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Abstract. Two pseudo-random number generators are considered, the multiplicative 
:ongruential method and the mixed congruential method. Some properties of the generated 
sequences are derived, and several algorithms are developed for the evaluation of x~ = 
'(i) and i = f-~ (xl), where x~ is the ith element of a pseudo-random number sequence. 

L. In troduct ion 

Many methods for generating pseudo-random numbers on computers by arith- 
netic procedures have been proposed and investigated, and some of these are 
mrrently in widespread use. All of the methods have in common the ad- 
tantageous characteristic that the generated sequence of numbers can be exactly 
:eproduced from the known initial value and generator parameters. Then with all 
)ther factors remaining (hopefully) constant, a computer run can be duplicated. 
ffowever, situations may occur when we wish to take advantage of this character- 
stic of determinability without being prodigal with computer time. Two particu- 
ar questions which can arise are: (1) what is the ith element of the generated 
~equence? (2) given a specific random number, where in the sequence did it occur? 
these problems may come up during the checkout of a generator or a Monte 
~arlo program, in the calculation of key values to be used as internal program 
~hecks, in reproducing a segment of a computer run, in examination of anomalous 
cesults, etc. Depending upon the particular generator and parameters involved, it 
may be possible t o  compute the desired function by shortcut methods, avoiding 
the brute-force reproduction of the sequence. This paper deals with such pro- 
:edures for two types of generators, the multiplicative congruential and the 
mixed congruential methods. 

The multiplicative congruential method is defined by the recurrence relation- 
~hip 

x~+l ~ Xxi (mod M), (1.1) 

where x0, X and M are integers. The mixed method takes the form 

r~+l --: Xr, + c (rood M), (1.2) 

where r0, h, c and M are integers. In usual practice, the choice of r0 is largely 
arbitrary while x0, h and c are chosen prime to M. Selection of any of the latter 
parameters not prime to M decreases the period of the sequence without apparent 
compensation. For a binary computer of word length n bits, a convenient choice 
for M is 2 ". With this modulus, X for the multiplicative method has frequently 
been chosen [1-4] as the largest odd power of 5 satisfying X < 2"; common choices 
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[5-8] for the mixed method are X = Z * ~ 1, a ~ 2. In the literature, itlcre~tsing 
attention is being given to imposing eonstrMnts upon the parameters in order 
tha t  the generated sequence satisfy eertMn statistical criteria. This subject is of 
no concern here; hence the t reatment  will be somewhat general. For the remc~inder 
of this paper it will be assumed that :  

M = 2 '~, n => 3; ( 1 . 3 )  

3 =< X =< 2 ' ~ -  3, and odd; ( l .4)  

1 ~ c < 2 '~ -- 1, and odd; (1.5) 

1 =< x0 =< 2 '~ -- 1, and odd; (l..6) 

0 N ro =< 2 ~ - 1. (1 .7)  

2. Periodicity 

Notation. The sequences generated by (1.1) and (1.2) will be represented by 
{x} and {r}, with elements x~ and r~, respectively. The binary digits of a random 
number will be denoted b y d k ,  0 =< k =< n - l :  

n - -1  

x i , r i  = ~ d k 2  k, dk = 0 o r  1. 
k = 0  

The index of the sequence elements will be i. For i >= 1, in the assumed range 
2" __< i < 2 ~+~, i will have the representations 

i = ~ b 3 2  j, b3 = 0 o r  1; b~ ¢ 0. (2.1) 
j=0 

i = ~ e j ,  ej = bj2 ~. (2.2) 
j=0 

The notation x = y (rood M) will be used to indicate tha t  x is taker,, as the 
least non-negative residue of y, modulo M. 

I t  will be convenient to define a function a: for given integers A ¢ 0 and p 
(prime) ~ 2, the function ap(A) is defined to be the greatest integer q such 
tha t  pq divides A; and av(0) = ~ .  The following rather obvious reIationships 
are stated without proof. For all integers A, B: 

c~p(A.B) = a , (A)  + a , ( B ) ;  (2.3) 

~p(A/B)  = ap(A) -- ~ ( B ) ,  for A / B  an integer; (2.4) 

c~(A) < a , (B)  ~ a , (A  + B) = a , ( A ) ;  (2.5) 

aT(A) = a , (B)  => a , (A  + B) >= a , ( A ) ;  (2.6) 

a2(A) = a2(B) ~ a2(A + B) ~ 1 + a2(A); (2.7) 

O < ]A I < P ' ~ a , ( A )  < B. (2 .S)  

