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ABSTRACT
Low-power wide area networks (LPWANs), such as LoRa, are fast
emerging as the preferred networking technology for large-scale
Internet of Things deployments (e.g., smart cities). Due to long
communication range and ultra low power consumption, LPWAN-
enabled sensors are today being deployed in a variety of application
scenarios where sensitive information is wirelessly transmitted. In
this work, we study the privacy guarantees of LPWANs, in partic-
ular LoRa. We show that, although the event-based duty cycling
of radio communication, i.e., transmission of radio signals only
when an event occurs, saves power, it inherently leaks information.
This information leakage is independent of the implemented crypto
primitives. We identify two types of information leakage and show
that it is hard to completely prevent leakage without incurring
significant additional communication and computation costs.
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1 INTRODUCTION
The recent advancements in communication and computing tech-
nologies have led to the rapid proliferation of connected devices
(Internet of Things). It is expected that by the year 2020, billions
of things capable of sensing and wirelessly communicating data
will be deployed, effectively creating numerous smart ecosystems
such as smart homes, cities, and industries. The choice of wireless
technology is critical as it directly impacts the network’s power con-
sumption, coverage area, achievable data rate, and deployment cost.
Popular wireless connectivity standards, such as WiFi and Blue-
tooth, offer high data throughput and optimal power consumption
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but are limited in the communication range. Cellular communi-
cation technologies such as GSM and LTE have been specifically
designed for high data rate applications and can operate over sev-
eral kilometers. However, these technologies are not optimized
for power consumption and devices using them require frequent
recharging or power source replacement. Smart ecosystems such
as smart cities and smart industries rarely require high data rate.
But large coverage areas, spanning a few hundred meters to few
kilometers, as well as ultra-low power consumption are imperative
for large-scale deployments.

Low-power wide area networks (LPWANs), such as LoRa [20],
SigFox [31], NB-IOT [26], and Weightless [34] are fast emerging
as the preferred wireless technology for implementing large-scale,
smart ecosystems where data rate is less important than the com-
munication range, battery life or deployment cost. LPWANs are
specifically designed to enable low-data-rate (typically a few kbps),
long-range communications (up to tens of kilometers) on battery-
operated things (also called end devices). Today, there exist already
numerous LPWAN-enabled end devices, such as sensors that detect
garbage levels in trash bins [2] and automatically notify the waste
removal trucks, equipment maintenance and failure sensors that
notify managers of status, occupancy sensors [6] that detect pres-
ence or absence of people in a space, push button sensors [6] that
can be used to initiate maintenance calls, pest detection sensors [1],
and many more. Many of these sensors are deployed in application
scenarios where sensitive information is broadcasted. Therefore, it
is important to analyze and understand the security and privacy
guarantees of LPWANs.

In this work, we focus on the privacy guarantees of LPWANs, in
particular LoRa. One of the key characteristics of LPWAN technolo-
gies like LoRa is ultra-low power consumption. Typically, LoRa-
enabled sensors only turn on their radio when an event has been
detected and there is an immediate need to communicate the occur-
rence of the event. During the remainder of the time, the end devices
fully turn off their communication hardware to save power. In this
work, we show that such an event-driven communication leaks
information, independently of the implemented cryptographic prim-
itives. For example, a parking space sensor that transmits wireless
LoRa packets whenever a car pulls over already leaks information
regarding the "presence of car" event, irrespective of the crypto
primitive deployed. Although such leakage can happen in other
networks, due to aggressive duty cycling and large communication
range (several kilometers), LoRa networks are particularly vulner-
able to such attacks. An attacker that strategically places a few
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devices across the city will be able to collect a number of business
and private data.

This is in contrast to communication networks like cellular and
WiFi, where the mere communication typically does not reveal
sensitive information (i.e., communication is not event-driven) or
to sensor networks, which have limited communication range and
therefore require the attacker to get physically close to the sensors.
In terms of leakage, LPWANs combine the worst - long commu-
nication range and event-driven communication. Therefore, it is
fairly trivial for an attacker to deduce occurrences of an event or a
set of events, equipped with just a simple receiver (e.g., a software
defined radio [13]). We note that although our analysis largely fo-
cusses on LoRa (due to its popularity), the conclusions of this work
are generic and fundamental to all existing low-power wide area
networking technologies.

Several recent works on LoRa and other low-power wide area
networks have focussed on understanding the performance guar-
antees, such as scalability [3, 10, 14] and channel capacity [3, 23]
of the network. Some others focussed on studying the impact of
physical layer settings on the data rate and energy efficiency of
the communication system [11, 24]. Several vulnerabilities, such
as replay attacks [33], acknowledgement spoofing [36], physical
key extraction [4] and device fingerprinting [27] have already been
demonstrated on LoRaWAN’s security protocols and their imple-
mentations. To the best of our knowledge, the privacy implications
of LoRa-like low-power wide area networks have not been exten-
sively studied so far.

Specifically, in this work, we make the following contributions.
We show that LoRa-like wireless networking technologies inher-
ently leak information due to an event-based communication strat-
egy. We identify two types of information leakage: (i) existential
leakage and (ii) statistical leakage. We show that existential leakage
can be, to an extent, prevented by adding dummy transmissions.
However, statistical leakage is hard to obfuscate without incurring
additional communication cost and affecting scalability, due to the
increased usage of the communication channel. By means of simu-
lations, we show that it is challenging to achieve full prevention of
information leakage without compromising on the ultra-low-power
guarantees of the system. For an obfuscator whose knowledge is
limited, our results indicate that optimal obfuscation may not be
achievable even for rare anomalies, under a power constraint that
limits the rate of obfuscation packets to that of real messages. We
also quantify the attacker’s performance under this power con-
straint and compare it to the case of optimal obfuscation. Thus,
through this work, we highlight the tension between designing
low-power wide area networks and achieving foolproof privacy
guarantees.

