Quotients of Context-Free Languages*

Seymour Ginsburg
System Development Corporation, Santa Monica, California

AND
Edpin H. Spanter
University of California, Los Angeles
Abstract. The following results on the quotient of context-free languages (CFL) are shown: (1) It is recursively unsolvable to determine for arbitrary CFL whether the quotient of one by another is a CFL. (2) If either set is regular and the other is a CFL, then the quotient is a CFL.

1. Introduction

Among the operations under investigation by the Share Theory of Information Handling Committec is that of quotient. This paper sets forth some results about quotients of context-free languages (abbreviated CFL), i.e., quotients of components of Acgol-like languages. These results, proved in Section 3, are the following:
(1.1) It is recursively unsolvable to determine for arbitrary CFL whether the quotient of one by another is again a CFL.
(1.2) If either set is regular and the other is a CFL, then the quotient is a CFL.

2. Preliminaìies

Let Σ be a finite nonempty set, or alphabet, and let $\theta(\Sigma)$ be the free semigroup with identity ϵ generated by Σ. (Thus $\theta(\Sigma)$ is the set of all finite sequences, or words, of Σ and ϵ is the empty sequence.) We shall be considering subsets of $\theta(\Sigma)$. If A and B are subsets of $\theta(\Sigma)$, then so is the product $A B=\{a b / a$ in A, b in $B\}$.

A grammar $(G$ is a 4-tuple (V, P, Σ, S), where V is a finite set, Σ is a nonempty subset of V, S is an element of $V-\Sigma$, and P is a finite set of ordered pairs of the form (ξ, w) with ξ in $V-\Sigma$ and w in $\theta(V) . P$ is called the set of production of G. An element (ξ, w) in P is denoted by $\xi \rightarrow w$. If x and y are in $\theta(V)$, then we write $x \Rightarrow y$ if either $x=y$ or there exists a sequence $x=x_{1}, x_{2}, \cdots, x_{n}=y$ ($n>1$) of elements in $\theta(V)$ with the following property: For each $i<n$ there exists $a_{i}, b_{i}, \xi_{i}, w_{i}$ such that $x_{i}=a_{i} \xi_{i} b_{i}, x_{i+1}=a_{i} w_{i} b_{i}$ and $\xi_{i} \rightarrow w_{i}$. The language generated by G, denoted by $L(G)$, is the set of words $\{w / S \Rightarrow w, w$ in $\theta(\Sigma)\}$. A

* This work was sponsored in part by the Air Force Cambridge Research Taboratories, Office of Aerospace Research, under Contract AF 19 (628)-485.
context-free language (over Σ) is a language $L(G)$ generated by some gramman $G=(V, P, \Sigma, S)$.

The concept of CFL was introduced by Chomsky [2] in his study of natural languages. It has since been shown that context-free languages are identical with the components in the "Algot Hike" artificial languages which arise in data processing [5]. As such, their properties are currently being studied [6, 7, 11, 12].

A special kind of context-free language called a regular set has been introduced [8] in connection with the theory of automata. We now present the relevant definitions of these concepts. An automaton $[10]$ is a 5 -tuple $A=\left(K, \Sigma, \delta_{,}, s_{n}, F\right)$, where
(i) K is a finite nonempty set (called the set of states);
(ii) Σ is a finite nonempty set (called the set of inpuls);
(iii) δ is a mapping from $K \times \Sigma$ into K (called the next state function);
(iv) s_{0} is an element of K (callod the start state);
(v) F is a subset of K (called the set of final states).