Further  mention of a will assume tha t  p = 2. Given the assumptions (1.3) 
through (1.7), it can be shown that  the sequences {x} and {r} are periodic, peri- 
odicity beginning with the starting value x0 or r0 ; and tha t  the period P is a 
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function of n and  X only.  T h e  periods of the  individual  b ina ry  digits d~ can be  
de termined,  as well  as the  sequence period. First ,  some identi t ies are s ta ted  and  
some l emmas  proved .  Subsequen t  sections refer  repea ted ly  to identi t ies (2.9)-- 
(2.11),  which  are  der ivable  f r o m  (1.1) and  (1.2) .  

xl = XoX i ( m o d 2  ~) (2.9) 

= X~ X i - -  1 
r~ r0 -~ c -  (mod  2~) (2.10) 

X - - 1  

X j -  1 ( m o d 2  ") (2.11) rj+k = rk X j + e X - - - ~ -  

LEUMA 1. For X -~ h (mod 4 ) , h  = i l ,  let l~ = a(X -- h ). Then a(X ~" - 1) = 1 
forz  = O,h = - 1 ; a n d a ( X  2~ - 1) = z -~- ~ f o r h  = - 1 ,  z ->_ 1 a n d h  = 1, 

z > = O .  
PROOF. T h e  proof  can be demons t r a t ed  b y  induct ion on z. By  (2 .5) ,  

a(X 2. -- 1) > l ~ a ( X  2" -t- 1) = a ( 2 )  = 1 ,heneea (X 2"+1 --  1) = 1 + a(X 2" --  1). 

Detai ls  are  left  to  the  reader.  
LEMM~ 2. For' a given positive integer i, let q = a ( i ) .  Then a(X ~ - 1) = 

c~(X 2q - 1) for all positive odd integers X. 
Pnoo~'.  Le t  i = K 2  q, K a n  odd integer.  T h e n  

K--1 

X ' - -  1 = X K2q- 1 = (X 2 q -  1 ) ~  (X~q)~; 
j~O 

a(X ~ -  1) = a(X 2q 1) - t - a  (X2q) s . (2.12) 
kJ=O 

Since X is odd,  (X2~) j is odd  for  q => 0 a n d j  => 0. Since K is odd, the  s u m  in 
(2.12) is the  s u m  of an  odd n u m b e r  of odd integers,  which is an  odd integer.  

T h e n  a ( ~ )  = 0 and  a(X ~ - 1) = a(X ~' - 1). Q .E .D.  
'Ik4~OREM 1. Given X and the integer y,  1 _-< y =< n -- ¢~, let e = a(X 2~-~ - 1). 

The binary digit d~ in the sequence Ix} has a period of 2 ~'. 
PROOF. G i v e n  the  integers n, X and  x0 sat isfying (1.3),  (1.4) and  (1.6)  

respect ively;  let  ~ be  defined as in L e m m a  t: For  an  integer  m in the  range  
¢~--~ 1 N m <= n, let  {x} ~ be the  sequence of e lements  x~.~ genera ted  b y  

X,+l.m = XmX~.m (rood 2~),  (2.13) 

where X,,, and  xo.~ are  the  least  non-negat ive  residues modulo  2 ~ of X and  x0 
respectively.  Assume  the  per iod  of {x} ~ to be  P ~  ; t hen  P ~  is the  least  posi t ive  

integer such t h a t  x~+e ..... = X~.m, or  b y  (2.9) 

(XO,mX,j)(X~ m -  1) ~ - 0  ( m o d 2 m ) .  (2.14) 

Since x0,,~ and  Xm are odd,  (2.14) will be satisfied if and  only if 2 ~ divides X~ ~ - -  1; 

t h a t  is, if and  on ly  if 
a ( X ~ " - -  1) => m. (2.15) 

Let  a(P,~)  = q a n d  P ~  = K ' 2  q, K an  odd integer.  B y  L e m m a  2, a(X~ 2q - 1) -- 
a(X 2 ~  m --  1) for  all odd  posi t ive  integers K;  t hen  K = 1 for P ~  to  be a m in imum.  

Also, for all integers  m in the  s ta ted  range,  a(X~[ - 1) = a(X 2~ - 1). T h e n  
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P, ,  = 2 q, where q is the least integer satisfying a(X 2~ -- t )  ~ m. Now h)r a given 
integer y, 1 ~ y ~ n --  ~, let e = a ( k  =~-* - 1). Sett ing aside for the moment  
the case of y = 1, the range of e is given by  Lemma  1 : 5 + 1  ~ e =< n - 1 .  Then 
we can iet m = e to obta in  

a(X 2 ~ -  1) ~ a(X ~ - ~ -  1). (2.16) 

Again by Lemma I, the function a(h 2q - 1) is strictly increasing with q for 
fixed X; then the least integer q satisfying (2.16) is y-l, and P~ = 2 ~-1. Using 
the same rationale, we can obtain P~+i = 2 v. (An incidental result can be ob- 
tained at this point by taking y = n-~+l. Then e = n and P~, the period of 
the sequence {x}, is 2 ~-~. This result appears in [i] and [9].) 

