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Abstract. Two pseudo-random number generators are considered, the multiplicative
songruential method and the mixed congruential method. Some properties of the generated
sequences are derived, and several algorithms are developed for the evaluation of x; =
(4) and ¢ = J7* (z;), where z; is the ¢th element of & pseudo-random number sequence.

.. Introduction

Many methods for generating pseudo-random numbers on computers by arith-
netic procedures have been proposed and investigated, and some of these are
wrrently in widespread use. All of the mecthods have in common the ad-
vantageous characteristic that the generated sequence of numbers can be exactly
-eproduced from the known initial value and generator parameters. Then with all
sther factors remaining (hopefully) constant, a computer run can be duplicated.
However, situations may oceur when we wigh to take advantage of this character-
stie of determinability without being prodigal with computer time. Two particu-
ar questions which can arise are: (1) what is the 7th element of the generated
sequence? (2) given a specific random number, where in the sequence did it oceur?
These problems may come up during the checkout of a generator or a Monte
Carlo program, in the ealeulation of key values to be used as internal program
shecks, in reproducing a segment of a eomputer run, in examination of anomalous
results, ete, Depending upon the particular generator and parameters involved, it
may be possible to compute the desired function by shorteut methods, avoiding
the brute-force reproduction of the sequence. This paper deals with such pro-
cecdures for two types of generators, the multiplicative congruential and ihe
mixed congruential methods.

The multiplicative congruential method is defined by the recurrence relation-

ship
Ty = Az (mod M), (1.1)
where 2z, , A and M are integers. The mixed method takes the form
rop = W+ ¢ (mod M), (1.2)

where 7o, M, ¢ and M are integers. In usual practice, the choice of ry is largely
arbitrary while zo , » and ¢ are chosen prime to M. Selection of any of the latter
parameters not prime to M decreases the period of the sequence without apparent
compensation. Ior a binary computer of word length » bits, a convenient choice
for M is 2". With this modulus, A for the multiplicative method has frequently
been chosen [1-4] as the largest odd power of 3 satisfying A < 2°; common choices
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[5-8] for the mixed method are N = 2" = 1, ¢ Z 2. lu the literature, increasing
attention is being given to imposing constraints upon the parameters in order
that the generated sequence satisfy certain statistical ertteria. This subject is of
no concern here; hence the treatment will be somewhat geperal. For the remainder
of this paper it will be assumed that:

M=2" nxsd {(1.3)
3ENZE2" -3, andodd; (1.4)
1£e¢cs2"—1, andodd; (1.5)
1 €222 — 1, andodd; {(1.6)
0 rms2t— 1 (L7

2. Periodicily

Notation. The sequences generated by (1.1) and (1.2) will be represenied by
Y} and {7}, with elements x; and r;, respectively. The binary digits of & random
number will be denoted by dr., 0 =2 5 £ n-—-1:

i, Ty = Zdﬁ", d; = Qor 1.
k=0

The index of the sequence elements will be ¢. For ¢ 2 1, in the assumed range
2 < ¢ < 277, i will have the representations

i= 202, by=00r1; b, == 0. (2.1)
=0

1= Z €i, ¢ = b;'zj- (2.2)
J=0

The notation x = 7 {(mod M) will be used to indicate that x i3 taken as the
least non-negative residue of y, modulo M.

It will be eonvenient to define a function «: for given integers 4 = 0 and p
{prime) z 2, the function a,(A) is defined to be the greatest integer ¢ such
that p? divides 4; and «,(0) = =. The following rather obvious relationships
are stated without proof. For all integers A, B:

el A-B) = ap(d) + ay(B); (23)
a(A/BY = a,(A) — e,(B), for A/B an integer; (2.4)
ap(Ad) < op(B) = ay(A + B) = a,(4); (2.5)
ap(A) = a,(B) = ap(d + B) 2 a,(4); {2.6)
ax{A) = w(B) = a:(4 + BY 2 1 4 m(A); (2.7)
0 <|A] < p?P=a,(d) <B. (2.8)

