
A Blockchain-based Flight Data Recorder
for Cloud Accountability

Gabriele D’Angelo
University of Bologna

Bologna, Italy
g.dangelo@unibo.it

Stefano Ferretti
University of Bologna

Bologna, Italy
s.ferretti@unibo.it

Moreno Marzolla
University of Bologna

Bologna, Italy
moreno.marzolla@unibo.it

ABSTRACT
Many companies rely on Cloud infrastructures for their computa-
tion, communication and data storage requirements. While Cloud
services provide some benefits, e.g., replacing high upfront costs
for an IT infrastructure with a pay-as-you-go model, they also in-
troduce serious concerns that are notoriously difficult to address.
In essence, Cloud customers are storing data and running computa-
tions on infrastructures that they can not control directly. Therefore,
when problems arise – violations of Service Level Agreements, data
corruption, data leakage, security breaches – both customers and
Cloud providers face the challenge of agreeing on which party is
to be held responsible. In this paper, we review the challenges and
requirements for enforcing accountability in Cloud infrastructures,
and argue that smart contracts and blockchain1 technologies might
provide a key contribution towards accountable Clouds.

CCS CONCEPTS
• Security and privacy→ Security services; Distributed systems
security; • Computer systems organization→ Cloud comput-
ing;

KEYWORDS
Cloud Computing, Accountability, Blockchain, Smart Contracts
ACM Reference Format:
Gabriele D’Angelo, Stefano Ferretti, andMorenoMarzolla. 2018. A Blockchain-
based Flight Data Recorder for Cloud Accountability. In CryBlock’18: 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems ,
June 15, 2018, Munich, Germany. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3211933.3211950

1 INTRODUCTION
According to the Cloud computing paradigm, computing resources
are viewed as a utility that is provided to customers (end users,
organizations) as required. One of the most prominent advantages
of Cloud computing is the possibility for the customers to get the
resources they need without the huge upfront and long-term invest-
ment that would be necessary to acquire and manage the resources
on their premises. However, this means that customers do not own,
and have no direct control on, the resources they use; a common
joke suggests that the term “Cloud computing” should be replaced
with “other people’s computers” so that the sentence “storing data
in the Cloud” becomes “storing data on other people’s computers”.
1WARNING: this paper may contain traces of silicon snake oil and palm oil.

CryBlock’18, June 15, 2018, Munich, Germany
2018. ACM ISBN 978-1-4503-5838-5.
https://doi.org/10.1145/3211933.3211950

Corporations and government organizations are well aware of
this issue, and the more privacy-conscious of them are willing to
put only their less sensitive data in the Cloud. This attitude limits
the full potential of the Cloud, but is clearly justified by the fact
that organizations are uncomfortable with the idea of storing their
data on systems they do not control. The legal implications of data
and applications being held by a third party, possibly in a different
country with a different data protection legislation, are complex and
not well understood. If something goes wrong (e.g., data is lost, or
the computation returns an incorrect result), how do we determine
whether the customer or the provider caused the problem? For
example, how could the following disputes be resolved?

Scenario 1. A company chooses to offload an important customer-
facing application to a Cloud infrastructure; however, the applica-
tion crashes and customers complain with the company asking for
compensation. The company blames the Cloud provider, who in
turn asserts that its infrastructure worked as expected.

Scenario 2. A company stores sensitive data on the Cloud. After
some time, the company discovers that the data became known to
a competitor. The company believes that there has been a security
breach on the Cloud; the service provider denies any responsibility
and refuses further investigation.

Scenario 3. A company stores important data on the Cloud. After
some time, part of the data is missing. The company blames the
Cloud provider, who asserts that the allegedly missing data have
never been there.

Cloud providers offer services on an as-is and as-available basis,
subject to terms and conditions that disclaim any responsibility no
matter what. For example, the terms and conditions for Google Docs
are full of obligations on the user, but do not promise much in return.
Here is an excerpt2:

In particular, Google, its subsidiaries and affili-
ates, and its licensors do not represent or warrant
to you that:
(a) your use of the services will meet your require-
ments,
(b) your use of the services will be uninterrupted,
timely, secure or free from error,
(c) any information obtained by you as a result
of your use of the services will be accurate or re-
liable, and
(d) that defects in the operation or functionality
of any software provided to you as part of the
services will be corrected.