An element generated by (I.i) or (2.13) is defined as the least non-negative 
residue with respect to the given modulus. It follows that x~,~ is the least non- 
negative residue of x~,~+l (rood 2 ~) and x~.,+1 = x~,~ + d~2 ~. It also follows that 
all digits dk, 0 --< k _< ~, have the same value in x~,. as in x~,~+1, hence the same 
period in {x} as in {x}~+1. Letting S~ be the period of d~ (which is the same as 
the period of d~2~), then P,+i is the least common multiple of P~ and S~ : 

2 y = lem (f--1 S~). (2.17) 

Equat ion  (2.17) has the  unique solution S~ = 2 v, which proves the  theorem for 
y # 1. For  y = 1, the  solution to (2.15) can be obtained by  inspection. For 
k -~ 1 and - 1  (mod 4),  e = ~, 1 and  ~+~ = 2 ~ -4- 1, 2 respectively; P~+~ = 2, 
h, = 1, P ,  = 1 and  S~ = 2. Q.E.D. 

THEOREM 2. Given X and the integer y, where 1 =< y ~_ n for h ~- 1 (mod 4) 
and 1 =< y _<- n + l - - ~  for h ~ - 1  (rood 4);  let e = a(h  2~-~ - 1) - a (k  - 1). 
Then the bina~T digit d, in the sequence l r} has a period of 2 y. 

The proof for Theorem 2 is basically the same as for Theorem 1; details are 
omitted.  The bi t  characteristics which can be inferred f rom these theorems are 
displayed in Table  1. 

3. Determination of x~ 

The two algori thms described in this section can be used to determine x~, 
given index i ~ 1. The  first of these uses a preeomputed  table and  is suitable 
for desk calculation. The second algori thm requires no table and is convenient 
for use as a computer  subroutine. 

Assume i in the range of 2 ~ ~ i < 2~+~; then equation (2.9) can be put  into 
the form 

x~ = z0 I I  (x) ~j (rood 2~). (3.1) 
1=o 

Then x~ can be constructed using a table of X 2~ (rood 2"),  0 .~ z =< n - B - l ,  
such as Table  2 in the Appendix. 
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T A B L E  1. CIIARACTERISTICS OF THE BINARY DIGITS d1¢ IN THE SEQUENCES {X} AND {r} 

X Period of de d# dl do 
(fl _> 2; K odd) Sequence n - I  ~ k ~ t~+l ~-1 > 2 

Multiplicative method 2 '~-a period = 2 k+~a * 1 
k =  K . 2 ~ +  1 

Multiplicative method 2 ~ - ~  period = 2k+~-~ * t period 1 
h =  K . 2 a -  1 = 2  

Mixed method 2" period = 2~+1 
k =  K.2~ + 1 

Mixed method 2~+1-~ period = 2 k+~ l period 
h =  K.2~--  1 = 2  

* Digit has 
Digit has 

and c. 

the same value as the corresponding digit of xo. 
a constant value or a period of 2, function of the low order bits of xo, or ro 

PROCEDURE A1. 

(1) Partition i into parts ej ,  defined by (2.1) and (2.2), ignoring parts equal to 0 and 
discarding parts greater than or equal to the period of the sequence; 

(2) select corresponding values of k'~' (rood 2'Q from table; 
(3) form the product x0 iris k~i = x~. 

A similar procedure  can be per formed wi thout  the  use of tables, requiring inputs  

of k, x0 and  i ( a n d  n) .  

PROCEDURE/~k2o 

(1) Set y' = 0, II = x0, i '  = i, ~ = ~ ;  
(2) if i '  = 0: iteration is completed and II = x~ ; if i '  ~ 0: form y = a (i') ; 
(3) if y' = y: replacel /by .yII (mod 2"), i '  by i '  - 25 and repeat from step (2); if 

y' ~ y: replaee-r by~ ~ (rood 2'9, y '  by y' + 1, and repeat step (3). 

The  lat ter  a lgor i thm is valid for i _>- 0. For  i i n  the range 28 =< i < 2 '+1, the  
average n u m b e r  of mult ipl icat ions required is ~ ( s / 2 )  + 1 for procedure A1, 

(3s/2) + 1 for A2. 

4. Determination of r, 

The  par t icu lar  me thod  best  suited to computa t ion  of r~ depends upon  the  
parameters  involved.  No exhaust ive  t r ea tmen t  will be a t t e m p t e d  here bu t  a few 
possibilities will be mentioned.  F o r  desk calculation, it is usually advantageous  to  
reduce i to  the least non-negat ive  residue, modulo the  period of  the  sequence. 