2 LOW-POWERWIDE AREA NETWORKS
Low-power wide area networks are designed with the key objec-
tives of long distance communication (wide area coverage), ultra
low power consumption at the end devices and low deployment
cost. LPWANs achieve these design objectives by leveraging the
low data rate requirements of the majority of IoT applications. In
this section, we give an overview of the network architecture, the

communication protocols and the security properties of LPWANs
with a specific focus on LoRa.

2.1 Network Architecture
LPWANs are implemented using a star-of-stars network topology
as shown in Figure 1. End devices are application specific (e.g.,
parking lot occupancy sensors, motion sensors) and are connected
to one or many gateways. Gateways act as transparent relays be-
tween end devices and a network server. One of the key differences
between LPWAN and conventional cellular networks is that end
devices are not required to associate to a specific gateway but are
only associated with the network server. This makes it possible for
end devices to communicate with more than one gateway at the
same time. Furthermore, end devices can be mobile and connected
to the network without any complex signalling and handoff mech-
anisms. Gateways use cellular or ethernet as backhaul to connect
to the network server, which then forwards the information to
corresponding application servers for processing. It is the responsi-
bility of the network server to filter redundant messages forwarded
by multiple gateways, perform security checks and, if necessary,
schedule acknowledgements, therefore reducing the complexity of
end devices and gateways.

2.2 Communications System
One of the key objectives of LPWANs is to enable low-power oper-
ation of end devices. Therefore, LPWANs aggressively duty cycle
end devices by turning on their radio only when there is an event
and there is a need to communicate its occurrence. During the
remainder of the time, the end devices are fully turned off to save
power. In case the gateway needs to communicate with the end
device, it can only do so during an a-priori agreed time schedule.
For example, in LoRa, the end devices can be operated in three
different modes: Class A, B and C. Class A mode is a mandatory
mode where the end devices open two receiving slots immediately
after an event-triggered transmission. The receiving slots may be
used to get a response or acknowledgement back from the gate-
way or the application server. The optional class B and C modes
allow the end devices to receive data more frequently from the
gateways and are intended for applications without any power
constraints. In this work, we mainly focus on the mandatory class
A operation mode, however the results are in general applicable to
the other operating modes as well. The end devices do not execute
any form of channel sensing or signalling prior to transmission.
As soon as there is an event, the end device instantly broadcasts
a message to communicate the occurrence of the event. In other
words, unlike in a majority of wireless networks, there are no com-
plex medium access protocols minimizing the control signalling
overhead. Furthermore, the long communication range allows a
one-hope network topology. This reduces the complexity at both
the end devices and the gateways, as they no longer require complex
listen and forward mechanisms that are commonly implemented
in multi-hop wireless sensor networks. The long communication
range is achieved by choosing physical-layer techniques that trans-
mits more energy per each data symbol while compromising on
data rate. For example, LoRa uses a modulation technique based
on chirp spread spectrum [9] with forward error correction that
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Figure 1: Network architecture: Application-specific end
nodes reach their network server via a gateway in proximity.
From there, the data is routed to the respective application
server.

enables the end devices to communicate over long distances. The
use of sub-1-GHz frequencies also results in less attenuation and
better signal penetration through walls and other environmental
obstacles.

2.3 Security and Privacy
Most LPWAN technologies opt for symmetric key cryptography to
provide support for end device message authentication and appli-
cation payload encryption. For instance, in LoRa, each end device
is equipped with a unique 128-bit secret key (AppKey), which is
used to derive two session keys; one each for sharing with the net-
work server or the service provider (NwSKey) and the application
server (AppSKey). The application payload can be encrypted using
the AppSKey, the NwSKey can be used to generate the message in-
tegrity code. This prevents man-in-the-middle scenarios where the
network or service provider acts malicious and wants to eavesdrop
on all the traffic between end devices and the application server.
However, in practice it has been observed that end devices typically
do not encrypt the application payload and the network service
provider can eavesdrop on the communication between end devices
and the application server. The communication links between the
gateway devices and the network server themselves are secured
using standard TLS/IPSec.

2.4 Applications
Smart cities, smart homes and buildings as well as industrial IoT
applications are prime examples of segments that will greatly ben-
efit from LPWAN technologies.

Industrial applications: A typical industrial building may con-
tain a reception or welcome center, meeting rooms, parking area
for employees and visitors, cafeteria, manufacturing floor, lobby or
waiting areas for visitors etc. Parking spots1 can be equipped with
end devices or sensors that detect the presence of a vehicle and
transmit information using LPWAN to the central servers. Occu-
pancy or vacancy sensors2 can be installed in meeting rooms and
1https://www.pnicorp.com/placepod/
2https://www.thethingsnetwork.org/community/thatcham/post/occupancy-sensor

Figure 2: An end device transmits a message to the applica-
tion server upon sensing an event. A passive adversary will
be able to deduce sensitive information such as arrival and
departure times of employees, the number of visitors, meet-
ing times etc.

manufacturing floors to remotely control the heating, ventilation
and air-conditioning systems. Furthermore, vacancy sensors can
be used to communicate unused discussion rooms. Individual entry
and exit of personnel, manufactured products, raw materials can
also be tracked using access sensors. Push button sensors enable
user interaction with the network and they can be used to indicate
an equipment failure, accidents or for simple command and control
applications.

Smart homes and cities: LPWAN technology can help accelerate
IoT adoption into several urban and home applications. Today,
there is already a vast variety of commercially available sensors
that can seamlessly integrate into the LPWAN infrastructure such
as burglar alarm and intrusion sensors, emergency care, garage
door entry systems, traffic management, rodent trap sensors, water
and chemical leakage sensors.

To summarize, LPWAN communications are event-driven, application-
specific and have long communication range. They are power ef-
ficient, which makes them attractive to a wide variety of privacy
sensitive business and personal applications. In this paper, we show
how the properties of LPWANs leaks information independent of
the implemented cryptographic primitives.

