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. Introduction

In deciding which of the many possible predictor-corrector procedures should
be used in practice, one is mainly concerned with choosing the predictor for-
mula, the corrector formula, the step-size and the rule for iterating with the cor-
rector formula. One would like to make these choices in such a way that the re-
quired caleulation ean be earried to within some prescribed accuracy, at mini-
muin cost.

The purpose of this paper is to present a study of how the relationship be-
tween accuracy and cost depends on the choiee of predictor-corrector formulas
and on the iteration rule.

We assume that the differential equations being considered are fairly com-
plicated. The cost will then be proportional to the number of evaluations per
step multiphed by the total number of steps. By an evaluation we mean an
evaluation of the function f{¢, =) that appears in the initial-value problem being
considered, nanely, in

g = J(t, z), #(t) = Zo. (1)

In Section 2 some theoretical results are obtained which serve mainly to indi-
cate that the best procedures will involve only one evaluation of f and one appli-
cation of the corrector formula per step, unless extra iterations are needed to
make the procedure stable.

In Section 3 experiments are described for determining whether or not extra
tterations are needed. We use 1, 2, 3 and 4 Herations with each of a representa-
tive set of predictor and corrector formulas. We use each method with a range
of different step-sizes and with a fairly wide variety of differential equations.

Conelusions are given in detail in Section 4. Of eourse, we do not expect one
particular method to be best in every situation. However, it turns out that only a
very few methods are consistently good. Each involves a second iteration per
step, which appears to be needed for stability, and each has a high step-number,
which is needed for accuracy. We recommend particularly the predictor and
corrector formulas of the Adams type, with truncation errors which are propor-
tional to A3 or k8, where # is the step-size. At each step there should be two evalu-
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ations of the function and two applications of the corrector formula. The step.
size 1ust be chosen according to eertain accuracy and stability eriteria whic
depend on the differential equation being solved.

It should be emphasized that our conclusions are based on the &5sUmption
that 7(t, z) is relatively complicated, so that the cost depends only on the total
number of evaluations. We also consider only general-purpose procedures, and
we therefore rule out auy procedures which are applicable only in restricted
circumstances,

2. Theorefical Results

We write the predictor formula as

k k41 “ 7
®
Yn :!é y yn -7 + ;7"; b.\' yn-_a' 1 (2)
and the corrector formula as
k 5
Ya :é Qilin—i + h; b,fy;_i . (3)

The corrector formula contains the term hboyn', whereas there can, of cours,
be no corresponding term hbe’y, in the predictor formula. Tustead, we have
included the extra term hbr 1y;f,.:4 in the predictor. This will be convenient
later when we will want the predictor and corrector formulas to have truncation
errors of the same degree. Meanwhile we will drop the limits from the summa-
tion signg and understand them to be as given in (2) and (3], unless otherwise
specifically noted.

A prediclor-corrector procedure consists in first using (2) to “predict” an
approximation to z, = 2(t.), next using 7({, ) to evaluate an approximation
to z,, and then using (3) to “correct”; one can then evaluate again, correct
again, and so on until one decides to move on from ¢, to t,41 . Since we are as-
suming f to he complicated, the cost of correcting is negligible and we therefore
finish with an application of the corrector before moving to the next value of &,
In an obvious notation we can denote the procedure, for & particular pair of
predictor-corrector formulas, by P(EC)™, where the number of iterations i
m= 1, 2, 3, -+ . We assume that m is the same for each step.

We want to study the way in which the relationship between accuracy and
cost depends on the choice of predictor-corrector formulas and on the choice
of m. To this end we first derive an expression for the propagated error, which
will indicate how this error depends on the various factors involved.

Truncation errors and roundoff errors are defined in the following way. T, A
the truncation error in the predictor formula, is defined by

Tn = P Tnei + hy b+ 1,5 (4)
while T, , the truncation error in the corrector formula, is defined by

Tn =2 aXnei + b ban_; + Ty . (5)
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et z,.; denote the rounded result obtained from the jth application of the
corvector formula at £, , and let 2y, ; = [{L, , z,.;). It is convenient to let 2, o de-
note the rounded result obtained from the predictor at ¢, . Then r,*, the roundoff
error in the predictor, is defined by

Enp = Z afi*Zn—-{,m '"I"' hz bi*z;wf.m—l - T'n*) (6)
while 7,4 , the roundoff error in the jth application of the corrector, is defined by
Bu.z = 2 Qineiym + BBl oy R by = Tui - (7

<540

Denote the propagated error by e, = &n — Zn.m, und define g through the
egquation f{(¢, #) ~ f({ ) = g(u — v), so that g can usually be taken to be some
value of df/9x.

