Calculations with Pseudo-Random Numbers*

Frank Stockmal
System Development Corporation, Santa Monica, California

Abstract. Two pseudo-random number generators are considered, the multiplicative songruential method and the mixed congruential method. Some properties of the generated sequences are derived, and several algorithms are developed for the evaluation of $x_{i}=$ (i) and $i=f^{-1}\left(x_{i}\right)$, where x_{i} is the i th element of a pseudo-random number sequence.

Introduction

Many methods for generating pseudo-random numbers on computers by arithnetic procedures have been proposed and investigated, and some of these are surrently in widespread use. All of the methods have in common the advantageous characteristic that the generatcd sequence of numbers can be exactly eproduced from the known initial value and generator parameters. Then with all ther factors remaining (hopefully) constant, a computer run can be duplicated. However, situations may occur when we wish to take advantage of this characterstic of determinability without being prodigal with computer time. Two particuar questions which can arise are: (1) what is the i th element of the generated sequence? (2) given a specific random number, where in the sequence did it occur? These problcms may come up during the checkout of a generator or a Monte Carlo program, in the calculation of key values to be used as internal program shecks, in reproducing a segment of a computer run, in examination of anomalous results, etc. Depending upon the particular generator and parameters involved, it may be possible to compute the desired function by shortcut methods, avoiding the brute-force reproduction of the sequence. This paper deals with such procedures for two types of generators, the multiplicative congruential and the mixed congruential methods.

The multiplicative congruential method is defined by the recurrence relationship

$$
\begin{equation*}
x_{i+1} \equiv \lambda x_{1} \quad(\bmod M) \tag{1.1}
\end{equation*}
$$

where x_{0}, λ and M are integers. The mixed method takes the form

$$
\begin{equation*}
r_{i+1} \equiv \lambda r_{i}+c \quad(\bmod M) \tag{1.2}
\end{equation*}
$$

where r_{0}, λ, c and M are integers. In usual practice, the choice of r_{0} is largely arbitrary while x_{0}, λ and c are chosen prime to M. Selection of any of the latter parameters not prime to M decreases the period of the sequence without apparent compensation. For a binary computer of word length n bits, a convenient choice for M is 2^{n}. With this modulus, λ for the multiplicative method has frequently been chosen $[1-4]$ as the largest odd power of 5 satisfying $\lambda<2^{n}$; common choices

[^0]$[5-8]$ for the mixed method are $\lambda=2^{a} \pm 1, a \geq 2$. In the literature, increasing attention is being given to imposing constraints upon the parameters in order that the generated sequence satisfy certain statistical criteria. This subject is of no concern here; hence the treatment will be somewhat general. For the remainder of this paper it will be assumed that:
\[

$$
\begin{align*}
M & =2^{n}, n \geqq 3 ; \tag{1.3}\\
3 & \leqq \lambda \leqq 2^{n}-3, \quad \text { and odd; } \tag{1.4}\\
1 & \leqq c \leqq 2^{n}-1, \quad \text { and odd; } \tag{1.5}\\
1 & \leqq x_{0} \leqq 2^{n}-1, \quad \text { and odd; } \tag{1.6}\\
0 & \leqq r_{\mathrm{n}} \leqq 2^{n}-1 . \tag{1.7}
\end{align*}
$$
\]

2. Periodicily

Notation. The sequences generated by (1.1) and (1.2) will be represented by $\{x\}$ and $\{r\}$, with elements x_{i} and r_{i}, respectively. The binary digits of a random number will be denoted by $d_{k}, \quad 0 \leqq k \leqq n-1$:

$$
x_{i}, r_{i}=\sum_{k=0}^{n-1} d_{k} 2^{k}, \quad d_{k}=0 \text { or } 1
$$

The index of the sequence elements will be i. For $i \geqq 1$, in the assumed range $2^{8} \leqq i<2^{8+1}, i$ will have the representations

$$
\begin{align*}
& i=\sum_{j=0}^{s} b_{j} 2^{j}, \quad b_{j}=0 \text { or } 1 ; \quad b_{s} \neq 0 \tag{2.1}\\
& i=\sum_{j=0}^{s} e_{j}, \quad e_{j}=b_{j} 2^{j} \tag{2.2}
\end{align*}
$$

The notation $x=y(\bmod M)$ will be used to indicate that x is taken as the least non-negative residue of y, modulo M.

It will be convenient to define a function α : for given integers $A \neq 0$ and p (prime) $\geqq 2$, the function $\alpha_{p}(A)$ is defined to be the greatest integer q such that p^{q} divides A; and $\alpha_{p}(0)=\infty$. The following rather obvious relationships are stated without proof. For all integers A, B :

$$
\begin{align*}
& \alpha_{p}(A \cdot B)=\alpha_{p}(A)+\alpha_{p}(B) \tag{2.3}\\
& \alpha_{p}(A / B)=\alpha_{p}(A)-\alpha_{p}(B), \text { for } A / B \text { an integer; } \tag{2.4}\\
& \alpha_{p}(A)<\alpha_{p}(B) \Rightarrow \alpha_{p}(A+B)=\alpha_{p}(A) \tag{2.5}\\
& \alpha_{p}(A)=\alpha_{p}(B) \Rightarrow \alpha_{p}(A+B) \geqq \alpha_{p}(A) ; \tag{2.6}\\
& \alpha_{2}(A)=\alpha_{2}(B) \Rightarrow \alpha_{2}(A+B) \geqq 1+\alpha_{2}(A) ; \tag{2.7}\\
& 0<|A|<p^{B} \Rightarrow \alpha_{p}(A)<B \tag{2.8}
\end{align*}
$$

Further mention of α will assume that $p=2$. Given the assumptions (1.3) through (1.7), it can be shown that the sequences $\{x\}$ and $\{r\}$ are periodic, periodicity beginning with the starting value x_{0} or r_{0}; and that the period P is a
function of n and λ only. The periods of the individual binary digits d_{k} can be determined, as well as the sequence period. First, some identities are stated and some lemmas proved. Subsequent sections refer repeatedly to identities (2.9)(2.11), which are derivable from (1.1) and (1.2).