2https://tools.google.com/dlpage/res/webmmf/en/eula.html, Accessed on 2018-01-23

ar
X

iv
:1

80
6.

04
54

4v
1 

 [
cs

.D
C

] 
 1

2 
Ju

n 
20

18

https://doi.org/10.1145/3211933.3211950
https://doi.org/10.1145/3211933.3211950
https://doi.org/10.1145/3211933.3211950
https://tools.google.com/dlpage/res/webmmf/en/eula.html


CryBlock’18, June 15, 2018, Munich, Germany Gabriele D’Angelo, Stefano Ferretti, and Moreno Marzolla

Amazon Web Services are no different: their general customer
agreement states that3

Further, neither we nor any of our affiliates or li-
censors will be responsible for any compensation,
reimbursement, or damages arising in connection
with: [...] (d) any unauthorized access to, alter-
ation of, or the deletion, destruction, damage, loss
or failure to store any of your content or other
data.

A little different, but still insufficient, is the agreement offered
by Google to its Cloud Storage customers, in which some service
uptime thresholds are defined4.

In the absence of solid evidence, it would be impossible to set-
tle disputes. To address this concern, Cloud services need to be
made accountable [4, 8, 14, 16]. Accountability is fundamental to
developing trust in services. All actions and transactions should be
ultimately attributable to some user or agent. Accountability brings
greater responsibility to the users and the authorities, while at the
same time holding services responsible for their functionality and
behavior.

In this paper, we analyze the problem of enforcing accountability
and trust on Cloud infrastructures. One of the key aspects of an
accountable Cloud is a component that is responsible for logging
events in a trusted, tamper-proof way. So far, building such a com-
ponent has been highly nontrivial without resorting to a trusted
third party or to tamper-proof hardware devices. The blockchain
technology might change this, allowing the implementation of
distributed, unforgeable event logs. Additionally, the blockchain
allows the implementation of smart contracts [17] through which it
might be possible to write programs that can negotiate and verify
the fulfillment of Service Level Agreements (SLAs).

This paper is organized as follows. In Section 2 we provide some
background on Cloud computing, blockchain and smart contracts.
In Section 3 we highlight some of the challenges and requirements
of accountable Clouds. Section 4 investigates how blockchain-based
technologies can help to address the challenges above in a case study
dealing with accountable cloud-based storage. Finally, conclusions
and future research directions are discussed in Section 5.

2 BACKGROUND
To make this paper self-contained, we provide some background
on Cloud computing infrastructures, accountability, blockchain
technology and smart contracts.

2.1 Cloud Computing
The essential characteristics of a Cloud environment can be sum-
marized as follows [13]: on-demand self service refers to the ability
to provide resources (e.g., CPU time, network storage) as needed [3,
12]; broad network access means that resources can be accessed
through the network [3]; resource pooling requires that virtual and
physical resources can be pooled and assigned dynamically to con-
sumers using a multi-tenant model [12]; elasticity is the ability of
dynamically provisioning resources to enable customer applica-
tions to scale up and down [3, 12]; fimally, measured service means
3https://aws.amazon.com/agreement/, Accessed on 2018-01-24
4https://cloud.google.com/storage/sla/, Accessed on 2018-02-27

that Cloud resource and service usages are optimized through a
pay-per-use model [7, 8].

2.2 Accountability in Cloud Computing
The importance of accountability in distributed systems in gen-
eral [9, 18] and Cloud computing in particular [8, 15] has already
been recognized. In [8] the author discusses the requirements for
achieving accountability in clouds through tamper-evident logs:
completeness (all SLA violations are eventually reported); accuracy
(no violations are reported if the SLA is not violated); verifiability
(all reported violations can be independently verified by a third
party).

To actually realize an accountable Cloud based on trusted logs
it is necessary to decide what to log and how to log. We consider
’how’ first. Logging must guarantee fairness and non-repudiation,
ensuring that well-behaved parties are not disadvantaged by the
misbehavior of others, and that no party can subsequently deny
their participation. It should enable tracing back the causes of an
‘incident’ (i.e., a behavior that is not SLA compliant) after it has
occurred. Cloud providers and customers require protection with
respect to each other’s actions, with provider assurances rooted
in an independent source of trust. For example, there should be
user-verifiable assurance that the data, applications and services
they deploy in the Cloud are secure even against compromise by
Cloud system administrators.