The error eguabions are obtained by subtracting (6) from (4), and each of
equations {7} from (5). Of course these equations eannot be solved for e, .
However, we would like to obtain an expression which approximates e, , at
least to the extent that it indicates how e. depends on the various factors in-
volved in the procedure.

The argument is tedious but straightforward. First, substitute the constants
7  p, 7%, T, and g into the error equations in place of the corresponding variable
quantities. The error equations then bevowe m-+1 linear difference equations
with constant coeficients. (The m~+1 unknowns are z, — #,,;forj = 0,1 -+,
7, but we are interested only in the propagated error, which is the unknown
corresponding to 7 = m.)

The sohitions of these difference equations depend on the zeros of a certain
polvnomial. As m — <, the polynomial becomes C'(s) = & =2 (@i + hgbi)s*,
which is associated with the corrector alone. Even this special case is quite
difficult, but it has received some study, for example in [2]. The polynoinials
of practical interest are those associated with correctors having 7' = O(k*), as
b — 0, for moderately large p. (Later we consider p = & -+ 2.} One zero of

7(s) is then exp (hg) -+ O(k”), while the other k—1 extraneous zeros will cause
instability unless their magnitudes are less than 1, or less than ¢, depending
on whether the stability is requuired to be absolute or relative.

When m is not large the polynomial is more complicated. It turns out to be

SOs) + 07 H O 2 (b — b+ b5t

L0
. . L, 8
+ hg( X b X (e — @t o+ 007 A hy(bs = b7+ 8b.*))s" Y,
i

where we have put 8 = hgbo . As m — =, k roots of this polynomial will ap-
proach 0. The other & roots will approach the roots of the preceding polynomial,
one heing associated with exp (hg), while the others are associated with. the
extraneous roots.

Taler on we will return to questions regarding the stability of these predictor-
corrector procedures. For the present, Jet us assume that they are stable. We
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also neglect the effect of starting errors. We then obtain the following expressigy
for the propagated error.
. = { r+ T (1 B L —0) ha Y 1;1-*)
" g 2o L fm
m“i(] - H)l [

+ T {)—1_.“__"5?an (8" — 1} 4 [small terms},

(9)

where 8 is the zero of (8) which approaches exp (hg) + O(L") as m — o
Thus, for large m, &" = exp (g(tx — f)). (We have assumed 0 3£ 1, by,
for convergence of the iterations, we in fact must assume mueh more, namely
that [ 0] < 1.)

The expression in (9) indicates how the propagated error depends on the
choice of procedure, as long as the procedure is stable. Belore drawing any
conclusions from this expression we should know a little more about the nature
of T* and T. If T* and T are to be O(A*) for the same p, it is known that iy
general p cannot exceed k + 2, as long as the procedure is required to be stable.
On the other hand, there is a wide choice of stable methods for which p = £ + 2,
Since it 1s obviously desirable to have p large, we will agsume that p = &k } 2,
Then

T = RV 4+ 0(F*™) and T = Rp*™ + 0(*™),

where R* depends on the ehoice of a.*, and & depends on the choice of a; .

Let us suppose that these expressions for 7 and T are substituted into (9).
Then the propagated error is expressed in terms of the coefficients in the pre-
dictor-corrector formulas, along with k, g and m, as well as the number of steps
n. We have already referred to an earlier paper [2] which was concerned with
the special case obtained by letting m — . There the emphasis was on trying
to choose stable procedures which minimized the factor R/ Y. b;. In the more
general context of this paper it is more important to congider first the relative
importance of the contributions from the eorrector and the predictor.

We need consider only those situations in which 7" and T are more important
than " and r, respectively. Otherwise we would consider a larger value of h.
(This shows very clearly in the experimental results deseribed in Section 3.)