Given such an automaton the next state function \hat{o} can be extended to a mapping, also denoted by δ, from $K \times \theta(\Sigma)$ to K, inductively by

$$
\delta(q, \epsilon)=q \text { for } q \text { in } K
$$

and

$$
\delta\left(q, I_{1} I_{2} \cdots I_{k}\right)=\delta\left(\delta\left(q, I_{1} I_{2} \cdots I_{k-1}\right), I_{k}\right) \text { for } q \text { in } K, I_{i} \text { in } \Sigma, k \geqq 2
$$

For an automaton A denote by $T(A)$ the set $\left\{w / w\right.$ in $\theta(\Sigma), \delta\left(s_{0}, w\right)$ in $\left.F\right\}$. A subset $R \subset \theta(\Sigma)$ is said to be regular (or Σ-regular when there is a need to distinguish $\Sigma)$ if there is an automaton $A=\left(K, \Sigma, \hat{\delta}, s_{0}, F\right)$ such that $R=T(A)$.

It is known [3] that every regular set is a CFL. Since a regular set is a language generated by a finite state device, it is sometimes called a finite state language.

The concept of quotient mentioned in the introduction is now defined. If X and Y are subsets of $\theta(\Sigma)$, then the righl quotient of X and Y, denoted by X / Y, is the subset of $\theta(\Sigma)$ defined by $X / Y=\{w / w y$ in X for some y in $Y\}$. Similarly the left quotient $Y \backslash X=\{w / y w$ in X for some y in $Y\}$. We shall be concerned with the right quotiont, but all the results have obvious analogues for the left quotient. The following elementary properties are easily verified using the definitions.
(2.1) $X /(Y \cup Z)=X / Y \cup X / Z$.
(2.2) $(X \cup Z) / Y=X / Y \cup Z / Y$.
(2.3) $X / Y Z=(X / Z) / Y$.
(2.4) $(X Z) / Y=X(Z / Y) \cup X /(Y / Z)$.

We are interested in the question of whether or not the quotient of one CFL by another is a CFL and discuss this in the next section.

3. Results

We now show that it is recursively unsolvable to determine if the quotient of one CFL by another is a CFL. First, we treat the case where one of the CFL is a regular set.

It is noted without proof in [4] that if X and Y are both regular, then X / Y is also regular. We have the following extension of that result.
(3.1) Theorem. If X is regular and Y is arbitrary, then X / Y is regular.

Proof. If Y is empty, then X / Y is empty and thus regular. If Y is nonempty, let $X=T(A)$ where $A=\left(K, \Sigma, \delta, s_{0}, F\right)$. Let $F_{0}=\{q / q$ in K and $\delta(q, y)$ in F for some y in $Y\}$. It is readily seen that $X / Y=T(B)$, where $B=$ ($K, \Sigma, \delta, s_{0}, F_{0}$). Thus X / Y is regular.

Next consider the case where Y is regular and X is a CFL. First we establish a preliminary lemma which shows that any regular set can be defined by an automaton in which the start state is not the next state of any state.
(3.2) Lemma. If $A=\left(K, \Sigma, \delta, s_{0}, F\right)$ is an automaton, then there exists an automaton $A^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s_{0}^{\prime}, F^{\prime}\right)$ such that $T(A)=T\left(A^{\prime}\right)$ and $\delta^{\prime}(q, I) \neq s_{0}^{\prime}$ for q in K^{\prime} and I in Σ.

Proof. Let s_{0}^{\prime} be an element not in K and let $K^{\prime}=K \cup\left\{s_{0}^{\prime}\right\}$. Define $F^{\prime} \subseteq K^{\prime}$ by

$$
r^{\prime}= \begin{cases}F \cup\left\{s_{0}^{\prime}\right\} & \text { if } s_{0} \text { is in } F \\ F & \text { if } s_{0} \text { is not in } F\end{cases}
$$

For I in Σ define $\delta^{\prime}\left(s_{0}^{\prime}, I\right)=\delta\left(s_{0}, I\right)$ and $\delta^{\prime}(q, I)=\delta(q, I)$ if q is in K. Clearly $A^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s_{0}^{\prime}, F^{\prime}\right)$ has the desired properties.
(3.3) Theorem. If X is a CFL and Y is regular, then X / Y is a CFL.