Further mention of o will assume that p = 2. Given the assumptions {(1.3)
through (1.73, it can be shown that the sequences {z} and {r} are periodic, peri-
odicity beginning with the starting value wg or 7 ; and that the period P iz a
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fanction of # and X only. The periods of the individual binary digits d. can be
determined, as well as the sequence period. Iirst, some identities are stated and
some lemmas proved. Subsequent sections refer repeatedly to identities (2.9)-
(2.11), which are derivable from (1.1) and (1.2).

# = zoA (mod 2") (2.9)
i, X =1
i = ToA ¢ T {mod 2") (2.10)

A

ria =1 N+ e B {mod 2") (2.11)

Lesval, Forh =h(mod4),h = £1,1et = o(h —h). Thena(N" — 1) = 1
jorz=0h=—Landa(A" — 1) =z+Bforh=~1, zz landh =1,
z =z 0 ‘

Proor. The proof can be demonstrated by induction on z By (2.5),
dN = 1) > 1=a(M +1) = «(2) = 1, henceaZF " — 1) = 1 4+ a3 — 1).
Details are left to the reader. _

LevMa 2. For o given positive integer ¢, lef g = a(i). Then aA' — 1) =
oA\ — 1) for all positive odd iniegers X.

Proor. Let i = K29 K an odd integer. Then

g1

}\-i -1 = 7\K24 —1= ()\'2.11 _ 1) Zo (?\M)j;
-

- k-1
ad — 1) =a3 - 1) + « (Z% ()ﬁ“)"). {2.12)

Sinee X is odd, (A7 is odd for ¢ = Oandj Z 0. Since K is odd, the sum in
(2.12) is the sum of an odd number of odd integers, which is an odd integer.
Then a(2) = 0 and a(r* — 1) = «(3” — 1). QED.

Tuporem 1. Given \ andthe integery, 1 <y Sn — B lete= oa()\zrl - 1).
The binary digit d. in the sequence {z} has a period of 2v

Proor. Civen the integers n, A and x satisfying (1.3), (1.4) and (1.6)
respectively; let 8 be defined as in Lemma 1. For an integer m in the range
B+1 < m = 0, let {x} - be the sequence of elements i generated by

Tigl,m = ?\mﬂfvz,m (mod 2m), (213)

where A, and 2o, are the least non-negative residues modulo 2™ of A and =z
respectively. Assume the period of §} m to be P, ; then P is the least positive
integer such that irr,.m = %im, or by (2.9)

(Zo,mhan Y (Mo = 1) = 0 (mod 27). {2.14)

Sinee 2, ,, and A, are odd, (2.14) will be satisfied if and only if 2™ divides A — 1

that is, if and only if
a(?\,l;”‘ —1) =z m (2.15)

Let a(P,) = gand P, = K-2% K an odd integer. By Lemma 2, a(AEF 1) =
a(AZ — 1) for all odd positive integers K; then K =1 for P,, to be a minimum.
Also, for all integers m in the stated range, a(Al — 1} = a(ZM' — 1). Then
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P, = 2% where g is the least integer satisfying (A" — 1) = m. Now for a given
integer 4, 1 < y < n — B, leb e = (0¥ ' — 1), Seiting aside for the moment
the case of ¥ = 1, the range of ¢ is given by Lemma 1: 34+1 £ ¢ £ n—1. Then
we can et m = ¢ to obtain

aA® — 1) = a0\ = 1) (2.18)

Again by Lemma 1, the function a(\* — 1) is strictly increasing with ¢ for
fixed A; then the least integer ¢ satisfying (2.16) is y—1, and P, = 2", Using
the same rationale, we ean obtain Py = 2°. (An inecidental result can be ab-
tained at this point by taking ¥y = n—p8-+1. Then ¢ = # and P, , the period of
the sequence {a}, is 2", This result appears in [1} and [9].)

