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360◦ video provides an immersive experience for viewers, allowing them
to freely explore the world by turning their head. However, creating high-
quality 360◦ video content can be challenging, as viewersmaymiss important
events by looking in the wrong direction, or they may see things that ruin the
immersion, such as stitching artifacts and the film crew.We take advantage of
the fact that not all directions are equally likely to be observed; most viewers
are more likely to see content located at “true north”, i.e. in front of them,
due to ergonomic constraints. We therefore propose 360◦ video direction,
where the video is jointly optimized to orient important events to the front of
the viewer and visual clutter behind them, while producing smooth camera
motion. Unlike traditional video, viewers can still explore the space as desired,
but with the knowledge that the most important content is likely to be in
front of them. Constraints can be user guided, either added directly on the
equirectangular projection or by recording “guidance” viewing directions
while watching the video in a VR headset, or automatically computed, such
as via visual saliency or forward motion direction. To accomplish this,
we propose a new motion estimation technique specifically designed for
360◦ video which outperforms the commonly used 5-point algorithm on
wide angle video. We additionally formulate the direction problem as an
optimization where a novel parametrization of spherical warping allows us
to correct for some degree of parallax effects. We compare our approach to
recent methods that address stabilization-only and converting 360◦ video
to narrow field-of-view video. Our pipeline can also enable the viewing of
wide angle non-360◦ footage in a spherical 360◦ space, giving an immersive
“virtual cinema” experience for a wide range of existing content filmed with
first-person cameras.
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1 INTRODUCTION
VR headsets are rapidly gaining in popularity, and one of the most
common use cases is viewing 360° videos, which provide added
immersion due to the ability of the viewer to explore a wider field
of view than traditional videos. However, this freedom introduces a
number of challenges for content creators and viewers alike; viewers
can miss important events by looking in the wrong direction, or
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they can see things that break immersion, such as stitching artifacts
or the camera crew.
In this work, we address two important aspects of 360 video

creation; direction of shots to draw the viewers’ attention to desired
regions, and smooth, intentional camera trajectories. Both of these
parts are crucial in 360◦ video; viewer freedom makes direction
challenging, and unstablemotion (especially in the peripheral vision)
can be disorienting, causing confusion and even nausea [Jerald
2016]. While traditional cinematography refers to the decisions
made during filming, 360◦ video is particularly well suited to the
task of modifying the camera direction in post (also known as re-
cinematography [Gleicher and Liu 2008]), as all viewing directions
are recorded at capture time, giving us greater control in post.

We therefore propose amethod that uses direction constraints [Gandhi
et al. 2014] (e.g., where to look, where not to look), that try to keep
desirable content in the viewable space near true-north, and unde-
sirable content largely behind the user. These are jointly optimized
with smoothness constraints that reduce camera shake and rapid
rotations, such as those caused by hand held cameras, motorized
gimbals, or inconsistent direction constraints. We allow an editor
to manually define desirable and undesirable regions in the video,
as well as the ability to use automatically derived constraints such
as saliency maps, forward motion, or stitching regions for known
camera configurations. In the case of manual constraints, editors
can either directly draw on the equirectangular projection, or alter-
nately we propose a new type of interaction where the editor views
the content in a VR headset as a “guide”, and their viewing path is
recorded and used as a constraint in the joint optimization.
In summary, we propose a solution for joint stabilization and

direction of 360◦ videos, where undesirable camera motions (e.g.,
shake and rapid rotations) are removed while following a smooth
and directed camera path. Our solution also works for wide-angle
videos, enabling “virtual cinema” viewing in VR for a large library
of existing footage. To achieve these goals, we present the following
technical contributions:

• A motion estimation algorithm based on non-linear optimiza-
tion which performs better than widely used five-point algo-
rithm on 360◦ and wide-angle videos.

• A 3D spherical warping model derived from our motion esti-
mation that and handles both rotation and translation which
allows more control than the recently proposed method [Kopf
2016].

• A unified framework to define and add constraints from dif-
ferent sources on the resulting 360◦ video, including a new
VR interface and automatic motion constraints.

To validate these contributions, we make both qualitative and quan-
titative comparisons and conduct user study to show that in our
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1:2 • Tang, C. et al

Fig. 1. Our method follows the above pipeline; features are tracked across all frames, after which keyframes are selected. A novel 3D camera motion estimation
is combined with user-guided viewing constraints in the path planning step to produce a set of aligned keyframes, and the results are finally interpolated onto
all frames of the video. 360◦ frames are visualized as rectangles.

directed results, viewers are much more likely to observe the desired
parts of the sequence marked with positive constraints.

2 RELATED WORK
360◦ video can now be captured by both consumer handheld cam-
eras, such as Ricoh Theta, Nikon KeyMission, and Kodak Pixpro
SP360, and professional camera array systems [Anderson et al. 2016;
Lee et al. 2016]. The captured 360◦ video often needs to be post-
processed to deliver a pleasant viewing experience. We briefly re-
view relevant prior research.

Video stabilization is a common approach to improve the camera
motion of a video. Common ways to stabilize video involve tracking
features over time and computing an image warp sequence that
smooths feature trajectories and thus the apparent motion of the
video. This can be achieved by applying a sequence of homographies
or other 2D transformations that compensate the motion [Chen et al.
2008; Lee et al. 2009; Matsushita et al. 2006], by using a grid of ho-
mographies [Liu et al. 2013] for robustness, by using projective
reconstruction [Goldstein and Fattal 2012], on a low dimensional
feature subspace [Liu et al. 2011], as used in Adobe After Effects, or
by fitting smooth cropping windows that minimize first and second
order motion [Grundmann et al. 2011], as used on YouTube. Alter-
nate approaches have proposed building a full 3D reconstruction of
the scene, which can be used to synthesize a smooth virtual camera
trajectory [Buehler et al. 2001; Kopf et al. 2014; Liu et al. 2009].