3 INFORMATION LEAKAGE IN LPWAN
Wemotivate the problem of information leakage in low power wide
area networks with the following example scenario. As illustrated
in Figure 2, a smart parking sensor will transmit a packet as soon
as a vehicle occupies or leaves the parking space. Similarly, any
movement or presence of personnel in an office space will trigger
radio transmissions in occupancy sensors. Every access attempt of
employees to their workspaces will result in radio communication.
The long communication range of LPWANs allows these messages
to be received several hundred meters or even kilometers away. In
other words, an attacker located several hundred meters away will
be able to infer sensitive information such as arrival and departure
times of employees, meeting schedules, presence or absence of
personnel within a building, etc.

https://www.pnicorp.com/placepod/
https://www.thethingsnetwork.org/community/thatcham/post/occupancy-sensor
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In this work, we assume a passive adversary equippedwith one or
more receivers (e.g., built using a software defined radio) collecting
end device transmissions. We assume a LoRa network architecture
where a set of end devices (EDs) are within communication range
of at least one gateway. Note that in LoRa the end devices are not
associated with one specific gateway. Any gateway within commu-
nication range can receive the an end device’s signals. The gateway
forwards the message to the network server for further processing.
We focus on real-time applications, as described in Section 2.4, in
which the EDs immediately transmits a message to the application
server as soon as it senses an event. We assume that the attacker
has a priori knowledge regarding the application associated with
an end device transmission. It has already been shown that multiple
LoRa end devices can be uniquely identified using physical layer
fingerprinting techniques [27]. Furthermore, the packet header in-
formation is transmitted in the clear. This makes it trivial for an
eavsedropper to associate signal transmissions to specific EDs. Note
that LPWAN service providers need to bill their costumers, and
therefore have a mapping between EDs’ MAC addresses and end
users. Even less privileged attackers can still narrow down the
origin of messages, e.g. by means of multilateration.

To the best of our knowledge, no LPWAN-enabled end devices
currently implement any form of obfuscation or privacy enhancing
technique. Therefore, today it is trivial for a passive adversary to
deduce event properties. For example, in the case of a meeting room
occupancy sensor, an attacker can deduce the meeting times and
frequency by simply observing the LoRa packet transmissions. Note
that we focus on time sensitive (i.e., delay intolerant) applications.
Therefore, aggregation and periodic transmission techniques are
no viable options.

Given this constraint and the network topology of LoRa, par-
ticularly not allowing direct sensor-to-sensor communication, the
only strategy for EDs to obfuscate their traffic is to add dummy
packets to their transmissions. Dummy packets are simply packets
containing random data (of the same length as a typical communi-
cation). Since each LoRa packet payload is encrypted (cf. Section
2.3), dummy packets are indistinguishable by the attacker from
packets containing meaningful information, but can be filtered out
by the application server. The obfuscation mechanism, i.e., the deci-
sion when to transmit dummy messages, is important as it directly
impacts cost. Firstly, each additional packet transmitted consumes
energy, reducing the lifetime of the ED. Secondly, to minimize ED
complexity, LPWANs allow EDs to access the communication chan-
nel in a random and uncoordinated fashion without any complex
medium access controls. Therefore, each additional dummy packet
transmitted also reduces channel availability. Finally, LPWAN ser-
vice providers typically charge for every additional transmission
above a certain threshold agreed upon a-priori.

In the remaining sections, we analyze which kind of information
an attacker is able to obtain by observing LoRa traffic and to which
degree she can still infer information, even when an obfuscation
mechanism is in place.

3.1 Existential Leakage (EL)
Existential Leakage (EL) covers all cases where transmission of a
single message implies the occurrence of a real-world event. For

instance, when using a presence sensor in an industrial application
(cf. Section 2.4), existential leakage happens whenever a sensor
transmits a message because of a vehicle occupying a particular
parking space, whenever a sensor transmits a message because of a
meeting room becoming empty, whenever amessage is sent because
a push button is pressed to indicate an equipment failure, to name a
few. This type of transmission behaviour is a problem particularly
in LPWAN sensors because, given the constraints of the technology,
having very simple sensors dedicated only to one function, that
transmit only if a particular event occurs, is the norm. Whereas in
many other wireless technologies there might be either multiple or
no real-world events underlying any single message transmission,
in LPWANs, the event space is usually very small, most times binary
(e.g. parking lot is empty or occupied), and transmissions usually
only occur on state transitions (e.g. parking lot is now occupied).

The goal of the attacker exploiting EL is to detect the presence of
real messages. If no obfuscation is in place, this is trivial and can be
done by simply eavesdropping on the LPWAN channel. An attacker
that recognises if at least a real message is sent in a time interval
of her choosing, managed to exploit EL. For instance, an attacker
is exploiting EL if she detected that a rodent sensor sent a “mouse
captured” message (as opposed to e.g. only empty messages) on a
particular day.

It is important to understand the difference between an event
and a LoRa message, essentially what is leaking from how it is
leaking. We argue, an event is something happening in the real
world that can leak if it either manifests in one message (e.g. a
push of a button) or a change in statistical properties of message
generation (hiring/firing people at a company, production activity
in industrial plant). The former causes event leakage by existence
of LoRa messages, which is something that is alarming and quite
unique to this technology. The latter requires the attacker to have or
build a statistical model to compare against potential anomalies (i.e.
the event is characterised as rate disturbance in the LoRa message
stream). This second case we address in the next section.

3.2 Statistical Leakage (SL)
With Statistical Leakage (SL), we refer to cases where a deviation
from normal transmission behaviour implies the occurrence of a
real-world event. Deviation from normal behaviour can manifest
in different ways in the overall traffic distribution, including, but
not limited to, more (or less) traffic than expected for a short or
extended period of time or a traffic inter-arrival time distribution
that differs from the normal inter-arrival time. Observe that these
examples of abnormal transmission behavior rely on a notion of
normal or expected behaviour, however a baseline transmission
behaviour is not necessary for the attacker to detect such instances,
as she can detect anomalies in the transmission also without any
prior knowledge [15].

