Denote the propagated error by e~ = x,, -- z ...... and define g through the 
equationf(t, u) - f ( t ,  v) = g(u - v), so that  g can usually be taken to be some 
value of Of/Ox. 

The error equations are obtained by subtracting (6) from (4), and each of 
equations (7) from (5).  Of course these equations cannot be solved for e , .  
However, we would like to obtain an expression which approximates e , ,  at 
least to the extent tha t  it indicates how e, depends on the various factors in- 
volved in the procedure. 

The argument is tedious but  straightforward. First, substitute the constants 
r*, r, T*, T, and g into the error equations in place of the corresponding variable 
quantities. The error equations then become m + l  linear difference equations 
with constant coefficients. (The m + l  unknowns are x~ - z~.i f o r j  = 0, 1 . . .  , 
m, but we are interested only in the propagated error, which is the unknown 
corresponding to j = m.) 

The solutions d these difference equations depend on the zeros of a certain 
polynomial. As m --~ co, the polynomiM becomes C(s) = s k - ~ (at "4"- hgbi)s k-~, 
which is associated with the eorrector alone. Even this special case is quite 
difficult, but  it has ~eeived some study, for example in [2]. The polynomials 
of practical interest ate those associated with correctors having T = O(h~), as 
h -~ 0, for moderately large p. (Later  we consider p = k + 2.) One zero of 
C@) is then exp (hg) + O(hP), while the other k - 1  extraneous ~eros will cause 
instability unless their magnitudes are less than 1, or less than e hg, depending 
on whether the stability is required to be absolute or relative. 

When m is not  large the polynomial is more complicated. I t  turns out to be 

skC(s) + O"~-~{C(s) ~ (b~ -- b~* + Ob~*)s k-~ 
,~o (8) 

+ h g ( ~  b J ~ - ' ) ~  (a~ - a,* + Oa~* + hg(b~ - bt* + Obt*))sk-t}, 
i#O 

where we have put  0 = hgbo. As m --~ co, k roots of this polynomial will ap- 
proach 0. The other k roots will approach the roots of the preceding polynomial, 
one being associated with exp (hg), while the others are associated with the 

extraneous roots. 
Later on we will return to questions regarding the stability of these predictor- 

corrector procedures. For  the present, let us assume that  they are stable. We 
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also neglect the effect of starting errors. We then obtain the following expression 
for the propagated error. 

e~ k h g ~ b ~  1 -  ~ _ 0 ,  ~ 
(~) 

- } - (r*+ T,)  O~[(~i-i_v.. t~ {sl '~ -  1} + {small terms}, 

where sl is the zero of (8) which approaches exp (hg) ÷ O(h ~') as m ~ ~. 
Thus, for large m, sl '~ ~ exp (g(t~ - to)). (We have assumed 0 ¢ 1, but, 
for convergence of the iterations, we in fact must  assume much more, namely 
tha t  I 0 ] < 1.) 

The expression in (9) indicates how the propagated error depends on the 
choice of procedure, as long as the procedure is stable. Before drawing any 
conclusions from this expression we should know a little more about the nature 
of T* and T. If T* and T are to be O(h p) for the same p, it is known that in 
general p cannot exceed k -t- 2, as long as the procedure is requii~d to be stable. 
On the other hand, there is a wide choice of stable methods for which p = k + 2. 
Since it is obviously desirable to have p large, we will assume tha t  p = k ÷ 2. 
Then 

T* = R*h ~+2 + O(h k+3) and T =  Rh k+2 + O(hk+3), 

where R* depends on the choice of a~*, and R depends on the choice of a~. 
Let us suppose tha t  these expressions for T* and T are substituted into (9). 

Then the propagated error is expressed in terms of the coefficients in the pre- 
dietor-correetor formulas, along with h, g and m, as well as the number of steps 
n. We have already refe~wed to an earlier paper [2] which was concerned with 
the special ease obtained by letting m --> co. There the emphasis was on trying 
to choose stable procedures which minimized the factor R / ~  b~. In the more 
general context of this paper it is more important  to consider first the relative 
importance of the contributions from the eorrector and the predictor. 

We need consider only those situations in which T* and T are more important 
than r* and r, respectively. Otherwise we would consider a larger value of h. 
(This shows very dearly in the experimental results described in Section 3.) 