An element generated by (1.1) or (2.13) is defined as the least non-negative
residue with respect to the given modulus. Tt follows that ;. is the least non-
negative residue of 2: 1 (mod 2°) and @iy = 3:c + d2° Tt also follows that
all digits dz, 0 £ k = ¢ have the same valuein z:., a8 In %: .3 , hence the same
period in {z} us in {x}.4 . Letting S, be the period of d, {which is the same as
the period of d.2°), then P, is the least common multiple of PP, and 8. :

2¥ = lem (2'7, 8.). (2.17)

Equation (2.17) has the unique solution S, = 2*, which proves the theorem for
y # 1. For ¥ = 1, the solution to (2.15) can be obtained by inspection. For
A= land —1 {mod 4), e =8 Lland Ay = 2 + 1, 2 respectively; Py = 2,
A=1, P.=1and 8 = 2. QE.D.

THEOREM 2. Ghven \ and the integer i, where 1 S y = n for A = 1 (mod 4)
and 1 Sy S ntl—Fforn = —1(mod 4);let e = (A — 1) — a(Xh — 1)
Then the binary digit d. in the sequence {v} has o pertod of 2°.

The proof for Theorem 2 is basically the same as for Theorem 1; details are
omitted. The bit characteristics which can be inferred from these theorems are
displayed in Table 1. ‘

3. Determination of x.

The two algorithms described in this section can be used to determine 2.,
given index ¢ = 1. The first of these uses a precomputed table and is suitable
for desk calculation. The second algorithm requires no table and i3 convenient
for use as a computer subroutine.

Assume 7 in the range of 2° < ¢ < 2°7; then equation (2.9) can be put into
the form

i = xog (MY {(mod 2™). (3.1)

Then x; can be constructed using a table of A’ (mod 2,0 = 2z £ n—58—1,
such ag Table 2 in the Appendix.
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TABLL I. CaaRACTERISTICS OF THE BINARY DiciTs de IN THE SBQUENCES {z] AND {7}

A Period of d

5z 2 K odd) Sotuence N d {py g‘k 53l @ o
Multiplieative method; 2+ ¢ period = 2+1# * 1
A= K26+ 1
Multiplicative method; 2n# period = %18 #* i period 1
A= K028 — 1 -9
Mixed method 2 period = 2¥%
A= K28 41
Mixed method ot period = 28 ¥ period
A= K28 —-1 ‘ =9

* Digit bas the same value as the corresponding digit of .
+ Digit has s constant value or a period of 2, function of the low order hits of xa, orro
end c.

ProcEDURE Al.

(1) Partition ¢ into parts ¢; , defined by (2.1) and (2.2), ignering paris equal to 0 and
discarding parts greater than or equal to the period of the sequence;

(2) seleci corresponding values of A (mod 27) from table;

{3) form the product 2o II; N4 = & -

A similar procedure ean be performed without the use of tables, requiring inputs
of A, 2y and ¢ (and n).

PROCEDURE A2,
WD Bety =0, O=1mx, ¥ =14, vy=23;
(2) if i’ = 0:iteration is completed and II = = ;if ¢ # O: form y = «(i');
(8) if ¥’ = y: replaceIl by +II (mod 2%), ¢ by 4/ — 2v, and repeat from step (2); if
y' # yireplace ¥ by v% (mod 2%}, ¥’ by %' - 1, and repeat step (3).

The latter algorithm is valid for 7 = 0. For ¢ in the range 2° < 7 < 2’ the
average number of multiplications required is ~(s/2) + 1 for procedure Al,
(3s/2) + 1 for A2

4. Determination of r:

The particular method best suited to computation of r: depends upon the
parameters involved. No exhaustive treatment will be attempted here but a few
possibilities will be mentioned. For desk calculation, it is usually advantageous to
reduce 7 to the least non-negative residue, modulo the period of the sequence.