Recently, Kopf [2016] presented an extension of video stabilization
to 360◦ videos. This approach computes a 3D geometric relationship
between keyframes via the 5-point algorithm [Li and Hartley 2006],
and smoothly interpolates keyframes using a deformable model. We
use a similar approach with a few significant modifications.Whereas
Kopf [2016] is largely used to compute a “total” stabilization (where
fixed scene points will remain stationary throughout the video),
we go beyond stabilization and combine artistic and smoothness
constraints to produce an easy to watch 360◦ video with directed
camera motion. One requirement to support this goal is that we
need a full 3D motion rotation and translation estimation per frame.
To achieve this, we introduce a new method for estimating rotation

and translation on a sphere that is more robust than the 5-point
algorithm.

Ourwork is inspired by previouswork on re-cinematography [Gandhi
et al. 2014; Gleicher and Liu 2008], where casually captured video
is improved by integrating high-level content driven constraints
and low-level camera motion stabilization. We extend this notion to
360◦ video, which benefits from all viewing angles being captured
during filming, so cropping is not necessary, freeing our method
from the trade off between guiding the viewer’s attention and pre-
serving video content. Similar path planning in traditional video
has also been used for retargeting [Jain et al. 2015; Wang et al. 2009],
which distorts or crops off less important content to fit the video
into a different aspect ratio other than originally intended.
The Pano2Vid work by Su et al. [2016] performs a related, but

different task of automatically producing a narrow field-of-view
video from a 360◦ video. A recent follow-up work extended this to
optimize for zoom as well [Su and Grauman 2017]. These approaches
are complementary to ours; in our work, we combine viewing con-
straints with motion estimation to compute smooth directed camera
paths for 360◦ viewing. Pano2Vid presents a learning based saliency
computation, and computes a shortest path on these values. As it
does not perform any motion estimation, it cannot be used to sta-
bilize camera motion in shaky videos. We show that we can use
the output from Pano2Vid as automatic saliency constraints for our
method, which generates smooth camera paths where important
content is placed in front of the viewers.

One of our main assumptions is that by rotating important objects
in front of viewers, VR viewing becomes a more enjoyable experi-
ence. This is in some sense, reducing some control of the viewer to
freely explore the space, as some rotations will be out of the control
of the viewer. Whether this kind of motion is “allowable” is an open
topic in VR film making, but we note that traditional wide angle
video also started with static shots before filmmakers learned how
to use camera motion as an artistic tool without disorienting the
viewer/

In this domain, work by Sun et al. [2016] has shown that it is
in fact possible to separate the viewer’s real world head motion
from the perceived motion in the VR space in order to map virtual
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spaces into physical constraints such as room sizes without causing
confusion. Sitzmann et al. [2018] also conducted user studies and
concluded that the faster user attention gets directed towards the
salient regions, the more concentrated their attention is.

3 METHOD
Figure 1 provides an overview of the approach. We first estimate
the existing motion between keyframes using feature tracking and a
novel pairwisemotion estimation formulation for spherical andwide
angle video. We then solve a joint optimization on the keyframes
that enforces smoothness in the warped video sequence and a set
of user-provided (or automatic) path planning constraints. Finally,
we smoothly interpolate the motion between keyframes to produce
the final output video. We now discuss each step in more detail.

3.1 Feature Tracking and Keyframe Selection
Similar to prior work [Kopf 2016], for 360◦ videos we remap the
equirectangular image to a cube map and track feature points inde-
pendently on each cube face using KLT feature tracking [Shi and
Tomasi 1994]. For wide-angle videos, we perform the tracking di-
rectly on the video frames. This is the only stage of the process that
is different between 360◦ and traditional wide-angle video, after
tracking we project feature points onto a sphere and treat both types
of videos identically. In the following, we will use unit vector p to
denote the projected points on a sphere.

Similar to other approaches, we select feature points on keyframes
and track them through the video [Kopf 2016; Kopf et al. 2014]. The
first and last frames are selected as keyframes, and we create new
keyframes every time the percentage of successful tracked features
drops to 60% of the number of features initially detected. Finally,
we only select feature points that are more than 2◦ away from any
previously selected feature points.
After feature tracking, we have a set of m feature trajectories

T = {Ti |i = 1 · · ·m} through the video, where each trajectory Ti is
a list of points from several continuous frames:

Ti = {pij |j = si · · · ei }, (1)

where si is the starting frame (which is always a keyframe), and ei
is the last keyframe where the point was successfully tracked.

3.2 Rotation and Translation Estimation
After collecting feature tracks, we estimate the relative 3D rotation
and translation between neighboring pairs of keyframes. A com-
mon solution is to use the 5-point algorithm [Nister 2004], to first
estimate the essential matrix, decompose it into a rotation matrix
R and a translation direction vector t, and then improve the esti-
mated motion by iterative refinement [Triggs et al. 2000]. With this
approach, the final quality relies on the accuracy of the essential
matrix estimation as well as the motion decomposition. It is well
known both of these steps are highly dependent on the quality of the
camera calibration [Stewenius et al. 2005], feature trajectories, and
global shutter camera [Dai et al. 2016]. As a result, prior 360◦ stabi-
lization work only uses the estimated rotation between neighboring
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Fig. 2. The motion of a point (p to p′) on a sphere, when (a) induced by
camera rotation around the axis r, (b) induced by a camera translation in
direction t, and (c), both together. We estimate t, R, and per-feature θ s by
minimizing distances EM for all tracked feature locations q

keyframe pairs, and discards the 3D translation, which can be unreli-
able. The final stabilization is then performed by smoothing feature
trajectories directly on the spherical image [Kopf 2016].
We propose a new motion estimation method that is robust to

poorly calibrated cameras, rolling shutter effects, and errors in the
feature trajectories, and yields 3D rotation and translation direction
estimates which are accurate enough to be directly used to stabilize
the footage, as well as to provide direction such as a forward motion
constraint (discussed later in Sec. 3.3). Both the 5-point algorithm
and our method are two view motion estimation methods, where
translation can only be computed up to an unknown scale. Therefore,
we use the standard definition for translation t as a 3 × 1 unit
vector [Hartley and Zisserman 2004], representing the translation
direction.

