
A Computatio:na] Approach to GrammaLical Coding of
English Words*

SHELDON KLEIN AND ROBEt~T F. SIMMONS

System Development Corporation, Santa Monica, California

Abstract. As a firs l~ step in many computer language processing systems, each word in a
natural language sentence must be coded as to its form-class or part of speech. This paper
describes a computational grammar coder which has been completely programmed and is
oper~tional on Lhe IBM 7090. It is part of a complete syntactic annlysis system for which it
accomplishes word-class coding, using a computational approach rather than the usual
method of dictionary lookup. The resulting system is completely contained in less
than 1~,000 computer words. It processes running English text on the IBM 7090 at a rate of
more than 1250 words per minute. Since the system is not dependent on large dictionaries,
it operates on any ordinary English text. In preliminary experiments with scientific text,
the system correctly and unambiguously coded over 90 percent of the words in two samples
of scientific writing. A fair proportion of the remaining ambiguity can be removed at higher
levels of synvactic analysis, but the problem of structural ambiguity in natural languages is
seen to be a critical one in the development of practical language processing systems.

1. Introduction

1.1. Introd~wtion to the System. Thepurposeofthis paper is to presenta system
for the mechanical coding of English words according to grammatical classes.
The computational grammar coder described is the first component in a syntactic
analysis program which is part of a larger question-answering system called prot0-
synthex [8]. The total parsing system referred to in [8] performs a phrase structure
analysis of English. This system is checked out on the IBM 7090 and is being
translated onto the l°hilco 2000 and the AN/FSQ-32.

It will be seen that the use of this computational grammar coder (hereafter
referred to as CGC) can be considered as an alternative to the use of a verylarge
dictionary and that it can also serve as a context analyzer which eliminates many
ambiguities of word classes arising from the consideration of words in isolation.

The usual automated method for obtaining word grammar codes (parts of
speech) for vocabularies as large as those in ordinary scientific text has been to
use tables in the form of dictionaries containing word code information for 25,000
to 75,000 words. Large dictionaries of this type are actual or anticipated components
in the natural language processing systems of such researchers as Zellig Harris [3],
Sydney Lamb [4], Anthony Oettinger [6] and Victor Yngve [9]. I Robert Lindsay's
SAD SA:~i system uses the dictionary approach but with vocabulary limited to the
800 words of basic English [5]. (It should be noted here that the CGC system
does not rely on the method of transformations.)

The purpose of this paper is to describe and illustrate an alternate approach,
the computation of grammar codes. In addition to furnishing results theoretically

* Received March, 1962; revised November, 1962.
i One outstanding exception is the work of G. Salton and R. W. Thorpe [7].

334

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321172.321180&domain=pdf&date_stamp=1963-07-01

COMPUTATIONAL APPROACH TO CODING OF ENGLISH 335

interesting as an exercise in morphotaetics, the primary advantage of computa-
tion is that it avoids the labor of constructing a very large dictionary and permits
a system to encode words it has never before encountered.

Tile CGC actually uses a mixed approach. It does use some dictionaries and
tables. These, however, contain a relatively small number of English words (total
under 2000). In addition, they contain grammar environment recognition data
in the form of structural formulas. The system can encode words not in its dic-
tionaries because English, like all natural languages, is highly structured. Given
a small amount of grammar code infolznation plus the ability to recognize sig-
nificant contextual features, the CGC program can deduce additional structure.

Compactness is another important feature of the CGC system. I t makes use
of approximately 10,000 IBM 7090 machine words for its tables and 3300 machine
words for its running program. 2 Accordingly, it operates entirely in 7090 core
storage (32K) and leaves half of core available for other systems. The CGC
tags words in an English text (e.g. Encyclopedia Americana) at a rate of more
than 1250 words per minute. The parsing system in which it is used promises to
run much faster than systems using dictionaries that must be stored on tapes.

Also of importance is tile fact that the grammatical analysis made by the CGC
can be changed without modifying the running program, since most changes need
be made only in dictionary and table entries. This modification feature suggests
that the CGC could be used in a variety of English language processing systems.