We now show that  it is then best to have m = 1 in (9). Note tha t  the effect 
of a larger value of m is to reduce the contribution, in (9), of the predictor, i.e. 
of the term containing T*. On the other hand, according to our assumption 
about f being complicated, it costs as much to increase the number of iterations 
as it does to decrease h by the same factor. There are two possibilities, and in 
either case it is better to reduce h than to increase m The first possibility is that 
hg~] b~ is so small tha t  the term containing T dominates. The effect of increasing 
m is then negligible. In this case the extra cost involved in increasing m is not 
worthwhile, and m = i is best. The second possibility is tha t  the term containing 
T* dominates. The effect of m iterations is, approximately, to reduce this term 
by the factor 0 ~-~. For the same cost, one can keep m = 1 but change h so that 
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this term is instead reduced by the factor m -k-~. (The term containing T is 
Mso reduced, but by a factor m-k-1.) Of course m cannot be very large, for then 
T would dominate and the situation of the first possibility would result. Also, 
0 c:mnot be -very small, for then h g ~  b~ would also probably be small, and 
again the first possibility would result. Thus, when T* dominates, we have 
only to consider m not very large and 0 not very small. Then 0 "-~ will in general 
be greater than m -k-2, and it is better to reduce h than it is to increase m. (A 
typical example in practice is one where 0 = .1, m = 2 and k = 4. Here 0 "~-~ = 
.1 and m -~-2 < .02, and it is preferable to use m = 1, with h replaced by h/2.) 

We conclude tha t  for a given cost and for given predictor-corrector formulas, 
the smallest value of (9) will be obtained with m = 1. This means that  the most 
efficient predictor-corrector procedures will be those involving only a single 
evaluation and a single correction per step, a t  least as long as the stability re- 
quirement is satisfied. 

Stability is determined by the zeros of (8), but we have been unable to derive 
from (8) any worthwhile indication of the way in which stability might be 
affected by changing m. A detailed s tudy of some special cases has been given 
recently by Chase [1] along with results for some related procedures. But  for 
the general case considered here we have to depend on experimental evidence 
to determine whether or not additional iterations can be justified in terms of 
the improvement in stability they  might bring. Such evidence is described in 
the next section, along with the evidence for determining which formulas to use. 

Before concluding this section we should mention that  we have also investi- 
gated procedures which finish each step with an evaluation rather than a corree- 
tion. (They can be denoted by  PE(CE) ~, with m = 0, 1, 2, . . . . )  They are 
not of interest when f is complicated, but  they could be in other contexts. Their 
error equations are simpler, and so is their fundamental polynomial, which 
turns out to be 

C(s) + 0 " ~  (a~ - a~* + Oak + hg(b~ -- b~* + Ob~*))s k-~. (10) 

Because (10) is simpler than (8), it is possible tha t  one could derive something 
worthwhile from (10) about the way stability might be affected by changing 
m with this other class of procedures. 

3. Experimental Results 
For the experimental side of our investigation we first selected the predictor- 

corrector procedures which were to be tested. We decided to test procedures 
using formulas of the Adams type. These formulas are defined by taking a~* = 
a~ = 1, but otherwise a~* = a~ = 0, and then "matching coefficients" in (2) 
and (3) to obtain the hi* and bi • The resulting formulas have T* = O(h ~+2) and 

T =  O(hk+2). 
We tested procedures for k = 1, 2, . . .  , 8, and for each value of k we tried 

m = 1 , 2 , 3 , 4 .  
We decided to consider only formulas of the Adams type because we believe 
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tha t  other fornmlas cannot be significantly better, at least as long as we insist 
on eonsidering only genera l-pt~,rpose procedures, as we do in this paper. Our 
belief is based primarily on the results of an earlier paper r,), [~1, where a representa. 
rive collection of eorreetor formulas was tested for each value of t: up to k = 8. 
For each value of ~, the smallest error observed was rarely less than about a fifth 
of the error observed with Adams' formula. In exceptional cases the smallest 
error was better  than this by  another factor of about  10, but  these cases were 
always associated with methods which were in other cases unstable. For ex- 
ample, Newton-Cotes formulas are especially good when g > 0 (and i: is even), 
but  they are unstable when g < 0. Thus they cannot be used for general-purp0se 
procedures. 

For a given value of/c we therefore cannot, in general, find a eon'eetor for. 
mula which is very much bet ter  than the Adams formula. Moreover,  the Adams 
formula of step-number k -Jr- 1 or k "-k 2 was usually bet ter  than  the best f0r- 
mula of step-number to. 

On the basis of these results for eorreetor formulas, we decided to use only 
the predictor and eorrector formulas of the Adams type. tn  any  event we be- 
lieved that  these formulas were at  least adequate,  in the sense tha t  the results 
obtained with them would be representative of what  we could expect with dif. 
ferent values of k and different values of m. 

We tried each procedure on a total  of 17 different differential equations. With 
each equation we used the procedure associated with each pair of values of/~ 
and m, with h = 2 -~, 2 -~, - . -  , 2 -7. Each run was from ~ = 0 to t = 40. At 
t -- 10, 20, 30, 40 the maximum error observed in the preceding interval of 
length 10 was shown. Additional runs were made for intermediate values of h to 
provide more detail in some of the resulting graphs. In each case the true solu- 
tion was used to provide the starting values. 

