
86 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

review articles

A FUNDAMENTAL TECHNIQUE in reasoning about programs
is the use of logical assertions to describe properties of
program states. Turing used assertions to argue about
the correctness of a particular program in 1949,40 and
they were incorporated into general formal systems for
program proving starting with the work of Floyd21 and
Hoare22 in the 1960s. Hoare logic, which separation
logic builds upon, is a formal system for proving
specifications of the form

where the precondition and postcondition are
vassertions describing properties of the input and
output states. For example,

can serve as a specification of an imperative program
that computes the factorial of the value held in variable x
and places it in y.

Hoare logic and related systems worked very well for
programs manipulating simple primitive data types
such as for integers or strings, but proofs became more
complex when dealing with structured data containing

embedded pointers. One of the found-
ing papers of separation logic summa-
rized the problem as follows.32

"The main difficulty is not one of find-
ing an in-principle adequate axiomatiza-
tion of pointer operations; rather there
is a mismatch between simple intu-
itions about the way that pointer opera-
tions work and the complexity of their
axiomatic treatments. … when there is
aliasing, arising from several pointers to
a given cell, an alteration to a cell may af-
fect the values of many syntactically un-
related expressions."

Bornat provided a good description
of the struggles in reasoning about mu-
table data structures up to 2000.6

In joint work with John Reynolds and
others we developed separation logic
(SL) to address the fundamental prob-
lem of reasoning about programs that
mutate data structures. From a special
logic for heaps, it gradually evolved into
a general theory for modular reasoning
about concurrent as well as sequential
programs. Efforts by many research-
ers established that the logic provides a
basis for efficient proof search in auto-
matic and semi-automatic proof tools,
for example, giving rise to the Infer static
analyzer, a tool that is in deployment at
Facebook where it catches thousands
of bugs per month before code reaches
production in products used daily by
over one billion people.

Separation logic is an extension of
Hoare logic, which employs novel logi-
cal operators, most importantly the sep-
arating conjunction * (pronounced “and

Separation
Logic

DOI:10.1145/3211968

Separation logic is a key development in
formal reasoning about programs, opening up
new lines of attack on longstanding problems.

BY PETER O’HEARN

 key insights
˽˽ Separation logic supports in-place

updating of facts as we reason, in a way
that mirrors in-place update of memory
during execution, and this leads to logical
proofs about imperative programs that
match computational intuition.

˽˽ Separation logic supports scalable
reasoning by using an inference rule
(the frame rule) that allows a proof to be
localized to the resources that a program
component accesses (its footprint).

˽˽ Concurrent separation logic shows
that modular reasoning about threads
that share storage and other resources
is possible.

http://dx.doi.org/10.1145/3211968
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3211968&domain=pdf&date_stamp=2019-01-28

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 87

I
M

A
G

E
 B

Y
 A

N
N

A
 G

A
R

M
A

T
I

Y

separately”) when writing assertions.
For example, we might write:

as a specification of code that wires to-
gether two memory locations into a cyclic
linked list. Here x  v says that pointer
variable x holds the address of a memory
location where v is stored (or more brief-
ly, x points to v), and a command of the
form [x] = v updates the location referred
to by x so that its contents becomes v′.

The use of * rather than the usual Bool-
ean conjunction ∧ ensures x and y are not
aliases—distinct names for the same lo-
cation—so that we have a two-element
cyclic list in the postcondition. A central
principle is that a command that mu-
tates a single location affects only one
*-conjunct: operational in-place update
is mirrored in the logic, addressing the
key difficulty where “an alteration to a
cell may affect the values of many syntac-
tically unrelated expressions.”

Reynolds was the first to describe a
program logic including the separating

conjunction; he defined an intuitionis-
tic (constructive) logic with *,37 building
on earlier ideas of Burstall.10 O’Hearn,
and Ishtiaq26 realized the assertion lan-
guage could be seen as an instance of the
resource logic BI of O’Hearn and Pym;31
they independently discovered the same
intuitionistic logic as Reynolds, and
also saw that a more powerful Boolean
(nonconstructive) variant was possible
in which one could reason about explicit
memory management (Reynolds had as-
sumed garbage collection). They also in-
troduced the separating implication –*.

88 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

review articles

proposed a concurrent separation logic
(CSL). CSL showed efficient reasoning
about threads that share access to stor-
age, proofs that mirrored design prin-
ciples espoused by Dijkstra at the birth
of concurrent programming.16 The cor-
rectness of CSL’s proof rules (its ‘sound-
ness’) turned out to be a formidable
problem, solved eventually by Brookes.
Brookes and O’Hearn were awarded
the 2016 Gödel prize for their papers on
CSL,8,30 the significance of which was
summed up as follows:

"For the last 30 years experts have
regarded pointer manipulation as an
unsolved challenge for program verifica-
tion and shared-memory concurrency as
an even greater challenge. Now, thanks
to CSL, both of these problems have
been elegantly and efficiently solved;
and they have the same solution."
	 —2016 Gödel Prize citationa

It is worth remarking that the first
part of this citation, about pointer ma-
nipulation, applies to sequential and
not just concurrent SL.

After the early papers, research on SL
expanded rapidly. Starting from a spe-
cial logic for heaps SL has evolved into
a general theory for modular reasoning.
Non-standard models of SL based on an
abstract model theory due to Pym pro-
vided many potential avenues for wider
application, and Gardner and others
realized that there exist non-standard
models that support modular reason-
ing about intertwined structures as if
they were separate. SL has even been
applied to interfering processes using
fine-grained concurrency, a situation far
removed from the original intuitions of
the logic.