Direct Spherical Motion Estimation We first consider the re-
lationship between feature correspondences and the 3D transforma-
tion between two frames, a reference frame (with identity rotation
and zero translation), and second frame, with rotation R and trans-
lation t. Figure 2 illustrates the motion of a feature correspondence
p → p′ as a function of both 3D rotationR and translation t. To gain
a better understanding let’s consider the pure rotational and pure
translation cases independently. We use Rodrigues’ formula [Gray
1980] to represent rotation:

R(r,ω) = I + sin(ω)r× + (1 − cos(ω))r ⊗ r, (2)

where r is the rotation axis, ω is the rotation angle, r× is the cross
product matrix of r and ⊗ is the tensor product.
When the camera undergoes a rotation, every feature p on the

sphere rotates around the same axis r with the same angle ω inde-
pendent of its depth, i.e. p′ = R(r,ω)p. Since every point rotates
around the same axis by the same angle we simplify R(r,ω) as a
global rotation R.

When translating, each p rotates around a feature dependent axis
t×p by an angle θ (which is a function of point depth), towards the
intersection of t and the sphere, i.e. p′ = R(t×p,θ )p, where p, t and
p′ are in the same plane, and t×p is the normal vector of this plane,
i.e. (p′)⊤t×p = 0.
Without loss of generality, we define the camera motion M =

[R, t] as a rotation R followed by a translation t. To account for
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noise in the feature tracks, we estimate the rotation R, translation
t and the feature dependent angle θ by minimizing the following
error where q is the tracked feature location:

EM (R, t,θ ) = ∥q − p′∥2 = ∥q − R(t×Rp,θ )Rp∥2 (3)

over all feature correspondences between two keyframes. This en-
ergy measures the Euclidean distance between q and p′ where p′ is
the point found by rotating p with R and then with R(t×Rp,θ ). We
observe that the energy in Eq. 3 is hard to optimize directly because
of the point-dependent angle θ . In practice, there are about 3000 fea-
ture correspondences between two frames and each correspondence
has an θ , which gives a large amount of unknowns.

Instead, we directly estimate the rotation and translation between
two frames by first ignoring θ , and minimizing the least squares
error:

EM (R, t) = ∥ arcsin
(q⊤t×Rp
∥t×Rp∥

)
∥2 (4)

over all feature correspondences. Eq. 4 is a function of R(three
DoFs) and t(three DoFs), which is much easier to solve then Eq. 3.
As shown in Fig 2, Eq. 4 measures the angular distance between the
tracked point q and the plane that contains Rp and t, which is also
the angular distance between q and p′.

We can then compute θ by projecting q onto the same plane with
Rp and t, giving the projection as p′, and then measure the angular
distance between p and p′ as θ . We found it to be unnecessary to
constrain t to be a unit vector during the optimization, as Eq. 4 is
already normalized, and the scale of t does not affect the value of
EM . We therefore only normalize t after the optimization is finished.
Before minimizing Eq. 4, we identify inlier feature correspon-

dences using RANSAC with the fundamental matrix as a model,
estimated by the 7-point algorithm [Hartley and Zisserman 2004].
The reason for not choosing the more often used 8-point algorithm
is that the normalization in 8-point algorithm is inapplicable to
spherical points, and the 7-point algorithm is more efficient in the
presence of noise. While the fundamental matrix is unable to give
us the rotation and translation directly, it is helpful to identify fea-
ture tracks inconsistent with possible camera motion, especially for
scenes with moving objects.

We now can compute the relative motionMi,i+1 = [Ri,i+1, ti,i+1]
between all neighboring pairs of keyframes ki → ki+1 by minimiz-
ing Eq. 4 using a non-linear least squares solver. We then chain
rotations to align each keyframe in a global coordinate frame (e.g.,
that of the first keyframe):

Rki =

i−1∏
j=1

Rkj ,kj+1 . (5)

We use the relative translation direction tki ,ki+1 to compute the final
warped frames and for the forward motion constraint.

We then compute the relative camera motion for all remaining
frames between a given pair of keyframes ki and ki+1. To do this,
we set the neighboring keyframes to be the reference frame, and
separately solve for the in-between frame by minimizing Eq. (4),
averaging the result from both nearest keyframes (previous and
next). We evaluate the results both qualitatively and quantitatively
in Sec 4.

3.3 Joint Stabilization and Direction
Now that we have estimated the input camera path, we are able
to define our joint stabilization and direction optimization, which
consists of two terms:

E(W ) = Ed (W ) + Es (W ), (6)

where Ed is an energy that captures directional constraints and
Es encourages the smoothness in the resulting spherical video.W
is a set of camera transformations that correspond to the optimal
(virtual) camera trajectory. In this optimization, we use a combined
rotation and translation model W to transform the input video,
which we render using image warping.

We first solve Eq. 6 consideringW restricted to rotation only and
then later solve the two terms Ed (W ) and Es (W ) considering models
that handle both rotation and translation. In the following two
sections, and implementation, we present rotation in quaternions.

3.4 Directional Constraints
Directional constraints can be either positive, which specify salient
events that the editor would like viewers to see, or negative, in-
dicating things that should not be seen, for example content that
is uninteresting, that contains elements that do not belong in the
scene, such as the camera crew, or stitching seams. Fig. 3 shows the
various types of constraints we use.

Source of Constraints We provide two types of user provided
constraints. In one case, the editor simply clicks directly on the
ER projection, while in the other, the editor provided a “guided”
viewing session, where they watch the video in a VR headset, and
their viewing direction is recorded over time, and used as positive
constraints. To support this, we developed an app that records the
users head rotation during the playback of a video in a Google
Cardboard headset. This trajectory is then sampled at every second
and used in our optimization to guide the look-at direction over the
course of the video.
Our method can also be easily integrated with automatically

generated constraints. Automatic saliency methods for 360◦ video
(e.g., [Su et al. 2016]) determine the most visually salient regions,
which can be directly interpreted as positive constraints. Alternately,
as we are estimating 3D translation direction in Section 3.2, we can
use this to keep the camera pointed roughly in the forward mo-
tion direction, which provides a comfortable “first-person” viewing
experience. Automatic negative constraints can also be added, for
example for seam locations if the camera geometry is known a priori.
We show examples of all of these types of constraints in the result
section and supplemental material.