Proof. If ϵ is in X, then $X=(X-\epsilon) \cup_{\epsilon}$. Thus, by $(2.2), X / Y=(X-\epsilon) / Y$ U_{ϵ} / Y. Now ϵ / Y is either empty or $\{\epsilon\}$. In either case it is a CFL. By [1, 5] it is known that $X-\epsilon$ is also a CFL. Since the finite union of CFL is again a CFL [1], it suffices to show that $(X-\epsilon) / Y$ is a CFL. Hence we need only prove the theory for the case where ϵ is not in X.

Let $A=\left(K, \Sigma, \delta, s_{0}, F\right)$ be an automaton such that $T(A)=Y$ and (by (3.2)) such that $\delta(q, I) \neq s_{0}$ for q in $K, \quad I$ in Σ. For each q in F let $T_{q}=\left\{w / \delta\left(s_{0}, w\right)\right.$ $=q, w$ in $\theta(\Sigma)\}$. Then Y is the finite union of the regular sets T_{q} and, by (2.1), $X / Y=\mathrm{U} X / T_{q}$. Since a finite union of CFL is a CFL, it suffices to show that X / T_{q} is a CFL. Hence we need only prove the theorem for regular sets Y of the form $Y=T(A)$ where $A=\left(K, \Sigma, \delta, s_{0},\{t\}\right)$ (i.e., the set of final states of A. consists of the single element t) and $\delta(q, I) \neq s_{0}$ for q in K, I in Σ.

If ϵ is not in X, then there exists a grammar $G=(V, P, \Sigma, S)$ such that $X=L(G)$ and P contains no production of the form $\xi \rightarrow \epsilon[1]$. Let $Y=T(A)$ where $A=\left(K, \Sigma, \delta, s_{0},\{t\}\right)$ and $\delta(q, I) \neq s_{0}$ for q in K, I in Σ. Consider the grammar $G^{\prime}=\left(V^{\prime}, P^{\prime}, \Sigma, S^{\prime}\right)$ where $V^{\prime}=\Sigma U(K \times V \times K), S^{\prime}=\left(s_{0}, S, t\right)$, and P^{\prime} consists of the following productions:
(1) $\left(s_{0}, x, s_{0}\right) \rightarrow x$ for each x in Σ.
(2) $\left(q, x, q^{\prime}\right) \rightarrow \epsilon$ if x is in Σ and $\delta(q, x)=q^{\prime}$.
(3) $\left(q, x, q^{\prime}\right) \rightarrow\left(q, y_{1}, q_{1}\right)\left(q_{1}, y_{2}, q_{2}\right) \cdots\left(q_{n-1}, y_{n}, q^{\prime}\right)$ if $x \rightarrow y_{1} y_{2} \cdots y_{n}$ is in P and $q_{1}, q_{2}, \cdots, q_{n-1}$ are in K.

We shall prove that $X / Y=L\left(G^{\prime}\right)$.
(a) To show that $L\left(G^{\prime}\right) \subseteq X / Y$ let w^{\prime} be in $L\left(G^{\prime}\right)$. Then $\left(s_{0}, S, t\right) \Rightarrow w^{\prime}$. Since a production of type (3) commutes with one of type (1) or (2), the
sequence of productions yilding $\left(s_{0}, S, t\right) \Rightarrow w^{\prime}$ can be arranged so that all the productions of type (3) precede those of types (1) and (2). Hence we may assume that by type (3) productions

$$
\left(s_{0}, S, t\right) \Rightarrow\left(s_{0}, y_{1}, q_{1}\right)\left(q_{1}, y_{2}, q_{2}\right) \cdots\left(q_{m}, y_{n+1}, t\right)
$$

and by types (1) and (2) productions

$$
\left(s_{1}, y_{1}, q_{1}\right)\left(q_{1}, y_{0}, q_{2}\right) \cdots\left(q_{m}, y_{m+1}, t\right) \Rightarrow w^{\prime}
$$