SL is the basis of numerous auto-
mated proof tools, and it has been used
in significant verification efforts. It has
been used to provide the first verifica-
tion of a crash-proof file system,14 and
to provide the first verification of a com-
mercial, preemptive OS microkernel.41
These verification efforts are semi-
automatic, done by a human together
with a proof assistant (in these cases,
the Coq proof assistant). SL has also
been used in static program analysis,
where weaker properties than full cor-
rectness are targeted but with higher
automation, so that the tool can scale
better both in the sizes of codebases

a	 https://bit.ly/2ywwlpp

SL for sequential programs reached
maturity in a further paper of O’Hearn,
Reynolds and Yang.32 In that work
O’Hearn proposed the following prin-
ciple of local reasoning, both as a way to
describe what was special about SL and
as a guiding principle for development
of reasoning methods.

"To understand how a program
works, it should be possible for reason-
ing and specification to be confined to
the cells that the program actually ac-
cesses. The value of any other cell will
automatically remain unchanged."

A proof rule—the frame rule—al-
lowed to infer that cells remain un-
changed when they are not mentioned
in a precondition. The frame rule was
named in homage to the frame problem
from artificial intelligence, which con-
cerns axiomatizing state changes with-
out enumerating all of the things that do
not change. The frame rule is the key to
scalable reasoning in SL.

Reynolds’ influential survey article
summarized the early developments
up to 2002.38 At the end of this early pe-
riod, O’Hearn circulated a note that

Figure 1. Picture semantics.

x y

x yx y

x = 10

y = 42

10

decomposes into

and
separately

42

42

10

x = 10

y = 42

10

42

x = 10

y = 42

42

10

(())

Figure 2. Mathematical semantics.

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 89

review articles

covered and the number of program-
mers served. Static analysis with SL has
matured to the point where it has been
applied industrially in the Facebook
Infer program analyzer, an open source
tool used at Facebook, Mozilla, Spotify,
Amazon Web Services, and other com-
panies (www.fbinfer.com).

The purpose of this article is to de-
scribe the basic ideas of SL as well as
these and other developments.

Separating Conjunction
and Implication
Mathematical semantics has been
critical to the discovery and further SL
development, but many of the main
points can be gleaned from “picture
semantics.” Consider the first picture
in Figure 1. We read the formula at
the top of this figure as “x points to
y and separately y points to x.” Go-
ing down the middle of the diagram
is a line that represents a heap par-
titioning: a separating conjunction
asks for a partitioning that divides
the heap into parts, heaplets, satisfy-
ing its two conjuncts. At the bottom
of the first picture is an example of
a concrete memory description that
corresponds to the diagram. There,
x and y have values 10 and 42 (in the
“environment,” or “register bank”),
and 10 and 42 are themselves loca-
tions with the indicated contents (in
the “heaplet,” or even “RAM”).

The indicated separating con-
junction here is true of the pictured
memory because the parts satisfy the
conjuncts, as indicated in the second
picture. The meaning of “x points to
y and yet to nothing” is precisely dis-
ambiguated in the RAM description
below the diagram: x and y denote val-
ues (10 and 42), x’s value is an allocat-
ed memory address which contains
y’s value, but y’s value is not allocated.
The separating conjunction splits the
heap/RAM, but it does not split the as-
sociation of variables to values.

Generally speaking, the separating
conjunction P * Q is true of a heap if it
can be split into two heaplets, one of
which makes P true and the other of
which makes Q true. A distinction be-
tween * and Boolean conjunction ∧ is
that P * P ≠ P where P ∧ P = P. In particu-
lar, x  v * x  v is always false: there is
no way to divide any heap in such a way
that a cell x goes to both partitions.

* is often used with linked struc-
tures. If list (x, y) describes an acyclic
linked list running from x to y, then we
can describes a structure with a list seg-
ment, followed by a single pointer, fol-
lowed by a further list running up to 0
(null), as follows:

x t y

This is the kind of structure you
might need to consider when deleting
an element from a list, or inserting one
into it.

There is a further connective, the sep-
arating implication or “magic wand.”
P –* Q says that whenever the current
heaplet is extended with a separate
heaplet satisfying P, the resulting com-
bined heaplet will satisfy Q. For exam-
ple, (x  –) * ((x  3) –* Q) says that x is
allocated in the current heap, and that if
you mutate its contents to 3 then Q will
hold. This describes the “weakest pre-
condition” for the mutation [x] = 3 with
postcondition Q.26

Finally, there is an assertion emp
which says “the heaplet is empty,” emp
is the unit of *, so that P = emp * P = P *
emp. Also, –* and * fit together is a way
similarly to how implication ⇒ and con-
junction ∧ do in standard logic. For ex-
ample, the entailment

A * (A –* B)  B

(where  reads “entails”) is a SL relative
of “modus ponens.”

Although we will concentrate on the
informal picture semantics in this ar-
ticle, for the theoretically inclined we
have included a glimpse of the formal
semantics in Figure 2.

Rules for Program Proof
Figure 3 contains a selection of proof
rules of SL. The rules are divided into
axioms for basic mutation commands
(the “small axioms”) and inference
rules for modular reasoning. An infer-
ence rule says “if you can derive what
is above the line, then so can you what
is below,” and the axioms are deriv-
able true statements that are given.
The small axioms are for a program-
ming language with load and store
instructions similar to an assembly
language. If we vary the programming
language the small axioms change.
The concurrency rule uses a composi-
tion operator || for running two pro-
cesses in parallel, derived from Dijks-
tra’s parbegin/parend.16

The first small axiom just says that if
x points to something beforehand, then
it points to v afterward, and it says this
for a small portion of the state in which x
is the only active cell.

Figure 3. Separation logic proof system (a selection).

90 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

review articles

for the second step of the code to wire up
a cyclic linked list described at the start
of the paper.

The ultimate theoretical support for
the small axioms came from a complete-
ness theorem in Yang’s Ph.D. thesis.42
He showed the small axioms and frame
rule and several other inference rules
(particularly Hoare’s rules for strength-
ening preconditions and weakening
postconditions, and a rule for existential
quantifiers) can be used to derive all true
Hoare triples for these statements.