Constraint Formulation A positive constraint is represented as
a look-at point pi located on a spherical video frame fi . The goal is
to transform the frame fi by a rotation quaternion qWfi such that pi
is as close to the true north direction as possible, thereby making it
more likely to be seen. Similarly, a negative constraint nj located
on frame fj is one that we want to avoid appearing in the front,
i.e., we search for a transformation qWfj to make this point appear
outside of the user’s likely viewing direction.
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(a) (b) (c) (d)

Fig. 3. Our method can be used with a variety of input sources. Here we show some ways to provide directional constraints. A user can manually select
regions on an ER projection (left), or create a guided viewing experience in a VR headset (b), or we can use automatic constraints such as saliency e.g., [Su et al.
2016] (c), or from forward motion (Sec. 3.2) (d).

L2 Loss Our Loss for Negative Constraints

Fig. 4. L2 loss vs. robust loss for negative constraints. We make the penalty
close to zero as long as the negative constraint is out of visible region, and
the penalty increases sharply when the negative constraint moves towards
visible region. The forward direction is marked as blue arrows.

Therefore, for a set P of positive constraints, and N of negative
constraints, the directional term can be expressed as:

Ed (W ) =
∑
i ∈P

∥qWfi · pi − f∥22 +
∑
j ∈N

ρ(∥qWfj · nj − b∥22 ), (7)

where qWfi · pi denotes rotating pi by quaternion qWfi , and qWfi
minimizes the distance betweenpi and the front vector f = [0, 0, 1]⊤,
and qWfj maximizes the distance of nj to the front vector f, which
is equivalent to minimizing the distance to the back vector b =
[0, 0,−1]⊤.

Because we may only want the negative constraint to be outside
the of view (rather than exactly behind the user), we use a robust loss
function ρ(x) = αe−

β
x on the negative constraint. We set α = 3200

and β = 26.73, which causes ρ(x) to yield a low cost until it enters a
visible region for the average human field of view (which is roughly
114°horizontally [Strasburger et al. 2011]), after which the penalty
increases sharply, as shown in Fig. 4.

3.5 Smoothness Constraints
From Sec. 3.2, we have computed the global rotation Ri for all
frames, with respect to the first frame. We use a smoothness model
similar to [Kopf 2016], but with small modifications. Importantly, we
define the first-order and second-order smoothness terms directly
on the estimated camera rotations instead of the feature trajectories,

i.e.,
Es (W ) = α1Es1(W ) + α2Es2(W ), (8)

where

Es1(W ) =
n−1∑
i=1

���qWi+1qi+1 − qWi qi
���
p

(9)

is the first order term and,

Es2(W ) =
n−2∑
i=1

���(qWi+2qi+2)−1qWi+1qi+1 − (qWi+1qi+1)
−1qWi qi

���
p
,

(10)
is the second order term.
This energy is summed over all n frames, and |qa − qb | is the

difference between two quaternion rotations, α1 and α2 are weights,
and p is the norm of the smoothness that we solve for. In our imple-
mentation, we use α1 = 10 and α2 = 100 for all results shown, but
these values could be changed to control the trade-off between the
direction constraints and video smoothness.

3.6 Optimization
We can now directly minimize Eq. 6 using the Levenberg-Marquardt
algorithm in Ceres and achieve a final rotation-only directed video.
However, for efficiency, we propose the following optimization
scheme which gradually propagates a good initialization, speeding
up convergence.
We also observe that some axes of rotation can be confusing

for the viewer. In particular, camera movement in the roll axis is
uncommon in many videos recorded on a ground plane, and can
be confusing. We therefore default to fixing the roll axis inψ and
allow for rotation only in the pitch and yaw of the camera, unless
otherwise specified by the user (for example in the wing-suit video
(Fig. 17), we enable rotation on the roll axis).

We can choose between smoothness norms in our optimization,
in particular prior works have used L1 and L2 norms. Using an L1
norm tends to give clear distinctions between fixed and moving
shots, while L2 paths are smoother overall. We provide examples
of L1 and L2 smoothed paths in the supplemental material, and
allow the user to choose which norm (p = 1 or p = 2) they want to
minimize.

3.7 Translation-Aware Transformation
Until now, we have considered rotation-only transformation forW ,
which have the advantage of being quick to compute, as there are
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Fig. 5. Spherical Point Projection. Left: The point projection in the input
video between a frame fj and a keyframe ki . Right: The point warping
between an input frame fj and a target frame fWj .

only three DoFs for each frame, and are guaranteed to not introduce
any local distortion into the video. However, as observed in prior
work [Kopf 2016], camera shake often contains a significant trans-
lation component to it, which requires local warping to compensate
for parallax effects. One common solution is to smooth individual
feature trajectories, however, this can break the spatial distance
between feature trajectories on sphere and introduce geometric
distortions in the output. Previous works have used Structure-from-
Motion (SfM) or subspace constraints to generate smoothed feature
trajectories while preserving scene structure, but these strategies are
either computationally expensive [Liu et al. 2009] or cannot be di-
rectly applied to 360◦ videos [Liu et al. 2011]. For 360◦ videos, [Kopf
2016] represents feature points by an interpolation of six evenly
distributed vertices on a sphere, and then constrains the rotation of
the six vertices to be similar to avoid large distortions.

Different from all these methods, we propose to solve for a virtual
camera, represented by the transformationW that includes rotation
and translation, such that the feature trajectories as seen from this
camera are smooth. This is possible due to the estimated per-frame
3D rotation and translation in Sec 3.2. The goal of our transformation
is therefore to generate smooth feature trajectories that maintain
the spatial structure and directional constraints for each frame. This
approach has fewer degrees of freedom than directly optimizing for
image-space warps, as it is restricted to geometrically plausible re-
constructions, and we show that it can handle strong parallax better
than [Kopf 2016]. At the same time, we do not require computa-
tional expensive SfM [Liu et al. 2009]. We first describe a spherical
point projection model that represents transformed points as the
function of our translation-aware transformation. We then present a
modified version of the smoothness term in Eq. 6, that we minimize
to find the transformed feature trajectories. Finally, we can warp
the image using these transformed feature trajectories in Sec. 3.8.