Greenberger  [5] suggests t h a t  a choice of k approximate ly  equal to, bu t  less 
2 a than  2 ~/2 is good iu several respects. I f  we choose the  common  fo rm ~ -- --]- 1 
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and  restrict  a to  the  range n / 3  ~ a < n/2, thetl  r, is expressible as 

,r~ = ~=02 °~ r0 + c  k +  1 2 ) ,  

which requires little computa t ion .  For  X = 2 ~ - 1 and  n / 3  =< a < n/2,  

r,~: = ~ + ( - - 1 )  ~ t o - -  ( (rood 

where ~ = (c/4)(22~i + 1) f o r / e v e n ;  $ = (c/2)[2 ~ + 1 - 22~'-~(i --  1)] for i odd. 
I n  seeking a general me thod  applicable for a ny  h, c and  r0, analogous  to  al- 

go r i thm A1, we encoun te r  an  obstacle no t  present  in the  mul t ip l ica t ive  generator .  
The  coun te rpa r t  of equa t ion  (3.1) is t he  following, ob ta ined  f rom (2.10) : 

r~ = t o +  [ ro(X--  1) + c ]  - -1  + , H  X ~j ( r n o d 2 " ) .  (4.1) 

As it s tands,  this fo rmula t ion  requires t h a t  mos t  of the  c o m p u t a t i o n  be curried 
ou t  modulo  2~(X - 1), which can be  highly undesirable.  However ,  the  last 
equa t ion  can be modified to allow the  c o m p u t a t i o n  to  be pe r fo rmed  modulo  2 ~, 
a t  the  expense of addi t ional  operat ions.  T he  expression in braces of  (4.1) can 
be expanded:  

g 8 8 

- - 1 +  H X ~j ( h  ~° - -  1)  1I X ~j - - 1 +  H h °j 
. / = o  _ . /=1  ._j_ :/=1 

k-i k--i k-i 

Continuing the expansion in this manner, we can obtain 

ri = t o - +  [ t o ( h - -  1) + c] h ~ Z -  I I  X~j ( m o d 2 ~ ) ,  
k=o X ~ j=k+l 

where II}=~+l h ~s is defined equal  to 1. T he  fac tor  (h ~ - 1 ) / ( k  --  1 can be 
genera ted  modulo 2 ~ (see final section, Table Construction) and  r~ can  be caleu-  
luted b y  means of tables  of k ~ ( m o d  2 ~) and  (k v - 1 ) / (X --  1) (rood 2~), 
0 -< z _< n - 1, such as Tables  2 and  3. 

PROCEDURE A3. 

(1) Partition i into parts ej , defined by (2.1) and (2.2), ignoring parts equal to 0 and 
discarding parts greater than or equal to the period of the sequence; select any 
e~ ;set i '=  i -  ej ;set ~ = (X*~- 1 ) / ( X -  1) (mod 2'~) (from table); 

(2) if i '  = 0, proceed to step (4); if i '  # 0, proceed to step (3); 
(3) select any remaining ej and obtain ~,ei (rood 2 ") and (X~i -- 1)/(X -- 1) (rood 2 ") 

from tables; replace ~ by (Xe~ - 1)/(h - 1) + X~iE (mod 27~), replace i '  by i '  -- e1 , 
and repeat from step (2); 

(4) form ro + [r0(X -- 1) + c]:~ (mod 2'0 ~" r~ . 

A t  the  expense of addi t ional  mult ipl icat ions,  the  procedure  can be per formed 
wi thou t  tables. 
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PROCED~;~E A4. 

Explanatory  Note. A4 ope ra t e s  u p o n  a n  a r g u m e n t  i ,  u s i n g  p a r a m e t e r s  X, c and  r0 (and  n ) .  
The  a l g o r i t h l n  v a r i a b l e s  h a v e  t he  fo l lowing  m e a n i n g :  a t  t h e  p o i n t  of r e - e n t r y  of s t ep  (2) 
f rom s tep  (3), ey is t he  mos t  r e c e n t l y  d e t e r m i n e d  e i ,  ~ ~- X ~ (mod 2~), 3" -= 
(X 2~ -- 1) / (X - I. ) (rood 2~), Z = [1 / (X -- 1 ) ][-- 1 + I I~0 X"i] (mod 2 ~), a n d  i '  = i - ~i~o ei • 

(1) SeU 2~ = 0, 8 = X, ~, = 1, i '  = i ,  y '  = 0 ;  
(2) if i '  = 0, p roceed  to  s t ep  (4);  if i '  ~ O, f o r m  y = ~ ( i ' ) ;  
(3) if y '  = y, r ep lace  Z bye / ' 4 -  8Z (rood 2n), i '  b y  i ~ -- 2Y, a n d  r e p e a t  f r o m  s tep  (2) ;  

if y'  -~ y, r e p l a c e . y b y T ( 8 @  1) ( m o d 2 ' Q ,  8 b y ~  ( m o d 2 ~ ) ,  y ' b y y ' - d -  1, a n d  
repet~t s t ep  (3);  

(4) f o r m r 0  + [ro(X - 1) d- c] Z ( m o d 2  '~) = rl  . 

