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Abstract. Let the t ransfer  funct ion for the numerical  filter be H(w) = ~ _ _ ,  h,,e(~'~,~5 
where h,~ is the n t h  weight and f,~ is the sampling frequency. The  weights are giwm by h,~ = 
1/2rrf,~f'~/;Ti, H(w)e(-*"./f~ ) dw. If we assume tha t  H(w) has a cont inuous first derivatiw; a~d 

the  second der ivat ive  exists, an error bound is given by e(N, f,) =< 2fffrrNf~tc I H'(w) I &.~, 
where w~ is the angular cut-off frequency, wt the  t e rmina t ion  frequency,  and 2N q- 1 is 
the  number  of weights used. This  is a bound for the  error in recovering the t ransfer  fmmtion 
by using a finite number  of weights. 

Introduction 

In 1961, Joseph Ormsby [1] proposed ~ numerical filter whose transfer hme- 
tion had the following form: 

H(w) = w); - w ~ < w  < - w , , ,  w~ < w < w~ 
~1; l'wl ~ w. 

where w, - cutoff frequency (angulm') = 2,vj'~ and w, = filter roll-off termina- 
*,ion frequency. 

In general, a polynomial type roll-off was used and there wars no restriction o~ 
f(w). An error tern, is given which appears in the form of a rather complicated 
integral and which will require some sort of numerical integration scheme for 
evaluation. This means that  evett though the error term is exact, there will be 
an error in the numerical integration method. If  machine time is disregarded, 
this rotor term can be evalua.ted to give a very good bound. In this paper, we 
derive an error bound for a subclass of the above type of filter lransfer functions, 
We will use that  subclass of transfer functions having continuous first dcriv> 
lives and whose second derivative exists. 

I t  is true tha t  in some specific cases bet ter  error bounds are available than the 
ones derived here. In  particular, a few empirical bounds have been found which 
are better;  however, the following bound is applicable to the entire class of such 
filters and also to the case of derivative filters; i.e. those filters which shm~L 
taneously filter and differentiate. The pr imary advantage of these bounds is that 
they can usually be found as a dosed form of an integral. We might add as a 
note tha t  these bounds can also be extended to the n-variable ease. 

We first find an error bound for the general class of filters given above. The~ 
as an example, we will find an error bound for a particular filter given by Grahan: 
[2]. 

The major i ty  of this  work was done under  contract  number  NAS8-5164 wi th  the Aubur~ 
Research Foundat ion,  Auburn  Univers i ty ,  Auburn,  Alabama.  

* Presented a t  Southeas tern  Regional Meet ing of ACM, September  20-21, 1963. 
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t;'rf >r Bound 

T~I~+:O'aEM. U H(w) ~,%_+" '<~'°'+~+> = n,++ is the transfer flmction of a nu- 
~erical filter such that H ( w )  has a continuotts first derivative and wh, ose second 
defi:,ative ezists, then an error bound in recoveriri,g the transfer function by a finite 
~oJ~ber of tel'ms is given by 

e 

~dtere f~ is th.e sampling fl'eqt+ency and h~, - - N  <= i N N,  are the weights used 
j 'or If+re , r e c o v e r y .  

P~ooF. We may express the proposed transfer function as 

H ( w )  = _~ h~,e (i~]i') (1,) 

aud our actual transfer function as 
N 

f / (w)  ~ ,  .,+nl,'.> 
= n,+e , ( 2 )  

n~- -N  

where 
1 /. 

J_ H ( w ) e  (-~+/I") dw. (3) h+ = 2 ~  ~ .  

h~ light of the above statements, the error between the two transfer funetions is 
giv(~t~bye(w,N) = [ I (w)  -- H ( w ) . S i n c e b o t h H ( w ) a n d h ~ ,  --N N n =< N, 
are real we may write (1), (2) and (3) as 

H(w)  = h~ cos , I t (w)  = h, cos 

arid 

1 [ (we) 
~s+ H ( w )  cos dw. 

Using these expressions and taking the absolute value of the error, we get 

i~(u',N) l = I t t (w)  -- H ( w ) ,  = 2 ~ h.~cos (~vn) 
n ~ N + l  

cos f rI(x) co+ dx 
= +Z +aNal \ f+ / +-:s+ ~ " 

Interchanging summation and integration, we get 

1 f ( w n )  (Xn)  dX I (4) _"° H(x> +o+ co+ . I+(+, N) t = ;7; . - . : .  ,-++~ -77 T 

h~ (4), let us apply the partial integration formula 
b _ L" 

g d f  = f (b)g(b)  - f (a )g(a)  f dg, 
a 
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where g = H(h) ,  df = cos (hn/f~) dL 
From the well-known Shannon Sampling Theorem, we know that  fi is no l~,~ 

than twice the highest frequency present in our data. Thus, 7rf~ will be consider, 
ably higher than the termination frequency. Hence, we note that  H(TrfJ = 
H(--~f~) = 0. Then 

I ~f~ COS Sin 
I0( ,N) t = 1 f H'(X) 7;- 7: . 