Locality properties of program be-
havior, and their connection to logic,13,44
are critical for these results:

"An assertion talks about a heaplet
rather than the global heap, and a spec
{P} C {Q} says that if C is given a heaplet
satisfying P then it will never try to ac-
cess heap outside of P (other than cells
allocated during execution) and it will
deliver a heaplet satisfying Q if it termi-
nates.2"

In-place reasoning as with the two-
element cyclic list has been applied to
many imperative programs. As an ex-
ample, consider the insertion of a node
y into a linked list after position x. We
can do this in two steps: first we swing
x’s pointer so it points to y, and then we
swing y to point to z (the node after x).

Here, in the precondition for each
step we write the frame in red; it is the
blue that is updated in place. The reader
can see how, using the small axiom for
free together with the frame rule, we
could reason about the converse case of
removing an element from a list.

This example generalizes to many
other list and tree algorithms: inser-
tion, deletion, reversal, and so on. The
SL proofs resemble the box-and-pointer
arguments that have long been used
informally in describing data structure
mutation.

These ideas extend to concurrent
programs; for example, the second rule
instance in Figure 4 uses the concurren-
cy rule to reasons about our two-element
cyclic list, but wired up concurrently
rather than sequentially. The * in the
precondition in this instance ensures
that x and y are not aliases, so there is no
data race in the parallel program.

The second axiom says that if x points
to v and we read x into y, then y will have
value v. Here, we distinguish between
the value in a variable or register (x and
y) and the r-value in a heap cell whose l-
value is the value held in x. The second
axiom assumes that x does not appear
in syntactic expression v (see O’Hearn et
al.32 for a precise description of this and
other variable side conditions).

The allocation axiom says: If you start
with no heap, then you end with a heap
of size 1. Conversely the De-Allocation
axiom starts with a hap of size 1 and
ends with the empty heap. The Appli-
cation axiom assumes that allocation
always succeeds. To model a case where
allocation might fail we could use a dis-
junctive postcondition, like x  – ∨ x ==
0; this is what tools such as SpaceInvad-
er and Infer, discussed later, do for mal-
loc() in C.

The small axioms are so named be-
cause each mentions a small amount
of memory: a single memory cell. When
people first see the axioms they can

come as a shock: aren’t they too sim-
ple? Previous approaches had complex
descriptions accounting for the effect
of mutations on global properties of
graph-like structures.6

In actuality, there is a sense in which
the small axioms capture all that is
needed to know about the statements
they describe. In intuitive terms, we can
say that imperative computation pro-
ceeds by in-place update, where these
primitive statements update or access a
single memory cell at a time; describing
what happens to only that cell should be
enough. The small axioms are thus an
extreme illustration of the principle of
local reasoning.

The frame rule in Figure 3 provides
logical support for this intuition. It al-
lows us to extend reasoning from one
to multiple cells; so the seeming restric-
tion to one cell in the small axioms is not
a restriction at all, but rather a pleasantly
succinct description. For instance, if we
choose x  y as our frame then the first
instance in Figure 4 gives the reasoning

Figure 4. Frame and concurrency examples.

Figure 5. deletetree example.

root
rlx y

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 91

review articles

The concurrency rule is the main rule
of CSL. In applying CSL to languages
with dynamic thread creation instead
of parbegin/-parend different rules are
needed, but the basic point that sepa-
ration allows independent reasoning
about processes carries over.

SL’s concurrency rule took inspira-
tion from the “disjoint concurrency
rule” of Hoare.23 Hoare’s rule used ∧ in
place of * together with side conditions
to rule out interference.b * allows us to
extend its applicability to pointer struc-
tures. But even without pointers, the
CSL rule is more powerful. Indeed, upon
seeing CSL

Hoare immediately exclaimed to the
author: “We can prove parallel quick-
sort!” A direct proof can be given using
* to recognize and unite disjoint array
partitions.30

Frames, Footprints,
and Local Reasoning
The previous section describes how the
separating conjunction leads to simple
proofs of the individual steps of heap
mutations, and how the frame rule em-
beds reasoning about small chunks of
memory within larger memories. Here,
the rules' more fundamental role as a ba-
sis for scalable reasoning is explained.

I illustrate by reasoning about a re-
cursive program for deleting the nodes
in a binary tree. Consider the C program
in (1) of Figure 5. This program satis-
fies the specification in (2) of the figure,
where the tree predicate says that its ar-
gument points to a binary tree in mem-
ory. The predicate is defined recursively
in (3), with a diagram below depicting
what is described by the else part of the
definition. Note that here we are using a
“points-to” predicate root  [l : x, r : y]
for describing records with l and r fields.

The use of emp in the if branch of
the definition means that tree(r) is true
of a heaplet that contains all and only
the cells in the tree; there are no ad-
ditional cells. Thus, the specification
of deletetree(r) does not mention
nodes not in in the tree. This is analo-
gous to what we did with the small axi-
oms for basic statements in Figure 3,

b	 There are variable conditions in some pre-
sentations of SL, that can technically be done
away with eliminated by using a version of *
that separates variables as well as heap.34 This
article glosses over this issue.

and is a typical pattern in SL reasoning:
“small specifications” are used which
mention only the cells touched by the
program component (its footprint).

The critical part of the proof of the
program is presented in (4), where the
precondition at the beginning is ob-
tained by unwinding the recursive defi-
nition using the if condition root ! = 0.
The proof steps then follow the intuitive
description of the algorithm: the first
recursive call deletes the left subtree,
the second call deletes the right sub-
tree, and the final statement deletes the
root node. In the pictured reasoning,
the overall specification of the proce-
dure is applied as an induction hypoth-
esis at each call site, together with the
Frame Rule for showing that the parts
not touched by recursive calls are left
unchanged. For instance, the asser-
tions for the second recursive call are
an instance of the Frame Rule with the
triple {tree(right)} deletetree(right)
{emp} as the premise.