1.2 General Remarks about Grammar. Knowledge about the grammatical
structure of a written English text is usually essential for its manipulation in an
information-processing system. The pre-storage of grammatical information by
tagging elements in a text can be viewed as encoding. The extent of such gram-
matical coding is dependent upon the needs of particular information-processing
systems. But there may be a necessary minimum of grammatical analysis re-
quired for any language-processing system, including those used in information
retrieval and machine translation. Without grammatical analysis, the number of
programmed rules neeessary for processing textual material might become un-
manageable. However, the number of rules can be kept relatively small because
languages have structures.

A given body of written language text is not a random collection of symbols.
The forms present., whether they be letters or graphemes, words or morphemes,
co-occur in a restricted set of arrangements. Consider the English sentence
He might been going. The restrictions of individual word co-occurrence
permit only the appearance of have in the blank position. Other distribution re-
strictions limit the substitution in blanked-out positions to a large number of
words, as in The is on the table, and John a fish.

Distribution restrictions can define classes of words. The sets of single words
which might occur in the last two example sentences are members of classes
usually labelled NOUN and VERB. Other grammatical classes such as ADJECTIVE,
ADVERB, etc., can be similarly analyzed.

Extending the size of substitution items to include permissible occurrences of

2 The CGC was wr i t ten using JovI&L, an ALGOL type language.

336 SHELDON KLEIN AND ROt~ERT F. SIMMONS

strings of words permits the definition of more complex classes. For example,
it, The book, and The big red book appear as members of the same distribution
class in such contexts as is on the table.

After identifying the class membership of the individual words in phrases it is
possible to determine phrase-distribution classes in terms of these class units.
Thus, one mode of analysis might decide that each of the class sequences, NOUX,
ARTICLE NOUN, and ARTICLE ADJECTIVE NOUN, are members of a more complex
class called NOUN PHRASE. Additional analysis could yield other phrase-type
classifications.

The analysis of phrase classes permits the discovery of additional facts of co.
occurrence restriction in terms of the phrase units themselves. Additional classes
of a more complex type, the units of which are permissible strings of phrases, can
then be defined. These classes might be labelled SUBJECT or PREDICATE.

Many linguists view these classes as a hierarchy of levels in which the distribu-
tionally defined classes of one level form the membership units of the distribution
classes of the next higher level.

Tagging sentences in a computer-stored written English text with grammatical
information permits a variety of data manipulations with a minimum of pro-
grammed rules. For instance, some of the rules necessary for translating a
sentence such as The red book is on the table into another language need be formu-
lated only in terms of general classes, e.g. subject and predicate; noun phrase,
verb phrase, verb modifying phrase; adjective, article, noun, verb, and preposi-
tion.

2. Grammar Codes and Computational Tests

For the purpose of the grammar coder, a word is defined as that which occurs
between two blanks in a written text. Most punctuation marks are treated as
words.

The number of grammatical classes in English depends on one's analysis.
Ultimately, each word belongs to its own unique class. The CGC recognizes 30
classes of words (see Table 1). The system is designed to permit the recognition of
several hundred word classes with only trivial modification of table format
accomplished with little programming effort. Class membership is assigned on
the basis of form, of structural function, and/or of distribution. The names of
the classes are arbitrary.

For the purpose of easy communication the class names have been made similar
to many used in conventional normative grammars. A label such as NOUN is
only mnemonic. The CGC may tag words at certain times in such a fashion as
to appear to contradict the grammar rules the reader may have learned from
conventional grammars. Because the analysis may be one of function, a form
normally considered an adjective, for example, will occasionally be tagged
NOUN because it functions as a noun; for example, red is tagged NOUN in He
chooses the red. A word is classified solely on the basis of function only when the
Context Frame Test (Section 2.6) is the only test yielding information about

Label used in
ComPuter Oz~tpu~

ADJ

ADV

NOUN

VERB

VERB IS
AXV

ART
CONJC

CONJR
CONJRO

CONJR2

PREP

PREP 0

PREP 1

PREP OF
PN

PN S

PN O

PN-S/O

PN-POS
PN DEM

TABLE 1.

