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Abstract. The following results on the quotient of context-free languages (CFL) are 
shown: (1) It  is reeursively unsolvable to determine for arbitrary CFL whether the quo- 
tient of one by another is a CFL. (2) If either set is regular and the other is a CFL, then 
the quotient is a CFL. 

1. Introduction 

Among the operations under investigation by the S~inE Theory  of Informa- 
tion Handling Committee is tha t  of quotient. This paper sets forth some results 
about quotients of context-free languages (abbreviated CFL), i.e., quotients of 
components of ALGoL-like languages. These results, proved in Section 3, are the 
following: 

(1.1) I t  is recursively unsolvable to determine for arbi t rary CFL 
whether the quotient  of one by another is again a CFL. 

(1.2) If either set is regular and the other is a CFL, then the quotient is 
a CFL. 

2. Preliminaries 

Let ~ be a finite nonempty set, or alphabet, and le t  0(~) be the free semigroup 
with identi ty e generated by 2. (Thus 0(2;) is the set of all finite sequences, or 
words, of Z and e is the empty  sequence.) We shall be considering subsets of 
0(~). If  A and B are subsets of 0(~), then so is the product A B  = {ab/a in A, 

b in B}. 
A grammar G is a 4-tuple (V, P, ~, S),  where V is a finite set, ~ is a nonempty 

subset of V, S is an element of V-E, and P is a finite set of ordered pairs of the 
form ((, w) with ~ in V-N and w in O(V). P is called the set of production of G. 
An element (~, w) in P is denoted by ~ ~ w. If x and y are in O(V), then we 
write x ~ y if either x = y or there exists a sequence x = x l ,  x~, • • • , x,  = y 
(n > 1) of elements in O(V) with the following property:  For each i < n there 
exists a i ,  b~, ~ ,  w~ such that  x~ = a~ib~, x~+~ = a~w~b~ and ~ --~ w~. The language 
generated by  G, denoted by L(G),  is the set of words {w/S ~ w, w in 0(2)}. A 
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congexl-free language (over 2;) is a language L(G) generated by some grammar 

The concept of CFL was introduced by Chomsky [2] in his sgu(ly of natuN 
languages. Ig has sitice been showu that context-free languages are identical with 
the components in the "AL(~oLdike" artificial languages which arise in data 
processing [5]. As such, their properties ,'are currently being studied [(% 7, 11, 12]. 

A special kind of context-free language called a regular set has been inb0. 
duced [8] in connection u'ith the theory of automaf, a. We now present the relevant 
definitions of these concepts. A~t o uto??zago~ [10] is a 5-tuple A = (K, 22, 8, so, F), 
where 

(i) K is a finite nonempty set (called the set of 81ares) ; 
(ii) 2 is a finite nonempty set (ealled the set of inputs) ; 
(iii) a is a mapping from K X 2, into K (eMled the nex* a,ate .]h~nc~io~O; 
(iv) so is an element of K (eMled the s~a?'t s ta te) ;  
(v) F is a subset of K (called the set. of final states).  

Given such an automaton the next state function ~ can be extended to a mapping, 
also denoted by ~, from K X 0(2,) to K, inductively by 

a(O,e) = q for q i n K  

and 

a(g, I l L . . . .  Ik) = a(O(q, [~[e . . .  [k-~), IIe) for q in K, [~ in 2, k ~ 2. 

For an autoraaton A denote by  T(A)  the set {w/w in 0(~), O(so, w) in F}. k 
subset. R ~ 0(2) is said to be regular (or 2-regular when lbhere is a need to dis- 
{inguish 2)  if there is an automaton A = (K, ~, ~, so, F)  such that  R = T(A). 

I t  is known [3] that  every regular set is a CFL. Since a regular set is a language 
generated by a finite s ta te  device, it is sometimes called a fini/e ,~a~e la,wuage. 

The eoneept of quotient mentioned in the introduction is now defined. If X 
and Y are subsets of 0(2) ,  then the rggh* quotient of X and Y, denoted by X/Y, 
is the subset of 0(2)  defined by  X / Y  = {w/wy in X for some y in Y}. Similarly 
the left qz~otient Y \ X  = {w/yw in X for some y in Y}. We shall be concerned 
with the right quotient,  but  all the results have obvious analogues for the left 
quotient. The following e lementaw properties are easily verified using the 
definitions. 