$$
\begin{align*}
x_{i} & =x_{0} \lambda^{i} \quad\left(\bmod 2^{n}\right) \tag{2.9}\\
r_{i} & =r_{0} \lambda^{i}+c \frac{\lambda^{i}-1}{\lambda-1} \quad\left(\bmod 2^{n}\right) \tag{2.10}\\
r_{j+k} & =r_{k} \lambda^{j}+c \frac{\lambda^{j}-1}{\lambda-1} \quad\left(\bmod 2^{n}\right) \tag{2.11}
\end{align*}
$$

Lemma 1. For $\lambda \equiv h(\bmod 4), h= \pm 1$, let $\beta=\alpha(\lambda-h)$. Then $\alpha\left(\lambda^{2 z}-1\right)=1$ for $z=0, h=-1$; and $\alpha\left(\lambda^{2 z}-1\right)=z+\beta$ for $h=-1, \quad z \geqq 1$ and $h=1$, $z \geqq 0$.

Proof. The proof can be demonstrated by induction on z. $\mathrm{By}_{2 z}(2.5)$, $\alpha\left(\lambda^{2 z}-1\right)>1 \Rightarrow \alpha\left(\lambda^{z^{z}}+1\right)=\alpha(2)=1$, hence $\alpha\left(\lambda^{2^{2+1}}-1\right)=1+\alpha\left(\lambda^{2^{z}}-1\right)$. Details are left to the reader.
Lemma 2. For a given positive integer i, let $q=\alpha(i)$. Then $\alpha\left(\lambda^{i}-1\right)=$ $\alpha\left(\lambda^{2 q}-1\right)$ for all positive odd integers λ.

Proor. Let $i=K 2^{q}, K$ an odd integer. Then

$$
\begin{align*}
\lambda^{i}-1 & =\lambda^{K 2 q}-1=\left(\lambda^{2 q}-1\right) \sum_{j=0}^{K-1}\left(\lambda^{2 q}\right)^{j} ; \\
\alpha\left(\lambda^{i}-1\right) & =\alpha\left(\lambda^{2 q}-1\right)+\alpha\left(\sum_{j=0}^{K-1}\left(\lambda^{2 q}\right)^{j}\right) . \tag{2.12}
\end{align*}
$$

Since λ is odd, $\left(\lambda^{2 q}\right)^{j}$ is odd for $q \geqq 0$ and $j \geqq 0$. Since K is odd, the sum in (2.12) is the sum of an odd number of odd integers, which is an odd integer. Then $\alpha(\Sigma)=0$ and $\alpha\left(\lambda^{i}-1\right)=\alpha\left(\lambda^{2 n}-1\right)$. Q.E.D.

Theorem 1. Given λ and the integer $y, \quad 1 \leqq y \leqq n-\beta$, let $\epsilon=\alpha\left(\lambda^{2 y-1}-1\right)$. The binary digit d_{ϵ} in the sequence $\{x\}$ has a period of 2^{y}.
Proof. Given the integers n, λ and x_{0} satisfying (1.3), (1.4) and (1.6) respectively; let β be defined as in Lemma 1. For an integer m in the range $\beta+1 \leqq m \leqq n$, let $\{x\}_{m}$ be the sequence of elements $x_{i, m}$ generated by

$$
\begin{equation*}
x_{i+1, m}=\lambda_{m} x_{i, m} \quad\left(\bmod 2^{m}\right) \tag{2.13}
\end{equation*}
$$

where λ_{m} and $x_{0, m}$ are the least non-negative residues modulo 2^{m} of λ and x_{0} respectively. Assume the period of $\{x\}_{m}$ to be P_{m}; then P_{m} is the least positive integer such that $x_{i+P_{m}, m}=x_{i, m}$, or by (2.9)

$$
\begin{equation*}
\left(x_{0, m} \lambda_{m}^{i}\right)\left(\lambda_{m}^{P_{m}}-1\right) \equiv 0 \quad\left(\bmod 2^{m}\right) \tag{2.14}
\end{equation*}
$$

Since $x_{0, m}$ and λ_{m} are odd, (2.14) will be satisfied if and only if 2^{m} divides $\lambda_{m}^{P_{m}}-1$; that is, if and only if

$$
\begin{equation*}
\alpha\left(\lambda_{m}^{P_{m}}-1\right) \geqq m \tag{2.15}
\end{equation*}
$$

Let $\alpha\left(P_{m}\right)=q$ and $P_{m}=K \cdot 2^{q}, K$ an odd integer. By Lemma 2, $\alpha\left(\lambda_{m}^{K 2 q}-1\right)=$ $\alpha\left(\lambda_{m}^{2 q}-1\right)$ for all odd positive integers K; then $K=1$ for P_{m} to be a minimum. Also, for all integers m in the stated range, $\alpha\left(\lambda_{m}^{2 q}-1\right)=\alpha\left(\lambda^{2 q}-1\right)$. Then
$P_{m}=2^{q}$, where q is the least integer satisfying $\alpha\left(\lambda^{2 q}-1\right) \geqq m$. Now for a given integer $y, 1 \leqq y \leqq n-\beta$, let $\epsilon=\alpha\left(\lambda^{2 y-1}-1\right)$. Setting aside for the moment the case of $y=1$, the range of ϵ is given by Lemma $1: \beta+1 \leqq \epsilon \leqq n-1$. Then we can let $m=\epsilon$ to obtain

$$
\begin{equation*}
\alpha\left(\lambda^{2 \alpha}-1\right) \geqq \alpha\left(\lambda^{2 y-1}-1\right) \tag{2.16}
\end{equation*}
$$

Again by Lemma 1 , the function $\alpha\left(\lambda^{2 q}-1\right)$ is strictly increasing with q for fixed λ; then the least integer q satisfying (2.16) is $y-1$, and $P_{\epsilon}=2^{y-1}$. Using the same rationale, we can obtain $P_{\epsilon+1}=2^{y}$. (An incidental result can be obtained at this point by taking $y=n-\beta+1$. Then $\epsilon=n$ and P_{n}, the period of the sequence $\{x\}$, is $2^{n-\beta}$. This result appears in [1] and [9].)