We now show that it is then best to have m = 1 in (9). Note that the effect
of a larger value of m is to reduce the contribution, in (9), of the predictor, ie.
of the term containing 7. On the other hand, according to our assumption
about f heing complicated, it costs as much to increase the number of iterations
as 1t does to decrease b by the same factor. There are two possibilities, and in
elther case it is better to reduce k than to increase m The first possibility is that
hgz ;18 s0 small that the term containing 7 dominates. The effect of increasing
m is then negligible. In this case the extra cost involved in increasing m is not
worthwhile, and m = 1 is best. The second possibility is that the term containing
T™ dominates. The effect of m iterations is, approximately, to reduce this term
by the factor 6. For the same cost, one can keep m = 1 but change b so that
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this term is instead reduced by the faetor m e (The term containing T is
also reduced, but by a factor ™.} Of course m cannot be very laree, for then
7 would dominate and the situation of the first posaihility would result. Also,
0 cannot be very small, for then hgz &; would also probably be small, and
again the first possibility would result. Thus, when T* dominates, we have
only to consider w not very large and 4 not very small. Then ™ will in generul
he greator than m_H, and it is better to reduce & than it 1s to increase m. (A
tvpical example in practice is one where ¢ = .1, m = 2and k = 4. Here P =
1 and m ™ < .02, and it is preferable to use m = 1, with & replaced by 7/2.)

We conclude that for a given cost and for given predictor-corrector formulas,
the amallest value of (9) will be obtained with m = 1. This means that the most
efficient predictor-corrector procedures will be those involving only a single
evaluation and a single correction per step, at least as long as the stability re-
quirement is satisfied.

Stability is determined by the zeros of (8), but we have been unable to derive
from (8) any worthwhile indication of the way in which stability might be
sffected by changing m. A detailed study of some special cases has been given
recently by Chase [1] along with results for some related procedures. But for
the general case considered here we have to depend on experimental evidence
to determine whether or not additional iterations ean be justified in terms of
the improvement in stability they might bring. Such evidence is described in
the next section, along with the evidence for determining which formulas to use.

Before concluding this seetion we should mention that we have also investi-
gated procedures which finish each step wilh an evaluation rather than a correc-
tion. (They can be denoted by PE(CE)", with m = 0, 1, 2, ---.) They are
not of interest when f is complicated, but they could be in other contexts. Their
error cquations are simpler, and so is their fundamental polynomial, which
turns out to be

C(s) 4+ a“}; (a; — a* + ba; + hg(b; — b* + b)) (10)
£

Because (10) is simpler than (8), it is possible that one could derive something
worthwhile from (10) about the way stability might be affected by changing
m with this other class of procedurcs.

3. HExperimental Results

For the experimental side of our investigation we first selected the predictor-
corrector procedures which were to be tested. We decided to test procedures
using formulas of the Adamns type. These formulas are defined by taking a;* =
a; = 1, but otherwise a." = a; = 0, and then “matching cocfficients’ in (2)
and (3) to obtain the b;* and b; . The resulting formulas have T* = O(h***) and
T = Q).

We tested procedures for k = 1,2, .-+, 8, and for each value of k we tried
m= 1,23, 4.

We decided to consider only formulas of the Adams type because we believe
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that other formulas eannot be significantly better, at least as long as we jugy
on considering only general-purpose procedures, as we do I this paper, Qg
belief is based primarily on the results of an earlier paper [2], wheve 2 represen,
tive collection of corrector formulas was tested for each valuc of bup to k = g
Tor each value of &, the smallest error observed was rarcly less than about g ffy,
of the error observed with Adams’ formula. In exeeptional cases the smalleg
error was better than this by another factor of about 10, but these caseg Werg
always associated with methods which were in obher cases unstable. For ey
ample, Newton-Cotes formulas are especially good when g> 0 (and k is even),
but they are unstable when ¢ < 0. Thus they cannot be used {or general-purpoge
procedures.

For o given value of & we therefore cannot, in genersl, find o corrector for
mula which is very much better than the Adams formula. Moreover, the Adams
formula of step-number £ 4 1 or £ + 2 was usually better than the besi for-
mula of step-number k.

On the basis of these results for corrector formulas, we decided to use only
the predictor and corrector formulas of the Adams type. In any event we be.
Heved that these formulas were at least adequate, in the sense that the resus
obtained with them would be representative of what we could expeet with dif.
ferent values of & and different values of m.