As concerns ‘what’ to record, Cloud computing creates new re-
lationships between an organization and third party Cloud service
providers. The general scenario is that Cloud services could be
arbitrarily complex. Providers will offer their services to consumers
with specific Quality of Service (QoS) attributes, such as reliability,
security, under specific terms and conditions [7]. Most of the exist-
ing research on SLA management focuses on computational and
algorithmic aspects of QoS monitoring and provisioning. Specifi-
cally, considerable effort has been spent in developing proactive or
reactive algorithms for allocating the appropriate number and kind
of resources needed to meet a set of QoS requirements. However,
SLA violations do happen in practice, and it is necessary to deal
with them. Currently, SLA violations must be handled entirely on
the basis of “out of band” negotiations between service providers
and customers, since the systems being monitored are unable to
provide legal evidences of malfunctions (or lack of). The lack of a
well-defined framework for identifying violations and assigning
responsibilities is a limiting factor.

2.3 Blockchain
A blockchain is a distributed ledger that records transactions in
blocks [2]. Each block contains a set of transactions and it has a
link to a previous block, thus creating a chain of chronologically
ordered blocks. Transactions within a block are assumed to have
happened at the same time. In the typical scenarios, transactions
record an exchange of digital currencies, but in fact they can be
employed to record any kind of event.

What makes the blockchain technology appealing is that the
combination of peer-to-peer systems, cryptographic techniques,
use of distributed consensus schemes and pseudonimity ensure
that the set of confirmed transactions becomes public, traceable

https://aws.amazon.com/agreement/
https://cloud.google.com/storage/sla/


A Blockchain-based Flight Data Recorder
for Cloud Accountability CryBlock’18, June 15, 2018, Munich, Germany

and tamper-resistant. The latter property is obtained by linking
subsequent blocks together using cryptographic hash functions
so that the modification of transaction data on a block Bi would
change the hash that is contained in the subsequent block Bi+1,
thus altering the content of block Bi+1 and so on. The blockchain is
replicated across multiple nodes in a peer-to-peer fashion: therefore,
any attempt to alter the blockchainwould create an easily detectable
inconsistency of all replicas.

The blockchain uses digital pseudonyms – usually, a hash of an
address – to provide some level of anonymity. Therefore, everyone
can trace the activities of an entity with a given pseudonym, but it
is computationally expensive (although not impossible) to associate
a pseudonym back to a specific entity or individual. This property
further contributes to make the blockchain an interesting tool to
build a tamper-proof log to be used in accountable Clouds.

2.4 Smart Contracts
The concept of Smart Contract was developed by Szabo [17]. A
smart contract is a program representing an agreement that is au-
tomatically executable and enforceable by nodes that participate
in the blockchain management. The automatic execution of the
program is triggered when certain conditions are met, and the pro-
gram deterministically executes the terms of a contract, specified as
software code. Examples of implementations are from Ethereum [1]
and IBM Hyperledger [6].

An interesting aspect of smart contracts is their ability to be self-
enforcing in the verification of the fulfillment of SLA agreements
in a Cloud computing environment.

Smart contracts provide ways of formulating machine-readable
sets of rules from service contracts, thus transforming in software
code some rules that are typically written in “legal-ese”. In our
scenario, smart contracts might be set to contain two kinds of con-
tractual clauses: (i) terms and conditions and (ii) SLAs. Terms and
conditions are concerned with rights, obligations and prohibitions
to perform a particular action; whereas SLAs are concerned with
right, obligations and prohibitions to maintain a given service in a
particular state.

Smart contracts can represent the basis of systematically deter-
mining monitoring requirements for detecting rule violations. This
can be accomplished by recording service interactions at a granu-
larity that is sufficient for checking if they comply with the rights
(permissions), obligations and prohibitions stipulated in contract
clauses and tracing causes of violations.

3 A BLOCKCHAIN BASED PROPOSAL
In this section we discuss on the viability of employing blockchain
technologies as a “Cloud flight data recorder”, in order to log all
interactions among different parties and record them in a trusted,
tamper-proof way. These interactions, represented as transactions
recorded in the blockchain, can be checked by all the involved
parties or by smart contracts, and can be used to solve disputes
arising due to SLA violations.

