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.4bslracl. The t ime required to perform a group operation using logical circuitry is 
investigated. A lower bound on this t ime is derived, and in the ease tha t  the group is abelian 
it is shown tha t  the  lower bound can be approached as the complexity of the elements used 
i~ereases. In par t icular ,  if the group operat ion is adding integers modulo t~, it, is shown tha t  
the lower bound behaves  as log log a(t~), where a ( , )  is the largest power of a prime which 
divides ~. 

I. Introduction 

A study is made in this paper of the amount of time required to add two in- 
tegers using logical circuitry. Each of the addends ranges over the set ZN = 
{0, 1, . . .  , N - 11, and the addition is performed modulo N. This problem was 
considered by U. Ofman [1], who studied it in the ease that N = 2"; and the 
input signals representation of the addends as well as the output signals repre- 
sentation of the sum correspond to the radix 2 representation of integers. He 
showed that under these conditions the addition can be performed requiring an 
amount of time which grows as log2 log2 N = log2 n; while the amount of hard- 
ware required grows as log2 N = n. Another addition scheme which also requires 
an amount of time which grows as log2 n, under the above mentioned conditions, 
was reported in [2]. An evaluation of the relative merits of various schemes for 
addition can be found in [6]. 

In this paper only the amount of time required to perform addition is inves- 
tigated, disregarding the amoun~ of hardware required for the implementation 
of the addition schemes. A lower bound on the amount of time is derived, and it 
is shown that  this lower bound can be approached as the complexity of the 
logical elements used increases. 

In Section II,  a more precise formulation of the problem is to finite abelian 
groups. I t  is then shown that  for finite abelian groups the lower bound can be 
approached as the complexity of the logical elements used increases. 

In Section II,  a nlore precise formulation of the problem is given; the lower 
bound is derived in Section III ;  and Section IV describes schemes which require 
an amount of time which is close to the lower bound. 

II. Formulation of the Problem 

This section is devoted to giving a more precise definition of a logical circuit, 
as well as its ability to add integers or perform any other group operation in a 
given amount of time. 

Definition 1. A d-values logical element is an object with r input lines and one 
output line. The output  line and each of the input lines can be in one of d distinct 
states. The state of the output line at time t + 1, is a function of the states of 
the input lines at time t. 
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Definition 2. A d-values logical circuit is a finite set of d-values logical ele- 
ments and a rule of interconnections which partitions the set of lines of the 
logical elements and identifies (connects) two lines if and only if they are in the 
same class. This rule of interconnections is subject to the restriction that no 
two output lines are to be in the same class. The classes which do not include an 
output  line are called the inputs of the circuit, and a designated set of classes 
which do include an output line is called the outputs of the ci~'cuit. 

Let C be a logical circuit. We designate by S~ the (finite) set of all possible 
configurations of the states of the output lines of the logical elements of C (& 
is termed the set of internal states) ; we designate by L the (finite) set of all 
possible configurations of states of the inputs of C (I~ is termed the set of inp~t 
states), and we designate by 0~ tile (finite) set of all possible configurations of 
the states of the outputs of C (O~ is termed the set of output states). Note that 
since the outputs of C are a subset of tile set of output  lines of elements of C, 
the output state is determined by the internal state, we use o: S~ -+ O~ to designate 
this function. 

The behavior of a logical circuit C is described in terms of a function f: & × 
I~ ~-~ S~, where f(s,  i) (s C & ,  i ~ I~) is determined by setting the state of each 
input line of an element of C at time t equal to the state of the output line or 
input of the circuit with which it is associated, as determined by s and i, and 
taking the resulting state of the circuit at time t q- 1 as f (s ,  i ) .  The function 
f (s ,  i) can be extended to f*: & X I,~ X N --+ S¢ where N is the set of natural 
integers, and wlmre f*(s,  i, 1) = f (s ,  i) and f*(s,  i, n q- 1) = f ( f* (s ,  i, n), i). 
Finally we define c: So × I~ × N by c(s, i, n) = o(f*(s,  i, n ) ) .  