The simplicity of this proof comes
about because of the principle of local
reasoning. The frame rule allows in-
place reasoning for larger-scale opera-
tions (entire procedures) than individual
heap mutations. And it allows the speci-
fication to concentrate on the footprint
of a procedure instead of the global state.
Put contrapositively, the deletetree
procedure could not be verified without
the frame rule, unless we were to compli-
cate the initial specification by including
some representation of frame axioms
(saying what does not change) to enable
the proofs at the recursive call sites.

This reasoning uses a tree predicate
suitable for reasoning about mem-
ory safety; it mentions that we have a
tree, but not what data it holds. For
functional correctness reasoning, it
is typical to use inductive predicates
that connect memory structures to
mathematical entities. In place of tree
(root) we could have a predicate tree (τ,
root) that says root points to an area of
memory representing the mathemati-
cal binary tree τ, where a mathemati-
cal tree is either empty or an atom or
a pair of trees. We could then specify
a procedure for copying a tree using a
postcondition of the form

that says we have two structures in mem-
ory representing the same mathemati-

cal tree. An assertion like this would tell
us that we could mutate one of the trees
without affecting the other (at which
point they would cease to represent the
same tree).

For data structures without much
sharing, such as variations on lists and
trees, reasoning in SL is reminiscent
of reasoning about purely functional
programs: you unroll an inductive defi-
nition, then mutate, then roll it back
up. Inductive definitions using * and
mutation go well together. The first SL
proof to address complex sharing was
done by Yang in his Ph.D. thesis, where
he provided a verification of the classic
Schorr-Waite graph-marking algorithm.
The algorithm works by reversing links
during search, and then restoring them
later: A space-saving representation of
the stack of a recursive algorithm. Part
of the main invariant in Yang’s proof is

–**

capturing the idea that if you replace
the list of marked nodes by a restored
list, then you get a spanning tree. Yang’s
proof reflected the intuition that the al-
gorithm works by a series of local sur-
geries that mutate small parts of the
structure: The proof decomposed into
verifications of the surgeries, and ways
of combining them.

The idiomatic use of –* in assertions
of the form A * (B –* C) to describe gen-
eralized update was elevated to a general
principle in work of Hobor and Villard.25
They give proofs of a number of pro-
grams with significant sharing, includ-
ing graphs, dags, overlaid structures (for
example, a list overlaying a tree), and
culminating in the copying algorithm in
Cheney’s garbage collector.

Many papers on SL have avoided –*,
often on the grounds that it complicates
automation and is only needed for pro-
grams with significant sharing. How-
ever, –* is recently making something of
a comeback. For example, it is used rou-
tinely as a basic tool in the Iris higher-
order logic.29

Concurrency, Ownership,
and Separation
The concurrency rule in Figure 3 says:
To prove a parallel composition we give
each process a separate piece of state,
and separately combine the postcon-

92 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

review articles

Reynolds), in 2004, proved the theorem,
which justified the logic.

Abstraction and
the Fiction of Separation
There was considerable work on extend-
ing SL after those early papers. Some of it
concentrated on different programming
paradigms, such as object-oriented pro-
gramming or scripting languages, or
on additional programming primitives
such as message passing, reentrant lock
and fork/join concurrency. Besides ex-
tensions to cover an ever-greater variety
of programming, two conceptual devel-
opments opened major new directions.

˲˲ In his Ph.D. thesis, Parkinson
showed how abstract predicates (predi-
cate variables) fit together nearly with *
in the description of classes and other
stateful data abstractions.33

˲˲ Gardner and others emphasized a
concept of fictional separation, where
strong separation properties could be
assumed of data abstractions, even for
implementations relying on sharing.

These ideas were first described in
a sequential setting. Dinsdale-Young,
Gardner and Wheelhouse described
an implementation of a module of se-
quences in terms of linked lists and not-
ed a mismatch: at the abstract level an
operation might affect a small part of a
sequence, where at the implementation
level its footprint could involve the en-
tire list; conversely, locality can increase
with abstraction.19 Meanwhile, Parkin-
son initially targeted a sequential subset
of Java. Subsequent work showed how
abstract predicates could be understood
using higher-order versions of SL.5

While they could be expressed in a
sequential setting, the ideas took flight
when transported to concurrency. The
CAP logic18 combined insights on ab-
stract predicates and fiction, along
with those of CSL, to reason about data
abstractions with interference in their
implementations. The views theory17
provided a foundation where separa-
tion does not appear in the normal exe-
cution semantics of programs, but only
in an abstraction of it. Views showed
that a simple version of CSL can embed
many other techniques including even
the classic rely-guarantee method;27
this is surprising because rely-guaran-
tee was invented for reasoning about
interference, almost the opposite of
the basis of original SL.

ditions for each process. The rule sup-
ports completely independent reason-
ing about processes. This rule can be
used to provide straightforward proofs
of processes that don’t share access to
storage. We mentioned parallel quick-
sort earlier, and deletetree() pro-
vides another illustration: we can run
the two recursive calls in parallel rather
than sequentially, as presented in the
proof outline (1) in Figure 6.

In work on CSL, proof outlines are
often presented in a spatial fashion like
this: this outline shows the premises of
the concurrency rule in the left and right
Hoare triples, the overall precondition
(the pre1 * pre2) at the beginning, and
the post at the end.

While this reasoning is simple, if CSL
had only been able to reason about dis-
joint concurrency, where there is no inter-
process interaction, then it would have
rightly been considered rather restrictive.
An important early example done with CSL
was a pointer-transferring buffer, where
one thread allocates a pointer and puts it
into a buffer while the other thread reads it
out and frees it. Crucially, not only is the
pointer deemed to transfer from one pro-
cess to another, but the “knowledge that it
is allocated” transfers with the proof. The
proof establishing absence of memory er-
rors is shown in (2) of Figure 6. A way to
implement the buffer code for put and
get is to use locks to synchronize access to
a shared variable and a Boolean to signal
when the buffer is full. We will not delve
into the subproofs of buffer operations
here—for that, consult O’Hearn30—but
we want to talk about a shift in perspec-
tive on the meanings of logical assertions
that the proof (2) led to.