To give some examples, SL manifests in an industrial application
every time a parking lot sensor increases its transmission profile be-
cause of more cars occupying the parking lots to attend a company
event, or when a room vacancy sensor transmits less at particular
times due to a series of long meetings. SL is not unique to LP-
WANs, but is particularly concerning on LPWANs because, given
the specialization of the sensors, the set of events that can cause
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an observable deviation from the norm is very limited. Therefore,
despite the fact that the traffic is encrypted, the attacker usually has
a very good idea of the complete state of the sensor. To understand
why this is important let us consider a WiFi network in which an
end device suddenly starts communicating more than usual. All
the attacker can say in this case is that a particular user is more
active than it would otherwise have been, but there are countless
servers to which the end device can be communicating with, so the
attacker cannot learn much about the behaviour of a user just by
observing its encrypted traffic. On the contrary, suppose we have
a push button sensor communicating on a LPWAN, more traffic
than usual can only mean that the button was pressed more often
than usual, since to respect the LPWAN constraints the button will
try to utilize the channel as little as possible, therefore the attacker
gets perfect information.

An attacker exploits SL by observing statistical aggregates of
the transmission behaviour (e.g., message counts) of a particular
sensor in order to gain information about real-world events. If we
assume that real-world events show up as statistical anomalies, an
attacker that recognizes an anomaly in the transmission behaviour
of a given sensor, over a period of time of her choosing, managed
to exploit SL. The period of time can be as long or as short as the
attacker desires. As an example, an attacker is exploiting SL if she
can recognize that in the 30 minutes following lunch time of a
particular day or that a parking lot sensor sent more packets than
it would have otherwise sent in a normal day.

3.3 Formalization
We formally model an event e as a tuple comprising of its start time
t0 and its end time t1, which is e .= (t0, t1) ∈ R2 for t0 ≤ t1, and we
refer to the start (end) time of an event e as e .t0 (e .t1). Moreover,
with Ea−b

.= {e1, e2, . . . , ek } ∈ R
2k we denote a set of events that

all start at or after time ta and all terminate at or before time tb ,
that is ∀e ∈ Ea−b ⇒ ta ≤ e .t0 ∧ e .t1 ≤ tb .

We define the trace comprising only dummy packets between
times ta and tb as Da−b

.= {d1,d2, . . . ,dm } ∈ Rm , where di is
the time at which dummy packet i was sent and ta ≤ d1 < d2 <
· · · < dm ≤ tb . Similarly, we define a trace of real packets (i.e.
non-dummy packets) sent by one ED starting from time ta up until
time tb as Ra−b

.= {r1, r2, . . . , rn } ∈ Rn , where each ri is the time
at which real packet i was sent and the following condition holds:
ta ≤ r1 < r2 < · · · < rn ≤ tb . Note that real packets are connected
with events by the following relation:

r ∈ Ra−b ⇒ ∃e ∈ Ea−b |e .t0 ≤ r (1)

That is, for each message sent in the real trace, there exist a real
event in the event set. The overall transmission trace of an ED
as seen by the attacker in between time ta and tb is then defined
as Xa−b

.= {x1,x2, . . . ,xn+m }
.= Ra−b ∪ Da−b ∈ Rn+m , where

ta ≤ x1 < x2 < · · · < xn+m ≤ tb .
We model the prior knowledge of the attacker as π (Ra−b ), which

is essentially the probability that a given ED will produce the
real trace Ra−b in between times ta and tb . Alternatively, we
can also give the attacker prior knowledge of the event distribu-
tion: πa−b (t0, t1)

.= Pr (∃e ∈ Ea−b |t0 ≤ e .t0 ∧ e .t1 ≤ t1), where
πa−b (t0, t1) is essentially the probability that at least an event occurs
in between time t0 and t1 and is defined only for ta ≤ t0 < t1 ≤ tb .

We describe the obfuscationmechanism asq(Xa−b |Ra−b ), which
is the probability density function (PDF) of obfuscating the real
trace Ra−b with the trace Xa−b . Note that, despite the fact that we
give as input the obfuscated trace in the same interval as the real
trace (both go from time ta to tb ), EDs can only place dummies in
the future.

Finally, p(Ra−b |Xa−b ) is the posterior probability that the trace
Ra−b of real messages was contained in the trace Xa−b . Given
the prior knowledge of the attacker π (Ra−b ) and an obfuscation
mechanism q(Xa−b |Ra−b ), we can formally define the posterior as

p(Ra−b |Xa−b )
.=

π (Ra−b ) · q(Xa−b |Ra−b )∑
R′
a−b ⊆Xa−b

π (R ′
a−b ) · q(Xa−b |R

′
a−b )
. (2)

4 PREVENTING INFORMATION LEAKAGE
Before describing how to protect end devices (EDs) from EL and
SL it is important to understand which types of events are going
to leak information and which ones are not. In particular, periodic
and regular transmissions such as scheduled status updates and
keep alive signals do not leak information under our attacker model.
This is because the attacker knows the distribution of real events
and therefore observing something that she knows should be there
already does not increase her information about the state of the ED.
However, this does not imply that EDs that send only periodic mes-
sages will never leak any information, as the absence of a periodic
transmission might also reveal information to the attacker. Observe
that these corner cases of leakage can be easily obfuscated, by let-
ting the obfuscation mechanism send a dummy message whenever
a real event is not detected at the scheduled time.

Albeit trivial, this case helps in understanding one of the perfect
obfuscation strategies for both EL and SL: by constantly sending
messages one after the other, and filling empty transmission slots
with dummies whenever there is no real information to transmit,
the attacker cannot learn anything about the ED. Of course such
obfuscation mechanism can never be realized in practice, because
it would make the LoRa channel usable by at most one ED and
the power consumption of this device would most certainly not be
low, therefore not meeting the low-power requirement of devices
operating on LPWANs.