Definition 3. Let ~o: II~=~ x~ --~ Y be any finite function. A circuit C is said to 
be capable of computing the function ? in time r, if there exists a state So ~ &, 
a partition of the inputs of C into t equivalence classes, a set of t hnmtions 
gi : X i  --~ I~.~ (j  = 1, 2, •. • , t) where I~.~. is the set of configurations of states 
of the inputs of the j th  equivalence class, a function h: Y --~ O~ such that for each 
(x~ , x~, . . . ,  x~) ~ ~'~ × X,~ . . .  x x , c ( S o ,  (g~(z~) ,  g~(z~) ,  . . . ,  g,(x , )  ), ~) = 
h(~(x~ , x2, • • • , x~) ). We also say that  a circuit C is capable of computing the 
function ~o if there exists an integer r such that  C is capable of computing ? h 
time r. 

The notion of a circuit computing a function as described in definition 3 
essentially consists of the following. 

(i) The internal state of the circuit is set to So at time 0. 
(ii) Each of the arguments of the functions is coded and applied as inputs 

to tile circuit. 
(iii) The inputs are held fixed until time r, in which time the output of the 

circuit is "sampled" to yield the result of the computation (in a coded form). 
In Section I I I  we derive a lower bound on the time required to compute the 

function ~o: G X G --~ G, where G is a finite group, and ? is the group operation. 

III.  The Lower Bound 

Let C be a logical circuit. We use c~(s, i, r) to denote the j t h  component of 
c(s, i, r) ,  i.e. if the state of output  oi is the j t h  component of the output state, 
then c / s ,  i, r) is the state of o5 at time 7 if the circuit "s tar ted"  in internal state s 
and the input is held fixed as i. 
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Definition 4. An output  line o 5 is said to be s independent (s C So) on input 
line"lk in time r, if for all i~ ~ [~ and i2 C [~ differing only in the state of lkcj(s, il, r) 
cj(s, i2, r). If  an output  line is not s-independent on line lk in time r, it is said to 
be s.dependent on lk in time .r. Note tha t  if output  oj is s-dependent on input 1j¢ 
there exists a "pa th"  from l~. to 05 if the circuit is viewed as a directed graph. 

LE~IMA 1. Let C be a logical circuit; each of whose elements has at most f (  > 1) 
input lines. For all output lines oj of C, if oy is so-dependent on t inputs of C at time 
~, then r >= [log~ t]. (Ix] denotes the smallest integer not smaller than  x.) 

PROOF. We prove the lemma by induction on t. I f  t <_ r, the inequality ob- 
viously holds. 

Suppose oj depends on t > k inputs of C, and oj is the output line of element 
ej. Let 0 be the set of input lines of e¢, at least one of those lines is an output  of 
another element of C which depends on at least [t/r] inputs of C at time r - 1. 
By induction hypothesis we obtain 

r - 1  >[log~[!.]]>Elog~]--[log~t]-- 1, 
SO r > [log~ t]. 

Let C be a d-values logical circuit which computes ¢: G X G --> G, where G is 
a finite group, and ~ is the group operation. In  the remainder of the section we 
use g~. g2 to denote ¢ (g~, g2). Since C computes ~, there exists a function h: G -~ 0~. 
We use h~(g) to denote the state of the j t h  component of h(g). 

Definition 5. An element a ~ G is said to have property Ei with respect to a 
circuit C which computes ~ if for all b C gp(a), hi(b) = hi(e), where gp(a) 
denotes the group generated by  a, and e denotes the identity of G. We denote the 
fact that a ~ G has proper ty  Ej  by E~(a). 

LEMM~ 2. Suppose Ei(a) does not hold, and b, c C G are ~uch that gt(b) and 
g~(c) (g2(b) and g2(c) ) differ only in inputs on which o¢ doe.s not depend, then 
a ~ gp(b.c-~)(a ~ gp(b- l .c) ) .  Here g~ and g~ are as in definition 3. 