An element generated by (1.1) or (2.13) is defined as the least non-negative residue with respect to the given modulus. It follows that $x_{i, 6}$ is the least nonnegative residue of $x_{i, \epsilon+1}\left(\bmod 2^{\epsilon}\right)$ and $x_{i, \epsilon+1}=x_{i, \epsilon}+d_{\epsilon} 2^{\epsilon}$. It also follows that all digits $d_{k}, \quad 0 \leqq k \leqq \epsilon$, have the same value in $x_{i, n}$ as in $x_{i, \epsilon+1}$, hence the same period in $\{x\}$ as in $\{x\}_{\epsilon+1}$. Letting S_{ϵ} be the period of d_{ϵ} (which is the same as the period of $d_{\varepsilon} 2^{\epsilon}$), then $P_{\epsilon+1}$ is the least common multiple of P_{ϵ} and S_{ϵ} :

$$
\begin{equation*}
2^{y}=\operatorname{lcm}\left(2^{y-1}, S_{t}\right) \tag{2.17}
\end{equation*}
$$

Equation (2.17) has the unique solution $S_{\epsilon}=2^{y}$, which proves the theorem for $y \neq 1$. For $y=1$, the solution to (2.15) can be obtained by inspection. For $\lambda \equiv 1$ and $-1(\bmod 4), \quad \epsilon=\beta, 1$ and $\lambda_{\epsilon+1}=2^{\beta}+1,2$ respectively $; P_{\epsilon+1}=2$, $\lambda_{\epsilon}=1, \quad P_{\epsilon}=1$ and $S_{\epsilon}=2$. Q.E.D.

Theorem 2. Given λ and the integer y, where $1 \leqq y \leqq n$ for $\lambda \equiv 1(\bmod 4)$ and $1 \leqq y \leqq n+1-\beta$ for $\lambda \equiv-1(\bmod 4) ;$ let $\epsilon=\alpha\left(\lambda^{2 y-1}-1\right)-\alpha(\lambda-1)$. Then the binary digit d_{e} in the sequence $\{r\}$ has a period of 2^{y}.

The proof for Theorem 2 is basically the same as for Theorem 1 ; details are omitted. The bit characteristics which can be inferred from these theorems are displayed in Table 1.

3. Determination of x_{i}

The two algorithms described in this section can be used to determine x_{i}, given index $i \geqq 1$. The first of these uses a precomputed table and is suitable for desk calculation. The second algorithm requires no table and is convenient for use as a computer subroutine.

Assume i in the range of $2^{x} \leqq i<2^{s+1}$; then equation (2.9) can be put into the form

$$
\begin{equation*}
x_{i}=x_{0} \prod_{j=0}^{s}(\lambda)^{e j} \quad\left(\bmod 2^{n}\right) \tag{3.1}
\end{equation*}
$$

Then x_{i} can be constructed using a table of $\lambda^{2^{z}}\left(\bmod 2^{n}\right), 0 \leqq z \leqq n-\beta-1$, such as Table 2 in the Appendix.

TABLD 1. Characteristics of the Binary Digits d_{k} in the Siquences $\{x\}$ and $\{r\}$

$(\beta \cong 2 ; K \text { odd })$	Period of Sequence	$n-1 \geqq \frac{d k}{k} \geqq \beta+1$	${ }^{d}{ }_{\beta}$	$\beta-1 \stackrel{d}{\gtrless} k k \geq 2$	d_{1}	d_{0}
Multiplicative method $\lambda=K \cdot 2^{\beta}+1$	$2^{n \cdot \beta}$	period $=2^{k+1-\beta}$		*		1
Multiplicative method $\lambda=\hat{K} \cdot 2^{\beta}-1$	$2^{n-\beta}$	period $=2^{k+1-\beta}$	*	\dagger	period $=2$	1
Mixed method $\lambda=K \cdot 2^{\beta}+1$	2^{n}	period $=2^{k+1}$				
Mixed method $\lambda=K \cdot 2^{\beta}-1$	$2^{n+1-\beta}$	period $=2^{k+2-8}$		\dagger		$\begin{aligned} & \text { period } \\ & =2 \end{aligned}$

* Digit has the same value as the corresponding digit of x_{0}.
\dagger Digit has a constant value or a period of 2 , function of the low order bits of x_{0}, or r_{0} and c.

Procedure A1.

(1) Partition i into parts e_{j}, defined by (2.1) and (2.2), ignoring parts equal to 0 and discarding parts greater than or equal to the period of the sequence;
(2) select corresponding values of $\lambda^{e_{j}}\left(\bmod 2^{n}\right)$ from table;
(3) form the product $x_{0} \Pi_{j} \lambda^{{ }^{\prime}}{ }_{j}=x_{i}$.

A similar procedure can be performed without the use of tables, requiring inputs of λ, x_{0} and $i($ and $n)$.

Procedure A2.

(1) Set $y^{\prime}=0, \quad \Pi=x_{0}, \quad i^{\prime}=i, \quad \gamma=\lambda$;
(2) if $i^{\prime}=0$: iteration is completed and $I I=x_{i}$; if $i^{\prime} \neq 0$: form $y=\alpha\left(i^{\prime}\right)$;
(3) if $y^{\prime}=y$: replace II by γ II ($\bmod 2^{n}$), i^{\prime} by $i^{\prime}-2^{y}$, and repeat from step (2); if $y^{\prime} \neq y$: replace γ by $\gamma^{2}\left(\bmod 2^{n}\right), y^{\prime}$ by $y^{\prime}+1$, and repeat step (3).
The latter algorithm is valid for $i \geqq 0$. For i in the range $2^{8} \leqq i<2^{8+1}$, the average number of multiplications required is $\approx(s / 2)+1$ for procedure A1, $(3 s / 2)+1$ for A2.