Notice the assertion emp after the
put(x) statement in the left process.

We could not prove a mutation were
we to place it there, because emp is not
a sufficient precondition for any muta-
tion; that is fortunate as such a muta-
tion could lead to a race condition. But
it is not the case that we know the glob-
al heap is empty, because the pointer
x could still persist. Rather, the knowl-
edge that it points to something has
been forgotten, transferred to the sec-
ond process where it materializes as
y  –. A reading of assertions began
to form based on the “right to deref-
erence” or “ownership” (taken as syn-
onymous with right to dereference).
On this reading emp says “I don’t have
permission to dereference any heap,”
or “I own nothing,” rather than “the
heap is empty.” Similarly, x  – says “I
own x” (where “I” is the process from
which the assertion is made).

The ownership transfer example
made it clear that quite a few concur-
rent programs would have much sim-
pler proofs than before. Modular proofs
were provided of semaphore programs,
of a toy memory manager, and programs
with interacting resources. It seemed as
if the proofs mirrored design principles
used to simplify reasoning about con-
current processes, such as in Dijkstra’s
idea of loosely connected processes:

“[A]part from the (rare) moments of
explicit intercommunication, the indi-
vidual processes are to be regarded as
completely independent of each other.”16

However, the very feature that gave
rise to the unexpected power, ownership
transfer, made soundness (whether the
rules prove only true statements) non-
obvious. O’Hearn worked on soundness
during 2001 and 2002, without success.
In May of 2002 he turned to Brookes who
eventually (with important input from

Figure 6. Concurrency proofs.

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 93

review articles

Today, advanced logics are often for-
mulated as variations on the theme of
“higher-order concurrent separation
logic.” One of these, Verifiable C, is the
foundation of Appel’s Verified Software
Toolchain,1 and includes an expressive
higher-order logic supporting recursive
predicates. Iris29 encompasses reason-
ing about fine-grained concurrency and
even relaxed memory, based on differ-
ent instantiations of a single generic
model. Iris has been used to provide
a foundation of the type system of the
Rust programming language,28 which
is very natural when you consider that
ownership transfer is one of the central
ideas in Rust.

Technically, these works are based on
“non-standard models” of SL, different
from the heaplet model but instances of
Pym’s resource semantics as in Figure
2; see Pym et al.36 There are many such
models, including ones incorporating
read and other permissions,7 auxiliary
state,39 time,39 protocols,29 and others.
Abstract SL13 showed how general pro-
gram logic could be defined based on
these models, and the works just men-
tioned and others showed that some of
them had surprising ramifications.

Fictional separation and views
worked to reimagine fundamental con-
cepts. The programs being proven go
beyond the loosely connected processes
that CSL was originally designed for.
Significant new theoretical insights and
soundness arguments were needed to
justify the program-proof rules support-
ing the fine-grained concurrency exam-
ples.17 This led to a flowering of interest
and new ideas which is still in progress.
A recent survey on CSL provides many
more references in addition to those
mentioned here.9

Directions in
Mechanized Reasoning
SL spawned new approaches to verifi-
cation tools. In order to provide a taste
of where the field has gone, we present
a sampling of practical achievements;
that is, we focus on the end points rath-
er than the (important) advancements
along the way that helped get there.
Further references to the literature, in-
cluding discussion on intermediate ad-
vances, may be found in the appendix
(https://bit.ly/2CQD9CU).

Mostly automatic verification. Small-
foot,2 from Calcagno, Berdine, and

O’Hearn, was the first SL verification
tool. Given procedure pre/post specs,
loop invariants and invariants governing
lock usage, Smallfoot attempts to con-
struct a proof. For the pointer-transfer-
ring buffer, given a buffer invariant and
pre/post specs for put and get it can
verify memory safety and race freedom.

Smallfoot used a decidable fragment
of SL dubbed “symbolic heap,” formu-
lae of the form B ∧ H where H is a sepa-
rating conjunction of heap facts and B
is a Boolean assertion over non-heap
data. The format was chosen to make
in-place symbolic execution efficient.
Smallfoot’s heap facts were restricted
to points-to assertions, linked lists and
trees. Subsequent works extended sym-
bolic heaps in numerous directions,
covering more inductive definitions as
well as arrays and arithmetic; see appen-
dix (https://bit.ly/2CQD9CU).

Some of the most substantial auto-
matic verifications done with SL have
been carried out with the VeriFast tool of
Jacobs and colleagues. VeriFast employs
a symbolic execution engine like Small-
foot, but integrates a dedicated SL theo-
rem prover with a classical SMT solver
for non-heap data. A paper reports on
the verification of several industrial case
studies, including Java Card programs
and device drivers written in C;35 see Ver-
iFast’s GitHub site for these and many
other examples (https://github.com/
verifast/verifast).

Interactive verification. In an auto-
matic verifier like Smallfoot, the proof
construction is automatic, given the
pre/post annotations plus invariants.
In interactive verification the human
helps guide the proof search, com-
monly using a proof assistant such
as Coq, HOL4, or Isabelle. Interactive
verification can often prove stronger
properties than automatic verifiers,
but the cost is higher.

Interactive verifiers have been used
to prove small, intricate algorithms. A
recent paper reports on the verification
of low-level concurrent algorithms in-
cluding a CAS-lock, a ticketed lock, a GC
allocator, and a non-blocking stack.39 An
emphasis is placed on reusability; for in-
stance, the stack uses the GC allocator,
which in turn uses a lock, but the stack
uses the spec of the allocator and the
allocator uses the spec rather than the
implementation of a lock.