Spherical Point Projection Given an inner frame fj and a neigh-
boring keyframe ki , we know the relative motion Mi j = [Ri j , ti j ]
from Sec 3.2. As shown in Fig 5, we consider local coordinates cen-
tered at fj , where the position of fj is the origin, the position ki
is −ti j , and P is the 3D point corresponding to the spherical fea-
ture point pj at a distance d from fj . According to the sines rule of
triangles, d can be computed as:

d =
sin(ϕ)
sin(ω) ∥ti j ∥ =

sin(ϕ)
sin(ω) , (11)

where ω is the angle between pj and Ri jpi as described in Sec 3.2,
ϕ is the angle between pj and the unit translation direction −ti j .
Therefore, we have

P = dpj =
sin(ϕ)
sin(ω)pj . (12)

We now want to transform the point P onto a target spherical
frame fWj by a camera transformationWj = [RWj , t

W
j ]. Since P is

already known, the transformed point wj can be represented as a
function of the transformationWj = [RWj , t

W
j ] as:

wj = (RWj )⊤(
P − tWj
∥P − tWj ∥

). (13)

Dividing sin(ω) in Eq. 11 and Eq. 12 makes P numerically unstable
when sin(ω) is close or equal to zero. This issue happens when
the translation is near zero, or P is a far scene point. To avoid this
problem, we scale both P and tWj in Eq. 13, by sin(ω), which leads
to the same result but one that is numerically more stable.

Translation-Aware Optimization We next introduce how to
optimize for the final smoothed and directed camera transforma-
tions. By representing a transformed point wj as the function of a
rotation RWj and a translation tWj in Eq. 14, we can extend the rota-
tion only transformation in Eq. 6 to a full rotation and translation
transformation:

wj = (RWj )⊤( sin(ω)(P−tWj )
∥ sin(ω)(P−tWj ) ∥ ) = (RWj )⊤(

sin(ϕ)pj−sin(ω)tWj
∥ sin(ϕ)pj−sin(ω)tWj ∥ ).

(14)
The optimization for the joint rotation and translationW :

Es (W ) =
|T |∑
i=1

(
α1

ei−1∑
j=si

∥wi
j −wi

j+1∥ + α2
ei−2∑
j=si

∥wi
j+2 − 2wi

j+1 +w
i
j ∥
)

(15)
which is an objective function over the unknown camera trans-
formation, si and ei are the starting and ending frame of the i-th
feature trajectory as in Eq. 1, α1 and α2 are the same weight between
first-order and second-order smoothness as in Eq. 8.

The final objective function combines the smoothness term Eq. 15
and the directional term, (Eq. 6). And minimizing this yields the
transformation W that represents the collection of rotation and
translationW = {[RWi , t

W
i ]}i=1· · ·n that transform all the n frames

to a smoother and better directed camera path. AfterW is estimated,
we transform the points of feature trajectories by Eq. 14. In the
example illustrated in Fig. 6, we can see that the transformed fea-
ture trajectories are much smoother than the original input, while
satisfying directional constraints.

3.8 3D Spherical Mesh Warping
We now render these transformations by spherical mesh warping.
For each frame fj we have p as the original feature point in the input
andw as the corresponding points in the transformed frame fWj . We
ignore the superscriptW and subscript j since we consider warping
now only for single frames. Based on the point correspondences
p → w, we can re-render an input image as if the image was
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Input

Warped

Fig. 6. Translation-Aware Optimization. The input trajectories (red) are
shaky while the optimized trajectories (yellow) are smoother. At the same
time, the positive constraint (red ′+′ circle) is transformed to the front, while
the negative constraint (blue ′−′ circle) is transformed to the back of the
sphere.

Fig. 7. Spherical Mesh Warping. A set of feature correspondences (blue
arrows) are used to drive a warp computed over the vertices of a sphere.
The computed offset vectors at each vertex (red arrows) are used to warp
the vertices to the sphere on the right.

captured by a camera physically located on a well directed and
smooth 3D camera path without requiring full 3D reconstruction,
which can be slow and unreliable [Liu et al. 2009]. As shown in
Fig 7, the general idea of our spherical mesh warping is to propagate
the point-wise correspondence to each mesh vertex in the image
and then warp the spherical image based on these vertices. Due to
our 3D structure preservation, we can allow for a higher degree of
deformation than prior work (we use a 20×10 mesh), while avoiding
geometric distortion. Given the high mesh resolution, we found it to
be sufficient to use a regular grid defined on an equirectangular map,
however different spherical tessellations could be used if desired.
As described in Sec. 3.2, the translation induced motion can be

represented by feature dependent axis and angle. Sincewe’ve already
estimated the transformation rotation R and translation t, we know
the axis as t×Rp for each feature point, and we get the angle ω in
the same way as in Sec. 3.2.
We now have the rotation and translation between the input

and warped image and have estimated the angle ω (which is a
parametrization of the point depth) for each feature in the frame.
To propagate the warping motion from a set of feature points F
to a set of mesh vertices V in the corresponding spherical mesh
warp, we apply the rotation R to all vertices and then solve for Eω ,
the field of translation angles for all vertices by a 1D minimization

Fig. 8. A warped image and the interpolated angle ϕ shown for all pixels.
This demonstrates how the warping angles have structure roughly similar
to the inverse depth map but smooth, e.g., pixels closer to the camera on
the mountain have larger value than farther pixels under the same camera
motion.

parameterized only on the angle ω.

Eω =
∑
p∈F

∥ωp − b⊤p vp ∥22 +
∑
i, j ∈V

∥vi −vj ∥22 , (16)

where p belongs to the set of feature points, i and j ∈ V are neigh-
boring vertices on sphere, vp are the angles for the four vertices
that cover the p-th feature point [Liu et al. 2009], and b⊤p is the cor-
responding bilinear interpolation coefficients for the four vertices.
The spatial smoothness term

∑ ∥vi −vj ∥22 guarantees that angles
are spatially smooth and avoids local distortion.

We solve Eq. 16 in a least squares sense, giving us the final output
position for each vertex and use these vertex positions to render a
warped sphere (Fig. 7). The 1D optimization defined in Eq. 16 has
the advantage of being efficient to compute, while restricting our
solution to warps that are geometrically regularized. We bi-linearly
interpolate the angle to all pixels and visualize it in Fig 8. Because
the warping must only correct for residual motion, we observed,
similar to prior work [Kopf 2016], that the warping function is
largely smooth, and as such we have found this approach to be
robust to input videos and parameter settings.

