

Quotients of Context-Free Languages*

SEYMOUR GINSBURG

System Development Corporation, Santa Monica, California

AND

EDWIN H. SPANIER

University of California, Los Angeles

Abstract. The following results on the quotient of context-free languages (CFL) are shown: (1) It is recursively unsolvable to determine for arbitrary CFL whether the quotient of one by another is a CFL. (2) If either set is regular and the other is a CFL, then the quotient is a CFL.

1. Introduction

Among the operations under investigation by the SHARE Theory of Information Handling Committee is that of quotient. This paper sets forth some results about quotients of context-free languages (abbreviated CFL), i.e., quotients of components of ALGOL-like languages. These results, proved in Section 3, are the following:

(1.1) It is recursively unsolvable to determine for arbitrary CFL whether the quotient of one by another is again a CFL.

(1.2) If either set is regular and the other is a CFL, then the quotient is a CFL.

2. Preliminaries

Let Σ be a finite nonempty set, or alphabet, and let $\theta(\Sigma)$ be the free semigroup with identity ϵ generated by Σ . (Thus $\theta(\Sigma)$ is the set of all finite sequences, or words, of Σ and ϵ is the empty sequence.) We shall be considering subsets of $\theta(\Sigma)$. If A and B are subsets of $\theta(\Sigma)$, then so is the *product* $AB = \{ab/a \text{ in } A, b \text{ in } B\}$.

A grammar G is a 4-tuple (V, P, Σ, S) , where V is a finite set, Σ is a nonempty subset of V, S is an element of V- Σ , and P is a finite set of ordered pairs of the form (ξ, w) with ξ in V- Σ and w in $\theta(V)$. P is called the set of production of G. An element (ξ, w) in P is denoted by $\xi \to w$. If x and y are in $\theta(V)$, then we write $x \Rightarrow y$ if either x = y or there exists a sequence $x = x_1, x_2, \cdots, x_n = y$ (n > 1) of elements in $\theta(V)$ with the following property: For each i < n there exists a_i, b_i, ξ_i, w_i such that $x_i = a_i \xi_i b_i, x_{i+1} = a_i w_i b_i$ and $\xi_i \to w_i$. The language generated by G, denoted by L(G), is the set of words $\{w/S \Rightarrow w, w \text{ in } \theta(\Sigma)\}$. A

* This work was sponsored in part by the Air Force Cambridge Research Laboratories, Office of Aerospace Research, under Contract AF 19(628)-485. context-free language (over Σ) is a language L(G) generated by some grammar $G = (V, P, \Sigma, S)$.

The concept of CFL was introduced by Chomsky [2] in his study of natural languages. It has since been shown that context-free languages are identical with the components in the "ALGOL-like" artificial languages which arise in data processing [5]. As such, their properties are currently being studied [6, 7, 11, 12].

A special kind of context-free language called a regular set has been introduced [8] in connection with the theory of automata. We now present the relevant definitions of these concepts. An *automaton* [10] is a 5-tuple $A = (K, \Sigma, \delta, s_0, F)$, where

(i) K is a finite nonempty set (called the set of *states*);

(ii) Σ is a finite nonempty set (called the set of *inputs*);

(iii) δ is a mapping from $K \times \Sigma$ into K (called the *next state function*);

(iv) s_0 is an element of K (called the *start* state);

(v) F is a subset of K (called the set of *final* states).

Given such an automaton the next state function δ can be extended to a mapping, also denoted by δ , from $K \times \theta(\Sigma)$ to K, inductively by

$$\delta(q, \epsilon) = q \quad \text{for} \quad q \text{ in } K$$

and

$$\delta(q, I_1I_2 \cdots I_k) = \delta(\delta(q, I_1I_2 \cdots I_{k-1}), I_k) \text{ for } q \text{ in } K, I_i \text{ in } \Sigma, k \ge 2.$$

For an automaton A denote by T(A) the set $\{w/w \text{ in } \theta(\Sigma), \delta(s_0, w) \text{ in } F\}$. A subset $R \subseteq \theta(\Sigma)$ is said to be *regular* (or Σ -*regular* when there is a need to distinguish Σ) if there is an automaton $A = (K, \Sigma, \delta, s_0, F)$ such that R = T(A).