Full Name

Adjective

Adverb

Noun

Verb

The verb to be
Auxiliary verb

Article
Coordinating con-
junction

Dependency markers

General preposition
class

General pronoun class

Personal nominative
pronoun
Personal objective
pronoun
Nominative objective
pronoun
Possessive pronoun
Demonstrative pro-
noun

WORD CLASSES

Exam1~les and Comments

The customary usage of the term: noun modi-
fiers including certain, red, careful, etc. Also
included temporarily are quantifiers: numbers
and words such as many, some, no.
Words ending in -ly plus such forms as never,
too, also, likewise, etc.
The customary usage of the term; also occa-
sional functional equivalents as red in He chose
the red.
All verbs except the types classified in the fol-
lowing. The distinction between transitive and
intransitive is made on the basis of syntactic
context by the proto-synthex grammar machine,
which utilizes the CGC.
is, was, be, etc.
All auxiliary verbs that may not also function
as verbs, e.g. must.
the, a, an.
and, or, nor.

but is the only member at the present time.
Those conjunctions which are not members of
the other conjunction classes. Temporarily,
little use has been made of this class. Forms
which belong to it have been assigned to class
CON JR2.
because, lest, since, unless, etc. Also such forms
as whereas, whether, while, which may be re-
classified CONJRO.
This code is used only in the context frame test
(Section 2.6). No words in running text receive
this tag. If a context frame for a particular
preposition class environment is not in the
proper table, the system uses the general rule
coded PREP.
Those prepositions not included in the other
classes.
One member, to. The proto-synthex grammar
machine programs which operate after the CGC
determine if an occurred to is part of an infini-
tive.
One member, of.
This code is used only in the context frame test.
See analogous remarks about P R E P .
I , we, he, they, she, etc.

me, us, him, them, her, etc.

it , yOU.

ray, our, his, their, your.
these, those, this, etc.

337

33~ SHELDON KLEIN AND I~OBERT F. SIMMONS

TABLE 1, (Cont.)

Lab~ used in
Computer Output Full Name

PN REL Relative pronoun
PN iND Indefinite reference

pronoun
PN RCN Relative conjunction

pronoun

V/AXV Verb/auxiliary verb

• TYPE Period-type punctua-
tion

, TYPE Comma-type punctua-
tion

/ED/ Forms with -ed suffix
/ING/ Forms with -ing suffix
/HAVE/

Exa~iples a~td Comtnenls

that.
everypIaee, someplace, everybody, nopIace, no-
where, anywhere, etc.
Those relative conjunctions which can function
as pronouns in questions. One reason for the
creation of this class is that the CGC is used in
a question-answering machine, who, which,
what, where, why, etc.
Those auxiliary verbs which also function as
verbs: can, does, did, etc. have is not included.

: (Temporary)

, ; -- (Temporary)

finished, broken, but not speed.
running, eating, but not swing.

MISCmLLAN~O~JS CODING. When possible, nouns, verbs, and pronouns are tagged for
number. Nouns ending in 's or s' are tagged as possessives, also. At the present time, the
system makes no note of gender.

it. In other cases, such as beautiful in He chooses the beaut~ftd, the word may be
tagged an adjective. Suffix Test 2 (Section 2.5) makes this analysis because of
the ending -ful.

The words in each sentence are put through a ba t te ry of independent tests,
each of which yields unique or ambiguous code possibilities (see Figure 1).
Because the tests are independent, the outputs of each are logically multiplied;
the final resulting code is the set of codes all the tests yielded in cmmmon. Such
results are usually unique. For example, one test might indicate tha t a word is
either a noun or a verb, and another test tha t it is a verb or ~n adjective. The
only code common to both test outputs is w~r~B.

In general, when a test pros, ides no information the system assumes that all
of the choices NOUN, VERB, ADJECTIVE, are permitted. This prevents the zeroing
out of valid data in logical multiplications. I t also permits the system to provide
some coding for every word. In cases where tests yield incompatible codes,
perhaps from an error in a dictionary entry, the CGC prints the tag No~.
Errors indicated by this tag are corrected between runnings of the system.