The basic idea is that all operations accomplished in the Cloud
are recorded in the blockchain. Instantiation of a virtual machine,
upload, deletion or modification of files, access timestamp of a
given resource, are all examples of events that can be recorded. All

these events must be notified in the blockchain either by the entity
invoking the request, e.g., the user (or his delegate) that asks access
to a file, and/or by the entity receiving the request, i.e., the Cloud
provider. The rationale is that recording all the activities of the
involved parties can help to reveal the causes of a SLA violation.

As an example, let us consider a Cloud storage service for data
archival and backup, such as Amazon Glacier. This service allows
users to (i) store a data block x , (ii) delete x , (iii) read back x . In
this case, the blockchain can be used as a flight data recorded,
following a notary scheme. Let us assume that the provider cannot
deliver a data block x requested by the user, or the the provided
data is different than what expected. In this case, inspection on
the blockchain can reveal whether the provider lost x or some
updates to x , or the user has deleted or never uploaded x (or some
modifications to x ).

Another typical example of SLA in Cloud computing services is:
“99% of transactions during a daily activity must have a response
time below a certain time t”. In this case, we can assume the presence
of a (third) trusted software/hardware component that logs response
times or can audit (virtualized) resource usage [10]. In blockchain
terminology, tamper-proof trusted entities that use a secure channel
to send data to a smart contract or to the blockchain are referred to
as “oracles” [5]. As oracles populate the blockchain, we can envision
self-enforcing smart contract that monitors response times and,
based on the SLA, pays the provider accordingly.

A similar strategy could be exploited if one decides to monitor
SLAs stipulated in terms of effective resource capacities provided
by the Cloud, rather than applications-specific performance met-
rics [11]. Thus, the Cloud flight data recorder would allow checking
if the Cloud provider allocated processing and storage capacities,
RAM, middleware resources.

4 CASE STUDY
In this section we describe a possible implementation of a simple
accountable Cloud-based storage in which the execution of some
specific operations leads to the verification of a given SLA agree-
ment. For example, a customer uploads some content on a Cloud
storage service. Let us assume for simplicity that the content is a file
(a similar reasoning would apply to data chunks or other kinds of
information). In the following, the customer wants to be sure that
the uploaded files are not removed or altered by the Cloud provider.
This can be obtained by using different execution architectures:

(1) blockchain-based double signed transactions;
(2) blockchain-based logging (without smart contracts);
(3) blockchain-based logging and smart contracts.
Double signed transactions have the peculiarity of being signed

by multiple parties. Thus, they can certify a transaction that has
been agreed by both the customer (User) and the cloud provider
(Cloud). Double signed transactions are a straightforward tool to
be used in a blockchain and require a low overhead since it can be
realized with few interactions. On the other hand, this approach
would provide a coarse-grained representation of the interactions
between the User and the Cloud. In fact, such an approach certifies
whether the parties agreed on something. This all or nothing result
can be quite limiting since it relies on the two parties to actually
agree.



CryBlock’18, June 15, 2018, Munich, Germany Gabriele D’Angelo, Stefano Ferretti, and Moreno Marzolla

Using a blockchain-based logging (without smart contracts) per-
mits recording all the interactions between the User and the Cloud.
In case of SLA violations, each party can trigger a verification by a
third entity (e.g., an arbitrator) to identify who is responsible for
such a violation. It is worth noting that, in this architecture, the
arbitrator is not required to have been involved in any previous
interaction with either the User or the Cloud, since it can use the
information publicly provided by the blockchain to determine the
responsibilities.

Another option is to employ a smart contract acting as the arbi-
trator. In this approach, the smart contract is in charge of verifying
all events stored in the blockchain, identifying SLA violations and
calculating compensations. The main advantage of this approach is
that no third party needs to be involved to resolve disputes. In par-
ticular, since the content of the smart contract can be accessed by
both parties, they can verify its correctness before agreeing on its
terms. In other words, the trust of the User and the Cloud provider is
on the smart contract (that can be inspected and verified), following
the notion that “code is law”.

In the following, we describe a simple protocol that can help
identify responsibilities on SLA violations for the following three
operations: upload, delete, read to a file. We assume that the follow-
ing active entities are involved: User, Cloud provider, the arbitrator
(here referred as Smart-contract). To simplify the discussion, we
also consider the Blockchain as a passive entity, capable of receiv-
ing and storing events generated by active entities. For the sake
of a simpler description we might state that an entity, let say the
Cloud, receives a transaction from the Blockchain. This is actually
a simplification to state that the nodes working on the blockchain
reached a consensus on a transaction that involves the Cloud entity
as the receiver. Thus, the transaction has been inserted into a valid
block.