7~ d - - ~ v f a  n = N + l  ~b 

We also note that,  except for the intervals --wt ~ w ~ --w~ and w~ ~ w 5 w~, 
H'(w) = 0. Both of these intervals are contained in the interval [-~-f~, vf~]; 
thus, 

-w~ cos sin 
l¢(w, N)  [ = H'(~)  dX 

w t n = h r + l  n 

- H ' (~ )  -~- ~ & 
71" e n = N + l  n 

Using the partial integration formula again and rearranging terms, we get 

c C O S  C O S  

e(w, N) = H"(k)  n2 dh 
L t n = N + I  (o-)] 

w t ~_~ C 0 S  C O S  

+ £ H"(x) ~ ~ Z- ex 
c n = N  + I n 2 

H"(X)  n~ 
w t n ~ N + I  

(w-) 1 [ w t ~ COS C0S 
+ fw H"(X) T G dh 

¢ n ~ N + l  n 2 

I H"(~)  ] ~ d~ + I H#(k) I ~-i dX 
w t n ~ N + l  c n ~ N + l  

- -  I H"(X) ] dX + ] (h) I dX 
71"N W t c 

We see that  this expression no longer involves w but does involve N and fi as 
variables. Since the function is even, the two integrals will be equal. If H"(w) 
is odd, as in the case of the first derivative filter, tile absolute values will be the 
same; hence, we have 

4N, f~) < 2:, f ] '  = ~ ] H#(h)  I dX. 
c 
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Thus, for a given filter whose transfer function satisfies the necessary differen- 
ti~bility requirements, we can determine an error bound simply by evaluati~g 
a~ integral. In most eases, this integral can be evaluated in closed form. 

The bounds for derivative filters may be handled in the same way. As a mat- 
ter of fact there are only two forms, as the transfer function is either real or 
pure imaginary. In general, the nth derivative filter will be of the form kw'~H(w) .  

where H ( w )  is the transfer function for the 0-derivative filter and/~: is a constant 
Hence, any filter satisfying our original differentiability assumptions will cer- 
tahfly satisfy the necessary conditions for derivative filters. 

One other difference must be pointed out. The limits of integration must be 
examined in the light of the transfer function for each derivative filter. We woukt 
need to apply the partial integration techniques more than twice to arrive at 
limits of - w t ,  --w~, and w~,  wt  if we are using a derivative filter of order gr~mt~r 
than one. However, we are usually safe in using two applications and evaluath~g 
the definite integral thus obtained, as, in general, the bounds are larger for bigh{,z 
derivatives. 

One note of caution. The above derivation tacitly assumes that H ( w )  = 1, 
-wo -<= w N w~. if  this is not the ease, the above method is still applicable, 
but the limits of integration will require careful study. 

A Particular Fil ter  

As an illustration we use the filter proposed by Graham. The second deriva- 
tive of the transfer function exists, hence we may proceed directly to the formula. 
We use the w-notation rather than the X-notation of the formula. 

H ( w )  = 

where Aw = Wt - -  

Hence 

0; Lwl >= w, 

1; Iwl -<_ wo 

2 

w~. Differentiating the roll-off 
2 

H " ( w )  = ~r w --  w~ 
--2Aw----- ~ cos - - 7 -  ~r, 

wc < w < wt 

--Wt < W < - - W e ,  

twice, we get 

w e < w <  w t .  

2f, .[.i ~t ~.2 w -  we 2f~ 1 
e(N,,L) <- ~ -,oo ~ cos ---~--- ~- dw - ~ w  N "  

Thus we have an error bound for recovering the function in terms of/L,  N and 
5w. To illustrate the first derivative bound, we note that the bound is 

t 

dw, N) < ~-f" IH"(X){ dX, (5) 
= ~NJw~ 
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where, in this case, H(w) is the transfer function for the derivative filter. Th~ 

l 
0 ; Iwl ~ ~ 

~2- c o s \ - - ~ - ~ -  + 1  ; w ~ < w  <w~ 

~- c o s \ - - - ~ y ~ -  ~- + 1 ; --wt < w  < --w,~. 

For this bound, we can use the same limits of integration as above. Thus  

2* 
H "  ( w ) w ~  ~ w - w~ ~-i w - w~ 

2Aw2 cos ---A-~- 7r -- Aw sin --~7~--- ~r, w~ < w < wt.  

i f  we use these expressions in inequality (5) we will arrive at  a bound e(w, N) 
6 f i /AwN.  This bound is, of course, considerably higher than  in the  former ease. 
This  is typical  of the higher derivative bounds;  hence, they  are usually imprae. 
tieal after the  first derivative. 
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