The verifiable C logic1 has been

used to prove crypto code. For example,
OpenSSL’s HMAC authentication code,
comprising 134 lines of C, was proven
using 2,832 lines of Coq.4

A larger example is the FSCQ file sys-
tem.14 The code and the proof are both
done in Coq, taking up 31k lines of
proof+code. This compares to 3k lines of
C for a related unverified file system. Al-
though the initial effort, which included
development of a program logic frame-
work in Coq, took several person years,
experiments show incremental, lower
cost when modifying code+proof.

A commercial example concerns
key modules of a preemptive OS ker-
nel, the μC/OS-II.41 Modules verified
include the scheduler, interrupt han-
dlers, and message queues. 1.3k lines
of C were proven using 216k lines of
Coq. It took four person years to de-
velop the framework, one-person year
to prove the first module, and then the
remaining modules, around 900 lines
of C, took six person-months.

Automatic program analysis. With a
verification-oriented program analysis
the annotations that a human would
supply to a mostly automatic verifier
like Smallfoot—invariants and pre/post
specs—are inferred. A tool will be able
to prove weaker properties when the hu-
man is not supplying annotations, but
can more easily be deployed broadly to
many programmers.

Program analysis with SL has re-
ceived a great deal of attention. At first,
analysis was formulated for simple
linked lists,20 and progressively re-
searchers moved on to more involved
data structures. A practical high point
in this line of work was the verification
of pointer safety in Linux and Win-
dows device drivers up to 10k LOC by
the SpaceInvader program analyzer.43
SpaceInvader was an academic tool;
its sibling, SLAyer,3 developed in par-
allel at Microsoft, was used internally
to find 10s of memory safety errors in
Windows device drivers. SpaceInvader
and SLAyer were able to analyze com-
plex, linear data structures: for exam-
ple, oneWindows driver manipulated
five-cyclic doubly linked lists sharing a
common header node, three of which
had acyclic sublists.

Like much research in verification-
oriented program analysis these tech-
niques worked in a whole-program
fashion: you start from main() or

94 COMMUNICATIONS OF THE ACM | FEBRUARY 2019 | VOL. 62 | NO. 2

review articles

sis not infrequently finds more general
specifications than a top-down analysis
that dives into procedures at call sites;
finding general specs is important for
both scalability and precision.

The main bi-abduction paper12
contributed proof techniques and al-
gorithms for abduction, and a novel
compositional algorithm for generat-
ing pre/post specs of program compo-
nents. Experimental results scaled to
hundreds of thousands of lines, and a
part of Linux of 3M lines. This form of
analysis finds preconditions support-
ing safety proofs of clusters of proce-
dures as well as indicating potential
bugs where proofs failed.

This work led to the program proof
startup Monoidics, founded by Calc-
agno, Distefano and O’Hearn in 2009.
Monoidics developed and marketed the
Infer tool, based on the abductive tech-
nique. Monoidics was acquired by Face-
book in 2013 at which point Calcagno,
Distefano, and O’Hearn moved to Face-
book with the Monoidics engineering
team (www.fbinfer.com).

The compositional nature of In-
fer turned out to be a remarkable fit
for Facebook’s software development
process.11 A codebase with millions
of lines is altered thousands of times
per day in “code diffs” submitted by
the programmers. Instead of doing
a whole-program analysis for each
diff, Infer analyzes changes (the diffs)
compositionally, and reports regres-
sions as a bot participating in the in-
ternal code review process. Using bi-
abduction, the frame rule picks off (an
approximation of) just enough state
to analyze a diff, instead of consider-
ing the entire global program state.
The way that compositional analysis
supports incremental diff analysis is
even more important than the ability
to scale; a linear-time analysis operat-
ing on the whole program would usu-
ally be too slow for this deployment
model. Indeed, Infer has evolved from
a standalone SL-based analyzer to a
general framework for compositional
analyses (http://fbinfer.com/docs/
checkers.html and appendix; https://
bit.ly/2CQD9CU).

Conclusion
Some time during 2001, while sitting
together in his back garden, Reynolds
turned to me and exclaimed: “The

other entry points and explore the pro-
gram graph, perhaps visiting proce-
dure bodies multiple times. This can
be expensive. While accurate analysis
of 10k LOC can be a leading research
achievement, 10k is tiny compared to
software found in the wild. A single
company can have tens of millions of
lines of code. Progress toward big code
called for a radical departure.

Bi-Abduction and Facebook Infer
In 2008 Calcagno asked: What is the main
obstacle blocking application of SpaceIn-
vader and similar tools to programs in the
millions of LOC? O’Hearn answered: The
need for the human to supply precondi-
tions. He proposed that a “truly modu-
lar” analysis based on local reasoning
could accept a program component with
no human annotations, and generate
a pre/post spec where the precondition
approximates the footprint. The analysis
would then “stitch” these specifications
together to obtain results for larger pro-
gram parts. The analysis would be com-
positional, in that a spec for a procedure
could be obtained without knowing its
callers, and the hypothesis was that it
would scale because procedures could be
visited independently. This implied giv-
ing up on whole-program analysis.

Calcagno, O’Hearn, Distefano and
Yang set to work on realizing a truly
modular analysis. Yang developed a
scheme based on gleaning information
from failed proofs to discover a foot-
print. Distefano made a breakthrough
on the stitching issue for the modular
analysis that involved a new inference
problem:

Bi-abduction: given A and B, find
?frame and ?anti-frame such that

where  is read ‘entails’ or ‘implies.’
The inference of ?frame (the leftover
part in A but not B) was present in
Smallfoot, and is used in many tools.
The ?anti-frame part (the missing bit
needed to establish B), is abduction,
or inference of hypotheses, an infer-
ence problem identified by the philos-
opher Charles Peirce in his conceptu-
al analysis of the scientific method. As
a simple example,

can be solved with

With bi-abduction we can automate
the local reasoning idea by abducing
assertions that describe preconditions,
and using frame inference to keep speci-
fications small. Let us illustrate with the
program we started the paper with. We
begin symbolic execution with nothing
in the precondition, and we ask a bi-
abduction question, using the current
state emp as the A part of the bi-abduc-
tion query and the pre of the small axi-
om for [x] = y as B.