2.1. Dictionaries. Conceptually, the system makes use of ~ single restricted
dictionarry of English words and their grammar codes. The actual program uses
several smaller English dictionaries (see flow chart, I;igure 1). One of these is
function-word dictionary, containing articles, prepositions, pronouns, conjunc-
tions, auxiliary verbs, adverbs not ending in -ly, the various forms of the verb
to be, und the variar~ts of have. This dictionary contains u~lder 400 words, and
all of its entries have unique grammar codes. There is a separate listing of
uniquely coded punctuation marks. The system treats these like function-words.

Finally, there are two separate content word dictionaries containing those

COMPUTATIONAL APPROACH TO CODING OF ENGLISH 339

I INPUT

CDMPUTATIONAL GRAMMAR CODER

FUNCTION WORD
NUMERAL, OR

NON -INITIAL CAPITAL

CODE
NOUN/ADJ.

ADD CODE TO
CONTEXT TRIAD

FRAME

UNIQUE
CODE

SUFFIX TEST 1

b~DE~UE
~ - - ~ I C A L
| MULTIPLI-

k CATION

, NON-UNIQUE

SUFFIX TEST 2 I ~ ODE

t NON-UNIQUE (coo,
LOGICAL
MULTIPLI-
CATION_ /

, ~ , NON-UNIQUE
/ INCREM~T '\CODE
(NON-UNIQoU~ COUNTER)

~ONTEXT ~° ~,M V

EXIT

]

i
r a , , , , ,

INDEX
FACTOR IN
DICTIONARY

COMPLETE
TRIADIC.
INDEX

FACTOR ?

CONTEXT /
FRAME
TEST

I NDEX FACTOR
NOT IN
DICTIONARY

_!

LOGICAL)
MULTIPLY
OUTPUTS &

ENCODE

FIG. 1

nouns, verbs and adjectives that are exceptions to the computational rules used
in Suffix Test 1 and Suffix Test 2. The total number of words in both of these is
under 1500. The codes associated with the content word exceptions are only
occasionally unique.

3 ~ SHELDON KLEIN AND ROBERT F. SIMMONS

2.2. Capitalization Test. The input to the CGC system is essentially un-
edited keypunched text. Certain modifications are made, however, e.g. special
marks indicate paragraphs, and a plus sign is prefixed to words beginning with a
capital letter. The Capitalization Test tags non-sentence initial-capitalized
words as NOUN/ADJECTIVE ambiguities.

2.3. Numeral Test. Sequences of one or more arabic numerals are tagged
ABJECWtVE. All numbers could have been treated as a separate class in themselves.
Because the CGC can recognize only arabic numerals as numbers, it was decided
to code word-classes for them in the same manner as is done for other English

words.

2.4. S u ~ x Test 1. The primary function of this test is to extract information
from the presence of plural-type endings. With certain exceptions, a word end-
ing in -s, -es, or -ies is either a plural noun or a third person singular verb. Other
endings tested for here include -i, -urn, -is, -as, all indicating noun singular;
-us, -ss, indicating noun singular or third person plural verb or adjective; -ae,
noun plural; and -a indicating a noun of unknown number. Words ending in
-ing or -ed are assigned to classes with the names //INn/ and //ED/. MOSt excep-
tions to these rules are in a content-word exception dict ionary (e.g. swing,
speed, and strum).

Some of the exceptions to the -es rule are computed. -es occurs as a plural-type
ending in preference to -s or -ies only after written-English representations of
spirants. Accordingly, a segmented -es is t reated as an exception if not imme-
diately presceded by s-, z-, h-, or x-.

Forms ending in -s, -es, and -ies are subject to additional special treatment:
Suffix Test 1 sends the uninflected form to Suffix Test 2 (see section 2.5), which
tests primarily for derivational endings. For example, Suffix Tes t 1 will recog-
nize nationalities as a plural noun and a third person singular verb. I t will then
strip the word of its -ies suffix and add -y. Suffix Test 2 will receive nationality
and code it uniquely as a NOUN because of its -ity ending. The system also re-
tains the Suffix Test 1 information tha t it is a plural form. For other words, such
as babies, Suffix Test 2 can provide no additional information.