Since $\left(s_{0}, y_{1}, q_{1}\right)\left(q_{1}, y_{2}, q_{2}\right) \cdots\left(q_{m}, y_{m+1}, t\right) \Rightarrow w^{\prime}$ by types (1) and (2), each y_{i} is in Σ. Since every type (3) production corresponds to a production of P, it follows that $S \Rightarrow y_{1} \cdots y_{m+1}$ in G. Thus $y_{1} \cdots y_{n+1}$ is in X. Furthermore, for each $1 \leqq i \leqq m+1$ either $\left(q_{i-1}, y_{i}, q_{i}\right)$ is such that $q_{i-1}=q_{1}=s_{0}$ or $\delta\left(q_{i-1}, y_{i}\right)$ $=q_{i}$. Let j be the largest integer such that $q_{j}=s_{0}$. Because $\delta(q, I) \neq s_{0}$ for q in K, I in Σ, it follows that $\delta\left(q_{i}, y_{i+1}\right)=q_{i+1} \neq s_{0}$ for $i \geqq j$. Since w^{\prime} is in $\theta(\Sigma)$, we see that $\delta\left(s_{0}, y_{j+1} y_{j+2} \cdots y_{m+1}\right)=\ell$. Thus $y_{j+1} \cdots y_{m+1}$ is in Y and $w^{\prime}=y_{1} \cdots y_{i}$. Since $w^{\prime} y_{j+1} \cdots y_{m+1}$ is in X, w^{\prime} is in X / Y.
(b) To show that $X / Y \subseteq L\left(G^{\prime}\right)$ let $x_{1} \cdots x_{m}$ be an element of X / Y. Then there exists $y_{1} \cdots y_{n}$ in Y such that $x_{1} \cdots x_{m} y_{1} \cdots y_{n}$ is in X. Since ϵ is not in X, either $x_{1} \cdots x_{m} \neq \epsilon$ or $y_{1} \cdots y_{n} \neq \epsilon$. First assume that neither is ϵ. Since $S \Rightarrow x_{1} \cdots x_{m} y_{1} \cdots y_{n}$ in G, we see that by type (3) productions we have

$$
\left.\left(q_{0}, S, t\right) \Rightarrow\left(q_{0}, x_{1}, q_{0}\right) \cdots\left(q_{0}, x_{m}, q_{0}\right)\left(q_{0}, y_{1}, q_{1}\right) \cdots q_{n-1}, y_{n}, t\right)
$$

where q_{i} is defined to be $\delta\left(q_{i-1}, y_{i}\right)$ for $i \geqq 1$. Applying type (1) productions to (q_{0}, x_{j}, q_{0}) and type (2) productions to $\left(q_{i-1}, y_{i}, q_{i}\right)$ we see that $S^{\prime} \Rightarrow x_{1} \cdots x_{m}$ in G^{\prime}. Therefore $x_{1} \cdots x_{m}$ is in $L\left(G^{\prime}\right)$. If $x_{1} \cdots x_{m}=\epsilon\left(\right.$ or $y_{1} \cdots y_{n}=\epsilon$), then the above argument holds except that no productions of type (1) (or type (2)) need be applied to show that $S^{\prime} \Rightarrow x_{1} \cdots x_{m}$ in G^{\prime}. In any case, $X / Y \subseteq L\left(G^{\prime}\right)$, which completes the proof.
(3.1) and (3.3) together establish (1.2). We now prove (1.1).
(3.4) Theorem. It is recursively unsolvable to determine for arbitrary CFL, X and Y, whether or not X / Y is a CFL.