PaOOF. We prove here only one half of the assertion, the other half is provable 
in aa analogous way. By hypothesis, for any element x C G 

h~(b.x) : cj(,%, (gl(b), g2(x) ), T) = C¢(So, (gl(c), g.~(X) ), r) = hi(c 'x)  

(since oj was independent of the input lines in which g~(b) and gl(c) differ). 
Thus hi((b.c-1) .x)  = h i (b . ( c - l . x ) )  = h i (c . ( e - l . x ) )  -__ hi(x), for all x C G. 
Setting x = e we obtain hj(b.c -~) = hi(e), setting x = b .d  ~ we obtainhj(e)  = 
hi(b'e -~) = hi((b.c-t)~),  by setting :c = (b.c-~)" for all integers s, we obtain 
that Ei(b.c -~) holds. But, if a ~ gp(b.c -~) then Ej(a)  would hold as well, so 
a ~ gp(b.c-~). 

Definition 6. Let e ¢ a ~ H N G, we say that  P(a, H)  holds if and orfly if 
{e} ~ H~ N H ~ a ~ H1. We say, that  property P ( H )  holds for H < G if 
either H = {e}, or there exists e ¢ a ~ H such that  P(a, H)  holds. 

LEMMA 3. Let C be a d-values logical circuit which computes ~: G X G --~ G. 
Let e ~ a ~ H <= G be such that P(a,  H)  holds, and let oi be such that hi(a) 
hi(e), then oi depends on at least [logo tHI] input lines in each equivalence class qf 
the inputs of C. (IHI denotes the order of H.)  

PaOOF. Assume o] depended only on q < [loge IHI] of the inputs lines of the 
first eciuivalene e class, then there are b, c ~ H such that  g~(b) and g~(e) differ 
only in input lines on which oi does not depend. By lemma 2, a (~ gp(b.c -~) 
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contradiction. Similar arguments establish ~he result for the second equivalence 
class of the input lines. 

Let a(G) = max {IHI [H _-< (; and P (H)} .  Nots  thaI~ if G ~ {e}, then 
a(G) > 1, because if e • a C G, then let the order of a be p*q (where q is relatively 
prime to p ) ;  observe that P(a ~'i-lq, gp(a~) ) holds and that  ] gp(a q) ] = pl > 1. 

THEOREM 1. Let C be a d-values logical circuit, each of whose elements has a~ 
most r input lines, which computes ~: G X G --* G in time .r, then if  G # {e}, 
r _-> [log~ 2[logd a(G)]]. 

PROOf. Let H =< G be such that  P ( H )  holds and that  1H I = a(G). Let 
a ~ H be such that P(a, H) hold. There exists og such that  hh(a) # h / e } ,  
and therefore, by lemma 3, oi depends on at least 2[loge i H j] = 2[loge a((;)] 
input lines of C. Applying Lemma 1 we obtain r ~ [log~ 2[1Ogd a(G)]]. 

We see, in Theorem 1, that  the lower bound on the time required to compute 
~: G × G --* G by a logical circuit depends on a(G).  I t  might be of interest ~ 
further investigate a(G),  and the subgroups H such that  P ( H )  holds. 

Remarlc 1. If H is such that P ( H )  holds and b, e C H are of orders p~, qJ, 
respectively (where p and q are prime numbers),  then p = q; for let e # a c Y 
be such that  P(a,  H) holds, then the order of a divides p~ and q~. Therefore if 
P ( H )  holds, H has to be a p-group, i.e. the order of H as well as the order of 
each element of H is a power of p for some prime number p. 

Remark 2. If H = H~ X H2, then P ( H )  cannot hold, for P ( H )  holds if arid 
only if f'll~le,,~H H '  # {e}, but H = H1 × H2 if and only if H~ [7 H~ = {e}. 

Remark 3. If H is abelian, then P ( H )  holds if and only if H is a cyclic group 
of order p~ for some prime number p. 

Since any abelian group can be written uniquely as the product of cyclic 
p-groups, we obtain that  if G is abelian, a(G) is the order of the largest cyclic 
p-subgroup of G. 

In particular if G = Z,  = {0, 1, 2, • • • , ~ - 1} where the group operation ~ is 
defined by ~(z~, z2) = z~ + z2 rood ~, we obtain that  a(G) = a(#),  where 
a(t~) is defined as a(~) = max {pi'~lp~ is a prime, n is positive integer, and 
pin I#}. 