We describe in detail the results for one problem which was representative 
of most of the others. We then refer more briefly to the results for the other 
problems, especially to those which showed the greatest variations from the 
first one. 

The first problem is defined by 

(A), x' = - x  --b 10 sin 3t, with the solution x = sin 3t - 3 ces 3t, 

and we consider results obtained for the interval 0 < t __< 40. 
Figure 1 is typical of the curves we shall be considering. I t  shows the rela- 

tionship between accuracy and cost when the Adams procedure with k = 4 and 
m = 1 is used on problem (A). The curve is dot ted in the instability region be- 
cause it is only a bound for the error in this region; not surprisingly, we often 
found errors which were quite unpredictable in the small region of transition 
between stability and overflow. The curve also behaves as one would expect in 
the region of stability in tha t  it at  first decreases as h decreases, but  eventually 
increases as h decreases still further. These latter changes show first the influence 
of truncation error, and then of roundoff error. 

The curve of Figure I appears again in Figure 2, where it is compared with the 
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Fig. 4). 
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FIG, 11. P~oblem (K), ~sing m = 2 .  Much better than ~tsi~g 
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curves  for  p rocedures  us ing the  same  fo rmulas  bu t  wi th  different  numbers  of 
i terat ions.  I t  is clear t h a t  m = 1 is bes t  as long as the  cor responding  procedure 
is stable,  as  was expected.  However ,  m = 2 is bes t  in a small  region where the 
procedure  for  m = 1 is uns tab le ;  the  s tep-size h and  the  er ror  a re  bo th  relatively 

large in th is  region. 
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The better stability associated with m = 2, compared to m = 1, is even more 
pronounced with larger values of k. This is illustrated in Figure 3, where the cor- 
responding results are given for/c = 5. 

I a  none of the examples tried was m = 3 or m = 4 superior to m = 2. We 
were left with having to decide between m = 1 and m = 2. To make such a de- 
cision we compared all the curves for m = 1 (k = 1, 2, - - .  8) with the corre- 
sponding curves for m = 2. 

Figure 4 gives the curves obtained for problem (A) when m = 1, while Figure 
5 gives the results when m = 2. The best tha t  one can do with m = 1 is repre- 
sented in Figure 4 by the lower left edge of the collection of curves shown there, 
while the best one Ban do with m = 2 is represented by the corresponding edge 
of the curves shown in Figure 5. 

The edge for m = 2 is slightly better than the edge for m = 1, over the range 
of error that  would be of interest. On the basis of this comparison we would there- 
fore choose m = 2 in preference to rn = 1. Moreover, there is an additional ad- 
vantage with m = 2 which appears here, as well as in the later examples. I t  is 
clear that  the best value of k in each case depends on the error, and will increase 
i[' we make the accuracy requirements more stringent. However, the best value 
of/c is more sensitive to the accuracy requirement when m = 1 than when m = 2. 
[n practice it would be very difficult to choose the appropriate value of k when 
m = ~, but  when m = 2 a single value of k gives a method whose results are 
~early as good as those along the critical edge. A value of 6 or 7 for k will do 
almost as well as the best, over practically all of the range of error which would 
ordinarily be considered tolerable. 

Three other problems were much like 
They were 

(B) x '  = - x  + 2 s in  t, w i t h  x = s in  

(C) x r = x + 2 s i n t ,  w i t h x  = - s i n  

(D)  x '  = - 3 x  + 10 s i n  t, w i t h  x = 3 

problem (A), leading to similar results. 

t --  COS t~ 

t --  cos  t, 

s i n t - -  c o s t .  

In the remaining problems we found some in which m = 1 was slightly better 
than m = 2, others in which the two were about equally good, and one in which 
m = 2 was much better. We offer very briefly some examples which illustrate 
these possibilities. They will turn out to be sufficiently consistent that  quite 

definite conclusions can be drawn from them. 
In the following three problems, m = 1 was slightly better than m = 2. 

(E)  x '  = x cos  t, w i t h  x = e x p ( s i n  t) ,  

(F)  x '  = x cos~t, w i t h  x = exp(½t + -~ s in  2t) ,  

(G) x '  = (x - s in  t) l o g 0  + t /40)  + cos  t, w i t h  x = s i n  t. 

Figures 6 and 7 give the results for problem (E) ,  with the interval 0 < t =< 40. 
In the following three problems, the two values of m were about equally good. 

(H)  x '  = x ( x  - s in  t) + cos  t, w i t h  x = s in  t, 

( I)  x '  = x ( x  - s in  20 + s in  2t, w i t h  x = s in  ~t, 

(J)  :c' = - t x / ( 4 t  + 16), w i t h  x = (t + 4 )exp  ( - t / 4 ) .  
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Figures 8 and 9 give tile results for problem (It),  with the interval 0 < t ~ 40. 
In one problem the results for m = 2 were much better than those for m = 1. 