4. Determination of r_{i}

The particular method best suited to computation of r_{i} depends upon the parameters involved. No exhaustive treatment will be attempted here but a few possibilities will be mentioned. For desk calculation, it is usually advantageous to reduce i to the least non-negative residue, modulo the period of the sequence.

Greenberger [5] suggests that a choice of λ approximately equal to, but less than $2^{n / 2}$ is good in several respects. If we choose the common form $\lambda=2^{a}+1$
and restrict a to the range $n / 3 \leqq a<n / 2$, then r_{i} is expressible as

$$
r_{i}=\sum_{k=0}^{2} 2^{a k}\left[r_{0}\binom{i}{k}+c\binom{i}{k+1}\right] \quad\left(\bmod 2^{n}\right)
$$

which requires little computation. For $\lambda=2^{a}-1$ and $n / 3 \leqq a<n / 2$,

$$
r_{i}=\xi+(-1)^{i}\left(r_{0}-\frac{c}{2}\right) \sum_{k=0}^{2}\binom{i}{k}\left(-2^{a}\right)^{k} \quad\left(\bmod 2^{n}\right),
$$

where $\xi=(c / 4)\left(2^{2 a} i+1\right)$ for i even; $\xi=(c / 2)\left[2^{a}+1-2^{2 \omega-1}(i-1)\right]$ for i odd.
In seeking a gencral method applicable for any λ, c and r_{u}, analogous to algorithm A1, we encounter an obstacle not present in the multiplicative generator. The counterpart of equation (3.1) is the following, obtained from (2.10):

$$
\begin{equation*}
r_{i}=r_{0}+\left[r_{0}(\lambda-1)+c\right]\left\{\frac{-1+\prod_{j=0}^{s} \lambda^{e_{j}}}{\lambda-1}\right\} \quad\left(\bmod 2^{n}\right) \tag{4.1}
\end{equation*}
$$

As it stands, this formulation requires that most of the computation be carried out modulo $2^{n}(\lambda-1)$, which can be highly undesirable. However, the last equation can be modified to allow the computation to be performed modulo 2^{n}, at the expense of additional operations. The expression in braces of (4.1) can be expanded:

$$
\frac{-1+\prod_{j=0}^{s} \lambda^{e_{j}}}{\lambda-1}=\frac{\left(\lambda^{e_{0}}-1\right) \prod_{j=1}^{s} \lambda^{e_{j}}}{\lambda-1}+\frac{-1+\prod_{j=1}^{s} \lambda^{e_{j}}}{\lambda-1}
$$

Continuing the expansion in this manner, we can obtain

$$
r_{i}=r_{0}+\left[r_{0}(\lambda-1)+c\right] \sum_{k=0}^{s} \frac{\lambda^{e_{k}}-1}{\lambda-1} \prod_{j=k+1}^{s} \lambda^{\varepsilon_{j}} \quad\left(\bmod 2^{n}\right)
$$

where $\Pi_{j=s+1}^{s} \lambda^{e j}$ is defined equal to 1 . The factor $\left(\lambda^{e_{k}}-1\right) /(\lambda-1)$ can be generated modulo 2^{n} (see final section, Table Construction) and r_{i} can be calculated by means of tables of $\lambda^{2^{z}}\left(\bmod 2^{n}\right)$ and $\left(\lambda^{2^{z}}-1\right) /(\lambda-1)\left(\bmod 2^{n}\right)$, $0 \leqq z \leqq n-1$, such as Tables 2 and 3 .

Procedure A3.
(1) Partition i into parts e_{j}, defined by (2.1) and (2.2), ignoring parts equal to 0 and discarding parts greater than or equal to the period of the sequence; select any $e_{j} ; \operatorname{set} i^{\prime}=i-e_{j} ; \operatorname{set} \Sigma=\left(\lambda_{j}-1\right) /(\lambda-1)\left(\bmod 2^{n}\right)($ from table $) ;$
(2) if $i^{\prime}=0$, proceed to step (4); if $i^{\prime} \neq 0$, proceed to step (3);
(3) select any remaining e_{j} and obtain $\lambda_{j}\left(\bmod 2^{n}\right)$ and $\left(\lambda_{i}-1\right) /(\lambda-1)\left(\bmod 2^{n}\right)$ from tables; replace Σ by $\left(\lambda^{e_{j}}-1\right) /(\lambda-1)+\lambda_{j} \Sigma\left(\bmod 2^{n}\right)$, replace i^{\prime} by $i^{\prime}-e_{j}$, and repeat from step (2);
(4) form $r_{0}+\left[r_{0}(\lambda-1)+c\right] \Sigma\left(\bmod 2^{n}\right)=r_{i}$.

At the expense of additional multiplications, the procedure can be performed without tables.

Procedure 14.

Explanatory Note. A4 operates upon an argument, i, using parameters λ, c and r_{0} (and n). The algorithm variables have the following meaning: at the point of re-entry of step (2) from step (3), e_{y} is the most recently determined $e_{j}, \delta \equiv \lambda^{2 \mu}\left(\bmod 2^{n}\right), \gamma=$ $\left(\lambda^{2 y}-1\right) /(\lambda-1)\left(\bmod 2^{n}\right), \quad \Sigma=[1 /(\lambda-1)]\left[-1+\Pi_{i=1}^{y} \lambda^{e_{i}}\right]\left(\bmod 2^{n}\right)$, and $i^{\prime}=i-\Sigma_{i \rightarrow 0}^{y} e_{j}$.
(1) Set $\sum=0, \delta=\lambda, \quad \gamma=1, \quad i^{\prime}=i, \quad y^{\prime}=0$;
(2) if $i^{\prime}=0$, proceed to step (4); if $i^{\prime} \neq 0$, form $y=\alpha\left(i^{\prime}\right)$;
(3) if $y^{\prime}=y$, replace Σ by $\gamma+\delta \Sigma\left(\bmod 2^{n}\right), i^{\prime}$ by $i^{\prime}-2^{v}$, and repeat from stcp (2); if $y^{\prime} \neq y$, replace γ by $\gamma(\delta+1)\left(\bmod 2^{n}\right), \quad \delta$ by $\delta^{2}\left(\bmod 2^{n}\right), \quad y^{\prime}$ by $y^{\prime}+1$, and repeat step (3);
(4) form $r_{0}+\left[r_{0}(\lambda-1)+c\right] \Sigma\left(\bmod 2^{n}\right)=r_{i}$.