Greenberger [5] suggests that a choice of X approximately equal to, but less
than 2™ is good in several respects. If we choose the common formx = 2° 41



46 FRANK STOCKMAL

and restrict @ to the range n/3 = ¢ < n/2, then r; is expressible as

2 . .
P ;.Zao 2% [ro (Z) 4 (Fc j_ 1)] {mod 2",

which recpuires little computation. For h = 2* — land /3 £ a < n/2,
: e\ <= {7 .
mo= b (U0 — 5 ) 20| ) (=29 {wod 27,
2] =0 k

where £ = (¢/4)(2% + 1) fordeven; £ = (¢/D[2 + 1 — 277 — 1)] for < add.

In seeking a general method applicable for any A, ¢ and #», analogous to al-
gorithm A1, we encounter an ahstacle not present in the multiplicative generator.
The counterpart of equation (3.1) is the following, obtained frowm (2.10):

( _—
7= 1y 4 frh = 1) 4 C]fl-_l * ;I=Io ! f (mod 2"). {4.1)
N1

As it stands, this formulation requires that most of the computation be carried
out modulo 2"(A — 1}, which can be highly undesirable. However, the last
equation can be modified to allow the computation to be performed modulo 27,
at the expense of additional operations. The expression in braces of (4.1) can
be expanded:

—1 4+ 1A% (N —1) I AN —14 TN
j=0

- i=1 - i1
A—1 A—1 + A—1

Continuing the expansion in this manner, we can obtain

s ek 2
r; =19+ (N — 1) + ¢l ZL—:J II a%  (moed 2%),
=ooh— 1 D
where Ij....s AV is defined equal fo 1. The factor (A" — 1)/(A — 1) can be
generated modulo 2% (see final seetion, Table Construction) and »,; can be ealeu-
lated by means of tables of A (mod 27) and (\¥ — 1)/ — 1) (mod 27),
0<z=n—1, suchas Tables 2and 3.

Procepune A3.

(1) Partition  into parts e; , defined by (2.1) and (2.2), ignoring parts equal to 0 and
discarding parts greater than or equal to the period of the sequence; sclect any
o5 60t =4 —e; 80t 2= (vi— 1)/(n — 1) (mod 2#) (from table):

(2) if ¢" = 0, proceed to step (4); if £ = 0, proceed to step (3);

(3) select any remaining e; and obtain A4 (mod 2°) and (A¢; — 1)/ — 1} (mod 27)
from tables; replace 2 by (A% — 1)/ (A — 1) + 252 {mod 27), replace i by ' — ¢; ,
and repeat from step {(2);

4} form vy -+ [relh — 1) 4 ¢]2 (mod 27) = r; .

At the expense of additional multiplications, the procedure can be performed
without tables,
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ProcEnURE Ad.

Fzplonalory Note. A4 operates upon an argument. 7, using parameters A, ¢ and r, (and n).
The algorithm variables have the following meaning: at the point of re-entry of step (2)
from step (3), & 1s the most recently determined e;, & = 3 (mod 2%), 4 =
O — 0/ — 1) (mod 2, 2= [1/ (0~ DJ{—1 + Iy A5] (mod 2#), and +° = i — Zlye; .

M) Bet2=0, d=% v=1, i"=1¢ ¢ =0

2) if 7/ = 0, proceed to step (4);1f 4" ¢ 0, form ¥ = a(i');

(8) if ¥ = y, replace 3 hy v + 5% (mod 27), ¢ by i — 2v, and repeat from step (2);
it ¥ # y, replace v by v (8 + 1) (mod 2*), 5 by & {(mod 2#), ¥ by %' 4 1, and
repeat step (3); '

@) formre + {re(\ ~ 1) + ¢] 2 (mod 2%) = v, ,

This algorithmn is valid for ¢ = 0. For 1 in the range 2° < 7 < 2°", A3 requires

an average of approximately s+1 table references and s/2 4+ 2 multiplications;
A4, an average of approximately 5s/2 + 3 multiplications.