Since this trivial obfuscation mechanism cannot be employed in
practice, we need a way to evaluate how effective different obfus-
cation mechanisms are at protecting against EL and SL. Intuitively,
the obfuscation mechanism needs to achieve coverage and statistical
equalization, to protect against existential leakage and statistical
leakage, respectively. With coverage we refer to the fact that in
order to make it more difficult to guess which packets are real in a
given trace, the obfuscation mechanism needs to be able to cover
that trace with enough likely dummy packets, i.e. dummy packets
that are likely real in the eyes of the attacker. Statistical equalization
refers instead to the ability of masking anomalies within a trace,
thus equalizing or normalizing the statistics of a trace.

Towards these objectives, we introduce below the metrics that
allow us to quantify how much an obfuscation mechanism, with
some given transmission frequency constraints, can obfuscate a
trace of real messages sent by an ED.
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4.1 Privacy Evaluation Metrics
As previously observed in the context of location privacy [25], a
single metric usually does not simultaneously capture all the di-
mensions of privacy. Therefore, an obfuscation mechanism optimal
for a given metric, might not be a practically desirable solution to
protect the privacy of an end device. We instantiate two different
metrics that can be used to complement each other when analyzing
different obfuscation mechanisms: average error and conditional
entropy.

4.1.1 Average error. This metric estimates the average error
of an optimal attacker, based on a distance function between the
actual real trace and the best estimation that the attacker can make
based on the observation of the obfuscated trace. The distance
function d(Ra−b ,R

′
a−b ) can be defined in several ways depending

on whether we are analyzing the performance of the obfuscation
mechanism against EL or SL. For instance, when looking at EL the
distance function can be defined as the absolute difference between
the cardinality of Ra−b and R ′

a−b , while when looking at SL as the
absolute difference between the number of statistical anomalies
between Ra−b and R ′

a−b . The distance can also be extended to take
into consideration the timing differences, and not only the absolute
numbers, of the two traces. We report here the definition of average
error, AE:

(3)
AEa−b (q)

.=
∫
Rn+m

min
R′
a−b ⊆Xa−b

{ ∑
Ra−b ⊆Xa−b

π (Ra−b )

· q(Xa−b |Ra−b ) · d(Ra−b ,R
′
a−b )

}
dXa−b

If we consider a parking lot scenario, AEa−b (q) measures the aver-
age precision of an optimal attacker in guessing the number cars
parking in a determinate lot on a specific interval of time, when the
obfuscation mechanism q is used. Similarly, by defining the distance
function as a count of anomalies, AEa−b (q) quantifies the perfor-
mance of the best attacker at identifying abnormal movements of
cars in the parking lot.

4.1.2 Conditional Entropy. While the average error measures
the error of the attacker, the conditional entropy provides a measure
of how certain the attacker is, on average, that her guess is correct.
As opposed to the average error, the conditional entropy does not
depend on a distance function between two traces, as it is simply an
information-theoretic measure on the least uncertainty an attacker
can achieve. In practical terms, picking again on the parking lot
scenario, say that the attacker guessed that 5 cars parked within
a given interval, the conditional entropy measures how sure the
attacker can be that this event actually occurred.

(4)
CEa−b (q)

.= −

∫
Rn+m

∑
Ra−b ⊆Xa−b

π (Ra−b )

· q(Xa−b |Ra−b ) · log(p(Ra−b |Xa−b ))dXa−b

4.2 Are EL and SL fundamentally the same?
Leakage by existence refers to scenarios where observation of a
single message can leak the occurrence of a certain real-world

event. In statistical leakage, we summarize scenarios where statis-
tical properties of aggregates of messages leak the occurrence of
events, which reveal themselves as anomalies of the message count.
More precisely, an anomaly is given by a message rate disturbance,
observed at a certain time scale (which depends on the nature of
the event). The question arises, whether we can conceptually re-
duce SL to EL by applying a transformation that replaces anomalies
with individual messages and ignores all remaining transmissions.
Without obfuscation, this equivalence hypothesis indeed holds.

However, obfuscation changes this. A fundamental property of
leakage by existence is that the detailed time information of the
event cannot be completely removed by an obfuscation strategy
that only involves dummies. However, statistical anomalies can
potentially be hidden completely. The reason for this is that sta-
tistical leakage inherently assumes a discretization on the part of
the attacker, thereby allowing an obfuscator to potentially max out
the conditional entropy (e.g. by waterfilling the rate subject to the
attacker’s discretization interval). This discretization inherently
has the property that it happens over time intervals that are likely
to involve multiple non-dummy transmissions. Otherwise, there
would be nothing to aggregate. This means, that it is - at least from
the perspective of instantaneous channel occupancy - possible to
maintain this rate by adding dummies. This denotes the fundamen-
tal difference between leakage by existence and statistical leakage.
In leakage by existence, the fundamental time discretization is given
by the application’s time resolution. One could argue that there still
is a fundamental limit on time information. However, waterfilling
at the application time-resolution is fundamentally out of reach for
any obfuscator, due to limits in channel access rates as well as our
focus on delay-intolerant applications. Therefore, complete event
hiding is out of reach in leakage by existence.

In both EL and SL, an attacker performs for a certain point in time
or time interval a binary hypothesis test on a certain observable,
mapping it to an event or not. In leakage by existence, the event
observables are given by the messages. In statistical leakage, not
all intervals containing events qualify as event observable (they
have to register as anomaly at the attacker). There, the attacker
performs some kind of aggregation over an interval, the output of
which is some real number, on which a binary decision is applied.
This number, let’s call it anomaly indicator, is affected by both
real and dummy messages. Dummy messages might reduce the
anomaly indicator at certain intervals and increase it at others,
both removing observable events and adding them (as opposed to
EL, where observables can only be added).