Before ending this section we will give two immediate corollaries of Theorem 1. 
COROLLXI~Y 1. I f  C is a d-values logical circuit, each of whose element has at 

most r input lines, which computes ~': G X G ---* G in time r, where ~'(a, b) = 
a.b -~, then r > [log~ 2[loge a(G)]]. 

PROOf. Let gt,  g~. and h be the decoding and encoding functions. Consider the 
functions gt' = g~ , g2'(a) = g2(a -~) and h' = h. I t  is clear tha t  with these ftmc- 
tions C computes ~: G X G --~ G where ~(a, b) = a.b in time r, therefore r >= 
[log~ 2[loge a(G)]]. 

COROLLARY 2. Let C be a d-values logical circuit, each of whose elements has at 
most r inputs, which computes 

k 

~k :G N G X . . .  X G--->G, 

where ~(a l ,  a~, -. • , a~) = at.a~ • .. a~ , in time r, then r > [log~ k[log~ a(G)]]. 
PROOF. In case ]c = 2, then we have the statement of Theorem 1. I t  is clear 

that  Lemmas 2 and 3 hold also for circuits which compute ~ ,  then by the same 
argument used to prove Theorem 1 the result of the corollary follows. 
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IV. Computation Scheme for Abelian Groups 

hi this section we describe a scheme for computing the group operation for 
abelia~l groups. This scheme requires time which is close to the lower bound 
0brained in the last section, and actually approaches the lower bound as the 
~lu~nbcr of inputs of the elements comprising the circuit increases. 

We first describe the scherne for cyclic groups of order p~ using d-values circuits, 
and finally we consider the general case of any finite abeliaa group using d-values 
circuit. 

In considering cyclic groups of order t~ it will be convenient to describe the 
group operation as addition modulo ~, and use terms like "a  carry." In  the case 
of cyclic groups we "encode" and "decode" the elements of the group using the 
regular radix d representation of the positive integers. 

Before describing the scheme we digress to show that  if we use F-values logical 
i~ircuits to compute ~ for a cyclic group of order p~, then the radix p representation 
of integers for both  arguments  and result yields as little dependence of output  
lines ml input lines as possible. In  talking about cyclic groups of order p'~ we 
¢~onsidcr Zp,, = {0, 1, - - • , p" - 11 as the carrier and addition modulo p'~ as the 
group operation. I f  we use radix p representation of both summands and the 
result, then one output  llne depends on n inputs of each summand, two outputs 
deperld on n - 1 inputs of each summand, and in general k outputs depend on 
n - /~  + 1 inputs of each summand. 

The following proposition shows the minimality of this dependence. 
PI~OPOSITION. Let C be a p-values logical circuit which computs Zp,~ + Z~,, 

m0d p'~, then for each 1 ~ t~ <= n there are at least k outputs which depend on at least 
n - k + 1 inputs  in each equivalence class. 

P~OOF. Consider the set of outputs  0k = {oit "4t'p~-~C Zp,~ such that  
h~(t.p ~-k) ~ h~.(0)}. I t  is clear that  since there are pk _ 1 elements of Zp,, of 
the form t. p~-k tha t  the cardinality of Ok is at least k. We show here that each 
output of 0~ depends on at least n - k + 1 input lines of each equivalence class 
a~ld thus establish the result. Consider the set Qk = {0, 1, 2, . . .  , p,~-k+~ _ 1}, 
if oj ~ 0~ depended only on q < n -- t~ + 1 input lines of the first equivalence 
class, then there would be two elements a, b ~ Qk such that  g~(a) and g~(b) 
will differ orfly in input  lines on which oj does not depend. But  then since 
t'p ~-k C gp(a - b) we  obtain a contradiction to Lemma 2. Similar arguments 
hold for the second addend. 

L~MMA 10. For each r >= 3, there exists a d~values logical circuit with elements 
which have at most r iuput lines, which computes Zdt + Z~t rood d t, where t = 
(r/2}((r + 1)/2} '~ in t ime r = s + 1, where (x } denotes the integer part of x. 