(2.1) X / ( Y  O Z) = X / Y  U X / Z .  
(2.2) ( X  O Z ) / Y  = X / Y  O 2 / Y .  
(2,3) x / Y z  = ( x / z ) / Y .  
(2.4) ( X Z ) / Y  = X ( Z / Y )  U X / ( Y / Z ) .  
We are interested in the question of whether or not the quotient of one CFL 

by another is a CFL and discuss this in the next section. 

3. Results 

We now show that  it is recursively unsolvable to determine if the quotient of 
one CFL  by another is a CFL. First, we treat  the ease where one of the CFL is 
a regular set. 
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I t  is noted without proof in [4] tha t  if X and Y are both regular, then X~ Y is 
also regular. We have the following extension of that  result. 

(3.1) THEOREM. I f  X is regular and Y is arbitrary, then X / Y  is regular. 
PROOF. If Y is empty, then X / Y  is empty and thus regular. If Y is nonempty, 

let X = T ( A)  where A = (K, N, 8, So, F) .  Let  F0 = {q/q in K and 8(q, y) in 
F for some y in Y}. I t  is readily seen that  X / Y  = T(B) ,  where B = 
(K, E, 5, so, Fo). Thus X / Y  is regular. 

Next consider the case where Y is regular and X is a CFL. First we establish 
a preliminary lemma which shows that  any regular set can be defined by  an 
automaton in which the star t  state is not the next state of any state. 

(3.2) LEMMA. If A = (K,  E, 3, So, F) is an automaton, then there exists an 
t 

automaton A '  = ( K',  2, ~', so, F') such that T ( A ) = T ( A ' )  and ~' ( q, I) ~ so' for 
q in K '  and I in Z. 

PROOf. Let  so' be an element not in K and let K'  = K U  {So'}. DefineF'  C K t 
by 

[F U {So'} if So is in F. 
F '  ) 

IF  if so is not in F. 
/ ? 

For I in Z define 6 (So, I )  = 5(s0, I )  and ~'(q, I )  = ~(q, I )  if q is in K. Clearly 
t I 

A' = (K',  2, ~, So, F ' )  has the desired properties. 
(3.3) THEOREM. If X is a CFL and Y is regular, then X / Y  is a CFL. 
PROOf. If  e is in X, then X = (X - e) U e. Thus, by(2.2) ,  X / Y  = (X  - e ) /Y  

U e/Y.  Now e / Y  is either empty  or {e}. In  either case it  is a CFL. By [1, 5] 
it is known tha t  X -- e is also a CFL. Since the finite union of CFL is again a 
CFL [1], it suffices to show tha t  ( X  -- e ) / Y  is a CFL. Hence we need only prove 
the theory for the case where e is not in X. 

Let A = (K,  Z, 6, so, F)  be an automaton such that  T (A) Y and (by (3.2)) 
such tha t  3(q, I )  # So for q in K, I in ~. For  eaehq in F let Tq = {w/$(so, w) 
= q, w in 0(Z)}. Then Y is the finite union of the regular sets Tq and, by (2.1), 
X / Y  = U X / T q .  Since a finite union of CFL is a CFL, it suffices to show that  
X/Tq is a CFL. Hence we need only prove the theorem for regular sets Y of the 
form Y = T ( A )  where A = (K, Z, 8, So, {t}) (i.e., the set of final states Of A 
consists of the single element t) and ~(q, I )  # So for q in K, I in ~. 

If e is not in X, then there exists a grammar G = (V, P, ~, S) such that  
X = L(G) and P contains no production of the form } ~ e [1]. Let  Y = T ( A )  
where A = (K,  ~, 5, So, {t} ) and ~(q, I )  # So for q in K, I in Z. Consider the 
grammar G' = (V', P', Z, S')  where V' = E U (K X V X K ) ,  S' = (so, S, t), 
and P '  consists of the following productions: 

(1) (So, x, So) ~ x for each x in ~. 
(2) (q, x, q') -*  ~ if x is in Z and ~(q, x) = q'. 
(3) (q, x, q') ~ (q, y l ,  ql)(q~, y2, q2) "'" (q~-~, Y,~, q') if x ~ y~y2 "'" y~ is 

in P and q~, q2, • • • , q~-~ are in K: 
We shall prove that  X / Y  = L(G').  
(a) To show that  L(G') ~ X / Y  let w' be in L(G').  Then (so, S, t) ~ w.  