Proor. Let $\Sigma=\{a, b, c\}$. For each positive integer n let $\bar{n}=a b^{n}$ (b^{n} is defined inductively by $b^{1}=b, b^{j+1}=b^{j} b$ for $\left.j \geqq 1\right)$. For every n-tuple $w=\left(w_{1}, \cdots, w_{n}\right)$ of non- ϵ-words of $\theta(a, b)$ let

$$
L(w)=\left\{c w_{i_{1}} \cdots w_{i_{k}} c \bar{c}_{k} \cdots \bar{\imath}_{1} / k \geqq 1 ; 1 \leqq i_{1}, \cdots, i_{k} \leqq n\right\}
$$

Then $L(w)$ is a CFL. In fact, $L(w)=L(G)$ where $G=\left(\Sigma \cup\left\{\xi^{(1)}, \xi^{(2)}\right\}, P, \Sigma, \xi^{(2)}\right\}$ and P consists of the productions $\xi^{(1)} \rightarrow w_{i} \xi^{(1)} i$, for $i \leqq i \leqq n ; \xi^{(1)} \rightarrow w_{i} c \bar{i}$ for $i \leqq i \leqq n$; and $\xi^{(2)} \rightarrow c \xi^{(1)}$.

Let $y=\left(y_{1}, \cdots, y_{n}\right)$ and $z=\left(z_{1}, \cdots, z_{n}\right)$ be arbitrary n-tuples of non- ε. words of $\theta(a, b)$. It is obvious that $L(y) / L(z)$ either consists of ϵ or is empty according as there does or does not exist a sequence of integers i_{1}, \cdots, i_{k} such that $y_{i_{1}} \cdots y_{i_{s}}=z_{i_{1}} \cdots z_{i_{k}}$. The existence of such a sequence of integers is the well-known Post Correspondence Problem and is recursively unsolvable [9].

Let L_{1} and L_{2} be arbitrary CFL. Then $L_{1} L(y)$ and $L_{2} L(z)$ are CFL since the
product of CFL is a CFL [1]. It is easily seen (either directly from the definition or by applying (2.1), (2.3), (2.4)) that $L_{1} L(y) / L_{2} L(z)$ is L_{1} / L_{2} or empty according to whether $L(y) / L(z)$ consists of ϵ or is empty. In particular, if L_{1} / L_{2} is not a CFL, then $L_{1} L(y) / L_{2} L(z)$ is a CFL if and only if there does not exist a sequence of integers i_{1}, \cdots, i_{k} such that $y_{i_{1}} \cdots y_{i_{k}}=z_{i_{1}} \cdots z_{i_{k}}$ and so is recursively unsolvable. Therefore, to complete the proof it suffices to exhibit particular CFL, L_{1} and L_{2}, for which L_{1} / L_{2} is not a CFL.

Consider the alphabet $\{a, b, c, d\}$. Let $1^{\prime}=a, 2^{\prime}=b$, and $3^{\prime}=c$. For all words x_{1}, x_{2}, x_{3} in $\theta(a, b, c)$, let

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left\{x_{i_{1}} \cdots x_{i_{k}} d i_{k}^{\prime} \cdots i_{1}^{\prime} / k \geqq 1 ; 1 \leqq i_{1}, \cdots, i_{k} \leqq 3\right\}
$$

Then $L\left(x_{1}, x_{2}, x_{3}\right)$ is a CFL. In fact, $L\left(x_{1}, x_{2}, x_{3}\right)=L(H)$, where $H=\left(\{a, b, c, d, \xi\}, P_{H},\{a, b, c, d\}, \xi\right)$ and P_{H} consists of the productions

$$
\xi \rightarrow x_{i} d i^{\prime} \quad \text { and } \xi \rightarrow x_{i} \xi i^{\prime} \quad \text { for } i=1,2,3
$$

Therefore $L_{1}=L\left(b^{2}, a^{3}, a b c\right)$ and $L_{2}=L(a, b, c)$ are CFL. We shall show that L_{1} / L_{2} is not a CFL.