We tried each procedure on a total of 17 different differential equations. With
each equation we used the procedure associated with each pair of values of &
and m, with h = 277, 277 ... ., 277, Bach run was from { = 0 to t = 40, At
t = 10, 20, 30, 40 the maximum crror observed in the preceding interval of
length 10 was shown. Additional runs were made for intermediate values of b to
provide more detail in some of the resulting graphs. In each case the true sohi-
tion was used to provide the starting values.

We describe in detail the results for one problem which was representative
of most of the others. We then refer more briefly to the results for the other
problems, espeeially to those which showed the greatest variations from the
first one.

The first problem is defined by

(A), 2’ = —x 4- 10 sin 3¢, with the solution & = sin 3! — 3 ees 3¢,

and we consider results obtained for the interval 0 < ¢ < 40.

Figure 1 is typical of the curves we shall be considering. It shows the rels-
tionship between accuracy and cost when the Adams procedure with # = 4 and
m = 1 is used on problem (A). The curve is dotted in the instability region be-
cause it is only a bound for the error in this region; not surprisingly, we ofien
found errors which were quite unpredictable in the small region of transition
between stability and overflow. The curve alzo behaves as ane would expect i
the region of stability in that it at first decreases as & decreases, but eventually
increases as k decreases still further. These latter changes show first the influence
of truncation error, and then of roundoff error.

The curve of Figure 1 appears again in Figure 2, where it is com pared with the
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curves far procedures using the same formulas but with different numbers of
iterations. Tt is clear that m = 1 is best as long as the corresponding procedure
is stable, as was expected. However, m = 2 is best in a small region where the
procedure for m = 1 is unstable; the step-size A and the error are both relatively
large in this region.
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The betier stubility associated with m = 2, compared to m = 1, is even more
pronounced with larger values of k. This is illustrated in Figure 3, where the eor-
responding results are given for k = 5.

Tn none of the examples tried was m = 3 or m = 4 superior to m = 2. We
were left with having to decide between m = 1 and m = 2. To make such a de-
cizion we compared all the curves form = 1 (k = 1, 2, - -+ 8) with the corre-
sponding curves for m = 2.

Figure 4 gives the eurves obtained for problem (A} when m = 1, while Figure
5 gives the results when m = 2. The best that one can do with m = 1 is repre-
sented in Figure 4 by the Iower left edge of the eollection of curves shown there,
while the best one can do with m = 2 is represented by the corresponding edge
of the curves shown in Figure 5.

The edge for m = 2 is slightly better than the edge for m = 1, over the range
of error that would be of interest. On the bagis of this comparison we would there-
fore choose m = 2 in preference to m = 1. Moreover, there is an additional ad-
vantage wilh m = 2 wlich appears here, as well as in the later examples. 1f is
clear that the best value of % in each case depends on the error, and will increase
it we make the accuraey requirements more stringent. However, the best value
of I is more sensitive to the aceuracy requirement when m = 1 than when m = 2.
In practice it would be very difficult to choose the appropriate value of £ when
m = 1, but when m = 2 a single value of k gives a methed whose results are
nearly as good as those along the critical edge. A value of 6 or 7 for k will do
simost as well as the best, over practically all of the range of error which would
ordinarily be considered tolerable.

Three other problems were much like problem (A), leading to similar results.
They were

B} &' = —x + 2sin ¢, withz = sin ¢t — cos ¢,
() o' =z + 2sind, withz = —sin ¢ — cos {,
M) ' = —3z -+ 10sin{, with z = 3 sin £ — cos L.

Tn the remaining problems we found some in which m = 1 was slightly better
than 7 = 2, others in which the two were about equally good, and one in which
m = 2 was much better. We offer very briefly some examples which illustrate
these possibilities. They will turn out to be sufliciently consistent that quite
definite conclusions can be drawn from them.

Tn the following three problems, m = 1 was slightly better than m = 2.

() ' = z cos{, with v = exp{sin §),
(F) z’ = z cos¥H, with x = exp(3t + § sin 2¢),
(@) &' = (z — sin £ log(1 + ¢/40) + cos ¢, with z = sin &

i

Figures 6 and 7 give the results for problem (E), with the interval 0 < ¢ = 40.
In the following three problems, the two values of m were about equally good.
() z' = a(z — sini) + cost, withz = sind,
(M ' = alz — sin %) + sin 2, with # = sin %,

(N ' = —tx/(4L + 16), with £ = (¢ -+ dexp (—1/1).