Now, we move the abduced anti-frame
to the overall precondition, we take
one step of symbolic execution using
the small axiom for Pointer Write from
Figure 2, we install the post of the small
axiom as the pre of the next instruction,
and we continue.

The formula y  – in the bi-abduc-
tion query is the precondition of the
small axiom for the pointer write [y] = x:
we abduce it as the anti-frame, and add
it to the overall precondition. The frame
rule tells us that the inferred frame x 
y is unaltered by [y] = x, when it is sepa-
rately conjoined with y  –, and this
with the small axiom gives us our overall
postcondition in

So, starting from specifications for
primitive statements, we can infer both
a precondition and a postcondition for
a compound statement by repeated ap-
plications of bi-abduction and the frame
rule. This facility leads to a high degree
of automation. Also, note that the pre-
condition here is more general than the
one at the start of the paper, because it
does not mention 0. Bi-abductive analy-

FEBRUARY 2019 | VOL. 62 | NO. 2 | COMMUNICATIONS OF THE ACM 95

review articles

logic is nice, but it’s the model that’s
really important.” My own prejudice
for semantics made me agree imme-
diately. We were both beguiled by the
fact that this funky species of logic
could be described using down-to-
earth computer science concepts like
RAMs and access bits.

What happened later came as a sur-
prise. The specific heap/RAM model
gave way in importance to a more gen-
eral class of nonstandard models based
on fictional rather than down-to-earth
separation. And the logic itself, particu-
larly its proof theory, turned out to be ex-
tremely useful in automatic verification,
leading to many novel research tools
and eventually to Facebook Infer.

Still, I expect that in the long run it
will be the spirit rather than the letter of
SL that is more significant. Concepts of
frames, footprints, and separation as a
basis for modular reasoning seem to be
of fundamental importance, indepen-
dently of the syntax used to describe
them. Indeed, one of the more impor-
tant directions I see for further work is
in theoretical foundations that get at
the essence of scalable, modular rea-
soning in as formalism-independent
a way as possible. Theoretical synthe-
sis would be extremely useful for three
reasons: To make it easier for people
to understand what has been achieved
by each new idea; to provide a simpler
jumping-off point for future work than
the union of the many specific advanc-
es; and, to suggest new, unexplored
avenues. Hoare has been advancing
an abstract, algebraic theory related to
CSL, which has components covering
semantics, proof theory, and testing,24
and work along these lines is well worth
exploring further.

 Other relevant reference points are
works on general versions of SL,13,17
abstract interpretation,15 and work on
“separation without SL” discussed in
the appendix (https://bit.ly/2CQD9CU).
Semantic fundamentals would be cru-
cial to an adequate general foundation,
but I stress that proof theoretic and es-
pecially algorithmic aspects addressing
the central problem of scale should be
covered as well.

In conclusion, scalable reasoning
about code has come a long way since
the birth of SL around the turn of the
millennium, but it seems to me that
much more is possible both in funda-

mental understanding and in mecha-
nized techniques that help program-
mers in their daily work. I hope that
scientists and engineers will continue to
innovate on the fascinating problems in
this area.

Acknowledgments. This article is
dedicated to the memory of John C.
Reynolds (1935–2013). Our work to-
gether at the formative stage of sepa-
ration logic was incredibly intense,
exciting, and huge fun. I am fortunate
to have worked so closely with such
a brilliantly insightful scientist, who
was also a valued friend.

I thank my many other collabo-
rators in the development of this
research, particularly David Pym,
Hongseok Yang, Richard Bornat, Cris-
tiano Calcagno, Josh Berdine, Dino
Distefano, Steve Brookes, Matthew
Parkinson, Philippa Gardner, and
Tony Hoare. Finally, thanks to my col-
leagues at Facebook for our work to-
gether and for teaching me about ap-
plying logic in the real world.	

References
1.	 Appel, A.W. Program Logics for Certified Compilers.

Cambridge University Press, U.K., 2014.
2.	 Berdine, J. Calcagno, C. and O’Hearn, P.W. Smallfoot:

Modular automatic assertion checking with separation
logic. LNCS FMCO 4111 (2005) 115–137, 2005.

3.	 Berdine, J., Cook, B. and Ishtiaq, S. SLAyer: Memory
safety for systems-level code. In Proceedings of CAV,
2011, 178–183.

4.	 Beringer, L., Petcher, A., Ye, K.Q. and Appel, A.W. Verified
correctness and security of OpenSSL HMAC. In
Proceedings of 24th USENIX Security Symposium, 2015,
207–221.

5.	 Biering, B., Birkedal, L. and Torp-Smith, N. BI-
hyperdoctrines, higher-order separation logic, and
abstraction. ACM TOPLAS 29, 4 (2007).

6.	 Bornat, R. Proving pointer programs in Hoare logic.
LNCS MPC 1837 (2000) 102–126.

7.	 Bornat, R., Calcagno, C., O’Hearn, P.W. and Parkinson,
M.J. Permission accounting in separation logic. In
Proceedings of POPL, 2005, 259–270.

8.	 Brookes, S. A semantics for concurrent separation logic.
Theor. Comput. Sci., 375, 1–3 (2007), 227–270.

9.	 Brookes, S. and O’Hearn, P.W. Concurrent separation
logic. SIGLOG News 3, 3 (2016), 47–65.

10.	 Burstall, R.M. Some techniques for proving correctness
of programs which alter data structures. Machine
Intelligence 7, 1 (1972), 23–50.