5. Determination of Index, Multiplicative Generator

The algorithm for determination of 7, given 2, , is based upon the recogniza-
bility of «(z) through inspection of the bits of x; — a5, The least nonzero ¢;
component of ¢ can be determined by application of Theorem 3.

TuroreM 3. If ©; = &y, then ¢ = 0 (mod P), where P is the period of the se-
quence {x}; if x: 7 mo , and e(ze — 1) = w, then a(2) == y, where y is the solution
of a(W — 1) = w.

Proor. The sequence {x} has been shown to be periodie, periodicity begin-
ning with the initial element z, . The period P is the least positive integer such
that

Tjr = x;, forallj = 0; {5.1)
which implies thal w;. # z; for 1 £ & £ P—1. Repeated application of (5.1}
vields #,.xr = z;, for K, 7 = 0. Given the integer 7 # 0 (mod P), let k be the
least: non-negative residue of 7 (mod P). Thenl £ k £ P—1land s = @ # 4 ;
or: % 0 (mod P) = 2, # 24, which proves the first part of the theorem.

Now assume that z: # 2, and a(2x; — 2) = w. From (2.9),

Ty — Xy = K’C(P\i — 1) (mOd 275),
alz: — 20 + 2"K] = afro()\* — 1)), (5.2)

where K ig an integer. Since 0 < 2, xp < 2%, then 0 < |o; — 20| < 2" and
a(z: — ) < n, by (2.8). Also o(2"K) Z u; then by (2.5) the left-hand mem-
ber of (5.2) is a(x; — m) = w. Let a(i) = y. By Lemma 2, the right-hand
member of (5.2) is a(\¥ — 1), 2o being odd; or &(A* — 1) = w. Q.E.D.

For a given A and w, the solution of «{A* — 1) = win y is given by Lemma 1:

y o= w3 for » = 1 (mod 4); (5.3)
y=0  ifw=1 (5.4)
y =w— gifw =1 forx= —1 (mod4). (5.5)

Having determined the least nonzero e; to be ¢, the next larger ¢; is deter-
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minable by removing the factor of A* from the produet 2, = 2o i, A" {mod 2",
This can be effectad by multiplving z: by the appropriate integer @, , defined by
QA" = 1 (mod 2™, For 8 < T which is satisfied by (1.4), Lemma 1 implies
that oA " — 1) = n,and A7 = 1 (mod 2). Then @, = X (mod 2™,
where K is any integral multiple of 2""ﬂ , = 2%, T'or convenience, , will be ex-
pressed as

Qy =N (mod 2"). (5.6)

After multiplication by @, , the process can be repeated to determine the next
larger ¢;; the iteration continues until the entire composition of ¢ is known,
The algorithm ean take the form of Af5, utilizing a table of A*™ (mod 2%,
0=z = n—8~—1 (such ag Table 4); or A8, with no table required.

PrROCEDURE Ab.

(1) Set T =0, v = a;;

(2) if vy = @y, iteration is completed and T = 4; il ¥ = zy , determine w = a(y — z0),
determine ¥ by means of one of the relationships (5.3)-(5.5);

{3) obtain ), from table; replace ¥ by v¢, (nod 2#), E by 2V + =; repeat from step (2),

ProcepurE AG,

Ezplonatory Note. A operabes upon any argument z; generated by (1.1) with M = 2»,
employing parameters k and x, (and n). Step (1) is a subalgorithm which solves the con-
gruence M)y = 1 (mod 27) for Gy . The algorithm variables denote the following: at the
point of re-entry of step (5) from step (6), ¢, is the most recently determined nonzero e; ,
G =A% (mod 27), Z = Zlye;,andy = zp i, My (mod 27).