It is known [3] that every regular set is a CFL. Since a regular set is a language generated by a finite state device, it is sometimes called a *finite state language*.

The concept of quotient mentioned in the introduction is now defined. If X and Y are subsets of $\theta(\Sigma)$, then the *right quotient* of X and Y, denoted by X/Y, is the subset of $\theta(\Sigma)$ defined by $X/Y = \{w/wy \text{ in } X \text{ for some } y \text{ in } Y\}$. Similarly the *left quotient* $Y \setminus X = \{w/yw \text{ in } X \text{ for some } y \text{ in } Y\}$. We shall be concerned with the right quotient, but all the results have obvious analogues for the left quotient. The following elementary properties are easily verified using the definitions.

 $(2.1) X/(Y \cup Z) = X/Y \cup X/Z.$

 $(2.2) (X \cup Z)/Y = X/Y \cup Z/Y.$

(2.3) X/YZ = (X/Z)/Y.

(2.4) $(XZ)/Y = X(Z/Y) \cup X/(Y/Z)$.

We are interested in the question of whether or not the quotient of one CFL by another is a CFL and discuss this in the next section.

3. Results

We now show that it is recursively unsolvable to determine if the quotient of one CFL by another is a CFL. First, we treat the case where one of the CFL is a regular set. It is noted without proof in [4] that if X and Y are both regular, then X/Y is also regular. We have the following extension of that result.

(3.1) THEOREM. If X is regular and Y is arbitrary, then X/Y is regular.

PROOF. If Y is empty, then X/Y is empty and thus regular. If Y is nonempty, let X = T(A) where $A = (K, \Sigma, \delta, s_0, F)$. Let $F_0 = \{q/q \text{ in } K \text{ and } \delta(q, y) \text{ in } F$ for some y in Y}. It is readily seen that X/Y = T(B), where $B = (K, \Sigma, \delta, s_0, F_0)$. Thus X/Y is regular.

Next consider the case where Y is regular and X is a CFL. First we establish a preliminary lemma which shows that any regular set can be defined by an automaton in which the start state is not the next state of any state.

(3.2) LEMMA. If $A = (K, \Sigma, \delta, s_0, F)$ is an automaton, then there exists an automaton $A' = (K', \Sigma, \delta', s_0', F')$ such that T(A) = T(A') and $\delta'(q, I) \neq s_0'$ for q in K' and I in Σ .

PROOF. Let s_0' be an element not in K and let $K' = K \cup \{s_0'\}$. Define $F' \subseteq K'$ by

$$F' = \begin{cases} F \cup \{s_0'\} \text{ if } s_0 \text{ is in } F. \\ F & \text{ if } s_0 \text{ is not in } F. \end{cases}$$

For I in Σ define $\delta'(s_0, I) = \delta(s_0, I)$ and $\delta'(q, I) = \delta(q, I)$ if q is in K. Clearly $A' = (K', \Sigma, \delta', s_0', F')$ has the desired properties.

(3.3) THEOREM. If X is a CFL and Y is regular, then X/Y is a CFL.

PROOF. If ϵ is in X, then $X = (X - \epsilon) \cup \epsilon$. Thus, by (2.2), $X/Y = (X - \epsilon)/Y \cup \epsilon/Y$. Now ϵ/Y is either empty or $\{\epsilon\}$. In either case it is a CFL. By [1, 5] it is known that $X - \epsilon$ is also a CFL. Since the finite union of CFL is again a CFL [1], it suffices to show that $(X - \epsilon)/Y$ is a CFL. Hence we need only prove the theory for the case where ϵ is not in X.

Let $A = (K, \Sigma, \delta, s_0, F)$ be an automaton such that T(A) = Y and (by (3.2)) such that $\delta(q, I) \neq s_0$ for q in K, I in Σ . For each q in F let $T_q = \{w/\delta(s_0, w) = q, w$ in $\theta(\Sigma)\}$. Then Y is the finite union of the regular sets T_q and, by (2.1), $X/Y = \bigcup X/T_q$. Since a finite union of CFL is a CFL, it suffices to show that X/T_q is a CFL. Hence we need only prove the theorem for regular sets Y of the form Y = T(A) where $A = (K, \Sigma, \delta, s_0, \{t\})$ (i.e., the set of final states of Aconsists of the single element t) and $\delta(q, I) \neq s_0$ for q in K, I in Σ .