3.9 Implementation
Ourmethod was implemented in C++.We solve Eq. 4 and Eq. 6 using
the Levenberg-Marquardt algorithm in Ceres. We fixed parameters
for all the results shown here, although if desired we can easily
control the amount of smoothing by changing α1 and α2. We report
average running times for the different parts of our method in Tab. 1
computed on a 2015 Macbook Pro laptop with 2.5GHz i7 CPU and
16GB memory, on HD (1920 × 960) equirectangular video frames.

Section Average running time
in ms/frame

Ingest and cube map conversion 5
Feature tracking and keyframe selection (Sec. 3.1) 23
Relative motion estimation (Eq. 4) 10
Re-cinematography computation (Eq. 6) 1
Full deformable warping (Eq. 16) 10
Rendering in OpenGL 6

Total 55

Table 1. Running times for different parts of our method, computed on
1920 × 960 video frames.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:8 • Tang, C. et al
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Fig. 9. Representative slices of the energy surface formed by Eq. 4, with blue
showing areas of lower energy. Here we show 2D slices of the original 6D
error space. This visualization indicates that the surface is largely smooth,
which yields a robust and efficient optimization, despite the nonlinear energy
terms.

4 RESULTS AND EVALUATION

4.1 Motion Estimation Evaluation
We first compare our motion estimation to the commonly used 5-
point algorithm [Nister 2004]. As opposed to the 5-point algorithm
which estimates an essential matrix, we directly solve for R and t
using non-linear least squares. We solve this minimization using
Levenberg-Marquardt optimization [Agarwal et al. 2017] with man-
ually derived analytic derivatives which we show in the Appendix
A. We empirically found this to converge by 10 iterations, taking
roughly 20ms to estimate the motion for a pair of cameras with
about 3000 feature correspondences. Surprisingly, the optimization
converges to a reasonable solution even when initialized with an
identity rotation matrix and a random unit translation vector. To
understand why, we visualize the error space by uniform sampling
(two slices of which are shown in Figure 9), which shows that the
energy function is close to convex, making it efficient to solve ro-
bustly. We also found that our motion estimation works well even
in cases with pure rotation, which is most likely due to the fact that
our method uses all feature points available in a 360◦ image, which
helps to disambiguate rotation and translation motion. Compared to
the 5-point algorithm [Nister 2004], where epipolar constraint are
enforced exactly (Eq. 2 equals to zero) within each 5-point group and
the solution is selected as the one with maximum inliers, our method
seeks for a solution with a minimum energy over all points, which
benefits from a greater number of inliers, improving the accuracy
of the motion estimation and mesh-based image warping.

We next evaluate the motion estimation quality in the presence of
noise in the feature correspondences. A qualitative visualization of
feature trajectories after stabilization using our method in place of
the 5-point algorithm is shown in Fig. 11, with additional examples
in Sec. 4. Quantitative evaluation on real world data is challenging
due to the difficulty of collecting ground truth data for 3D pose
estimation. We therefore employ the same validation technique
used by prior motion estimation works [Kneip and Lynen 2013;
Kneip et al. 2012; Nister 2004]. The approach is to use synthetic data,
where the first camera is fixed at the origin with identity rotation
and a second camera chosen at a random position at most τ units
from the first with a relative rotation generated from random Euler
angles bounded to κ◦ . We then create a uniformly distributed 3D
point cloud with fixed maximum distance to the origin γ . Feature
correspondences can then be computed by projecting the 3D points
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Fig. 10. Validation of our proposed method on synthetic data. Top: A
rotation-only model R (green) performs significantly worse than our full
approach that models both R and 3D translation direction t (red), which
outperforms the commonly-used 5-point algorithm (blue) in the presence of
increasing noise. Middle: We observe a similar difference when comparing
our recovered 3D translation direction to the 5-point algorithm. Bottom:
When comparing the result quality at different FoV settings, we can see that
our direct estimation has consistently less error.

into the two spherical cameras with added noise. Finally, the relative
motion of the cameras are computed from this data and compared
to the known relative camera motion.
For our experiments we use τ = 2, κ = 30◦ , γ = 8. We fix the

outlier percentage to 10% and solve for the relative poses 1000 times
at each noise level, recording the final average accuracy. As shown
in Fig 10 our direct motion estimation is more accurate than the
5-point algorithm for 360◦ video, and is more robust to increasing
noise levels due to the fact that it can consider a larger number of
background tracks. Estimating both rotation and translation also
enables us to derive the 3D spherical warping proposed in Sec. 3.7.
We also found the approach to be particularly robust to the field of
view (FoV) parameter for traditional video, which allowed us to use
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rotation only 5-point Ours

Fig. 11. Visualization of feature tracks after running our full method using
the 5-point algorithm for estimating 3D rotation and translation (left) vs
using our proposed approach (right), showing that our result is smoother.
Please see the supplemental video for a comparison.
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Fig. 12. Quantitative comparison of first-order and second-order smooth-
ness by different motion estimation methods. The curves show the cumula-
tive distribution function of (a) first-order and (b) second-order smoothness
costs for the feature trajectories stabilized by different motion estimation
algorithms. The y-axis represents the value of the first and second-order
smoothness, and x-axis represents the percentage of the values larger than
a corresponding y value.

a rough estimate of 120◦ horizontal FoV for all wide-angle videos,
with the vertical FoV dependent on the aspect ratio.

In addition to the quantitative evaluation of ourmotion estimation
in Sec. 3.2, we also show the smoothness of final results achieved
by different motion estimation strategies. Similar to [Kopf 2016],
we collect all feature trajectories and evaluate the value of first-
order and second-order smoothness terms in Eq. 15. Fig. 12 shows
the cumulative distribution functions (CDFs) for these quantities
by different motion estimation methods. We can see that feature
trajectories optimized by our translation-aware transformation are
smoother than 5-point algorithm, and that, as also noted in [Kopf
2016] that rotation only model can not stabilize the video sufficiently.