Let $Z=L_{1} / L_{2}$. Each word z in Z is obtained from words z_{1} in L_{1} and z_{2} in L_{2} satisfying $z_{1}=z z_{2}$. Since each word in L_{1} or L_{2} contains the letter d exactly once, the terminal subwords starting from d in z_{1} and in z_{2} are the same. If the word $d a$ (or $d b$) is a subword of z_{1}, then $b^{2} d a$ (or $a^{3} d b$) occurs in z_{1} and $a d a$ (or $b d b$) occurs in z_{2}. Either case contradicts the equation $z_{1}=z z_{2}$. Thus the only letter which can occur immediately to the right of d in z_{1} is c. Therefore z_{1} must contain $a b c d c$ as a subword and z_{2} must contain $c d c$ as a subword. Hence the shortest words which can occur as z_{1}, z_{2} are $a b c d c$ and $c d c$. Thus $a b$ is in Z. In z_{1} we see that $c d c$ is preceded by b. Then any longer word for z_{2} must contain $b c d c b$, and the corresponding z_{1} must contain $a^{3} a b c d c b$. Therefore a^{4} is in Z. This line of reasoning can be continued inductively to provide a means of enumerating all the elements of Z. We find that Z consists of the sequence

$$
a b, a^{4}, b^{2} a^{3}, b^{4} a^{2}, b^{6} a, b^{8}, a^{3} b^{7}, a^{6} b^{6}, \cdots, a^{24}, \cdots
$$

where to pass from one word x_{i} in the sequence to the next x_{i+1} we use the following rules:
(i) If $x_{i}=y_{i} a$, then $x_{i+1}=b^{2} y_{i}$.
(ii) If $x_{i}=y_{i} b$, then $x_{i+1}=a^{3} y_{i}$.

Thus a^{n} is in Z if and only if $n=4.6^{i}$ for $i \geqq 0$. Let Z_{0} be the set obtained by replacing each occurrence of a by a and each occurrence of b by the empty set. Then $Z_{0}=\left\{a^{n} / n=4 \cdot 6^{i}\right.$ for $\left.i \geqq 0\right\}$. By [1] it is known that if Z is a CFL then so is Z_{0}. But a set of the form $\left\{a^{j} / j\right.$ in $\left.A\right\}$ is a CFL if and only if A is ultimately periodic [5]. Since $\left\{4 \cdot 6^{i} / i \geqq 0\right\}$ is not ultimately periodic, Z_{0} is not a CFL so neither is Z. Thus the theorem is proved.

In conclusion we state the following open problem:
A CFL is said to be sequential [5] if the elements of $V-\Sigma$ may be labeled x_{1}, \cdots, x_{n}, with $x_{n}=S$, so that for each production $x_{i} \rightarrow u x_{j} v$ in $P, j \leqq i$. If X is a sequential CFL and Y is regular, is X / Y sequential?

REFERENCES

1. Bab-Hillei, Pfrlis, anj Shamir. On formal properties of simple phrase structure grammars. Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14, (1961), 143-172.
2. Chonsky, N. Three models for the description of language. IRE Trans. TT\& (1956), 113-124.
3. --. On certain formal properties of grammars. Inform. Contr. 2 (1959), 137-167.
4. Elgot and Ruthedge, Operations on finite automata. Proc. Second Ann. Symp. Switching Circuit Theory and Logical Design, Detroit, Oct. 1961, 129-132.
5. Ginsburg, S., and Rice, H. G. Two families of languages related to ALGOL. J. ACM 9 (1962), 350-371.
6. Ginsburg, S., and Rosm, G. F. Operations which preserve definability in languages. J. ACM 10 (1963), 175-195.
7. -. Some recursively unsolvable problems in ALGOL-like languages. J. ACM 10 (1963), 29-47.
8. Klemes, S. C. Representation of events in nerve nets and finite automata. Automata Studies, Ann. Math. Studies, No. 34, Princeton Univ. Press, 1956, 3-41.
9. Post, E. I. A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 50, (1946), 264-268.
10. Rabin and Scott. Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959), 114-125.
11. Scheinberg, S. Note of the Boolean properties of context free languages. Inform. Contr. 3 (1960), 372-375.
12. Shamir, E. On sequential languages. Tech. Report No. 7, Appl. Logic Branch, The Hebrew Univ., Jerusalem, Nov. 1961.