2.5. Su~x Test 2. Many of the suffixes utilized in this test are not normally
recognizible as such. The sole purpose of this test is to extract whatever grammar
code information is present in the last one to five letters of an English word.
The last five letters of a word are checked against a list of suffixes, t hen the last
four, three, etc. The following is an extract from the list of suffixes ending in the
letter -l. The list is alphabetized in reverse order.

l-, NOUN/VERB ladna-, NOUN
Ia-, ADJECTIVE le-, NOUN/VERB
laa-, NOUN li-, NOUN/VERB
labm-, NOUN luf-, ADJECTIVE

The few words whose grammar codes are exceptions to those rules are listed in
a content word exception dictionary.

2.6. Context Frame Test. This test is different from the others in that it

C O M P U T A T I O N A L A P P R O A C H T O C O D I N G O F E N G L I S H 341

iiii!!;

operates on units larger than a single word. The test is called for whenever the
CGC system has discovered a string consisting of two uniquely coded words
bracketing one or more ambiguously coded forms. Such a string permits the use
of a triadic index factor composed of:

(1) the numerical representation of the grammar code of the left uniquely
coded word,

(2) the number of non-uniquely coded words,
(3) the numerical representation of the grammar code of the right uniquely

coded word.
For example:

A R T I C L E A D J E C T I V E N O U N V E R B

V E R B A D J E C T I V E

(uniquely coded) (non-uniquely coded) (uniquely coded)
3. 2. 4.

This value is used in a binary search of a context triad frame table containing
information about the permissible sequences of codes that may fit between the
unique codes. Thus the table entry for "3.2A" contains the three sequences that
may fit between article and verb:

A D J E C T I V E - - N O U N N O U N - - A D V E R B N O U N - - N O U N

Enough information exists in this example to determine a unique code for each
word. The computation is complex. The logical multiplication of test values is
first carried out for one word at a time, as between the outputs of other tests.
However, when a context frame test code is found in a disjunction (not common
to the outputs of both tests), its sequential partner is also eliminated as a choice.

In this example, previous tests may have resulted in:
A~JECTIVE NOUN
V E R B A D J E C T I V E

with four possible sequences implied.
The context frame test yielded three sequences:

A D J E C T I V E - - N O U N

N O U N - A D V E R B

N O U N - - N O U N

Logical multiplication of the sets of left-hand codes eliminates both NOUN choices
in the results of the context frame test:

ADJECTIVE - - NOUN
. . . . - - A D V E R B

. . . . - N O U N

But since these were members of sequences, the elimination of the corresponding
right-hand codes is implied. The only remaining sequence is then ADJECTIVE-
N O U N . ,:

The context triad frame table contains approximately 500 entries. The maxi-
mum number of ambiguously coded words in a sequence that it can handle is three.
This means that if the middle component of the index is greater than three, no
information will be contained in the table.

The table entries do not handle all possible cases, even within the bounds of

342 S H E L D O N K L E I N AND R O B E R T F. SIMMONS

this limitation. The maximum possible number of eases (including ones which
never occur in written English) would, be the number of grammar codes recog-
nized, multiplied by the maximum number of ambiguously coded words in a
sequence the system can handle, multiplied by the number of grammar codes
recognized, i.e. 30 X 3 X 30 = 2700. Nevertheless, only about 500 appear with
any great frequency in English text.

The entries actually in the table were empirically derived by hand analysis
of a sample of Golden Book Encyclopedia text. When the number of entries
appeared to account for approximately 90 per cent of the encountered text, it
was decided to automate the process of additional entry derivation.

The CGC system now prints triadic index factors called for by analysis of
text but not found in the table. Missing entries may be added after each run of
the program. In the particular experiments run, the context frame test was used
at least once per sentence. The need for this test is diminished in text whose
vocabulary is rich in words with derivational suffixes.

3. Formal Description of the System

, The preceding discussion has been devoted to the description of the operators
or tests used by the CGC system. The flow chart in Figure 1 shows their inter-
relations in the operating program. The more formal description presented in
this section s shows that the basis for computing grammar codes for the words in a
sentence is one of successively reducing the number of combinatorial choices of
word-class codes. At early levels in the system the operators reduce the choice
from thirty codes pe r word to four or fewer (see sections 2.1 through 2.5). At the
level of the triad frame test, the system operates to reduce the number of per-
missible combinations of codes for strings of words bounded by words with single
codes. The bounding always occurs since the beginning and ending of a sentence
must always be uniquely coded in the system. The net result of all tests is to
minimize the number of codes applied to each word in the sentence.