This algorithm is valid for i ~ 0. For  i in the range 2 ~ =< i < 2 ~+~, A3 requires 
an average of approximately s-4-1 table references and s /2  d- 2 multiplications; 
A4, an average of approximately 5s/2  d- 3 multiplications. 

5. Determination of  Index,  Multiplicative Generator 

The algorithm for determination of i, given x~, is based upon the recogniza- 
bility of a ( i )  through inspection of the bits of x, - Xo. The least nonzero e~ 
component of i can be determined by  application of Theorem 3. 

THEOREM 3. I f  X~ = Xo, then i ~- 0 (rood P ) ,  where P is the period of the se- 
quence {x}; i f  x~ ~ xo , and o~(x~ -- Xo) = w, then a ( i )  = y, where y is the solution 

of a(X 2~ -- 1) = w. 
PROOF. The sequence {x I has been shown to be periodic, periodicity begin- 

ning with the initial element x0. The  period P is the least positive integer such 
that 

xi+p = x j ,  f o r a l l j  => 0; (5.1) 

which implies tha t  x/+k ~ xj for 1 _-< /c -< P - -1 .  Repeated application of (5.1) 
yields Xj+Ke = Xi, for K, j => 0. Given the integer i ¢ 0 (mod P ) ,  let k be the 
least non-negative residue of i (mod P) .  Then 1 ~ /¢ N P -  1 and x~ = xk ~ x0 ; 
or i ¢ 0 (mod P )  ~ x~ ¢ x0, which proves the first part  of the theorem. 

Now assume tha t  x~ ¢ x0, and c~(x~ - x0) = w. From (2.9), 

x~--  x0-~ Xc(X ~ -  1) (mod2~) ,  

c~[x~ - x0 + 2~K] = c~[x0(X ~ - 1)], (5.2) 

where K is an integer. S ince0  < x~, x0 < 2 ~ , t h e n 0  < lx~-- x01 < 2 ~and  
a(x~ - xo) < n, by  (2.8). Also a(2nK)  ~ n; then by (2.5) the left-hand mem- 
ber of (5.2) is a(x~ - x0) = w. Let  a ( i )  = y. By Lemma 2, the right-hand 
member of (5.2) is ~(X ~ - 1), x0 being odd; or c~(X ~ - 1) = w. Q.E.D. 

For a given X and w, the solution of a(X ~ - 1) = w in y is given by Lemma 1 : 

y = w -- fl for X ~ 1 (mod 4); (5.3) 

y = 0 i fw  = 1 (5.4) 

y = w -  f~ifw ~ 1 f o r X - ~  - l ( m o d 4 ) .  (5.5) 

Having determined the least nonzero e~ to be e~, the next larger e¢ is deter- 
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i * 2 ~ ) ru inable  b y  r emov ing  t h e  fac tor  of X e" f rom t h e  p r o d u c t  x~ = x01 J=v X~J ( rood  . 

Th i s  can  be  effeeted b y  m u l t i p l y i n g  x~ b y  t h e  a p p r o p r i a t e  in t ege r  Qv, def ined by 
2v . ). x or  ~ <. n, wh ich  is sa t i s f ied  b y  (1 .4) ,  L e m m a  1 implies  

t h a t  c~(X : - ~  - -  1) = n,  and  ff~-~ ~ 1 ( rood  2'~). T h e n  Q~ ~ X z~-~' ( rood 2"),  
where  K is a n y  in t eg ra l  mu l t i p l e  of 2 '~-¢, =>_ 2 ~. F o r  convenience ,  Q,~ will  be  ex- 

p ressed  as  
Qv = x :'~-:~ ( m o d  2~). (5.6) 

A f t e r  m u l t i p l i c a t i o n  b y  Q~, t h e  process  can  be  r e p e a t e d  to  d e t e r m i n e  t h e  next 
l a rge r  e~;  t he  i t e r a t i o n  cont inues  u n t i l  t h e  en t i re  compos i t i on  of i is known.  
T h e  a l g o r i t h m  can  t a k e  the  fo rm of A5, u t i l i z ing  a t a b l e  of X ~-~" ( m o d  2'~), 
0 N z N n - ¢ ~ - 1  ( such  as  T a b l e  4 ) ;  or  A6, wi th  no t a b l e  r equ i red .  