(1) Compute §p as follows:
(1) set A =1,B=x—1;
(1.2) formu = «(B);replace A by 4 + 2%, Bhy B -+ \2* (mod 27},
(1.3) if B =0 (mod 2"), proceed to step (2);if B = 0, repeat from step (1.2);
2)set@=A, 3 =0;if M =3 (mod 4), compute 8 = a(} + 1) and procced to step
(3);1I X =1 (mod 4), compute 8 = a(A — 1), proceed to step (4);
B —z=2 (mod4),set T =1, v=0r mod2"),goto step (5);if = — = = 2
(mod 4), go to step 4);
4) set T =0,v = a;;
&) if v = o, iteration is completed and B = ;i v = 2y, form ¥ = oy - 3y} — 3,
replace T by 2 + 3,
®) if ¥ = y, replace v by v& {mod 2*) and repeat from step (5); if ¥° = y, replace
@ by (2 (mod 27}, ¥ by ¥ 4+ 1, and repeat step (6).

Fori in the range 2° < 1 < 2°%, A5 requires an average ==(s/2) + 1 mulLiplica-
tions, a maximum of s-+1, and a like number of table references. Exclusive of
the computation of @, , A6 requires an average ~(3s/2) + 1 multiplications, a
maximum of 2s4-1.

6. Determaination of Index, Mived Generator

As in the multiplicative method, the procedure for determination of the index
¢ for the mixed method is based upon the relationship of «(4) and a(r, — r().

Turonem 4. If yi = vy, then ¢ = 0 (mod P), where P is the period of the se-
quence i}, If i # voand a(rs — 70) = w, then (i) = y, where y is the solulion
of al A — 1) = w + a(d ~ 1).
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Proor. The proof of the first part of Theorem 4 is identical to the proof for
the first part of Theorem 3. Now take vy ¢ rp, and let a(r; — 1) = w. From
(2.10),

eV — 1)

r, — 1o = (' — 1) - (mod 2")
alr; — 10 + K21 = o [ro(x" -1+ G(;—_il-l_):l (6.1)

where K is an integer. Since 0 = r;, o < 2" and r: # 79, then
0<|r—r| <2%andalr — r) <mn, by (2.8). Also, a{K-2") = n; then by
(2.5), alr: — ro + K-27) = alri — n) = w. With A and ¢ odd, a{c) = 0,
a(d — 1) 2 L, and

“{C'(a\——_“ig} = ale) + oV — 1) — ald — 1) < a(d' —1);

Whercasja[ro(?\i — 1)] = a(d* — 1). By (2.5), equation (6.1) becomes
w=alh — 1) — a(r — 1). Let a(4) = y. By Lemma 2, a(\' — 1) = «(\" — 1)
and

a(A¥ — 1) = w + a(X — 1). QED. (6.2)

The solution in ¥ to (6.2) is given by Lemma 1 as:
y = w for x = 1 (mod 4); (6.3)
y =0 ifw=20 (6.4)
y=w—pg+1ifw=z1 for x = ~1 (mod 4). {6.5)

Having determined the least nonzerc ¢; = 9" the next larger e; is determinable
in the same fashion after 7 is depressed by 27, as follows. Leti =i — 2%, and
apply identity (2.11): :

¥ — 1)

o= g = Nori T (mod 2")
C()\,zy -— 1) ki)
Ty = Qy{h‘ - T-:"—l——} (mod 2"),

where , is defined by (5.6). Using preconstructed tables of -1/ =1)
(ra0d 2*) and 3 (mod 27), 0 <z S n — 1 (suchas Tables 3 and 4), #v
can be ealeulated and the next larger e; determined, the process being repeated
until the entire composition of ¢ is revealed. The procedure can be stated as
A7 or A8, the latter generating the required table values.

ProcEnurs A7.

1) Bet T =0, v =ri; ) )
(2) if v = rq, iteration is completed and Z = ¢;if v # 7o, determine w = aly — 7o);
determine y by one of the relationships (6.3)-(6.5); replace = by w4 Z;
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(3} obtain values of M=% (mod 2#) and (A% — 1)/(\ = 1) (maod 2%) from tables;
replace y by (M #)[y — ¢ (0¥ — 1}/ (A — 1} (mod 2%); repeat from step (2).