For the sake of simplicity, the following formalization applies to an idealiza-
tion of the CGC which will be called coder. The coder operates on units not larger
than a sentence. It assumes that the system of grammar tables and dictionaries
are complete. (Although this assumption is not strictly true for~the operating
program, the system feeds back error messages which lead eventually toward
achieving the truth of the condition.)

De~fnition. A coder system is a 5-tuple

S = (~, {w,}l =<i__< r ,D, {gl}l =< i_-< 5, T

which has the following properties:
(i) ~ is a finite, nonempty set (the basic alphabet)

(ii) (w~} 1 _< i ~ r is a finite sequence of ~-words 4

3 We are indebted to Seymour Ginsburg, of the System Development Corporation, for the
formalization presented here.

4 Given a finite nonempty set ~, a ~-word is any finite string or sequence of given sym-
bols from 2~.

COMPUTATIONAL APPROACH TO CODING OF ENGLISH 343

(iii) D is a finite, nonempty set (of "grammar codes")
(iv) Each gi is a mapping of {w]/1 ~ j ~ r} into N(D), N(D) being the

family of all nonerapty subsets of D such that for each E-word w~

g(w ~) = (]l(w c)Ng,2(w ~)rlg~(w ~)flg4(w ~)flgs(w~:)

is nonempty
(v) #[g(wl)] = #[g(wr)] = 15

(vi) T is a function which yields for every triple (A, B,]c)--A and B being
non empty subsets of D, k being a positive integer--a set of k-tuples
(Xl , . . . , x~), each Xm in D.

For each coder system S we now define a function "Ys from a certain subset of
he first r integers to the family of all subsets of D.

(a) Let i be an integer for which #[g(wi)] = 1. Define ~'s(i) to be g(u,i).
(/~) Suppose that i is an integer for which ~[g(w~)] > 1 and #[g(wi-0] = 1.

Let j + 1 be the smallest integer greater than i such tha t #[q(w~+~)] = 1.
the integer j exists since #[g(w,)] = 1. Let

F(i) = T(g(w~_~), g(w~+~), j - i + ~)n[g(w~) x g(wi+~) x . . . x g(w~)].~

Define "ys(i) to be the set {x~/there exists some tuple (x~, . - . , x/_i+~) in F(i)}.
('g) 7s(i) is undefined for those i occurring in neither (a) nor (/3).

[n the preceding description:
1. g~ refers to the i th test as described in sections 2.1 through 2.5.
2. T represents the Context Frame Test as described in section 2.6.
3. g(w~) represents the results of the intersection of the outputs of the
tests described in section 2.1 through 2.5., i.e.

g(w~) = g~(wdNg2(wdnga(w~)ng~(wdNgs(wd.

4. Condition (v) in the preceding, #[g(vh)] = #[g(w~)] = 1, refers to the
fact tha t the first and last elements in a sentence always have only one
grammar code; these elements are the markers of the beginning and end~of
of the sentence.
5. T(g(w~_O, g(wj+1), j - i + l) represents the j - i + l - t u p l e s of permissible
grammar codes as derived from the Context Triad Frame; where g(wj+~)
is the right unique code, and j - i + l is the number of non-uniquely coded
words in the middle.
6. g(wi) X g(w~+~) X "" • X g(w~) represents the cartesian product of the
grammar codes obtained for words 1 through j iust before the application of
the Context Frame Test; i.e. the j - i - t - l - t up le s of permissible grammar
codes as described in sections 2.1 through 2.5.
7. ~s(i) represents the grammar codesof the i th word ina sentence after
the application of the tests described in sections 2.1 through 2.6.

5 Given a set A, by $ (A) is meant the number of elements in A.
6 Given sets A~, -.., A,~, by AtX... MA,~ is meant the set {x~, ... x~)/x~ in A~ for each i}.

