Tables of the Generalized Stirling Numbers of the First Kind*

William F. Pickard
Harvard University, Cambridge, Massachusetts

Abstract

The generalized Stirling numbers of the first kind are defined, certain of their basic properties are discussed, and tables are given for the square grid $k=0(1) 10$ and $j=0(1) 10$ with $l=-10(1) 10$.

Many problems which arise in the solution of differential equations, in the evaluation of integrals or in interpolation can be treated using techniques which rest upon the construction of an approximating polynomial. When the function to be approximated can be computed over a set of equally spaced points, the approximation is readily constructed by means of a lozenge diagram [1]. However, the use of this method requires the evaluation and/or expansion of the factorial polynomials

$$
\begin{equation*}
(u-l)^{[k]}=(u-l)(u-l-1) \cdots(u-l-k+1) \tag{1}
\end{equation*}
$$

where l and k are integers, k being non-negative and l unrestricted, and this can be both complicated and time-consuming if either of the two indices is large. The labor, and the possibility of blunder, involved in working with the factorial polynomials can be considerably reduced by dealing with $(u-l)^{[k]}$ in a series rather than in a product form:

$$
\begin{equation*}
(u-l)^{[k]}=\sum_{j=0}^{k} S_{j}^{k} u^{k-j} . \tag{2}
\end{equation*}
$$

The coefficients S_{j}^{k} can be called the generalized Stirling numbers of the first kind in analogy with the terminology used for the numbers $0 S_{j}^{k}$. They are conveniently determined by using the obvious identities,

$$
\begin{array}{ll}
{ }_{L} S_{0}^{k}=1, & k=0,1,2, \cdots \\
{ }_{L} S_{j}^{0}=0, & j=1,2,3, \cdots \tag{3b}
\end{array}
$$

and the recursive relationship

$$
\begin{equation*}
S_{j}^{k+1}=-(l+k) S_{j-1}^{k}+{ }_{l} S_{j}^{k}, \quad k=0,1,2, \cdots, j=1,2,3, \cdots \tag{4}
\end{equation*}
$$

(4) is readily derived by expanding

$$
\begin{equation*}
(u-l)^{[k+1]}=(u-l-k)(u-l)^{[k]} \tag{5}
\end{equation*}
$$

and equating the coefficients of the several powers of u.
Only the $i S_{j}^{k}$ for $l=0$ have been extensively tabulated [2]; those for $l \neq 0$

* Received July, 1963. The work reported in this paper was supported by a grant from the National Science Foundation.
Table T. Generalized Sterling Numbers of the First Kind

	Table I. Continued$f=-1$										
$k b^{j}$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	7									
2	1	13	42								
3	1	18	107	210							
4	1	22	179	638	840						
5	1	25	245	1175	2754	2520					
6	1	27	295	1665	5104	8028	5040				
7	1	28	322	1960	6769	13132	13068	5040			
8	$\frac{1}{1}$	28	372	1960	6759	13132	13068	5040			
9	1	27	294	1838	4809	8363	-64	-8028			
10	1	25	240	1050	1533	-3255	-12790	-7900	11016	10080	
$k \sqrt{j}$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	6									
2	1	11	30								
3	1	15	74	120							
4	1	18	119	342	360						
5	1	20	155	580	1044	720					
6	1	21	175	735	1624	1764	720				
7	1	21	175	735	1624	1764	720				
8	1	20	154	560	889	140	-1044	-720			
9	1	18	114	252	-231	-1638	-1324	1368	1440		
10	1	15	60	-90	-987	-945	3590	5340	-2664	-4320	
$k \sqrt{d}$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	5									
2	1	${ }^{9}$	20								
3	1	12	47	60							
4	1	14	71	154	120						
5	1	15	85	225	274	120					
6	1	15	85	225	274	120					
	1	14	70	140	49	-154	-120				
8	1	12	42		-231	-252	188				
θ	1	9 5	- 6	-128	-231	441	944	-324	-720		
10	1	5	-30	-150	273	1365	-820	-4100	576	2880	

seem to have been neglected. To facilitate the construction of formulas from the lozenge diagram, the IBM 7090 at the Harvard University Computing (enter was utilized to calculate the ${ }_{2} S_{j}{ }^{k}$ over the square grid $k=0(1) 10, j=0(1) 10$ with $l=-10(1) 10$. The results of these calculations are presented in Table I. The $L S_{j}^{k}$ given here enable one to construct a variety of polynomials of degree less than or equal to ten. This will be adequate for virtually all problems to which lozenge diagram methods can be applied: the practical limitations in accuracy imposed by modern computing machinery and/or by uncertainties in the input data make polynomials of degree $k>10$ of dubious usefulness since, as k increases beyond 10 , the growth of computational error will almost surely vitiate any reduction in truncation error achieved by increasing k.

REFERENCES

1. Kunz, K. S. Numerical Analysis, Ch. 4. MeGraw-Hill, New York, 1957.
2. Fletcher, A. Miller, J. C. P., Rosenhead, L., and Compre, L. J. An Index of Mathematical Tables. Second Ed., Addison-Wesley, Reading, 1962, Sec. 4.9231.