4.3 Building blocks of an obfuscator
In the following, we address the most important practical concerns
and challenges faced in the design of an obfuscation mechanism
against both statistical and existential leakage.

Background traffic model. An obfuscator needs to maintain a
time-dependent model for the background traffic. Traffic generated
by human activity exhibits periodicity at different time scales which
may itself not contain meaningful event information to hide and
therefore needs to be separated. Such contributions have previously
been modelled as multiplicative components of a time-dependent
poisson rate in the context of event detection [15].
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Figure 3: Obfuscation cost associated with influencing the expected anomaly indicator (index of dispersion). The relative cost
for increasing the anomaly indicator depend on the baseline (bl) rate whereas the cost for reduction depends on the relative
intensity of the anomaly (anm int).

Event prior. An obfuscator requires some prior knowledge about
the occurrence of events worth obfuscating for any adaptive mech-
anism. For statistical leakage, this is given by a time scale at which
an event occurs (aggregation interval) as well as at which time it
occurs. In order to avoid existential leakage, an obfuscator requires
knowledge about the temporal distribution of individual messages.

Attacker prior/intent. Complete information hiding against sta-
tistical leakage can only be provided by constant high-rate trans-
missions. This is not practical. Therefore, a meaningful obfuscation
mechanism needs to have a certain attacker in mind. An attacker’s
temporal prior is partly given by the overall observation interval
as well as the aggregation interval.

Multiresolution obfuscation. In general, an obfuscator has to pro-
vide protection against statistical leakage at multiple time scales.
Obfuscation mechanisms at different time scales could also interact
in an unfavourable way, e.g. lower scale obfuscation by waterfilling
could amplify a higher scale anomaly.

Temporal dummy placement. Excess messages placed for statis-
tical leakage protection need to pass the same logic as dummies
for existential leakage protection. This means the temporal place-
ment of any dummy message has to blend in with the temporal
distribution of real messages. Otherwise, dummy traffic for avoid-
ing statistical leakage could be easily separated based on more
fine-grained temporal statistics.

5 EVALUATION
In the following, we attempt to shed light on the feasibility of
obfuscation against statistical leakage under a power constraint.

5.1 Reducing the problem to a single timescale
Fundamentally, with statistical leakage we refer to event informa-
tion that is leaked by an attacker observing the statistics of message
counts. This is not limited to a certain timescale. In this evalua-
tion however we simplify the problem to binary information that

leaks over a single timescale. We therefore assume time to be dis-
cretized in intervals of constant length S . We model the background
(baseline) traffic to be statically distributed with poisson rate λ, con-
tributing with S independent samples to the overall process λS . 3
We model event information as a singular variation of the rate in
one of the slots within S . An interval of length S that contains a
slot with poisson rate λA > λ is considered an anomaly. We define
the anomaly intensity I = λA

λ as a measure for the magnitude of the
anomaly. We consider each interval to contain an anomaly with an
equal probability Rp (positive rate).

An attacker’s goal is to detect such anomalies. For this purpose,
we consider the attacker to rely on a single observable per interval,
the index of dispersionD = σ 2/µ, where σ 2 refers to the variance of
the message count observed in the S slots divided by the respective
mean µ. The index of dispersion is suited in order to distinguish
random (poisson) from bursty event traces [12]. The attacker per-
forms for each interval a binary hypothesis test on the index of
dispersion

H0 : D = 1

H1 : D > 1,

where H0 denotes the null hypothesis (no anomaly) and H1 the
alternative hypothesis (anomaly). We assume the attacker knows
the distribution of D under both hypotheses.

An obfuscator can fundamentally try to hide real anomalies by
waterfilling as well as introduce fake anomalies. An obfuscation
strategy is given by the probabilities for waterfilling given an anom-
aly (Pwf ) as well as the probability for adding a fake anomaly given
no anomaly (Pf ). Both measures are associated with a cost in terms
of power.

3While this might at first seem unrealistically simple, real event traces have actually
been modelled with time-varying poisson distributions [15]. It is also worth noting
that many inhomogeneities are periodic and can potentially be removed by an attacker
(e.g., day-night patterns). The static poisson distribution captures the remainder in the
count distribution that is purely random, reflecting an attacker that is well-informed
about systematic changes in the distribution.
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5.2 Cost of SL obfuscation
Power is an important constraint in any LPWAN application. There-
fore, we model the obfuscation strategy to be informed by the rel-
ative power cost per time interval. Since messages and dummies
need to be indistinguishable anyway for effective obfuscation we
consider the relative cost in terms of relative message counts of
dummies vs. real traffic.

5.2.1 Adding fake anomalies. First, we consider the case where
the obfuscator transmits dummy messages within an interval that
consists only of background traffic. This corresponds to adding an
excess rate of λf a in one of the S slots of the interval. The mean
becomes

µ ′ =
(S − 1)λ + (λ + λf a )

S
,

the variance

σ ′2 =

[
(S − 1)λ2 − (λ + λf a )2

S
− µ ′2

]
S

S − 1
+ µ ′.

The expected cost associated with increasing the index of dispersion
by a factor of k can be found analytically by solving D ′ = kD =
σ ′2/µ ′ for λf a . As only one slot is affected, the cost for adding a
fake anomaly is given by the fake anomaly excess rate itself. The
relative cost is given by

Cf =
λf a

λS

5.2.2 Waterfilling. Similarly, bywaterfilling the obfuscator changes
the statistics of the traffic by lifting the overall mean over the inter-
val to

µ ′ =
(S − 1)(λ + λwf ) + λI

S
,

as well as the variance to

σ ′2 =

[
(S − 1)(λ + λwf )2 − (λI )2

S
− µ ′2

]
S

S − 1
+ µ ′.

