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Abstract. 'The following results on the quotient of context-free languages (CFL) are
shown: (1} Tt is recursively unsolvable to determine for arbitrary CFL whether the quo-
tient of one by another is & CFL, (2) If cither set is regular and the other is a CFL, then
the quotient iz a CFL.

1. Introduction

Among the operations under investigation by the Spare Theory of Informa-
tion Handling Committee is that of quotient. This paper sets forth some results
shout quotients of context-free languages (abbreviated CFL), i.e., quotients of
components of Argor-like languages. These results, proved in Section 3, are the
following:

(1.1) It is recursively unsolvable to determine for arbitrary CFKL
whether the quotient of one by another is again a CI'L.
(1.2) If either set is regular and the other is a CT'L, then the quotient is

2 CTFL.

2, Preliminaiies

Let = be a finite nonempty set, or alphabet, and let 8(2) be the free semigroup
with identity e generated by 2. (Thus 8(2) is the set of all finite sequences, or
words, of 2 and e is the empty sequence.) We shall be considering subsets of
0(2). If 4 and B are subsets of 8(2), then so is the product AB = {ab/ain 4,
bin B}.

A grammar G is a 4-taple (V, P, 2, 8), where V' is a finite set, Z is a nonempty
subset of ¥, 8 is an element of V-Z, and P is a finite set of ordered pairs of the
form (£, w) with £ in V-2 and w in 6(V). P is called the set of production of G.
An element (£, w) in P is denoted by & — w. If z and y are in 6(7), then we
write z = y if either z = y or there exists a sequence & = 1, &2, *** , T = ¥
{n > 1) of elements in #(V) with the following property: For each ¢ < n there
exists a; , by , £, wosuch that x; = ad: , 2o = aavd; and £ — w, . The language
generated by G, denoted by L(G), is the set of words {w/8 = w, w ing(2)i. A
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eondext-free language (over ) is a language L{G) generated by some grammg,
G=(V, PzS.

The concept of CFL was introduced by Chomsky [2] in his study of natugg
languages. It has since been shown that context-free languages ave identical wigy
the components in the “Arncovlike” arfificial fanguages which avise in daty
processing {5]. As such, their properties are eurrently being studied [6, 7, 11, 12

A special kind of context-free language called a regular set has been intp.
duced {8] in connection with the theory of automata. We now present the relevaps
where ’

(1) K iz a fintte nonempty set (called the set of slates);

{il) £ is a finite nonemply set {called the set of énpuls);

(1ii) § is & mapping from K X Z into K (called the next stais function);

{iv} g i3 an element of K (ealled the star? state);

(v) F is a subset of K (called the set of final states).

Given sucl au sutomaton the next state function d can be extended to 8 mapping,
also denoted by 8, from K X 6(E) to K, induetively by

8(g,e) = q for gin K
and
5(q, 11]2 A I;;) == 6(5((1, 111") T [k-—t); I;,) f()[' q in I\r, [ in E, L ; 2.

TFor an automaton A denote by 7{A) the set {w/w in 4(2), 6(s, w) in F}. A
subset B < #(2) is said to be regular (or Z-regular when there is a need to dis-
tinguish 2) if there 18 au antomaton A4 = (K, £, 4§, s, &) such that B = T(4),

It is known [3] that every regular set is & CFL. Since a regular set ig o language
generated by a finite state device, it is sometimes called a finile state language.

The eoncept of guotient mentioned in the introduction is now defined. If X
and ¥ are subsets of #(Z), then the righl quolient of X and Y, denoted by X/¥,
is the subset of 4(2) defined by X/¥ = [w/wy in X for some y in ¥}, Similarly
the leff quetteni Y \X = lw/yw in X for some v in Y}, We shall be concerned
with the right quoticnt, but all the results have obvious analogues [or the left
quotient. The following elementary properties are easily verified using the
definitions.

Q2L X/(YUz) =X/YUX/Z

e (XUZ)/Y =X/YUZ/YT.

(23 X/)YZ = (X/2)/7,

(24) (XZ2)/Y = X(Z/YYUX/(Y/E).

We are interested in the question of whether or not the quotient of one CFL
by another is a CFL and discuss this in the next gection,

I

3. Resulls

We now show that it is recursively unsolvable to defermine if the quotient of
one CFL by another is a CFL. First, we treat the ease where one of the CFL i8
o regular set.
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It is noted without proof in [4] that if X and ¥ are both regular, then X/ is
also reguiar. We have the following extension of that resul.

(8.1) Trrormv. If X is regular and Y 1s arbitrary, then X/Y is reqular.

Prcor. If Y isempty, then X/Y is empty and thus regular. If ¥ is nonempty,
Jet X = T(A) where 4 = (K, 5, 5, 8, P). Let By = {g/q in K and 6(g, ) in
F for some y in Y}. It is readily seen that X/Y = T(B), where B =
(K, Z, 8, 8, Fo). Thus X/Y is regular.