P a o e ~ D u ~  A5. 

(1) Set Z = 0, .~ = x~; 
(2) if r = x0, i teration is completed and 2~ = i; if .y # x0, determine w = a@ - x0), 

determine y by means of one of the relationships (5.3)-(5.5); 
(3) obtain Q~ from table;  replace ~ by ~/Q~ (rood 2n), Z by 2~ + Z ; repeat from step (2). 

PROCEDURE A6. 

Explanatory Note. A6 operates upon any argument x~ generated by (1.1) with M = 2 ~, 
employing parameters X and x0 (and n). Step (1) is a subalgorithm which solves the con- 
gruence XQ0 ~- 1 (rood 2-) for Q0 • The algorithm variables denote the following: at the 
point of re-entry of step (5) from step (6), e~ is the most recently determined nonzero e j ,  

Y s Q = V ~-2y (mod 2~), Z = Zi~o e i ,  and ~ = x0 IIi~y+l X*i (rood 2'0. 
(1) Compute Q0 as follows: 

(1.1) s e t A  = 1, B = X -  1; 
(1.2) form u = a(B) ; replace A by A + 2 ~, B by B + X.2 ~ (rood 2 '~) ; 
(1.3) if B -~ 0 (mod 2"), proceed to step (2) ; if B ~ 0, repeat from step (1.2) ; 

(2) se tQ = A, y' = 0 ; i f X ~  3 (mod4) , compute~  = a ( X +  1) and proceed to step 
(3); if X ~ 1 (mod 4), compute $ = a(X -- 1), proceed to step (4); 

(3) i f x ~ - - x 0 - ~ 2 ( m o d 4 ) , s e t Z = l ,  7 -~Qx~ (mod2~) ,go to s t ep  (5); if x~ - x0 ~ 2 
(rood 4), go to step (4); 

(4) set ~ = 0 ,7  = x~ ; 
(5) if ~[ ~- x0, i teration is completed and Z = i ;  if ~ # xo, form y = a(v  - x0) - /~, 

replace Z by 2y + %; 
(6) if yr = y, replace ~ by 7Q (rood 2 ~) and repeat from step (5); if y'  # y, replace 

Q by Q~ (mod 2~), y' by y' + 1, and repeat step (6). 

F o r  i in  t he  range  2 ~ ~ i < _~"+~, A5  requi res  an  a ve ra ge  ~ ( s / 2 )  + 1 mul t ip l ica -  

t ions ,  a m a x i m u m  of  s + l ,  a n d  a l ike  n u m b e r  of  t a b l e  references .  Exc lus ive  of 
t he  c o m p u t a t i o n  of  Q0, A6 requ i res  a n  a v e r a g e  ~ ( 3 s / 2 )  + 1 mu l t i p l i ca t i ons ,  a 
m a x i m u m  of 2 s + l .  

6. Determination of Index,  Mixed  Generator 

As in  t h e  m u l t i p l i e a t i v e  m e t h o d ,  t he  p r o c e d u r e  for  d e t e r m i n a t i o n  of t h e  index 
i for  t h e  mixed  m e t h o d  is b a s e d  u p o n  the  r e l a t ionsh ip  of a ( i )  a n d  a(r~ - r0). 

THEO~E~ 4. I f  r~ = to,  then i ~- 0 (rood P ) ,  where P is the period of the se- 
quence It}. I f  r~ # ro and a(r~ - ro) = w, then a(  i)  = y, where y is the solution 
o f a ( X  2~ -- 1) ---- w + a(X - -  1). 
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PROO~ ~. The proof of the first part  of Theorem 4 is identical to the proof for 
~he first part  of Theorem 3. Now take r~ ~ r0, and let a(r~  - ro) = w .  From 

(2.10), 

r~ - -  r o  ~ -  r o ( k  ~ - -  1) + 
c(x '-  1) 

a[r~--  r o + K 2  ~] = c~[ro(k ~ -  1) + 

(rood 2 ~) 

c(X ~ -  1) 1 
-k- .~ 1 

where K is an integer. Since 0 ~ r~, ro < 2 ~ and r~ 

(6.1) 