This algorithm is valid for $i \geqq 0$. For i in the range $2^{s} \leqq i<2^{s+1}$, A3 requires an average of approximately $s+1$ table references and $s / 2+2$ multiplications; A4, an average of approximately $5 s / 2+3$ multiplications.

5. Determination of Index, Multiplicative Generator

The algorithm for determination of i, given x_{i}, is based upon the recognizability of $\alpha(i)$ through inspection of the bits of $x_{i}-x_{0}$. The least nonzero e_{j} component of i can be determined by application of Theorem 3.
Theorem 3. If $x_{i}=x_{0}$, then $i \equiv 0(\bmod P)$, where P is the period of the sequence $\{x\}$; if $x_{i} \neq x_{0}$, and $\alpha\left(x_{i}-x_{0}\right)=w$, then $\alpha(i)=y$, where y is the solution of $\alpha\left(\lambda^{23}-1\right)=w$.
Proof. The sequence $\{x\}$ has beon shown to be periodic, periodicity beginning with the initial element x_{0}. The period P is the least positive integer such that

$$
\begin{equation*}
x_{j+p}=x_{j}, \quad \text { for all } j \geqq 0 \tag{5.1}
\end{equation*}
$$

which implies that $x_{j+k} \neq x_{j}$ for $1 \leqq k \leqq P-1$. Repeated application of (5.1) yields $x_{j+K P}=x_{j}$, for $K, j \geqq 0$. Given the integer $i \not \equiv 0(\bmod P)$, let k be the least non-negative residue of $i(\bmod P)$. Then $1 \leqq k \leqq P-1$ and $x_{i}=x_{k} \neq x_{0}$; or $i \not \equiv 0(\bmod P) \Rightarrow x_{i} \neq x_{0}$, which proves the first part of the theorem.
Now assume that $x_{i} \neq x_{0}$, and $\alpha\left(x_{i}-x_{0}\right)=w$. From (2.9),

$$
\begin{align*}
x_{i}-x_{0} & \equiv x_{\mathrm{c}}\left(\lambda^{i}-1\right) \quad\left(\bmod 2^{n}\right), \\
\kappa\left[x_{i}-x_{0}+2^{n} K\right] & =\alpha\left[x_{0}\left(\lambda^{i}-1\right)\right], \tag{5.2}
\end{align*}
$$

where K is an integer. Since $0<x_{i}, \quad x_{0}<2^{n}$, then $0<\left|x_{i}-x_{0}\right|<2^{n}$ and $\alpha\left(x_{i}-x_{0}\right)<n$, by (2.8). Also $\alpha\left(2^{n} K\right) \geqq n$; then by (2.5) the left-hand member of (5.2) is $\alpha\left(x_{i}-x_{0}\right)=w$. Let $\alpha(i)=y$. By Lemma 2, the right-hand member of (5.2) is $\alpha\left(\lambda^{2 y}-1\right), \quad x_{0}$ being odd; or $\alpha\left(\lambda^{2 y}-1\right)=w$. Q.E.D.

For a given λ and w, the solution of $\alpha\left(\lambda^{2 y}-1\right)=w$ in y is given by Lemma 1:

$$
\begin{align*}
& y=w-\beta \quad \text { for } \lambda \equiv 1(\bmod 4) \tag{5.3}\\
& y=0 \quad \text { if } w=1 \tag{5.4}\\
& y=w-\beta \text { if } w \neq 1 \quad \text { for } \lambda \equiv-1(\bmod 4) . \tag{5.5}
\end{align*}
$$

Having determined the least nonzero e_{j} to be e_{y}, the next larger e_{j} is deter-
minable by removing the factor of $\lambda^{2 y}$ from the product $x_{i}=x_{0} \Pi_{j=y}^{\delta} \lambda^{e j}\left(\bmod 2^{n}\right)$. This can be effected by multiplying x_{i} by the appropriate integer Q_{y}, defined by $Q_{y^{\prime}} \lambda^{2 n} \equiv 1\left(\bmod 2^{n}\right)$. For $\beta<n$, which is satisfied by (1.4), Lemma 1 implies that $\alpha\left(\lambda^{2^{n-\beta}}-1\right)=n$, and $\lambda^{2^{n-\beta}} \equiv 1\left(\bmod 2^{n}\right)$. Then $Q_{y} \equiv \lambda^{K-2^{y}}\left(\bmod 2^{n}\right)$, where K is any integral multiple of $2^{n-\beta}$, $\geqq 2^{y}$. For convenience, Q_{y} will be expressed as

$$
\begin{equation*}
Q_{y}=\lambda^{2^{n-2}} \quad\left(\bmod 2^{n}\right) \tag{5.6}
\end{equation*}
$$

After multiplication by Q_{y}, the process can be repeated to determine the next larger e_{j}; the iteration continues until the entire composition of i is known. The algorithm can take the form of A5, utilizing a table of $\lambda^{2^{n-2^{z}}}\left(\bmod 2^{n}\right)$, $0 \leqq z \leqq n-\beta-1$ (such as Table 4); or A6, with no table required.

Procedtre A5.
(1) Set $\Sigma=0, \gamma=x_{i}$;
(2) if $\gamma=x_{0}$, iteration is completed and $\Sigma=i$; if $\gamma \neq x_{0}$, determine $w=\alpha\left(\gamma-x_{0}\right)$, determine y by means of one of the relationships (5.3)-(5.5);
(3) obtain Q_{y} from table; replace γ by $\gamma Q_{\nu}\left(\bmod 2^{n}\right), \Sigma$ by $2^{y}+\Sigma$; repeat from step (2).