344 SHELDON KLEIN AND ROBERT F. SIMMONS

4.0 Empirical Testing of the System

As described above, the CGC system was developed empirically by tile hand
analysis of the simple text found in a child's encyclopedia. When it was run on
several pages f rom tha t encyclopedia, it correctly and unambiguously tagged
slightly over 90 per cent of the words• Forty-five per cent of all words were
uniquely tagged by the function word dictionary. The remaining 45 per cent owe
their unique tags to the application of more than one tes t .Almost all of such
words received unique tags as a result of the intersection of ambiguous codes
which were outputs of suffix tests and the context f rame test. Of the remainder,
3 to 4 per cent were outright errors. Almost all of the ambiguous tagging and
errors were due to mis takes tha t had been made in dict ionary entries, context
tr iad frames, or the lack of appropriate context t r iad frames for particular situ-
ations. A few of the ambiguities are removed by higher level syntact ic analysis
accomplished by other parts of the parsing system. However, a certain amount of
ambigui ty is inherent in any analysis of English tha t ignores meaning, and the
presence of such ambigui ty forces the analysis of multiple tree structures.

Analysis of the operation of the system indicated tha t in some senses the
scientific text was actually easier to analyze than the child's encyclopedia.

TABLE 2. ANALYSIS OF Scientific American TEXT

Word Class Number

Considering / ING/
that PN REL
returning / ING/
space NOUN SING
vehicles NOUN PLU
will AXV
be VERB IS
entering / ING/
the ART
air NOUN SING
almost ADV
as CON JR2
fast ADJ
as CON JR2
meteors NOUN PLU
do V/AUX

, TYPE J

the ART
feasibility NOUN SING
of PREP OF
atmospheric ADJ
deceleration NOUN SING
is VERB IS SING
by PREP O
no ADJ
means VERB SING
obvious ADJ

Word Class N,t~mber

at PREP 0
first ADJ
glance NOUN/VERB SING/PLU

• TYPE
Meteors NOUN PLU
are VERB IS PLU
slowed /ED/
by PREP O
the ART
atmosphere NOUN/ADJ SING
, , TYPE
but CON JR
at PREP O
rates NOUN PLU
far ADJ
beyond PREP
the ART
tolerance NOUN SING
of PREP OF
any ADJ
human ADJ
occupant ADJ/NOUN /PLU
of PREP OF
a ART
space NOUN SING
vehicle NOUN SING

• TYPE.

COMPUTATIONAL APPI~OACH TO CODING OF ENGLISH 345

Although scientific sentences were longer and more complex, the high frequency
of auxiliary verbs and of words with recognizible suffixes actually tended to
improve the operation of the CCC. Original fears that sequences of four or more
unidentified parts of speech would occur with great frequency were not sub-
st~ntiated in fact.

Table 2 shows the results for tagging a small segment of the Scientific American
text. Table shows the same for a segment for the Encyclopedia Americana. The
sentences chosen are fairly typical in that they include the most frequent errors
that the system makes. They are neither particularly easy nor difficult sentences
ia terms of the CGC operation.

In the second column, third word of Table 2, the system tagged glance as
either a noun or a verb. This ambiguity can only be removed at ahigherlevel
in the grammar machine after the system recognizes the dependent phrase. Six
words from the bottom of the second column in Table 2, another type of
ambiguity occurs. In this case, the word occupant in the phrase of any human
occupant, is tagged ambiguously as an adjective or a noun. This is an unnecessary
ambiguity, since the frame adjective prep. of can contain only a noun or
a verb. Consequently a change in the context triad frame dictionary will eliminate
this type of inadequacy in the system. (The output of Suffix Test 2 precluded the
verb choice in this example.) A change in the context triad frame dictionary will
also correct the mistake made in the coding of means in column] of Table 2.

Similarly, in the examples shown in Table 3, some of the ambiguities and errors
can be removed by minor changes in dictionary entries. But as indicated earlier,
some are truly ambiguous grammatical constructions whose ambiguity can only
be resolved at higher levels of syntactic and even semantic analysis. At the present
stage of development, the system contains many unnecessary ambiguities, but
continued running on large samples of text will bring these to light and result
in corrections and improvements. At the early stage in a rapidly improving de-
velopmental system a complete statistical analysis of errors and ambiguities
has not been considered worthwhile. However, as the system reaches a plateau
where improvements are not so obvious, such detailed analyses will be made and
the output of the CGC will be compared with the output of a dictionary lookup
for each word in the text. This comparison will show to what extent the tagging
of words in context eliminates form-class ambiguities as tagged in the dictionary.