Since a production of type (3) commutes with one of type (1) or (2), the 



490 S E Y M O U t {  G I N S B E R G  A N D  E D W I N  I t .  S P A I N E R  

sequence of product. ions yielding (So, ~, t) :-:~ w' can be a r ranged  so tha t  all the 
p roduc t ions  of t y p e  (3) precede those of t ypes  ( ] )  arid (2) .  }lence we may as- 

sume t h a t  by  t y p e  (3) p roduc t ions  

( s o ,  ~ ,  t) ~ ( s o ,  y~ ,  ~ ) ( ~ ,  u~,  ~ )  .... ( ~ , ,  y~+~ ,  t) 

and by  t ypes  (1) and  (2)  p roduc t ions  

( so ,  y~ ,  q , ) ( q , ,  u~,  q~) " "  (q,,, ,  Y,~+~, t) : *  w'.  

Since (so, y~, q~) ( q~ , g~ , q2) " "  ( q,~ , Y~,~+~ , t) ~ w' b y  types  (1) and  (2), each 
y~ is in 2.  Sines every  t y p e  (3) p roduc t ion  corresponds  to  a p roduc t ion  of P, 
i t  follows t h a t  S m y~ . - .  y~+~ in G. T h u s  y~ . . .  y~,+I is in X.  Fur thermore ,  for 

each 1 N i N m + 1 ei ther  (qi-1,  Y~, q~) is such t h a t  q~-i = q~ = So or ~(q~_~, y~) 
= q,:. Let, j be the  largest  integer  such t h a t  qj = so • Because  5(q, I )  ¢ so for 
q in K,  I in E, i t  follows t h a t  ~(q~, y~+~) = q~+l ¢ So for i >= j .  Since w' is in 
0(2), we see t h a t  5(s0, ys+ly./+2 " "  ym+l) = t. T h u s  yj+l " ' "  y,,~+l is in Y and 

! ! 
w' = y~ "" • Yj • Since ,w y~+~ . .  • y,~+~ is in X,  w is in X / Y .  

(b)  To  show t h a t  X / Y  ~ L ( G ' )  let x~ . . .  xm be an  element, of X / Y .  Then 
there  exists y~ •. • y~ in Y such t h a t  x~ • - • x,,,y~ • • • y~ is in X.  Sines e is not in 
X,  e i ther  x~ . . .  :c,~ ¢ e or g~ . - -  y~ ¢ ~. t lrst  a ssume t h a t  ne i ther  is s. Since 
S ~ 0:~ • • • x,..y~ . .  • y,~ in G, we see t h a t  by  t y p e  (3) p roduc t ions  we have 

(~0, s ,  t) m (~0, ~ ,  qo) . . .  (qo, Zm, ~o)(q0, Y~, q~) " "  q~-~, Y~, t) 

where q~ is defined to be ~(q~_~, g~) for i => 1. App ly ing  type  (1) productions to 
(q0, ~ ,  q0) and  type  (2)  p roduc t ions  to (q~_~, y~, q~) we sea t h a t  S '  ~ xt . . .  Xm 

in G'. Therefore  x~ . . .  z,~ is in L ( G ' ) .  I f  x~ . . .  xm = e (or g~ . . .  y~ = ~), then 
the  above  a r g u m e n t  holds  except  t h a t  no p roduc t ions  of t y p e  (1) (or  type (2)) 
need be applied to  show t h a t  S '  ~ x~ . . .  x,~ in G'. I n  any  ease, X / Y  _~ L(G'), 

which completes  the proof.  
(3.1) and  (3.3) toge the r  establish (1.2).  W e  now prove  (1.1).  
(3.4) T ~ { ~ o ~ .  I t  is recursivdy unsolvable to deter'mine for arbit?'ary CFL, X 

and Y,  whether or not X ~  Y is a CFL.  
P~oo~.  Le t  E = {a, b, c}. For  each posi t ive integer  n let ~ = aV' (b n is defined 

. . ~ ( ~  • ,~,) m d u c t ~ v e l y b y  b = b,b ~+~ = b % f o r j  ~ 1). Fo r  every  n- tup le  w = , . "  

of non-e-words of O(a, b) let 

L(w) = {cw,:~ . . .  w ~ c ~  . . "  ~ / ] c  >= 1; 1 =< i l ,  " ' "  , i~ =< nn}. 