Procedure A6.

Explanatory Note. A6 operates upon any argument x_{i} generated by (1.1) with $M=2^{n}$, employing parameters λ and x_{0} (and n). Step (1) is a subalgorithm which solves the congruence $\lambda Q_{0} \equiv 1\left(\bmod 2^{n}\right)$ for Q_{0}. The algorithm variables denote the following: at the point of re-entry of step (5) from step (6), e_{y} is the most recently determined nonzero e_{j}, $Q=\lambda^{2 n-2 j}\left(\bmod 2^{n}\right), \quad \Sigma=\Sigma_{j=0}^{y} e_{j}$, and $\gamma=x_{0} \Pi_{j=y+1}^{3} \lambda^{n}\left(\bmod 2^{n}\right)$.
(1) Compute Q_{0} as follows:
(1.1) $\operatorname{set} A=1, B=\lambda-1$;
(1.2) form $u=\alpha(B)$; replace A by $A+2^{4}, \quad B$ by $B+\lambda \cdot 2^{u}\left(\bmod 2^{n}\right)$;
(1.3) if $B \equiv 0\left(\bmod 2^{n}\right)$, proceed to step (2); if $B \not \equiv 0$, repeat from step (1.2);
(2) set $Q=A, y^{\prime}=0$; if $\lambda=3(\bmod 4)$, compute $\beta=\alpha(\lambda+1)$ and proceed to step (3); if $\lambda \equiv 1(\bmod 4)$, compute $\beta=\alpha(\lambda-1)$, proceed to step (4);
(3) if $x_{i}-x_{0} \equiv 2(\bmod 4)$, set $\Sigma=1, \quad \gamma \equiv Q x_{i}\left(\bmod 2^{n}\right)$, go to step (5); if $x_{i}-x_{0} \neq 2$ $(\bmod 4)$, go to step (4);
(4) $\operatorname{set} \Sigma=0, \gamma=x_{i}$;
(5) if $\gamma=x_{0}$, iteration is completed and $\Sigma=i$; if $\gamma \neq x_{0}$, form $y=\alpha\left(\gamma-x_{0}\right)-\beta$, replace Σ by $2^{y}+\Sigma$;
(6) if $y^{\prime}=y$, replace γ by $\gamma Q\left(\bmod 2^{n}\right)$ and repeat from step (5); if $y^{\prime} \neq y$, replace Q by $Q^{2}\left(\bmod 2^{n}\right), \quad y^{\prime}$ by $y^{\prime}+1$, and repeat step (6).
For i in the range $2^{s} \leqq i<2^{s+1}$, A5 requires an average $\approx(s / 2)+1$ mulliplications, a maximum of $s+1$, and a like number of table references. Exclusive of the computation of Q_{0}, A 6 requires an average $\approx(3 s / 2)+1$ multiplications, a maximum of $2 s+1$.

6. Determination of Index, Mixed Generator

As in the multiplicative method, the procedure for determination of the index i for the mixed method is based upon the relationship of $\alpha(i)$ and $\alpha\left(r_{i}-r_{0}\right)$.

Theorem 4. If $r_{i}=r_{0}$, then $i \equiv 0(\bmod P)$, where P is the period of the sequence $\{r\}$. If $r_{i} \neq r_{0}$ and $\alpha\left(r_{i}-r_{0}\right)=w$, then $\alpha(i)=y$, where y is the solution of $\alpha\left(\lambda^{24}-1\right)=w+\alpha(\lambda-1)$.

Proof. The proof of the first part of Theorem 4 is identical to the proof for the first part of Theorem 3. Now take $r_{i} \neq r_{0}$, and let $\alpha\left(r_{i}-r_{0}\right)=w$. From (2.10),

$$
\begin{gather*}
r_{i}-r_{0} \equiv r_{0}\left(\lambda^{i}-1\right)+\frac{c\left(\lambda^{i}-1\right)}{\lambda-1}\left(\bmod 2^{n}\right) \\
\alpha\left[r_{i}-r_{0}+K 2^{n}\right]=\alpha\left[r_{0}\left(\lambda^{i}-1\right)+\frac{c\left(\lambda^{i}-1\right)}{\lambda-1}\right] \tag{6.1}
\end{gather*}
$$

where K is an integer. Since $0 \leqq r_{i}, r_{0}<2^{n}$ and $r_{i} \neq r_{0}$, then $0<\left|r_{i}-r_{0}\right|<2^{n}$ and $\alpha\left(r_{i}-r_{0}\right)<n$, by (2.8). Also, $\alpha\left(K \cdot 2^{n}\right) \geqq n$; then by (2.5), $\alpha\left(r_{i}-r_{0}+K \cdot 2^{n}\right)=\alpha\left(r_{i}-r_{0}\right)=w$. With λ and c odd, $\alpha(c)=0$, $\alpha(\lambda-1) \geqq 1$, and

$$
\alpha\left\{\frac{c\left(\lambda^{i}-1\right)}{\lambda-1}\right\}=\alpha(c)+\alpha\left(\lambda^{i}-1\right)-\alpha(\lambda-1)<\alpha\left(\lambda^{i}-1\right) ;
$$

whereas $\alpha\left[r_{0}\left(\lambda^{i}-1\right)\right] \geqq \alpha\left(\lambda^{i}-1\right)$. By (2.5), equation (6.1) becomes $w^{w}=\alpha\left(\lambda^{i}-1\right)-\alpha(\lambda-1)$. Let $\alpha(i)=y$. By Lemma 2, $\alpha\left(\lambda^{i}-1\right)=\alpha\left(\lambda^{2 y}-1\right)$ and

$$
\begin{equation*}
\alpha\left(\lambda^{2 y}-1\right)=w+\alpha(\lambda-1) . \quad \text { Q.E.D. } \tag{6.2}
\end{equation*}
$$