# r0, then 
0 < I r~ - ro I < 2~ and a(r~ - ro) < n, by (2.8). Also, a ( K . 2  ~) ~ n; then b y  
(2.5), a( r~  - ro + K ' 2  ~) = a(r~  - -  ro) = w .  W i t h X a n d c o d d ,  a ( c )  = O; 

a ( h -  1) ~ 1, and 

a{C(~- - - / 1 ) . }  a ( c ) +  a ( X ~ - - 1 ) - - a ( X - - 1 ) < c ~ ( k  ~ - 1 ) ;  

whereas a[ro(k i - 1)] => a(~ ~ -- 1). By (2.5), equation (6.1) becomes 
w = a(h ~ -  1) -- a ( k -  1). Let  ~(i)  = y. By Lemma2,  a(k ~ -  1) = a(h 2~ - 1) 

and 

a(X ~ -  1) = w + a ( X -  1). Q.E.D. (6.2) 

The solution in y to (6.2) is given by  Lemma 1 as: 

y = w for X -~ 1 (rood 4);  (6.3) 

y = 0 i f w  = 0  (6.4) 

y = w -  # +  l i f w  >= 1 fo rk  ~- - 1  ( m o d 4 ) .  (6.5) 

Having determined the least nonzero ei = 2 v, the next larger ej is determinable 
in the same fashion after i is depressed by  2 ~, as follows. Let i r = i -- 2 ~, and 

apply identi ty (2.11 ) : 

~y c(X 2 ~ -  1) ( rood2 ~) r~ = r(i,+~) = X r~, + k -  1 

c(k 2y -- 1)~ (rood 2"), r~, = Q~ ri ~ - ~ - 1  ) 

where Q~ is defined by  (5.6). Using preconstructed tables of (k 2~ - 1) / (~  - 1) 
(mod 2 ~) and k 2~-2~ ( n o d  2"), 0 =< z <__ n - 1 (such as Tables 3 and 4), r~, 
can be calculated and the next larger e5 determined, the process being repeated 
until the entire composition of i is revealed. The  procedure can be stated as 
A7 or A8, the lat ter  generating the required table values. 

PROCEDURE A7. 

(1) Set E = 0, ~l = r~; 
(2) if ~ = r0, iteration is completed and :3 = i; if ~ # r0, determine w = a(~, - to); 

determine y by one of the relationships (6.3)- (6.5) ; replace :3 by 2Y + :3; 
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(3) ob ta in  values  of X v~-~u (mod 2'0 and  (X~Y - 1) /(X - 1) (rood 2 '0 f rom tables ;  
replace ~ by  (k 2~-2y)[~, -- c (k 2~ - 1 ) / ( h  -- 1)] (rood 2") ;  repea t  f rom s tep  (2). 

PROCEDURE ~ 8 .  
i 
i 

Explanatory Note. A8 operates  upon  any  a rgumen t  r~ genera ted  by  (1.2) wi th  M = 2,, 
us ing p a r a m e t e r s  k, c and  r0 (and n) .  Step (1) solves the  congruence xQo -~ 1 (rood 2 n) for 
Q0 • The  in te rna l  va r i ab le s  denote  the  following: a t  the  poin t  of r e -en t ry  of s tep (5) frona 

Y s tep ( 6 ) , e u i s t h e m o s t r e c e n t l y d e t e r m i n e d n o n z e r o e j  , Q = k 2"-~ ( rood2-) ,  Z = ~i=0 e~, 
T = (k 2~ -- 1) (k -- 1) (mod 2 '0 ,  a n d ~  = r~,, where i ' = i - Zu=0 ei . The  difference between 
(6.3) and  (6.5) is compensa ted  for by  A. 

(1) Compute  Q0 as follows: 
(1.1) s e t A  = 1, B = X -  1; 
(1.2) form u = a (B);  replace A by  A + 2 ~, B by B + k.2 ~ (rood 2 '0  ; 
(1.3) if B ~= 0 (rood 2~), go to s tep  (2); if B ~ 0 (mod2~),  repea t  f rom step (t .2);  

(2) s e t Q  = A ,  T =  1, y ' = 0 ; i f X - - - 3  ( m o d 4 ) , c o m p u t e A  = a ( k +  1) - 1, go to 
s tep  (3); if X ~ 1 (rood 4), set  A = 0, to  to  step (4); 

(3) if r ,  -- r0 ~ 0 (mod 2), go to s tep  (4); if  r, -- r0 ~- 1 ( m o d 2 ) , s e t  :~ = 1, ~ ~_ 
Q(r~ - c) (mod 2") ,  go to s tep (5); 

(4) set  ~ = 0, ,y = r~ ; 
(5) if ~ = ro ,  i t e r a t ion  is comple ted  and  Z = i ;  if n ~ r0 ,  compute  y = a (7 - ro) - h, 

replace ~ by  2~ + 2~; 
(6) if y' = y, r e p l a c e ~ b y Q ( ~ , -  cT) ( m o d 2  ~) and  repea t  f rom step (5); if y' ~ y, 

r e p l a c e Q b y Q ~  (meal2") ,  T by  T i T ( k - -  1) + 2] (mod2~) ,  y ' b y y ' +  1, and 
repeat  s tep (6). 