Even from these early findings in running the CGC system on scientific text,
we have observed that it is accurate enough to form a satisfactory first module
in our syntactic analysis system. The syntactic analyzer of which it is a sub-
system has been programmed and checked out. This higher level syntactic
analysis system has been constructed to work with the types of codes and
ambiguities natural to the CGC. In addition, at the phrase and clause level of
analysis, several routines are available to resolve certain types of noun-verb or
noun-adjective ambiguity.

We are aware, particularly from the work done by Oettinger [6], that there is a
great deal of ambiguity inherent in the grammatical structure of English sen-
tences. If only structural cues are used, much of this ambiguity probably cannot

346 SHELDON KLEIN AND ROBERT F. SIM~vIONS

TABLE 3.

Word Class Number

The ART
blue ADJ PLU
Whate ADJ/VERB/ SING

NOUN
has /HAVE/ SING
a ART
massive ADJ/NOUN /SING
head NOUN/VERB SING/PLU
and CONJC
broad ADJ
snout NOUN SING

, TYPE

and CONJC
the ART
body ADJ/NOUN /SING
tapers NOUN/VERB PLU/SING
gradually ADV
to PREP 1
the ART
flukes NOUN PLU

• TYPE
The ART
dorsal ADJ
fin NOUN SING
is VERB IS SING
faleate NOUN SING
and CONJC
less ADJ
than CON JR2
a ART

ANALYSIS OF Encyclopedia Amer icana TEXT

Word Class Number

foot NOUN SING
long ADJ

, TYPE
and CONJC
is VERB IS SING
situated /ED/
at PREP 0
a ART

point NOUN SING
a ART
little ADJ
more ADJ
than CON JR2
three-fourths NO UN PLU
the ART
distance NOUN SING
from PREP 0
the ART
top NOUN SING
of PREP OF
the ART
snout NOUN SING
to PREP 1
the ART
notch NOUN SING
of PREP OF
the ART
flukes NOUN PLU

• TYPE

be removed. The eventual solution for practical language systems may have to
wait on the development of techniques for using semantic cues for eliminating
structural ambiguity• How serious the problem of ambiguity will be for any par-
ticular application of language processing still remains to be discovered. But
it is already apparent that syntactic ambiguity poses one of the most challenging
of research problems in computer analysis of natural language.

REFERENCES

1. ANDBEWS, R.C. Whale to whaling. Encyclopedia Americana 29 (1961), 231-234.
2. BECKER, J.V. Re-entry from space. Sci. Amer. 20~, (Jan. 1961), 52-57.
3. HAm~IS, Z.S. Computer syntactic analysis. Transformations and Discourse Analysis

Papers No. 15. Reports to the National Science Foundation, U. of Pennsylvania, Phila.
4. LAMB, S.M. Segmentation. Proceedings of the National Symposium on Machine Trans-

lation, 335-342. Prentice-Hall, Englewood Cliffs, N. J., 1961.
5. LINDSAY, R. K. The reading machine problem. Unpublished doctoral dissertation,

Carnegie Inst. Teeh., 1960.

C():?~PUTATIONAL APPROACH TO CODING OF ENGLISH 347

6. 0STTING~R, A. G. Automatic language translation. Harvard University Press, Cam-
bridge, IV[ass.~ 1960.

7. SA~TON, G. ; T~fORPE, R.W. An approach to the segmentation problem in speech analy-
sis and language translation. Paper, First Internat. Conf. Machine Translation of
Languages and Applied Language Analysis, Teddington, England, Sept. 1961.

8. SIMMONS, R. F., J~LEIN, S., AND McCoNLOGUE, I~EREN L. Toward the synthesis of hu-
man language behavior. Behav. Sci. (July 1962), 402--407.

9. YNGVE, V. H. The feasibility of machine searching of English texts. Proc. Internat.
Conf. Scientific Information, Washington, D. C., 1959, 975--995. Nat. Aead. Sciences-
Nat. Res. Council.