If ϵ is not in X, then there exists a grammar $G = (V, P, \Sigma, S)$ such that X = L(G) and P contains no production of the form $\xi \to \epsilon$ [1]. Let Y = T(A) where $A = (K, \Sigma, \delta, s_0, \{t\})$ and $\delta(q, I) \neq s_0$ for q in K, I in Σ . Consider the grammar $G' = (V', P', \Sigma, S')$ where $V' = \Sigma \cup (K \times V \times K), S' = (s_0, S, t)$, and P' consists of the following productions:

(1) $(s_0, x, s_0) \rightarrow x$ for each x in Σ .

(2) $(q, x, q') \rightarrow \epsilon$ if x is in Σ and $\delta(q, x) = q'$.

(3) $(q, x, q') \to (q, y_1, q_1)(q_1, y_2, q_2) \cdots (q_{n-1}, y_n, q')$ if $x \to y_1 y_2 \cdots y_n$ is in P and $q_1, q_2, \cdots, q_{n-1}$ are in K.

We shall prove that X/Y = L(G').

(a) To show that $L(G') \subseteq X/Y$ let w' be in L(G'). Then $(s_0, S, t) \Rightarrow w'$. Since a production of type (3) commutes with one of type (1) or (2), the sequence of productions yielding $(s_0, S, t) \Rightarrow w'$ can be arranged so that all the productions of type (3) precede those of types (1) and (2). Hence we may assume that by type (3) productions

$$(s_0, S, t) \Rightarrow (s_0, y_1, q_1)(q_1, y_2, q_2) \cdots (q_m, y_{m+1}, t)$$

and by types (1) and (2) productions

$$(s_0, y_1, q_1)(q_1, y_2, q_2) \cdots (q_m, y_{m+1}, t) \Rightarrow w'.$$

Since $(s_0, y_1, q_1)(q_1, y_2, q_2) \cdots (q_m, y_{m+1}, t) \Rightarrow w'$ by types (1) and (2), each y_i is in Σ . Since every type (3) production corresponds to a production of P, it follows that $S \Rightarrow y_1 \cdots y_{m+1}$ in G. Thus $y_1 \cdots y_{m+1}$ is in X. Furthermore, for each $1 \leq i \leq m+1$ either (q_{i-1}, y_i, q_i) is such that $q_{i-1} = q_1 = s_0$ or $\delta(q_{i-1}, y_i) = q_i$. Let j be the largest integer such that $q_j = s_0$. Because $\delta(q, I) \neq s_0$ for q in K, I in Σ , it follows that $\delta(q_i, y_{i+1}) = q_{i+1} \neq s_0$ for $i \geq j$. Since w' is in $\theta(\Sigma)$, we see that $\delta(s_0, y_{j+1}y_{j+2} \cdots y_{m+1}) = t$. Thus $y_{j+1} \cdots y_{m+1}$ is in Y and $w' = y_1 \cdots y_j$. Since $w'y_{j+1} \cdots y_{m+1}$ is in X, w' is in X/Y.

(b) To show that $X/Y \subseteq L(G')$ let $x_1 \cdots x_m$ be an element of X/Y. Then there exists $y_1 \cdots y_n$ in Y such that $x_1 \cdots x_m y_1 \cdots y_n$ is in X. Since ϵ is not in X, either $x_1 \cdots x_m \neq \epsilon$ or $y_1 \cdots y_n \neq \epsilon$. First assume that neither is ϵ . Since $S \Rightarrow x_1 \cdots x_m y_1 \cdots y_n$ in G, we see that by type (3) productions we have

$$(q_0, S, t) \Rightarrow (q_0, x_1, q_0) \cdots (q_0, x_m, q_0)(q_0, y_1, q_1) \cdots q_{n-1}, y_n, t)$$