The solution in y to (6.2) is given by Lemma 1 as:

$$
\begin{align*}
& y=w \quad \text { for } \lambda \equiv 1(\bmod 4) ; \tag{6.3}\\
& y=0 \quad \text { if } w=0 \tag{6.4}\\
& y=w-\beta+1 \text { if } w \geqq 1 \text { for } \lambda \equiv-1(\bmod 4) . \tag{6.5}
\end{align*}
$$

Having determined the least nonzero $e_{j}=2^{y}$, the next larger e_{j} is determinable in the same fashion after i is depressed by 2^{y}, as follows. Let $i^{\prime}=i-2^{y}$, and apply identity (2.11):

$$
\begin{aligned}
& r_{i}=r_{\left(i^{\prime}+2^{y}\right)}=\lambda^{2 y} r_{i^{\prime}}+\frac{c\left(\lambda^{2 y}-1\right)}{\lambda-1}\left(\bmod 2^{n}\right) \\
& r_{i^{\prime}}=Q_{y}\left\{r_{i}-\frac{c\left(\lambda^{2 y}-1\right)}{\lambda-1}\right\} \quad\left(\bmod 2^{n}\right),
\end{aligned}
$$

where Q_{y} is defined by (5.6). Using preconstructed tables of $\left(\lambda^{2^{z}}-1\right) /(\lambda-1)$ $\left(\bmod 2^{n}\right)$ and $\lambda^{2^{n-2^{z}}}\left(\bmod 2^{n}\right), \quad 0 \leqq z \leqq n-1($ such as Tables 3 and 4$), r_{i}^{\prime}$ can be calculated and the next larger e_{j} determined, the process being repeated until the entire composition of i is revealed. The procedure can be stated as A 7 or A 8 , the latter generating the required table values.

Procedure A7.

(1) Set $\Sigma=0, \gamma=r_{i}$;
(2) if $\gamma=r_{0}$, iteration is completed and $\Sigma=i$; if $\gamma \neq r_{0}$, determine $w=\alpha\left(\gamma-r_{0}\right)$; determine y by one of the relationships (6.3)-(6.5); replace Σ by $2^{y}+\Sigma$;
(3) obtain values of $\lambda^{2 n-2 y}\left(\bmod 2^{n}\right)$ and $\left(\lambda^{2 y}-1\right) /(\lambda-1)$ (mod 2^{n}) from tables; replace γ by $\left(\lambda^{2 n-2 y}\right)\left[\gamma-c\left(\lambda^{2 y}-1\right) /(\lambda-1)\right]\left(\bmod 2^{n}\right)$; repeat from step (2).

Procedure A8.
Explanatory Note. A8 operates upon any argument r_{i} generated by (1.2) with $M=2^{n}$, using parameters λ, c and $r_{0}($ and $n)$. Step (1) solves the congruence $\lambda Q_{0} \equiv 1\left(\bmod 2^{n}\right)$ for Q_{0}. The internal variables denote the following: at the point of re-entry of step (5) from step (6), e_{y} is the most recently determined nonzero $e_{j}, Q=\lambda^{\lambda^{n}-2^{y}}\left(\bmod 2^{n}\right), \quad \Sigma=\Sigma_{j=0}^{y} e_{j}$, $T=\left(\lambda^{2^{2}}-1\right)(\lambda-1)\left(\bmod 2^{n}\right)$, and $\gamma=r_{i}$, where $i^{\prime}=i-\Sigma_{y m 0} e_{j}$. The difference between (6.3) and (6.5) is compensated for by Δ.
(1) Compute Q_{0} as follows:
(1.1) $\operatorname{set} A=1, \quad B=\lambda-1$;
(1.2) form $u=\alpha(B)$; replace A by $A+2^{u}, \quad B$ by $B+\lambda \cdot 2^{u}\left(\bmod 2^{n}\right)$;
(1.3) if $B=0\left(\bmod 2^{n}\right)$, go to step (2); if $B \neq 0\left(\bmod 2^{n}\right)$, repeat from step (1.2);
(2) $\operatorname{set} Q=A, T=1, y^{\prime}=0$; if $\lambda \equiv 3(\bmod 4)$, compute $\Delta=\alpha(\lambda+1)-1$, go to step (3); if $\lambda \equiv 1(\bmod 4)$, set $\Delta=0$, to to step (4);
(3) if $r_{i}-r_{0} \equiv 0(\bmod 2)$, go to step (4); if $r_{i}-r_{0} \equiv 1(\bmod 2)$, set $\Sigma=1, \gamma \equiv$ $Q\left(r_{i}-c\right)\left(\bmod 2^{n}\right)$, go to step (5);
(4) set $\Sigma=0, \gamma=r_{i}$;
(5) if $\gamma=r_{0}$, iteration is completed and $\Sigma=i$; if $\gamma \neq r_{0}$, compute $y=\alpha\left(\gamma-r_{0}\right)-\Delta$, replace Σ by $2^{y}+\Sigma$;
(6) if $y^{\prime}=y$, replace γ by $Q(\gamma-c T)\left(\bmod 2^{n}\right)$ and repeat from step (5); if $y^{\prime} \neq y$, replace Q by $Q^{2}\left(\bmod 2^{n}\right), T$ by $T[T(\lambda-1)+2]\left(\bmod 2^{n}\right), y^{\prime}$ by $y^{\prime}+1$, and repeat step (6).
For i in the range $2^{s} \leqq i<2^{s+1}$, A7 involves a maximum of $2 s+2$ table references and $2 s+2$ multiplications; the average for each being $\approx s+2$. Exclusive of the computation of Q_{0}, the average number of multiplications required by A8 is $\approx 4 s+2$; the maximum, $5 s+2$. Of course, procedures A5 through A8 can only produce a number which is representative of a residue class modulo P, the period of the sequence; the number being the least non-negative residue of i $(\bmod P)$.

7. Table Construction

The required tables can be generated recursively as follows. Let z be the argument and f_{2}, f_{3} and f_{4} the functions of Tables 2,3 and 4 respectively. For Table 2, $f_{2}(z)=\lambda^{2^{2}}\left(\bmod 2^{n}\right), \quad 0 \leqq z \leqq n-1$; then $f_{2}(0)=\lambda$ and $f_{2}(z+1)=$ $\left[f_{2}(z)\right]^{2}\left(\bmod 2^{n}\right)$.