We also assume that each data file is encrypted by the User before
uploading it on the Cloud. The Cloud is not able to decrypt the file.
Thus, in case of an insider threat, the malicious entity would only
read a ciphertext.

1
1 - Upload Request INIT

2 - Upload ACK

3 - Upload Transfer

4 - Upload Transfer ACK

5 - Digest ACK / NACK
2

3

4

5

“UPLOAD” OPERATION

Figure 1: Upload of a data from a User (U) to the Cloud (C). Arrows
between involved entities and the Blockchain (B) represent transac-
tions inserted in the blockchain, e.g., the arrow from U to C repre-
sents data transmission from the User to the Cloud.

Figure 1 shows the behavior of the involved entities when the
User uploads a file. Before transmitting the data to the Cloud, it
registers in the Blockchain the upload request initialization (arrow 1
in the figure). This request is in fact a transaction, stored in the

blockchain, from the User to the Cloud; recall that the content
of the blockchain is public, so the Cloud can see what the User
stored in the blockchain. Once the Cloud receives the transaction
from the (nodes that agreed on the transaction inserted into the)
blockchain, it can accept the upload request by issuing an upload
ACK transaction to the User (arrow 2). Once the User receives the
ACK transaction, it can start the data upload to the Cloud (arrow
3). Once the upload finishes, the Cloud logs the success of this
operation with a new transaction (arrow 4); in this transaction, the
Cloud stores in the blockchain the digest of the data it received.
Then, the User acknowledges the end of the upload (arrow 5); in
turn, the User confirms (rejects) the digest published by the Cloud
with a digest ACK (NACK). In this way, anyone (i.e., an arbitrator)
can verify the correctness of the uploaded data, by checking the
digest provided by the Cloud and the related confirmation by the
User. If the User rejects the Cloud’s digest, the Cloud should delete
the received data. In these operations, the arbitrator is not involved
in the process. However, in case of a dispute, it can check all the
transactions and understand if one of the two parties did not behave
correctly.

U

B

C

1
1 - Delete Request

2 - Delete ACK

2

“DELETE” OPERATION

Figure 2: Deletion of a data from a User (U) to the Cloud (C). Arrows
from involved entities to the Blockchain (B) represent transactions
inserted in the blockchain.

The interactions required to delete a file from the Cloud are
shown in Figure 2. The User issues a delete request by creating a
related transaction to the Cloud and inserting into the Blockchain
(arrow 1). As a consequence, the Cloud will receive this transaction,
deletes the data and acknowledges this deletion by registering the
event into the Blockchain (arrow 2). After that, future disputes
on the presence (absence) of a data can be regulated by looking
at the log. In fact, if the User requests data that is not present
in the Cloud, it is possible to verify whether the User previously
asked a deletion for that data. If a related transaction is present, the
Cloud correctly deleted that file; if not, we are in presence of a SLA
violation. Additionally, if during a dispute the Cloud is found to
have a copy of a file that the User asked to delete, and acknowledged
delete operation is in the blockchain, then the Cloud might be held
responsible of a SLA violation since it did not properly removed
the file as requested.

Figure 3 shows the interactions required to read a file stored in
the cloud. In this case, the tricky part is to track access of a data by
all users. We notice that, since we assume that the data stored into
the Cloud is encrypted, only the authorized parties can decrypt it
and gain access to the actual content. This prevents the Cloud to



A Blockchain-based Flight Data Recorder
for Cloud Accountability CryBlock’18, June 15, 2018, Munich, Germany

1
1 - Read Request

2 - Publish URL

3 - Read Operation

2

3

“READ” (found) OPERATION

Figure 3: Successful read of a data requested by the User (U) to the
Cloud (C). Arrows from involved entities to the Blockchain (B) rep-
resent transactions inserted in the blockchain; the arrow from U to
C represents the access to the data.

send sensible information to non-allowed parties. In order to access
a file, the User issues a transaction to the Cloud representing a
read request (arrow 1). To give access to the data, the Cloud inserts
into the blockchain a URL, where the file can be retrieved. This
procedure is required in order to witness the fact that the Cloud
has granted access to the User and that the file is the valid one.
Indeed, anyone (i.e., the arbitrator) can verify the content of the
URL, without accessing the real data (that is encrypted). Thus, this
procedure allows also comparing the digest of the provided data
with that stored in the blockchain, in order to understand if the
provided data to read complies with that previously uploaded.