where q_i is defined to be $\delta(q_{i-1}, y_i)$ for $i \ge 1$. Applying type (1) productions to (q_0, x_j, q_0) and type (2) productions to (q_{i-1}, y_i, q_i) we see that $S' \Rightarrow x_1 \cdots x_m$ in G'. Therefore $x_1 \cdots x_m$ is in L(G'). If $x_1 \cdots x_m = \epsilon$ (or $y_1 \cdots y_n = \epsilon$), then the above argument holds except that no productions of type (1) (or type (2)) need be applied to show that $S' \Rightarrow x_1 \cdots x_m$ in G'. In any case, $X/Y \subseteq L(G')$, which completes the proof.

(3.1) and (3.3) together establish (1.2). We now prove (1.1).

(3.4) THEOREM. It is recursively unsolvable to determine for arbitrary CFL, X and Y, whether or not X/Y is a CFL.

PROOF. Let $\Sigma = \{a, b, c\}$. For each positive integer n let $\overline{n} = ab^n$ (b^n is defined inductively by $b^1 = b, b^{j+1} = b^j b$ for $j \ge 1$). For every n-tuple $w = (w_1, \dots, w_n)$ of non- ϵ -words of $\theta(a, b)$ let

$$L(w) = \{cw_{i_1} \cdots w_{i_k} c\overline{i_k} \cdots \overline{i_l} / k \ge 1; 1 \le i_1, \cdots, i_k \le n\}.$$

Then L(w) is a CFL. In fact, L(w) = L(G) where $G = (\Sigma \cup \{\xi^{(1)}, \xi^{(2)}\}, P, \Sigma, \xi^{(2)})$ and P consists of the productions $\xi^{(1)} \to w_i \xi^{(1)} \overline{i}$, for $i \leq i \leq n$; $\xi^{(1)} \to w_i c\overline{i}$ for $i \leq i \leq n$; and $\xi^{(2)} \to c\xi^{(1)}$.

Let $y = (y_1, \dots, y_n)$ and $z = (z_1, \dots, z_n)$ be arbitrary *n*-tuples of non- ϵ words of $\theta(a, b)$. It is obvious that L(y)/L(z) either consists of ϵ or is empty according as there does or does not exist a sequence of integers i_1, \dots, i_k such that $y_{i_1} \cdots y_{i_k} = z_{i_1} \cdots z_{i_k}$. The existence of such a sequence of integers is the well-known Post Correspondence Problem and is recursively unsolvable [9].

Let L_1 and L_2 be arbitrary CFL. Then $L_1L(y)$ and $L_2L(z)$ are CFL since the

490

product of CFL is a CFL [1]. It is easily seen (either directly from the definition or by applying (2.1), (2.3), (2.4)) that $L_1L(y)/L_2L(z)$ is L_1/L_2 or empty according to whether L(y)/L(z) consists of ϵ or is empty. In particular, if L_1/L_2 is not a CFL, then $L_1L(y)/L_2L(z)$ is a CFL if and only if there does not exist a sequence of integers i_1, \dots, i_k such that $y_{i_1} \dots y_{i_k} = z_{i_1} \dots z_{i_k}$ and so is recursively unsolvable. Therefore, to complete the proof it suffices to exhibit particular CFL, L_1 and L_2 , for which L_1/L_2 is not a CFL.

Consider the alphabet $\{a, b, c, d\}$. Let 1' = a, 2' = b, and 3' = c. For all words x_1, x_2, x_3 in $\theta(a, b, c)$, let

$$L(x_1, x_2, x_3) = \{x_{i_1} \cdots x_{i_k} di_k' \cdots i_1' / k \ge 1; 1 \le i_1, \cdots, i_k \le 3\}.$$

Then $L(x_1, x_2, x_3)$ is a CFL. In fact, $L(x_1, x_2, x_3) = L(H)$, where $H = (\{a, b, c, d, \xi\}, P_H, \{a, b, c, d\}, \xi)$ and P_H consists of the productions

$$\xi \to x_i \, di'$$
 and $\xi \to x_i \xi i'$ for $i = 1, 2, 3$.