ProcEDURE AS.

Explanatory Note. A8 operates upon any argument r; generated by (1.2) with M = 2%
using parameters A, ¢ and ry (and n). Step {1) solves the congrucnee Mje = 1 (mod 27) for
Qo . The internal variables denote the following: at the point of re-entry of step (5) from
step (6), &, is the most recently determined nonzero e; , @ = A" (mod 2}, = s,
T = ¥ —1){x— 1) (mod 2#), and v = ry, where i’ = £ — ¥, &; . The difference between
(6.3} and (6.5) is compensated for by A.

(1) Compute Qo as follows:
(il)setAd=1, B=A—1;
(1.2) formu = a(B);replace A by 4 4 2%, Bby B +X-2* (mod 2%);
(1.3) if B = 0 (mod 2), go to step (2);if B # 0 (mod 27), repeat from step (1.2);
@ysetQ =4, T=1, y' =0;¥x=3 (mod 4), compute & = a(A + 1) - I, go to
step @);if A =1 (mod 4), set A = 0, to to step (4);
B)ifri —~ ro=0 (mod 2),gotostep 4);ifri —ro=1{mod2),set 2 =1, =
Q(ri — ¢) (mod 27), go to step (5);
4)setT =0, v=1ri;
(5) if v = 7; , iteration is completed and & = 4; if v # ry , compute ¥ = aly — rg) — 4,
replace T by 2¥ + I;
{6) if y' = y, replacey by Qv — ¢T') (med 27) and repeat from step (B); if 3" = y,
replace @ by @ (mod 2*), T by TP — 1) + 2] (mod 27), y" by ¢ + 1, and
repeat step (6).

For 7 in the range 2° < ¢ < 277, A7 involves a maximum of 2s4-2 tuble refer-
ences and 2s-+2 rultiplications; the average for each being ~s+2. Kxclusive
of the computation of ¢, the average number of multiplications required by
A8 ig m94s+2; the maximum, 5s-+2. Of course, procedures Ad through A8 can
only produce a number which is representative of a residue class modulo P,
the period of the sequence; the number being the least non-negative residue of i

(mod P).

7. Table Construction

The required tables can be generated recursively as follows. Let z be the argu-
ment and f5 , 3 and /3 the funetions of Tables 2, 3 and 4 respectively. For Table 2,
folz) = A (mod 27), 0 = 2 £ n — 1;then 2(0) = hand filz + 1) =
[£:(2)F {mod 27).

For Table 8, fi{z) = (A — 1)/(A — 1) (mod 2"), 0L 2 n ~ L
(0} = 1land fi(z + 1) = [fa(2)12 + (A — 1)f3(2)] (mod 27). An alternative
is to use Table 2 to reduce the amount of computation: fi(z + 1) =
1+ fla)lfs(z)] (mod 27).

For Table 4, filz) = A (mod 2"), 0 £ z £ n—1. Generation can be
performed with decreasing z, using Table 2: fs(z) = 1forn—8 S z < n—1 and |
fi(z) = [fi(z + D]lfe(2)] (mod 27} for 0 = z £ n—pB—1. Generating with in-
creaging z, fulz -+ 1) = [fs(z)] (mod 2"), and £:(0) is the solution of My(0) =1
(mod 2"}, /2(0) can be computed from f,(0) = 1125 " fu(z) (mod 27), or by the
algorithm which comprises step (1) of procedures Af and AS. 3
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CALCULATIONS WITH PREUDO-RANDOM NUMBERS

APPENDIX

Tables are based on » = & -+ 1, » = 3b. Argument is given in decimal form, funetion
in octal form.