Next consider the case where Y is regular and X is a CFL. First we establish
a prehmmary lemma which shows that any regular set can be defined hy an

automaton in which the start state is not the next state of any state.

(3.2) LEmma. If A = (K, Z,8, s, F) s an aulomaton, ther there exists an
automalton A" = (K', 2,8 s/, F') such that T(A) = T(A ) end ' (g, I) = s’ for
gin K and I 4n =.

Proor. Let s be anelement not in K and let K* = K U {s}. Define ' < K’
by

F U {s'} if soisin F.
v ifsisnotin .

For I in % define &' (s, I) = (s, I} and &' (g, I) = 6(g, I) if ¢ is in K. Cleazly
= (K',=, 8, s/, ') has the desired properties.

(3.3) TurorrM, If X isa CFL and Y is regular, then X/Y is a CFL.

Proor. Ifeisin X, then X = (X — &) Ue. Thus, by(2.2), X/¥ = (X — /Y
U ¢/Y. Now ¢/Y is either empty or {¢. In either case it is a CFL. By [1, 5]
it is known that X — ¢ is also a CFL. Since the finite union of CFL is again a
CFL [1), it suffices to show that (X — €)/¥ is a CFL. Hence we need only prove
the theory for the case where ¢ is not in X,

let A = (K,Z,8, 8, F) be an automaton such that T(A) = Y and (by (3.2))
such that 8(q, I) = seforgin K, IinZ. Foreachgin Flet Ty = {w/8(s0, w)
= g, win 8(2)}. Then Y is the finite union of the regular sets T, and, by (2.1),
X/¥ = U X/T,. Since a finite union of CFL is a CFL, it suffices to show that
X/T, is a CFL. Hence we need only prove the theorem for regular sefs 1 of the
form ¥ = T(A) where 4 = (K, %, 5, s, {t}) (ie., the set of final states of 4
consists of the single element ¢) and 6(g, {) 7 s for gin K, TinZ.

If ¢ is not in X, then there exists a grammar ¢ = (V, P, Z, S) such that

= L(@) and P contains no production of the form § — e [1]. Let ¥ = T(A4)
Where 4= (K, Z4 S0 {#}) and 8(q, I) # so for g in K, [T in Z. Consider the
grammarO (V P, 8 where V= ZU (KX V XK),8 = (2,81,
and P’ consists of the following productlons

(1) (s, 2, s‘g) —s z for each z in 2.

(2) (g, ,g) %elfxmlnzanda(q,m) =q.

(3) (g2 @) = (G ur, @)@, v, @) - (oot ¥ns @) Hw— g - gl
inPand g, gz, , et are in K.

We shall prove that X / Y = L(G).

(a) To show that (@) C X/Y let w be in L(G"). Then (s, &, t) = w.
Sinee a production of type (3) commutes with one of type (1) or (2), the

7=
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sequence of productions vielding (s, 5, £y == w can be arvanged g0 that all the
productions of type (3) precede those of types (1) and (2). Hence we may as.
sume that by type (3) productions

(80,8, 8) = (8o, 1, @) (s Yos @2) o (s Yot t)
and by types {1} and (2) productions
(Soy s ) (@ 1, G2) 0 (G i, 1) =20

Since (so, 71s @) (Gas By @2) 0 (Qons Ymp1s 1) = w by types (1) and (2), each
y: is in Z. Since every type (3) production corresponds to a production of P,
it follows that 8 = 1+ Y In G ThUS 1 -+« Yoepn is in X. Furthermore, for
each 1 < 1 < m + 1either (gi1, ys, go) is such that goy = qu = spor 8(¢im, 4
= ¢;. Let j be the largest intoger such that g; = sp . Because 3(q, 1) 5= s for
gin K, Iin %, it follows that 3(q:, Yers) = Qop 5 8 for 1 = . Since w is in
605), we see that 5(so, s Yurt) = & Thus ype o Y is in ¥ and
W = uy - yy. Since Wi Ympr 18I0 X, w s in X/V.

(b) To show that X/¥ C L(G') let =1 -+ - @ be an element of X/ Then
shere exists 71 - - ¥ in ¥ such that @ -« - @y - % 18I0 XL Since e is not in
X, either @y -« & # € OF §1 - Ya 7 e Virst assume that neither is e Since
S =2 - Tags - Ye in (7, we see that by type (3) productions we have

(go, 8, 1) = (qo, @1, go) 0 (o B qu) oy W, M) Gty Yauy t)
where g, 15 defined to be (g, y2) fors 2 1. Applying type (1) productions o

(g0, %5, q0) 2and type (2] productions to (it , Yisqi) we see that 8 sy o T
in €. Therefore s -+ tm i in FT{G ). a1 -+ @m = € (Or Y1 - Yo = €), then
the above argument holds except that no productions of type (1) {or type {2))
need be applied to show that S =2 - 2, in G In any case, X/V C L&,
which eompletes the proof.