Therefore $L_1 = L(b^2, a^3, abc)$ and $L_2 = L(a, b, c)$ are CFL. We shall show that L_1/L_2 is not a CFL.

Let $Z = L_1/L_2$. Each word z in Z is obtained from words z_1 in L_1 and z_2 in L_2 satisfying $z_1 = zz_2$. Since each word in L_1 or L_2 contains the letter d exactly once, the terminal subwords starting from d in z_1 and in z_2 are the same. If the word da (or db) is a subword of z_1 , then b^2da (or a^3db) occurs in z_1 and ada (or bdb) occurs in z_2 . Either case contradicts the equation $z_1 = zz_2$. Thus the only letter which can occur immediately to the right of d in z_1 is c. Therefore z_1 must contain abcdc as a subword and z_2 must contain cdc as a subword. Hence the shortest words which can occur as z_1 , z_2 are abcdc and cdc. Thus ab is in Z. In z_1 we see that cdc is preceded by b. Then any longer word for z_2 must contain bcdcb, and the corresponding z_1 must contain $a^3abcdcb$. Therefore a^4 is in Z. This line of reasoning can be continued inductively to provide a means of enumerating all the elements of Z. We find that Z consists of the sequence

$$ab, a^4, b^2a^3, b^4a^2, b^6a, b^8, a^3b^7, a^6b^6, \cdots, a^{24}, \cdots$$

where to pass from one word x_i in the sequence to the next x_{i+1} we use the following rules:

(i) If $x_i = y_i a$, then $x_{i+1} = b^2 y_i$.

(ii) If $x_i = y_i b$, then $x_{i+1} = a^3 y_i$.

Thus a^n is in Z if and only if $n = 4.6^i$ for $i \ge 0$. Let Z_0 be the set obtained by replacing each occurrence of a by a and each occurrence of b by the empty set. Then $Z_0 = \{a^n/n = 4 \cdot 6^i \text{ for } i \ge 0\}$. By [1] it is known that if Z is a CFL then so is Z_0 . But a set of the form $\{a^j/j \text{ in } A\}$ is a CFL if and only if A is ultimately periodic [5]. Since $\{4 \cdot 6^i/i \ge 0\}$ is not ultimately periodic, Z_0 is not a CFL so neither is Z. Thus the theorem is proved.

In conclusion we state the following open problem:

A CFL is said to be sequential [5] if the elements of $V-\Sigma$ may be labeled x_1, \dots, x_n , with $x_n = S$, so that for each production $x_i \to ux_j v$ in $P, j \leq i$. If X is a sequential CFL and Y is regular, is X/Y sequential?

REFERENCES

- 1. BAR-HILLEL, PERLES, AND SHAMIR. On formal properties of simple phrase structure grammars. Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14, (1961), 143-172.
- 2. CHOMSKY, N. Three models for the description of language. IRE Trans. IT2 (1956), 113-124.
- 3. On certain formal properties of grammars. Inform. Contr. 2 (1959), 137-167.
- 4. ELGOT AND RUTLEDGE, Operations on finite automata. Proc. Second Ann. Symp. Switching Circuit Theory and Logical Design, Detroit, Oct. 1961, 129-132.
- 5. GINSBURG, S., AND RICE, H. G. Two families of languages related to ALGOL. J. ACM 9 (1962), 350-371.
- GINSBURG, S., AND ROSE, G. F. Operations which preserve definability in languages. J. ACM 10 (1963), 175-195.
- 7. ——. Some recursively unsolvable problems in ALGOL-like languages. J. ACM 10 (1963), 29-47.
- KLEENE, S. C. Representation of events in nerve nets and finite automata. Automata Studies, Ann. Math. Studies, No. 34, Princeton Univ. Press, 1956, 3-41.
- 9. Post, E. L. A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52, (1946), 264-268.
- RABIN AND SCOTT. Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959), 114-125.
- SCHEINBERG, S. Note of the Boolean properties of context free languages. Inform. Contr. 3 (1960), 372-375.
- 12. SHAMIR, E. On sequential languages. Tech. Report No. 7, Appl. Logic Branch, The Hebrew Univ., Jerusalem, Nov. 1961.