300 T, B, HULL AND A. L. CREEMBLR

Figures 8 and ¥ give the results for problem (H), with she interval 0 <4 < 4
I'n one problem the results for m = 2 were much betler than those for m = |,
The problem i the following:
(1) 28 = =3, with e = {2 4+ 2777
The results are presented in Figures 10 and 11, for the mberval 0 <1 < 40,
The results of the remaining six problems were almost eompletely dorainated
by roundoff, and so no useful eomparison could be made. To obtain usetul results
with such problems it would be necessary to try larger values of 4. over longe
intervals. The following problems were of this fype:
(I3 2’ = z/4, with x = exp {{/4)
) 2’ = — 2t/x, with & = (2 -} 17
(N} & = «/40, with a2 = exp ({/40)
) 2’ = z%, withz = (4001 — )™
(Py ' = 2% withz = (5 + 1/2)?
Q) & = 4+ 2%/2(2300 — M, with 2 = ((50 + /(50 — I SLEER

i

Before considering the conclusions to be drawn from these results we would
like to remark on two special features which oceasionally appeared. One wasa
dip in the curve which sometimes oceurred immediately to the right of where
instability had caused overflow. We attributed this to 4 change of sign, at that
point, in the error of largest magnitude. The other special feature was a dip in
the curve to & point below the “roundoff line” which sometimes appeared be-
tween the truneation region and the roundoff region. (A mild example of this
appears on the ewrve for & = 3 in Figure 7.) We attributed this to the bias which
existed in the rounding procedures, which could in turn eause the roundof
error to favor one sign, so that the accumulated effect of roundoff could tend to
compensate for the effect of truncation error, when the latter was of opposite
sign and when both exrors were of about the same magnitude.

4. Conchlusions

Our purpose has been to study the efficieney of predietor-corrector proce-
dures with a view to deciding which procedures should be used in practice.

We have considered the total number of evaluations of f, and hence m/h, to
be a measure of the cost, and this eorresponds to the case where [ is fairly com-
plicated. We have also restricted our interest to procedures which can be general-
purpose, and this has led us to consider only those of the Adams type.

We have concentrated our attention on the relationship between accuracy and
cost, and we have been coneerned with how this relationship depends on the
procedure being used, that is, on the step-nurmber & and the number of iterd-
tions m.

We have observed that two effects take place when k is increased. One 3
that the truncation region is lowered. Unfortunately this desirable effect is st
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least partially offset by the other one, which is that the region of instability
moves to the right.

On the other hand, opposite cffects take place when m is inereased while k
is held fixed. The truncation region is raised, and the instahbility region is moved
to the left. Gur theory had led us to expect the first of these effects, but we had
been unable to decide theoretically about the seeond.

Fixperimental results are needed to determine the net effect of all these com-
peting factors. The results for guite a variety of diffevent differential equations
are consistent enough that we arc able to draw some definite conclusions.

One conclugion iz that m = 2 is best. On the average it seems to be slightly
better than m = 1, while m = 3 and m = 4 are not worth considering. More-
over, with m = 2 there is al least one value of £ which will do well aver most of
the error range that is of interest, whereas with m = 1 different values of %
would have to be determined for different parts of that range.

Oue other advantage of m = 2 compared to m = 1 is that one Is able, with
m = 2, to obtaln a measure of the size of g at each step in the caleulation. This
means that one is able to have automatic stability control during the course of a
caleulation, as well as the usual automatic error control. This possibility has al-
ready been considered by Nordsieck [3], who has considered in great detail a
procedure corresponding to the Adams procedure with & = 5 and m = 2,

In summary, it appears that the best predictor-corrector procedures, at Jeast
for general purposes, assuming / is fairly complicated, are those which involve two
evaluations of f and two applications of the corrector formula per step. Such
procedures are at least as accurate us any others on the average, and moreover
they have additional advantages in the ease with which one can choose the
step-number k and monitor the stability. It appears that lhe extra ileration is
peeded for the sake of stability.

Omn the other hand, it also appears that relatively large values of & ave needed
{0 provide sufficient accuracy. In our examples, both of the values & = 6 and
L = T were good over adequately wide ranges of error. Of course, in practice
these provedures should be used only with both error and stability control.
Stability contrel would be especially necessary in view of the high step-numbers
mvolved.
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