(3.1) and {3.3) together establish (1.2). We now prove (1.1).

(3.4) TupormM. [t is recursively unsolvable lo defermine for wbitrary CIFL, X
and ¥, whether or not X/Y is ¢ CFL.

Proor. Tet I = la, b, ¢]. Tor each positive integer » let 7 = ab™ (b" is defined
inductively by ' = &, b7 = b forj = 1). Forevery n-tuple w = (i, -, W)
of non-e-words of A{a, B) let

A

Liw) = {ew, «++ wach - w/k = 11 £d, e, b S 0

Then L{w) isa CFL. In fact, L(w) = L(G) where G = (zU {£¥, £V}, P, %, £
and P consists of the productions £ oot for e 54 2w £V — et for
i< m;and £ - et

Lety = (g1, - . ye)and z = (21, -, #.) be arbitrary n-tuples of non-e
words of 8{a, b). 1t is obvious that L(y)/L{z) either consists of ¢ or is empty
according as there does or does not exist a sequence of integers 4,, <+, % sueh
that 7, =+« Yi, = %4 *°° £ . Lhe existence of such a sequence of intcgers i
the well-kenown Post Correspondence Problem and iz recursively unsolvable [9).

Let L, and I be arbitrary CFL. Then LL(y) and L:L(z) are CFIL since the
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product of CFL is a CFL [1]. Tt is casily seen (either directly from the definition
or by applying (2.1), (2.3), (24)) that LiL(y)/L.L(2) is 1./ or empty ac-
cording to whether L(y)/L(z) consists of ¢ or is empty, In particular, if Li/L, is
not & CI'L, then L,L(y)/L.L(z) is a CFL if and only if there does not exist a
sequence of integers ¢y, -- -, % such that y;, -+ 4y, = zg v+ 24, aod 80 IS re-
cursively unsolvable. Therefore, to complete the proof it suffices to exhibit par-
ticular CFL, Ly and Ly, for which Li/L, is not & CFL,

Consider the alphabet {a, b, ¢, d}. Let 1" = ¢, 2" = b, and 3’ = ¢. For all
words &1, &2, 23 in 6(a, b, ¢}, Tet

L(xl,ﬂ%,xa) = {xil "'mikd'ih""i1’/162 L1 =4, 0,4 = 3}.

Then L{x,, x2, 23) ig8 a CFL., In faet, L(z,, 2, z3) = L(H), where
H= (la,b,e,d, &, Pr,|a,b,c,d}, &) and Py consists of the productions

E—x;di and E—s ziEd fori=1,2 3.

Therefore L; = L{V’, o’, abc) and L: = L{e, b, ¢) are CFL. We shall show that
L,/L; is not a CFL.

TLet Z = Li/Lz. Each word z in Z is obtained from words #; in Ly and 2z in
I, satisfying 2, = 2z, . Since each word in L; or Ly contains the letter o exactly
once, the terminal subwords starting from d in z; and in 2; are the same. If the
word da {or db) is a subword of z , then b’da (or o’db)} occurs in 2 and ada
{or bdb) occurs in z:. Bither case contradiets the cquation 2, = 2z . Thus the
only letter which can oceur immediately to the right of d in 2, is ¢. Therefore 2
must contain abede as a subword and z» must contain ede as a subword. Hence
the shortest words which can oceur as 21, 22 are abede and cde. Thus eb s in Z.
Tn z; we sec that ede is preceded by &. Then any longer word for 2; must contain
bedeh, and the corresponding z; must contain a’abedch. Therefore @' is in Z. This
line of reasoning ean be eontinued inductively to provide a means of enumerating
all the elements of Z, We find that Z consists of the sequence

ab, o', vd®, b'd’, ba, B, a3b7, a%b, -, %
where to pass from one word x; in the sequence to the next .1 we use the fol-
lowing rules: ,

(i) I 2, = yu, then zey = 0y .

(i) If z; = b, then 2y = a'ys.

Thus «” is in Z if and only if n = 4.6° for © = 0. Let Z, be the set obtained by
replacing each occurrence of @ by @ and each oceurrence of b by the empty set.
Then Z, = {a"/n = 4-6 for £ = 0}. By [1] it is known that if Z is & CTL then
s0 is Z, . But a set of the form {a’/j in 4} is a CFL if and only if 4 is ultimately
periodic [5). Since {4-6°/¢ = 0} is not ultimately periodic, Zo is not a CFL so
neither is Z. Thus the theorem is proved.

Tn conclusion we state the following open problem:

A CFL is said to be sequential [5] if the elements of V-2 may be labeled
Ly, -+, &n, With 2, = 8, so that for each production 2; — uzp in P,j < . If
X is a sequential CTL and Y is regular, is X/Y secruential?
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