1 1 - Read Request

2 - Missing Message

3 - Violation Check REQ

4 - Violation Response

“READ” (missing) OPERATION

2

3

4

Figure 4: Unsuccessful read of a data requested by theUser (U) to the
Cloud (C). Arrows 1 and 2 from involved entities to the Blockchain
(B) represent transactions inserted in the blockchain; the arrow 3
from U to S represents the triggering of the Smart-contract (S). Ar-
row 4 represents the output of (S) that is stored on the (B).

Figure 4 shows the interactions among the entities when the
data requested by the User is missing from the Cloud. As before, the
user issues a transaction to the Cloud representing a read request
(arrow 1). The Cloud verifies that the request data is missing from
its storage and responds with a missing message (arrow 2). To assess
if there is a SLA violation and its attribution, the User triggers the
Smart contract (arrow 3). By analyzing the transaction history on
the blockchain, the Smart contract can determine if a SLA violation
has occurred and, for example, determines the related compensation.
For obvious reasons, the output of this process is stored on the
blockchain (arrow 4). In alternative, the User intervention can be
avoided implementing a Smart contract that monitors the events on

the blockchain and that self-activates when necessary. Clearly, this
approach would increase the cost of running the Smart Contract.

The case in which a data stored on the Cloud is not missing but
it has been altered (e.g. failed digest check) is very similar to the
failed read. More generally, the proposed architecture can support
other (more complex) SLAs on the services provided by the cloud
provider that are not discussed in this paper.

5 CONCLUSIONS
In this paper we explored the use of blockchain technologies to build
a “flight data recorder” for Cloud accountability. The blockchain
allows pseudo-anonymous and tamper-proof logging of events
into a distributed ledger. The ledger can then be used to verify
if SLAs are violated. Moreover, the presence of self-enforcing smart
contracts allow to automatically identify responsibilities and settle
disputes, for instance making automatic payments based on the
offered service.

An issue that needs further investigation is that of efficiency.
Indeed, the current incarnations of the blockchain might not pro-
vide a response time short enough to efficiently support all the
interactions shown in Section 4 from a large number of customers
operating concurrently. Additionally, transaction fees might repre-
sent an economic disincentive to the above-mentioned approach.
Thus, the choice of which blockchain technology to use remains an
important problem. Probably, a traditional Bitcoin-like blockchain
solution would not be the most appropriate in this context. Instead,
a permissioned blockchain would have the advantage of being more
performant, scalable, and only accessible by a dedicated group of
entities, which has the eligibility to join it. Lightweight, permis-
sionless blockchains with low or no-fees transactions exists, e.g.,
IOTA5, but unfortunately do not yet support smart contracts.

REFERENCES
[1] 2018. A Next-Generation Smart Contract and Decentralized Application Platform.

White Paper. (2018). https://github.com/ethereum/wiki/wiki/White-Paper https:
//github.com/ethereum/wiki/wiki/White-Paper, Accessed on 2018-03-02.

[2] Andreas M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies (1st ed.). O’Reilly Media, Inc.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April
2010), 50–58. https://doi.org/10.1145/1721654.1721672

[4] Giuseppe Ateniese, Michael T. Goodrich, Vassilios Lekakis, Charalampos Pa-
pamanthou, Evripidis Paraskevas, and Roberto Tamassia. 2017. Accountable
Storage. In Applied Cryptography and Network Security, Dieter Gollmann, Atsuko
Miyaji, and Hiroaki Kikuchi (Eds.). Springer International Publishing, Cham,
623–644.

[5] I. Bashir. 2017. Mastering Blockchain. Packt Publishing, Limited. https://books.
google.it/books?id=dMJbMQAACAAJ

[6] Christian Cachin. 2016. Architecture of the Hyperledger Blockchain Fabric.
(July 2016). https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf https:
//www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf, Accessed on 2018-01-24.