T h e n  L ( w )  is a C F L .  I n  fact ,  L ( w )  = L ( G )  where G = (2 U {~(1), ~(~)}, p ,  Z, ~(~)) 
, ~t ( I )  = and P consists  of the  p roduc t ions  ~(~) ~ w i, ~, for i ~ i =< n; #~) --~ w~cg for 

i =< i -~ n ;  and  ~(~)--> c~ (1). 
Let  y = (y~, " ' "  , y , )  and  z = (z~, - "  , z~) be a r b i t r a r y  n- tuples  of non-e 

words of O(a, b).  t t  is obvious  t h a t  L ( y ) / L ( z )  ei ther  consists of e or  is empty 
according as there  does or does no t  exist a sequence of integers  i~, . . -  , i~ such 
t h a t  yq  . . .  y{~ = z~ - . -  z{~. T he  existence of such a sequence of  integers is 

the wel l -known Pos t  Cor respondence  P rob l e m  and  is reeursively unsolvable [9]. 
Le t  L~ and L~ be a rb i t r a ry  C F L .  T h e n  L1L(y)  and  L~L(z)  are C F L  since the 
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product of C F L  is a CFL [1]. I t  is easily seen (either directly from the definition 
or by applying (2.1), (2.3), (2.4)) that  L1L(y ) /L2L( z )  is Li/L2 or empty ac- 
cording to whether L ( y ) / L ( z )  consists of e or is empty. In particular, if Lt/L2 is 
not a CFL, then L ~ L ( y ) / L 2 L ( z )  is a CFL if and only if there does not exist a 
sequence of integers i t ,  - - - ,  ik such that  Yil "'" Y~k = z~ . . .  zizo and so is re- 
cursively unsolvable. Therefore, to complete the proof it suffices to exhibit par- 
ticular CFL, Lt and L2, for which Lt/L2 is not a CFL. 

Consider the alphabet {a, b, c, d}. Let  1' = a, 2' = b, and 3' = c. For all 
words x l ,  x2, x3 in O(a, b, c), let 

L(x~ , x2, x3) = {x~ . . .  x~diJ  . . .  il'/Ic _>- 1; 1 =< i t ,  . . .  , ik =< 3}. 

Then L ( X l ,  x2, x3) is a CFL. In fact, L ( x l ,  x2, x~) = L ( H ) ,  where 
H = ([a, b, c, d, ~}, P n ,  {a, b, c, d}, ~) and Pn consists of the productions 

~ xi di' and ~ ----~ xi~i' for i = 1, 2, 3. 

Therefore Li = L (b  2, a ~, abc) and L~ = L(a ,  b, c) are CFL. We shall show that  
L1/L2 is not a CFL. 

Let  Z = L t / L ~ .  Each word z in Z is obtained from words zt in L~ and z2 in 
L~ satisfying zt = zz~. Since each word in L~ or L2 contains the letter d exactly 
once, the terminal subwords s ta~ing from d in z~ and in z2 are the same. If the 
word da (or db) is a subword of z~, then b2da (or a3db) occurs in z~ and ada 
(or bdb) occurs in z~. Ei ther  case contradicts the equation z~ = zz2. Thus the 
only letter which can occur immediately to the right of d in zt is c. Therefore zt 
must contain abcdc as a subword and z2 must contain cdc as a subword. Hence 
the shortest words which can occur as zt ,  z2 are abcdc and cdc. Thus ab is in Z. 
In zt we see tha t  cdc is preceded by b. Then any longer word for z2 must contain 
bcdcb, and the corresponding z~ must contain a3abcdcb. Therefore a 4 is in Z. This 
line of reasoning can be continued inductively to provide a means of enumerating 
all the elements of Z. We find that  Z consists of the sequence 

ab, a t, ben 3, b4a 2, b6a, b 8, a3b ~, a6b 6, " '" , a ~, " '"  

where to pass from one word x~ in the sequence to the next x~+t we use the fol- 

lowing rules: 
(i) I f  x~ = yia, then xi+t = b~y~. 
(ii) If  x~ = y~b, then x~+t = a'~y~. 

Thus a ~ is in Z if and only if n = 4.6 ~ for i ~ 0. Let  Z0 be the set obtained by 
replacing each occurrence of a by a and each occurrence of b by the empty set. 
Then Zo = {a~/n = 4"6 ~ for i ~ 0}. By [1] it  is known that  if Z is a CFL then 
so is Z0. But  a set of the form {a~/j in A} is a CFL if and only if A is ultimately 
periodic [5]. Since {4.6~/i ~ 0} is not ultimately periodic, Z0 is not a CFL so 
neither is Z. Thus the theorem is proved. 

In  conclusion we state the following open problem: 
A CF L  is said to be sequential [5] if the elements of V-% may be labeled 

Xl, • • • , x~, with x.  = S, so tha t  for each production x~ --~ ux~v in P, j ~ i. If 
X is a sequential CFL and Y is regular, is X / Y  sequential? 
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