Again, the expected cost of decreasing an anomaly by a factor of
k can be found by solving D ′ = D/k = σ ′2/µ ′ for (S − 1)λwf . This
value is shown for some anomaly configurations in the left side plot
of Figure 3. The expected relative waterfilling cost for the entire
interval amounts to

Cwf =
λwf (S − 1)
λS + λA

.

In Figure 3 we show the dependency of the relative change on
the anomaly indicator (index of dispersion) for both obfuscation
mechanisms. Note that waterfilling leads to a decrease in the anom-
aly indicator, while a fake anomaly is associated with an increase.
Overall, a fake anomaly is less costly than waterfilling for a similar
relative shift of the attacker observable.

5.3 Obfuscation Strategy
After introducing the attacker and formulating the specific power
constraint considered, we will establish the conditions for both
optimal and sub-optimal obfuscation and motivate the behaviour
of the obfuscator under our model.

5.3.1 Attacker knowledge. We assume the attacker to know the
statistics of the observable (index of dispersion) under both hypothe-
ses. Moreover, the attacker knows the relative rate of anomalies
(i.e. rate of positives) Rp . Correspondingly, since we are dealing
with a binary detection problem, the rate of negatives (no anomaly)
is given by Rn = 1 − Rp . The attacker also shares the same time
discretization into intervals of equal length S with the obfuscator.
The width of S can be considered a temporal prior, i.e. the attacker
has some knowledge about the temporal duration of the anom-
alies he wants to detect. We assume the attacker not to include the
overall message count of intervals into his decision. The reasoning
behind this is as follows. An attacker that includes changes in the
overall rate over time essentially performs anomaly detection at
a higher timescale. While this does not exclude the possibility of
statistical leakage of higher-scale anomalies, the same obfuscation
mechanisms could also be applied at this higher scale, at the cost
of a corresponding relative cost.

5.3.2 Power constraint. As introduced, waterfilling and fake
anomalies differ in terms of their relative costs, Cwf and Cf . Pwf
and Pf are the probabilities that the obfuscator employs waterfilling
or places a fake anomaly, respectively, and together denote the
obfuscation strategy. We consider a fixed power budget for the
dummy generation in order to account for LoRa low-power goal.
Specifically, themaximum expected relative obfuscation cost cannot
exceed the overall background message rate:

RpPwf Cwf + (1 − Rp )Pf Cf
!
≤ 1 (5)

5.3.3 Complete obfuscator knowledge. First, we assume the obf-
sucator to have optimal knowledge w.r.t. the time intervals in which
anomalies occur. The obfuscator’s strategy is defined by his choice
for the probability at which anomalies are waterfilled Pwf as well as
the probability at which fake anomalies are added to intervals with-
out anomalies, Pf . Under optimal SL obfuscation, the observation of
the index of dispersion subject to a certain scale (i.e. discretization
into intervals of length S) should not help the attacker in deciding
which intervals contain anomalies.

We introduce a parameter ε , capturing the degree of sub-optimality
of obfuscation, and define the obfuscator’s goal subject to this pa-
rameter as

RpPwf

Rn (1 − Pf ) + RpPwf
· (ε + 1) !=

Rp (1 − Pwf )
Rp (1 − Pwf ) + RnPf

. (6)

Since Rn = 1 − Rp , the above equation holds true for optimality of
obfuscation (i.e. at ε = 0), whenever

Pwf = 1 − Pf .

5.3.4 Incomplete obfuscator knowledge. Until now, we assumed
an obfuscator with complete knowledge about the times at which
anomalies occur. However, this might be an unrealistic assumption.
Therefore, in addition to a scenario with full knowledge, we model
an obfuscator with limited knowledge. This limitation is reflected
in a likelihood Ptp < 1 of predicting an anomaly and Ptn < 1 of
correctly anticipating baseline traffic. We assume the obfuscator to
be aware of this uncertainty. The condition for ε + 1-obfuscation,
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originally formulated in Equation 6, becomes
RpPtpPwf

Rn (1 − PtnPf ) + RpPtpPwf
· (ε + 1) !=

Rp (1 − PtpPwf )
Rp (1 − PtpPwf ) + RnPtnPf

,

(7)
which is under assumption of optimality (ε = 0) satisfied for the
obfuscation parameters

Pwf =
1 − PtnPf

Ptp

and

Pf =
1 − PtpPwf

Ptn
.

5.3.5 Sub-optimal obfuscation. Optimal obfuscation cannot be
achieved whenever Equations 6 or 7 cannot be satisfied with ε = 0
and Pf , Pwf ∈ [0, 1], under the power constraint. In that case, we
assume the obfuscator to choose the obfuscation strategy, i.e. Pf and
Pwf , such that |ε |, i.e. the relative bias in the posterior probability
distribution s.t. both observations, is minimized.

5.4 Evaluation results
In the evaluation, we explore the following two directions. First,
we characterize the parameter space, aiming to understand which
combinations of values for the rate of anomaliesRP and the anomaly
intensity I allow for optimal obfuscation. Second, we would like to
quantify the information leakage under sub-optimal obfuscation,
using the metrics introduced in the previous section.

5.4.1 Optimal obfuscation. In this evaluation, we aim to under-
stand the parameter space of an optimal obfuscator. That is, which
combinations of anomaly rate RP and anomaly intensity I allow us
to build an optimal obfuscator under some power constraint. Specif-
ically, we are interested to know which parameter combinations
satisfy Equation 5, given the dependency of the obfuscation cost on
the anomaly intensity I . Considering Figures 4 and 5, obfuscation
is optimal where the metric coincides with the ideal value. This
means that, at anomaly rates where this is the case, values for Pf
and Pwf exist that satisfy the power constraint. We can see in both
scenarios that increasing the anomaly intensity decreases the width
of the anomaly rate intervals for which an optimal strategy exists.
Moreover, the support of the optimal strategy over the anomaly
rate also decreases for all anomaly intensities when the knowledge
of the obfuscator decreases. In the second scenario, we considered
an obfuscator which correctly guesses 99% of baseline intervals and
70% of anomaly intervals. This uncertainty of the obfuscator makes
it impossible to make optimal choices for anomaly rates under 50%,
given an anomaly intensity that is 30 or higher. However, we argue
that it is anomalies at these low occurrence rates deserving the
name in the first place, indicating rare events that might be impor-
tant to hide. We hence conclude that, if an obfuscator is limited
in knowledge, perfect hiding of statistical leakage is not possible
at relative anomaly intensities above 30, given the constraint that
power spending for obfuscation may not exceed the power used
for actual traffic.