4.2 Qualitative Evaluation
In this section, we perform ablation studies and compare alternatives
for each component of our method. For evaluation, we collected 12
360◦ and 8 wide angle videos from YouTube, as well as 3 360◦ videos
from the Pano2Vid dataset [Su et al. 2016]. The resolution ranges
from 1920 × 960 to 3840 × 2160, for 360◦ videos, and 1280 × 720 to
3840 × 2160 for wide angle videos, with unknown FoVs. We then
trim long videos such that the final duration ranges from 30-60
seconds, which is long enough for viewers to fully explore the video
and much longer than prior datasets used for narrow FOV video

stabilization [Liu et al. 2013]. In Fig.14, we compare smoothness
norms by visualizing the path of a scene point across frames. Please
see the supplemental video for reference.
We present all video results in the supplemental material in

equirectangular format, which we encourage to be viewed on a
VR headset if possible. If this is not possible, we provide a link to a
desktop viewer where the videos can be explored by mouse as well
as a normal FoV video that presents select results.

Direction w/o Stabilization. Some recent works [Hu et al. 2017;
Su and Grauman 2017; Su et al. 2016] focus on converting spherical
videos to traditional narrow FoV videos. These works re-direct the
video, but do not consider the camera motion in the original videos,
assuming that the input is captured by static or smooth cameras.
This assumption does not hold for many consumer videos captured
by hand-held cameras with shaky movement. As shown in Fig. 15,
feature trajectories in the output of Pano2Vid are as shaky as the
input, while our result not only focus on the important content but
achieves this with a smooth camera path.

Stabilization w/o Direction. Using our method we can also
generate stabilized-only results, and we provide some examples of
this in the supplemental material. In general, videos that are entirely
stabilized are hard to watch, as camera motion and objects of interest
can drift away from true north, causing viewers to get lost. This
can be seen in Fig. 18 (c,d), where when viewed with stabilization
but without direction (b), the opposing kendo player moves around
the camera quickly, and many viewers loose track of the players,
requiring some time for their gaze to catch up to the action. However,
in the directed version (c), the opposing player is kept in the center,
which makes viewing much easier. It is also possible to reintroduce
a smoothed version of the original viewing direction back into the
video [Kopf 2016], however this is not sufficient in many cases, as
the original camera direction may often times not be ideal as shown
in Fig. 16, and also can be seen in Fig. 18 (a,b).

Finally, as observed in our user study, and collaborated by other
perceptual studies [Sitzmann et al. 2018], many viewers tend to
watch 360◦ content passively. We can see that the average viewing
direction is highly centered in the true north direction, independent
of the video content. Therefore, it is crucial to direct interesting
events to this region.

Two-stage vs Joint Optimization. One question is whether it is
necessary to optimize the direction and smoothness jointly, or if sat-
isfactory results could be obtained by stabilizing the inputs first and
then directing the output of stabilization. Some recent works [Hu
et al. 2017] uses the later strategy to generate 2D hyperlapse from 3D
spherical videos. We compare the two-stage optimization with our
joint approach by first stabilizing the video ignoring the direction
constraint in Eq. 6, then we adjust the direction of the stabilized
result by smooth interpolation of the positive direction constraints.
As shown in Fig. 17, our approach creates smoother camera paths
overall, as direction constraints may be inconsistent across time,
and being able to jointly solve for both gives us more flexibility to
choose between multiple valid stable paths. This is especially true
with automatically generated constraints such as forward motion or
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BACKYARD BIKING WINGSUIT MARKET GUNDAM HIKING

JUNGLE KENDO SLIDING HIKING2 HIKING3 SOCCER

CRANE∗ HAWK∗ LEGO∗ PARKOUR∗ SPEEDFLYING∗ WOLF∗

Fig. 13. 360◦ Video Sequences. Thumbnails from the video sequences used for results. These include 12 360 video sequences from Youtube, and the sequences
HIKING2, HIKING3 and SOCCER from the Pano2Vid dataset. Additional wide-angle videos are delineated with an ∗.
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Fig. 14. We show the horizontal movement of a fixed scene point with differ-
ent smoothness constraints. We can see that in this case the L2 smoothness
term generates a more stable result than L1 smoothness.

saliency. Please refer to the supplementary videos for more detailed
comparison.

4.3 User Study
We additionally validate our approach by conducting a user study. In
this study, we attempt to answer two questions. The first is whether
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Fig. 15. The feature trajectories of the input and Pano2vid [Su et al. 2016] are
shaky while our result is more stable and maintains the direction constraint
from pano2vid.

our solution actually increases the chance that users will see the
desired targets in the 360◦ video. Second, we attempt to qualitatively
evaluate our results by determining user preferences of our results
as compared to the inputs and fully stabilized versions.

To do this, we recruited 20 users to participate in our study, with
an age range from 25 to 50 years old. Users were seated to simulate
common viewing conditions for watching 360◦ video at home, and
the videos were viewed using a Google Cardboard VR headset with
an iPhone 6s. We then conducted a two-alternative forced choice
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Fig. 16. In the input video (top) the camera is mounted on a toy gun, which
is pointed down at the ground frequently . Using manual editing constraints
we can keep the video pointed ahead even when the gun is lowered, making
it much easier to watch.
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Fig. 17. A two-stage optimization can not guarantee the direction in the
output is consistent since the direction constraint is generated for each
edited frame independently. So it is necessary to optimize with direction
constraints and smoothness constraints jointly to regularize the direction
constraint.

(2AFC) preference experiment, where viewers were presented with
two versions of a video and after viewing both sequentially were
asked which they preferred. In addition, the gaze directions of each
viewer was recorded, to measure the overlap with the positive con-
straint regions. The study included 6 videos, with an average length
of 30 seconds. For each video, we compare the following versions:
a) the original video, b) the stabilized only video, c) the directed
and stabilized video via two-stage optimization and d) our directed
and stabilized video via joint optimization. Comparisons are made
as pairwise choices, yielding 6 different pairwise comparisons per

Original Video Ours Stabilized

Mean distance (deg) 57.89 25.87 76.69
Percent seen (%) 34.79 56.18 13.23

Table 2. Measured distance of participants’ gaze directions to the positive
directional constraints (lower is better). We also show the percent of positive
constraints likely seen, which corresponds to the fraction of constraints
that were within 30◦ of a viewer’s gaze (higher is better).

video. Within each pair, video positions are randomized, and the
order of the 6×6=36 pairs is drawn randomly. Viewers were not
given any specific viewing instructions besides simply exploring
the videos as they like.