11.	 Calcagno, C. et al. Moving fast with software verification.
In Proceedings of NASA Formal Methods Symposium,
2015, 3–11.

12.	 Calcagno, C., Distefano, D., O’Hearn, P.W. and Yang, H.
Compositional shape analysis by means of bi-abduction.
J. ACM 58, 6 (2011), 26. Preliminary version in
Proceedings of POPL’09.

13.	 Calcagno, C., O’Hearn, P.W. and Yang, H. Local action and
abstract separation logic. LICS, 2007, 366–378.

14.	 Chen, H., Ziegler, F., Chajed, T., Chlipala, A., Kaashoek,
M.F. and Zeldovich, N. Using Crash Hoare logic for
certifying the FSCQ file system. In Proceedings of
SOSP, pages 18–37, 2015.

15.	 Cousot, P. and Cousot, R. Abstract interpretation: A
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
Proceedings of POPL, 1977, 238–252.

16.	 Dijkstra, E.W. Cooperating sequential processes.
Programming Languages, Academic Press, 1968,
43–112.

17.	 Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson,
M.J. and Yang, H. Views: Compositional reasoning for

concurrent programs. In Proceedings of POPL, 2013,
287–300.

18.	 Dinsdale-Young, T., Dodds, M., Gardner, M., Parkinson,
M.J. and Vafeiadis, V. Concurrent abstract predicates. In
Proceedings of ECOOP, 2010, 504–528.

19.	 Dinsdale-Young, T., Gardner, P. and Wheelhouse, M.J.
Abstraction and refinement for local reasoning. In
Proceedings of VSTTE, 2010, 199–215.

20.	 Distefano, D., O’Hearn, P.W. and Yang, H. A local shape
analysis based on separation logic. In Proceedings of
TACAS, 2006, 287–302.

21.	 Floyd, R.W. Assigning meanings to programs. In
Proceedings of the Symposium on Applied Mathematics.
J.T. Schwartz, ed. AMS, 1967, 19–32.

22.	 Hoare, C.A.R. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969), 576–580.

23.	 Hoare, C.A.R. Towards a theory of parallel
programming. Operati ng Systems Techniques.
Academic Press, 1972.

24.	 Hoare, T., Möller, B., Struth, G. and Wehrman, I.
Concurrent Kleene algebra and its foundations. J. Log.
Algebr. Program 80, 6 (2011), 266–296.

25.	 Hobor, A. and Villard, J. The ramifications of sharing
in data structures. In Proceedings of 40th POPL, 2013,
523–536.

26.	 Ishtiaq, S.S. and O’Hearn, P.W. BI as an assertion
language for mutable data structures. In Proceedings of
POPL, 2001, 14–26.

27.	 Jones, C.B. Specification and design of (parallel)
programs. In Proceedings of IFIP Congress, 1983,
321–332.

28.	 Jung , R. Jourdan, J.-H., Krebbers, R. and Dreyer.
D. RustBelt: Securing the foundations of the Rust
programming language. In Proceedings of PACMPL,
2018.

29.	 Krebbers, R., Jung, R., Bizjak, A., Jourdan, J-H, Dreyer, D.
and Birkedal, L. The essence of higher-order concurrent
separation logic. In Proceedings of ESOP, 2017,
696–723.

30.	 O’Hearn, P.W. Resources, concurrency, and local
reasoning. Theor. Comput. Sci. 375, 1-3 (2007), 271–307.

31.	 O’Hearn, P.W and Pym, D.J. The logic of bunched
implications. Bulletin of Symbolic Logic 5, 2 (1999),
215–244.

32.	 O’Hearn, P.W., Reynolds, J.C. and Yang, H. Local
reasoning about programs that alter data structures. In
Proceedings of CSL, 2001, 1–19.

33.	 Parkinson. M.J. Local reasoning for Java. Ph.D. thesis.
University of Cambridge, U.K., 2005.

34.	 Parkinson, M.J., Bornat, R. and Calcagno, C. Variables
as resource in Hoare logics. In Proceedings of 21st LIC,
2006, 137–146.

35.	 Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans,
J., Jacobs, B. and Piessens, F. Software verification with
verifast: Industrial case studies. Sci. Comput. Program.
82 (2014), 77–97.

36.	 Pym, D., O’Hearn, P. and Yang, H. Possible worlds and
resources: The semantics of BI. Theoret. Comp. Sci. 315,
1 (2004), 257–305.

37.	 Reynolds, J,C. Intuitionistic reasoning about shared
mutable data structure. Millennial Perspectives in
Computer Science, Cornerstones of Computing. Palgrave
Macmillan, 2000.

38.	 Reynolds, J.C. Separation logic: A logic for shared
mutable data structures. LICS, 2002, 55–74.

39.	 Sergey, I., Nanevski, A. and Banerjee, A. Mechanized
verification of fine-grained concurrent programs. In
Proceedings of 36th PLDI, 2015, 77–87.

40.	 Turing, A.M. Checking a large routine. Report of a
Conference on High-Speed Automatic Calculating
Machines. Univ. Math. Lab., Cambridge, U.K., 1949,
67–69.

41.	 Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H. and Li, Z.
A practical verification framework for preemptive OS
kernels. In Proceedings of CAV, 2016.

42.	 Yang, H. Local Reasoning for Stateful Programs. Ph.D.
thesis. University of Illinois, 2001.

43.	 Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B.,
Distefano, D. and O’Hearn, P.W. Scalable shape analysis
for systems code. In Proceedings of CAV, 2008,
385–398.

44.	 Yang, H. and O’Hearn, P.W. A semantic basis for local
reasoning. In Proceedings of FoSSaCS, 2002, 402–416.

Peter O’Hearn (p.ohearn@ucl.ac.uk) is a research
scientist at Facebook and professor of computer science
at University College London, U.K.

© 2019 ACM 0001-0782/19/2 $15.00