31

TABLE 2 TABLE 3 TABLE 4
X2 (mad 235) z 7\:::-11 {mod 2%) P N3 {modd 239)
000 1' 000 | 000 | 201 Q| 00G | 000 ; 000 | 001 0001770 | 037 | 601
000G | 000 | 040 | 401 1§ 000 {000 | OO ; 202 1011 740 { 137 | 401
002 | 040 | 301 | 001 21000 4 010 § 201 | 404 2| 105 | 540 | 477 | 001
2i4 | 701 | 602 | GO1 31 161 1 063 | 407 | 010 302220 102 176 | 001
100 | 607 | 404 | 001 41074 | 403 | 036 | 020 41073 | 210 | 374 | 001
075 | 437 | 010 | Q01 51162 | 366 | 174 | 040 b | 262 | 440 | 770 | 001
153 | 176 | 020 | 001 B¢ 114 | 654 | 770 | 100 6 1251 201 | Y60 | 001
226 1 774 1 040 + 001 7U11L | 133 | 760 ¢ 200 711533 | 003 | 740 | 001
057 | 770 ¢ 100 | 001 81320 | 277 | 740 | 400 8| 330 | QO7 | 70O | 001
147 | 760 | 200 § 001 9| 230 | 637 | 701 | 00O G270 | M7 | 660 | 001
367 | 740 | 400 | 001 10 | 021 | 677 [ 602 ; OO0 10 | 220 | 037 | 400 } 001
137 | 701 | 000G | 001 11 | 244 | 577 { 404 | 000 11§ 240 | O77 | 000 | 001
|

277 | 602 {1 000 | 001 12115 | 377 37 010 | 000 12} 100 | 176 E 000 | 001
177 1 404 § 000 | 001 13 | 252 / 776 | 020 | 000 13 | 200 | 374 | 000 | 001
377 1 010 | 000 | 001 14 1 225 | 774§ 040 | 000 14 | 000 | 770 | Q0D | 001
376 5 020 | 000 | 003 15 | 053 } 7701 100 § 000 151 001 | 760 | 000 | 001
374 1 040 § 000 | 001 16 | 127 | 760 | 200 | 000 16§ 003 | 740 | 000 | 001
370 | 100 | 000 | 001 17 | 257 | 740 | 400 | 00O 17 1 007 | 700 | GO0 | 001
360 1 200 5 000 | 001 18 | 137 § 701 § 00G | 000 18 | 017 | 600 | 000 | 001
340 | 400 | 000 § 001 19 | 277 | 602 | 000 | 000 19 | 037 | 400 | 000 | 001
301 | 000 | 00O 5 OO 20 | 177 | 404 | 000 § 000 20 1 077 | 000 | GOO | 001
202 | 000 | 000 | 001 21 | 377 | 010 | 000 | 000 211 176§ 00G 1 GO0 | 00
004 | 000 | OCO | 001 22 | 376 | ¢10 | 000 § 00O 22 1 374 | 000 | 000 | 001
010 | 60O | 000 | 001 23§ 374 | 0406 | 000 | 00O 23 | 370 000 | 000 | 001
020 | 000 | 000 | 001 24 | 370 | 100 | OGO | 00O 24 | 360 ; 000 | 600 | 001
040 | 000 | 000 | 001 25 | 360 | 200 | 000 { 0GO 25 1 340 | 000 } 000 | 001
100 | 0060 | GO0 | 001 26 | 340 | 400 | 000 | OOO 26 1 300 | 000 | 000 | 001
200 | 000 | 000 | 001 27 | 301 | 000 | 000 | 000 27 | 200 [ Qo0 | Q00 | 001
Q00 | 060 § 600 | 001 28 | 202 | 000 | 000 | DGO 28 | 000 | 060 § 000 | 001

29 | 004 | 00O | 0G0 | DGO

30§ 010 | 000 | 000 | 0G0

311020 600 | 000 . 000

32 1 040 | Q00 | 000 | 000

33 | 100 ; 000 | 000 | 00D

34 | 200 | 000 | 000 | GO0
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