The problem is the following: 

(K)  a< = --.r  3, w i t h  :r = (2t + 2) -1/~. 

The results a~  presented in Figures l0 and 11, for the interval 0 < t =< 40. 
The results of the remaining six problems were almost completely dominated 

by roundoff, and so no useful comparison could be made. To obtain useful results 
with such problems it would be necessary to try larger values of h, over longer 
intervals. The following problems were of this type: 

(L)  :~:' = z / 4 ,  w i t h  z = e x p  ( t / 4 )  

(M)  x '  = x - 2 t / x ,  w i t h x  = (2t + 1) ~/2 

( N )  x '  = x / 4 0 ,  w i t h  x = e x p  ( t / 40 )  

( 0 )  x ~ = z ~, w i t h  x = (40.01 - t) -~ 

(P)  a '  = z ~ j ~ , w i t h x  = (5 + t /2)  2 

(Q) x '  = (1 + x ~ ) / 2 ( 2 5 0 0 -  t2) ~ n , w i t h x  = ((50 + t ) / ( 5 0  - t ) )  ~/~. 

Before considering the conclusions to be drawn from these results we would 
like to remark on two special features which occasionally appeared. One was a 
dip in the curve which sometimes occurred immediately to the right of where 
instability had caused overflow. We attributed this to a change of sign, at that 
point, in the error of largest magnitude. The other speciaI feature was a dip ill 
the curve to a point below the "roundoff line" which sometimes appeared be- 
tween the truncation region and the roundoff region. (A mild example of this 
appears on the curve for ]c = 3 in Figure 7.) We attributed this to the bias which 
existed in the rounding procedures, which could in turn cause the round0ff 
error to favor one sign, so that the accumulated effect of roundoff could tend to 
compensate for the effect of truncation error, when the latter was of opposite 
sign and when both errors were of about the same magnitude. 

4. Condusions 

Our purpose has been to study the efficiency of predict~or-eorrector proce- 
dures with a view to deciding which procedures should be used in practice. 

We have considered the total number of evaluations of f, and hence m/h, to 
be a measure of the cost, and this corresponds to the ease where f is fairly com- 
plicated. We have also restricted our interest to procedures which ca:n be general- 
purpose, and this has led us to consider only those of the Ads.ms type. 

We have concentrated our attention on the relationship between accuracy and 
cost, and we have been concerned with how this relationship depends on the 
procedure being used, that  is, on the step-number k and the number of itera- 
tions m. 

We have observed that  two effects take place when k is increased. One is 
that the truncation region is lowered. Unfortunately this desirable effect is at 
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least, partially offset by tile other one, which is that  the region of instability 
moves to the right. 

On the other hand, opposite effects take place when m is increased while k 
is held fixed. The t runcat ion region is raised, and the instability region is moved 
to the left. Our theory had led us to expect the first of these effects, but  we had 
beer1 unable to decide theoretieMly about  the second. 

Experimental  results are needed to determine the net effect of all these com- 
peting factors. The  results for quite a variety of different differential equations 
are consistent enough that  we are able to draw some definite conclusions. 

One conclusion is tha t  m = 2 is best. On the average it seems to be slightly 
better than  m = 1, while m = 3 and m = 4 are not worth considering. More- 
over, with m = 2 there is a t  least one value of k which will do well over most of 
the error range tha t  is of interest, whereas with m = 1 different values of k 
would have to be determined for different parts of that  range. 

One other advantage of m = 2 compared to m = 1 is that  one is able, with 
m = 2, to obtain a measure of the size of g at  each step in the calculation. This 
means that  one is able to have automatic  stability eontrol during the course of a 
calculation, as well as the usual automatic error control. This possibility has al- 
ready been considered by Nordsieek [3], who has considered in great detail a 
procedure corresponding to the Adams procedure with k = 5 and m = 2. 

In  summary,  it appears tha t  the best predictor-eorreetor procedures, at  least 
for general purposes, assuming f is fairly complicated, are those which involve two 
evaluations of f and two applications of the eorrector formula per step. Such 
procedures are at  least as accurate as any others on the average, and moreover 
they have additional advantages in the ease with which one can choose the 

step-number k and monitor the stability. I t  appears tha t  tile extra iteration is 

needed for the sake of stability. 

On the other hand, it also appears tha t  relatively large values of k are needed 
to provide sufficient accuracy. In our examples, both of the values k = 6 and 

= 7 were good over adequately wide ranges of error. Of course, in practice 
these procedures should be used only with both  error and stability eontroh 
Stability control would be espeeiMly necessary in view of the high step-numbers 
involved. 
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