For i in the range 2' ~ i < 2 "+~, A7 involves a maximum of 2 s + 2  table refer- 
ences and 2 s + 2  multiplications; the average for each being ~.~s-t-2. Exclusive 
of the computation of Q0, the average number of multiplications required by 
A8 is ~ 4 ~ + 2 ;  the maximum, 5s+2.  Of course, procedures A5 through A8 can : 
only produce a number  which is representative of a residue class modulo P, 
the period of the sequence; the number being the least non-negative residue of  i 
(rood P ) .  

7. Table Construction 

The required tables can be generated recursively as follows. Let z be the argu- 
ment and f2, f~ and f4 the functions of Tables 2, 3 and 4 respectively. For Table  2, 
f~(z) = ~ (mod 2~), 0 ~ z ~ n - 1 ; then  f 2 ( 0 ) =  ~ a n d f 2 ( z +  1) = 
ira(z)] 2 (rood 2~). 

For Table 3, f~(z) = (~2~ _ 1) / (h  -- 1) (mod 2~), 0 <= z =< n -  1. 
f~(0) = 1 andfs (z  + 1) = ira(z)][2 + (~, -- 1)fi(z)] (rood 2~). An alternative 
is to use Table 2 to reduce the amount  of computation: f i ( z  + 1) = 
[1 + f~(z)][f3(z)] (rood 2~). 

For Table 4, f4(z) = ~-2~ (rood 2~), 0 _<_ z =< n - 1 .  Generation can be 
performed with decreasing z, using Table 2:f4(z) = 1 for n - ~  =< z g n - 1  and 
f4(z) = [fl(z + 1)][f2(z)] (mod 2 ~) for 0 =< z g n - ~ - l .  Generating with in- 
creasing z, f4(z + 1) = [f4(z)] 2 (rood 2~), and f4(0) is the solution of ~f4(0) ~ l 

H n - ~ - I  ~ ~ ( r o o d  2 n ) .  f 4 ( 0 )  c a n  b e  c o m p u t e d  f r o m  f 4 ( 0 )  = z=0 j2kz) ( r o o d  2~), o r  b y  the  

a l g o r i t h m  w h i c h  c o m p r i s e s  s t e p  ( 1 )  of  p r o c e d u r e s  A 6  a r id  A8 .  



C A L C U L A T I O N S  W I T H  P S E U D O - R A N D O M  N U M B E R S  51 

A P P E N D I X  

To~bles are based on X = 27 + 1, n = 35. Argument is given in decimal form, function 
in octal form. 

TABLE 2 TABLE 3 TABLE 4 

$ 

0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
15 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 

X ~z (rood 2~) 

000 000 201 
000 000 401 
002 040 001 
214 701 001 

I00 607 001 
075 437 001 
153 176 001 
226 774 001 

770 001 
760 001 
740 OOI 
701 001 

602 001 
404 001 
010 001 
020 OOl 

040 001 
100 001 
200 001 
400 001 

000 001 
000] 001 
000i 001 
000 001 

000 001 
000 001 
000] 001 
000 001 

000: 001 

X ~ -- 1 
z - - ( m o d  2~) 

0 000 000 001 
1 000 000 202 
2 010 201 404 
3 063 407 010 

4 403 036 020 
5 366 174 040 
6 654 770 100 
7 133 760 200 

8 400 
9 000 

10 000 
11 000 

12 000 
13 000 
14 000 
15 000 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

28 
29 
3O 
31 
32 
33 
34 

a X ~ a ~  (mo,d 2a5) 

8 
9 

10 
11 

12 
13 
14 
15 

000 16 
000 17 
000 18 
000 19 

000 20 
000 21 
000 22 
000 23 

000 24 
000 25 
000 26 
000 27 

000 28 
000 
000 
000 
000 
000 
000 

001 770}037 
011 740 137 
105 540 477 
222 102 176 

073 210 374 
202 440 770 
125 201 760 
153 003 740 

33O 0O7 700 
270 017 600 
220 037 400 
240 077 000 

100 176 000 
200 374 000 
000 770 000 
001 760 000 

003 740 000 
007 700 000 
017 600 000 
037 400 000 

077 000 000 
176 000 000 
374 000 000 
370 000 000 

360 000 000 
340 000 000 
3OO 000 000 
200 000 000 

000 000 000! 

601 
401 
001 
001 

001 
001 
001 
001 

001 
001 
001 
001 

001 
001 
001 
001 

001 
001 
001 
001 

001 
001 
001 
001 

001 
001 
001 
001 

001 
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