[7] Stefano Ferretti, Vittorio Ghini, Fabio Panzieri, Michele Pellegrini, and Elisa
Turrini. 2010. QoS-Aware Clouds. In Proc. 2010 IEEE 3rd Int. Conf. on Cloud
Computing (CLOUD ’10). IEEE Computer Society, 321–328. https://doi.org/10.
1109/CLOUD.2010.17

[8] Andreas Haeberlen. 2010. A Case for the Accountable Cloud. SIGOPS Oper. Syst.
Rev. 44, 2 (April 2010), 52–57. https://doi.org/10.1145/1773912.1773926

[9] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview:
Practical Accountability for Distributed Systems. SIGOPS Oper. Syst. Rev. 41, 6
(Oct. 2007), 175–188. https://doi.org/10.1145/1323293.1294279

[10] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Performance Mon-
itoring and Root Cause Analysis for Cloud-hosted Web Applications. In Proc.

5https://iota.org/, accessed on 2018-03-02

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/1721654.1721672
https://books.google.it/books?id=dMJbMQAACAAJ
https://books.google.it/books?id=dMJbMQAACAAJ
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://doi.org/10.1109/CLOUD.2010.17
https://doi.org/10.1109/CLOUD.2010.17
https://doi.org/10.1145/1773912.1773926
https://doi.org/10.1145/1323293.1294279
https://iota.org/


CryBlock’18, June 15, 2018, Munich, Germany Gabriele D’Angelo, Stefano Ferretti, and Moreno Marzolla

of the 26th International Conference on World Wide Web (WWW ’17). 469–478.
https://doi.org/10.1145/3038912.3052649

[11] George Kesidis, Bhuvan Urgaonkar, Neda Nasiriani, and Cheng Wang. 2016.
Neutrality in Future Public Clouds: Implications and Challenges. In Proceedings
of the 8th USENIX Conference on Hot Topics in Cloud Computing (HotCloud’16).
USENIX Association, Berkeley, CA, USA, 90–95. http://dl.acm.org/citation.cfm?
id=3027041.3027056

[12] Moreno Marzolla, Stefano Ferretti, and Gabriele D’Angelo. 2012. Dynamic Re-
source Provisioning for Cloud-based Gaming Infrastructures. Comput. Entertain.
10, 1, Article 4 (Dec. 2012), 20 pages. https://doi.org/10.1145/2381876.2381880

[13] Peter M. Mell and Timothy Grance. 2011. The NIST Definition of Cloud Computing.
Technical Report SP 800-145. National Institute of Standards & Technology,
Gaithersburg, MD, United States.

[14] Ricardo Neisse, Gary Steri, and Igor Nai-Fovino. 2017. A Blockchain-based
Approach for Data Accountability and Provenance Tracking. In Proc. 12th Int.
Conf. on Availability, Reliability and Security (ARES ’17). ACM, Article 14, 10 pages.
https://doi.org/10.1145/3098954.3098958

[15] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. 2009. Towards
Trusted Cloud Computing. In Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing (HotCloud’09). USENIX Association, Berkeley, CA, USA, Article
3. http://dl.acm.org/citation.cfm?id=1855533.1855536

[16] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy.
2017. Towards Blockchain-based Auditable Storage and Sharing of IoT Data. In
Proc. 2017 Cloud Computing Security Workshop (CCSW ’17). ACM, 45–50. https:
//doi.org/10.1145/3140649.3140656

[17] Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks.
First Monday 2, 9 (Sept. 1997). https://doi.org/10.5210/fm.v2i9.548

[18] Aydan R. Yumerefendi and Jeffrey S. Chase. 2004. Trust but Verify: Accountabil-
ity for Network Services. In Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop (EW 11). ACM, Article 37. https://doi.org/10.1145/1133572.
1133585

https://doi.org/10.1145/3038912.3052649
http://dl.acm.org/citation.cfm?id=3027041.3027056
http://dl.acm.org/citation.cfm?id=3027041.3027056
https://doi.org/10.1145/2381876.2381880
https://doi.org/10.1145/3098954.3098958
http://dl.acm.org/citation.cfm?id=1855533.1855536
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.1145/3140649.3140656
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1145/1133572.1133585
https://doi.org/10.1145/1133572.1133585

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud Computing
	2.2 Accountability in Cloud Computing
	2.3 Blockchain
	2.4 Smart Contracts

	3 A Blockchain based Proposal
	4 Case study
	5 Conclusions
	References