5.4.2 Sub-optimal obfuscation. In Figures 4 and 5, deviations
from the ideal value characterize information leakage under sub-
optimal obfuscation. The ideal value refers to a guessing attacker

that only uses his prior knowledge about RP , and therefore does
not learn anything by observing the trace. We evaluated guessing
error and conditional entropy for both complete and incomplete
obfuscator knowledge. The attacker is modelled to guess anomalies
and baseline intervals with the respective probabilities at which
they occur. The guessing error is defined as the ratio of anomalies
that is expected to be not detected by the attacker. Consistently
with the previous result, we can observe that the range of optimal
obfuscation shrinks for increasing anomaly intensities. Moroever,
depending on the anomaly rate the attacker’s error rate decreases,
especially for more pronounced anomalies. For example, at a 20%
rate of anomalies with intensity 40, the power constraint results in
a 20% decrease in anomaly guessing error for the attacker.

5.5 Multiple timescales
We note that, despite the evaluation being confined to a single
timescale, the findings are of importance also for applications that
potentially leak at different timescales. Statistical patterns of real
applications can convey event information at multiple, different
timescales [15]. Hiding anomalies at one timescale hence only con-
stitutes a necessary condition for overall obfuscation. Moreover,
assuming that anomalies at different timescales occure indepen-
dently, we can expect the overall relative cost to be given by a
product of contributions at different scales. In particular, by provid-
ing protection against existential leakage at all times, an obfuscator
would be forced to place dummies in the vicinity of every real mes-
sage, thereby multiplying the background rate λ by the size of the
anonymity set provided.

Our results for one scale indicate that protection against sta-
tistical leakage at one scale is bound to collide with fundamental
power limitations in the LPWAN context, a problem that is expected
to get even worse if more scales and existential leakage are also
considered by an obfuscator.

6 RELATEDWORK
The problem of preventing information leakage in modern commu-
nication and networking technologies has received much attention
due to the rapid growth of applications that rely on these technolo-
gies to exchange sensitive data. Privacy issues in wireless sensor
networks have been studied mainly with the goal of protecting
the network’s spatial [29] and temporal [16] information. Many
works [18, 22, 29, 35, 37] have studied the problem of protecting
source location in wireless sensor networks, i.e. where a particular
event originated. The proposed solutions leverage the multi-hop
topology of the network to generate phantom [18] and random
routes [35] with fake data to achieve one static spatial distribution.
Due to the delay-tolerant nature of the applications, many solutions
to protect temporal privacy in wireless sensor networks involve
delaying or aggregating messages [17]. The above solutions do not
work in the context of LPWANs, as many of their applications are
delay-intolerant and rely on event-triggered communications for
their operation. Furthermore, the one-hop network topology of
LPWANs makes the location-hiding schemes proposed for wireless
sensor networks infeasible.

In the context of general networks, information leakage has
been extensively studied through a variety of anonymity and mix
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Figure 4: For different anomaly intensities, we show the attacker’s error rate in guessing anomalies as well as the conditional
entropy. We also highlight the theoretical value of the metrics for optimal obfuscation. Where the results differ from this
curve, optimal obfuscation cannot be provided under an equivalent power constraint of 1. In the scenario shown, we assume
the obfuscator to have optimal knowledge about anomaly occurences.
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Figure 5: If we limit the knowledge of the obfuscator 99% (TNR) and 70% (TPR) certainty for baseline and anomaly, respectively,
the domain of anomaly rates that can be ideally protected under an equal power constraint of 1 shrinks considerably. In
general, we observe a decrease in both the attacker’s guessing error as well as the conditional entropy compared to obfuscation
with full knowledge about anomaly occurences.

network mechanisms. The main goal of mix networks is to hide the
association between the sender and the receiver. Several attacks [7,
8, 28, 32] have leveraged the timing information of mix network
packets to derive a relationship between senders and receivers. The
proposed countermeasures involve packet dropping [19], constant
and adaptive dummy injections [30], introducing artificial packet
delays [17], and so on. These countermeasures were designed for
general networks where the participating nodes do not have any
power constraints. On the other hand, LPWANs were designed
specifically to enable ultra low-power operation of the end devices.

The recent works on LPWANs and LoRa have focussed on ad-
dressing challenges related to network performance, coverage and
scalability [3, 10, 14, 21]. Several vulnerabilities, such as replay
attacks [4, 33], reactive jamming [5], key extraction [33] and fin-
gerprinting end devices [27] were successfully demonstrated. To

the best of our knowledge, the implications of information leak-
age in LPWANs have so far not been studied. This paper therefore
provides a first insight on the privacy guarantees of LPWANs.

7 CONCLUSION
In this work, we showed that the event-driven communication
strategy adopted by LPWANs to save power inherently leaks in-
formation, independently of the implemented cryptographic primi-
tives. Furthermore, we demonstrated that it is hard to implement
privacy enhancing techniques on LPWANs without incurring sig-
nificant communication and computational (energy) cost. Given the
wide variety of privacy sensitive applications that are beginning to
rely on LoRa and other LPWAN technologies, we have highlighted
through this paper the challenges that exist in designing low-power,
low-cost, wide area networks and guaranteeing strong privacy.
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