To validate whether our method can be used to improve the view-
ing experience by directing the camera towards important events,
we compute two quantitative measures using the recorded viewing
tracks. First, we measure the mean distance of all users to all positive
constraints in the videos. Second, we compute what percentage of
viewers gaze was within 30◦ of the positive constraints. We can
see the results in Table 2, indicating that adding direction to the
camera significantly increased the chance that viewers will witness
the events that the editor chooses to highlight. Figure 18 shows
an example frame where the viewers have missed an important
event in the undirected version. This is an important step to val-
idate, given that the main goal of our approach is to increase the
chance of seeing positively marked events. This is mostly due to the
inherent preference for forward-facing viewing, and the problem
with getting lost when camera motion is not smooth. Please see the
supplemental material for a visualization of viewing direction of
participants.
In the second experiment, we perform a qualitative test, where

users were asked for each pair, “which video did you prefer to
watch?”. The results of this study are shown in Fig. 19. We use
one-way analysis of variance (ANOVA) [?] to validate the statistical
significance of our results. To analyze the multiple preference test
in a single ANOVA pass, we count the times that a specific version
was selected as the preferred video, and use this as a score. After
collecting scores for all four different versions on all videos, we
run one-way ANOVA to evaluate the statistics significance of the
differences between different models. We find that the p-value of
the ANOVA is 7.269 × 10−14, indicating that the conclusions of our
subjective evaluation are reasonable. As shown in Fig. 19, when
compared with the input, a vast majority of users preferred our
directed and stabilized version to both the input and stabilized
footage. When compared within the directed and stabilized version,
the joint optimization approaches is slightly preferred over the two-
stage optimization, indicating that the joint optimization has found a
good balance between stability and direction, although this result is
less statistically significant. We also conduct a comparison between
the stabilized version and the input, and found a slight preference
of the stabilized version.
We note that we conducted a relatively long term user study,

lasting 36 minutes for each viewer. To avoid viewers exceeding the
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(a) Input (a) Directed (c) Stabilized (d) Directed

Fig. 18. Gaze directions from our user study visualized as a heatmap over the video frames. In (a), a large portion of viewers will miss seeing the robot from
the front, as they remain looking around the direction of motion. In (b), the camera rotates quickly, moving the important action out of view. It takes some
time for users to find the kendo player again after this, whereas in the directed version, they can watch the whole scene without getting lost.
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Fig. 19. Percentage of obtained votes from the user study, showing a slight preference for (a) joint direction and stabilization v.s. two-stage direction and
stabilization, and strong preferences for (b) joint direction and stabilization v.s. stabilization only, (c) stabilization only v.s. input, (d) two-stage direction and
stabilization v.s. stabilization only, and (e) two-stage direction and stabilization v.s. input. We also show a slight preference of (f) stabilization only v.s. input,
and (g) the mean scores for each version.

maximum time that they were comfortable viewing 360°video, we
split the 36 comparison pairs into 3 groups and let the viewers watch
one group each time with rests in between. Longer experiments
would be needed to measure differences in viewing comfort over
extended viewing sessions.

4.4 Limitations
Our method directs and stabilizes 360◦ or wide-angle videos based
on estimated 3D camera motion and directional constraints. While
this approach works well in many cases, it has some limitations.
For one, we found that when videos were captured using multi-
camera setups with imprecise temporal synchronization, the 3D
scene assumptions in Sec. 3.2 are no longer valid, and our method
is unable to compensate the shakiness in the input video.

Second, the joint direction and stabilization optimization in Sec. 3.2
assumes that the input direction satisfies the cinematography rules.
When the input direction constraint violates cinematographic rules,
our joint optimization can not correct the direction constraint by
smoothness. We can see examples of this when viewing constraints
are derived for example from automatic saliency computations in
the supplemental material. Additionally, when foreground objects,
especially those with coherent motion tracks, occupy the majority
of the viewing sphere, our optimization is unable to identify only
the correct background tracks. Please see the supplemental video
for examples of these cases.

5 CONCLUSION AND FUTURE WORK
In conclusion, we have presented an approach for joint stabilization
and direction of 360◦ video. 360◦ video is particularly well suited
for this task, as all views are present at capture time, allowing full
control over viewing direction in post. In our work, we address
modifying only the look-at direction, however this is just one small
part of computational cinematography for 360◦ video, and there
are many interesting areas for follow up work. For example, we
do not experiment with changing focal length (zoom), as current
360◦ cameras do not have suitable resolution for close-up shots.
Recent work [Serrano et al. 2017] has studied how people react to
cuts in 360◦ viewing, especially when important content regions are
inconsistent across the cut. We validate our approach with a similar
experiment, in that we look at the percentage of fixation points
of viewers inside regions of interest over short videos. However,
our study is complementary, and shows how direction affects the
viewing experience. These findings suggest our method could be
used in conjunction with observations from Serrano et al. [2017]
to automatically direct content to be consistent over cuts. Finally,
we believe that virtual cinema experiences with wide angle footage
is a good way to bridge the gap between the wide availability of
360◦ viewing devices and the limited library of content. To this
end, our approach can be used with common wide angle first per-
son cameras, as well as the recently introduced family of 180◦ VR
cameras.
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A DERIVATIVES OF MOTION ESTIMATION
In this appendix, we give the analytic derivatives of our motion
estimation. For the convenience of representation, we denote t×Rp
in Eq. 4 as n and multiply the angleω to the rotation axis r asw. We
first give ∂E

∂n ,
∂n
∂w and ∂n

∂t , and then ∂E
∂w and ∂E

∂t can be calculated
using chain rule.

∂E
∂n is derived as:

∂E

∂n
=

q⊤√
1 −

(q⊤n
∥n∥

)2 ( I
∥n∥ − nn⊤

∥n∥3
)
, (17)

where I is a 3 × 3 identity matrix.
∂n
∂w and ∂n

∂t are:
∂n
∂w
= t×(Rp)×, (18)

∂n
∂t
= (Rp)×. (19)

By chain rule we can finally get ∂E
∂w and ∂E

∂t as ∂E
∂w =

∂E
∂n

∂n
∂w

and ∂E
∂t =

∂E
∂n

∂n
∂t .
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