For Table $3, f_{3}(z)=\left(\lambda^{2^{z}}-1\right) /(\lambda-1)\left(\bmod 2^{n}\right), \quad 0 \leqq z \leqq n-1$. $f_{3}(0)=1$ and $f_{3}(z+1)=\left[f_{3}(z)\right]\left[2+(\lambda-1) f_{3}(z)\right]\left(\bmod 2^{n}\right)$. An alternative is to use Table 2 to reduce the amount of computation: $f_{3}(z+1)=$ $\left[1+f_{2}(z)\right]\left[j_{3}(z)\right]\left(\bmod 2^{n}\right)$.

For Table 1, $f_{4}(z)=\lambda^{2^{n-1 z}}\left(\bmod 2^{n}\right), 0 \leqq z \leqq n-1$. Generation can be performed with decreasing z, using Table 2: $f_{4}(z)=1$ for $n-\beta \leqq z \leqq n-1$ and $f_{4}(z)=\left[f_{4}(z+1)\right]\left[f_{2}(z)\right]\left(\bmod 2^{n}\right)$ for $0 \leqq z \leqq n-\beta-1$. Generating with increasing $z, \quad f_{4}(z+1)=\left[f_{4}(z)\right]^{2}\left(\bmod 2^{n}\right)$, and $f_{4}(0)$ is the solution of $\lambda f_{4}(0) \equiv 1$ $\left(\bmod 2^{n}\right) . \quad f_{4}(0)$ can be computed from $f_{4}(0)=\Pi_{z=0}^{n-\beta-1} f_{2}(z)\left(\bmod 2^{n}\right)$, or by the algorithm which comprises step (1) of procedures A6 and A8.

APPENDIX

Tables are based on $\lambda=27+1, n=35$. Argument is given in decimal form, function in octal form.

TABLE 2

:	$\lambda^{2 z}\left(\bmod 2^{35}\right)$			
0	000	000	000	201
1	000	000	040	401
2	002	040	301	001
3	214	701	602	001
4	100	607	404	001
5	075	437	010	001
6	153	176	020	001
7	226	774	040	001
8	057	770	100	001
9	147	760	200	001
10	357	740	400	001
11	137	701	000	001
12	277	602	000	001
13	177	404	000	001
14	377	010	000	001
15	376	020	000	001
16	374	040	000	001
17	370	100	000	001
18	360	200	000	001
19	340	400	000	001
20	301	000	000	001
21	202	000	000	001
22	004	000	000	001
23	010	000	000	001
24	020	000	000	001
25	040	000	000	001
26	100	000	000	001
27	200	000	000	001
28	000	000	000	001

TABLE 3

z	$\frac{\lambda^{2}-1}{\lambda-1}\left(\bmod 22^{35}\right)$			
0	000	000	000	001
1	000	000	000	202
2	000	010	201	404
3	161	063	407	010
4	074	403	036	020
5	162	366	174	040
6	114	654	770	100
7	111	133	760	200
8	320	277	740	400
9	230	637	701	000
10	021	677	602	000
11	244	577	404	000
12	115	377	010	000
13	252	776	020	000
14	225	774	040	000
15	053	770	100	000
16	127	760	200	000
17	257	740	400	000
18	137	701	000	000
19	277	602	000	000
20	177	404	000	000
21	377	010	000	000
22	376	010	000	000
23	374	040	000	000
24	370	100	000	000
25	360	200	000	000
26	340	400	000	000
27	301	000	000	000
28	202	000	000	000
29	004	000	000	000
30	010	000	000	000
31	020	000	000	000
32	040	000	000	000
33	100	000	000	000
34	200	000	000	000

TABLE 4

\%	$\lambda^{335-22}\left(\bmod 2^{355}\right)$			
0	001	770	037	601
1	011	740	137	401
2	105	540	477	001
3	222	102	176	001
4	073	210	374	001
5	262	440	770	001
6	125	201	760	001
7	153	003	740	001
8	330	007	700	001
9	270	017	600	001
10	220	037	400	001
11	240	077	000	001
12	100	176	000	001
13	200	374	000	001
14	000	770	000	001
15	001	760	000	001
16	003	740	000	001
17	007	700	000	001
18	017	600	000	001
19	037	400	000	001
20	077	000	000	001
21	176	000	000	001
22	374	000	000	001
23	370	000	000	001
24	360	000	000	001
25	340	000	000	001
26	300	000	000	001
27	200	000	000	001
28	000	000	000	001

REFERENCES

1. Barnemt, V. Behavior of pseudo-random sequences generated on computers by the multiplicative congruential method. Math. Comput, 16 (1962), 63-69.
2. Hicobbrandt, P. Notes on the generation and testing of random numbers on the AN/FSQ-7. Document SP-35, System Develop. Corp., Santa Monica, Calif., Sept. 1958.
3. Juycoss, M. Random number generation on the BRL high-speed computing machines. Report, No. 855, Ballisties Res. Lab., Aberdeen Proving Ground, Md., 1953.
4. Taussey, O. and Todd, J. Generation and testing of pseudo-random numbers. In Symposizom on Monte Carlo Methods, H. A. Meyer (Ed.), Wiley, New York, 1956, 15-28.
5. Greenbergma, M. Nates on a new pscudo-random number generator. J. ACM 8 (1901), 163-167.
6. Kuehn, H. A 48-bit pseudo-random number generator. Comm. ACM \& (1961), 350352.
7. Peace, P. Bias in pseudo-random numbers. J. Amer. Stat. Assoc. 56 (1961), 610-618.
8. Rotenberg, A. A new pseudo-random number generator. J. ACM 7 (1960), 75-77.
9. Bofinger, E., and Bofinger, V. J. On a periodic property of pseudo-random sequences. J. $A C M 5$ (1958), 261-265.

[^0]: * Received January, 1963.