Paoo~. We prove the theorem by induction on s. In  the proof, the addends 
as well as the sum are represented by their radix d representation. 

hi case s = 0, we can represent any number in Z~ by (r/2 } digits, and thus 
we cun compute the sum in time r = i using logical elements with up to r inputs. 
(Actually only one such element is needed per digit of the output .)  Moreover, 
i~ time r = 1 we can determine whether, for any two elements b, c ~ Z ~ ,  
b -~- C ~ d t or not ,  i.e. we can generate the carry as well. Notice also, that  in this 
case we could compute 1 --~ Z~ --I- Z~ rood d t as well as generate the carry in 
time z = 1, 
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Assume it is t r u e  t h a t  for s = m we can  compute  Z~ -f- Zde rood d 
and 1 -4- Zd~ A- Z~z, rood d e as well as generate the  carries in both  cases in time 
r = m + i .  L e t  s = m + 1. We m a y  bui ld the desired circuit from 
2((r  A- 1) /2> - -  1 circuits each of which will compu te  a -4- Zde -f- Zd~ rood d ~ 
for s = m ( a  = 0 or 1), and then obtaiI1 the  desired result by combining tile 
outputs  of t hose  c i rcui ts  in one unit of time, a n d  thus obtain the result in time 
r = m + l d -  1 = m + 2 = s + l .  

Let t' denote  @ / 2  }<(r + 1.)/2 }'~'. Using radix  d representat ion of the elements 
of d t (for s ~- m @ 1), we can consider t h e  digits of the representation 0f 
Za~ as compr i sed  of  ( ( r  -? 1 ) /2)  batches each of  which consists of { digits, the 
first ba tch  c o n s i s t i n g  of the lowest, t' digits, t he  second batch consisting of digits 
in positions of d 2t '-~ to  d t' etc. Let Co, C~, •. • , C~.((~_~)/2) be the 2(@ + 1 ) / 2 )  - 1 
circuits such t h a t  Cj  will compute Zd, "4- Zde rood d t i f j  is even as well as generate 
a carry, and Cj w i l t  compute  1 + Zd, + Z ~  rood d t i f j  is odd as well as generate 
a carry. The i n p u t s  to  circuit Cj are the kth b a t c h  of each of the addends, where 
k = [j/2] q- 1. I t  is clear that circuit Cek adds  t he  (k q- 1)-th batches as if n0 
carry " p r o p a g a t e d  f r o m  the right," while the c i rcui t  C~k+~ adds the (k + 1)-th 
batches as if a c a r r y  did "propagate from the  r igh t . "  Let c~ ° denote the carry 
generated b y  C ~  a n d  c~ t denote the carry g e n e r a t e d  by C2~-_a • I t  is clear that 
coO, c~ 0, c~ ~, . . .  , c~ -°, @ determine whether in adding the ( j  q- 2)-th batch 
(when the a c t u a l  r e su l t  of adding modulo d t is desired)  we have a carry "propa- 
gated f rom the  r i g h t "  or not. Thus the n u m b e r  of input lines needed to deter- 
mine the actuM r e s u l t  as well as the carry does n o t  exceed 2((r q- 1) /2 ) - 1 = r, 
and therefore r e q u i r e s  only one extra unit of t ime .  Thus the time required to 
compute  Za, if- Zd ,  rood d t as well as generate t h e  c a n t  is m q- 2. By modifying 
the proof by  r e q u i r i n g  Co to compute 1 --1- Z ~ ,  q-  Zdt, rood d ~', we obtain tha~ 
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i + Z,~, + Za~ rood d e as well as generat ing the carry  Call also be computed  in 
time r = m + 2. The  scheme used to prove L e m m a  4 is based on the  scheme 
reported in [2], and is i l lustrated in Figure 1. 

The following two corollaries are obta ined as an easy consequence of I , emma  4. 
COROLLARY 3. For each r ~ 3 there exists a d-values logical circuit, which have 

aI most r input lines to each of its elements, which computes Zd,, q- Zd~ rood d" 
in time r = 1 + [log((~+,)/2) ( n / ( r / 2  })]. 

COROLLARY 4. fo?" each r >= 3 and for each a C Z~z,, there exists a d-values cir- 
cuit, whose elements have at most r input lines, 'which compute a -t- Zd '~ -t- Zd n rood d ~ 
in time r = 1 -]- [log<(~+1)/2> (n / ( r /2} ) ] .  

LEMMA 5. For each r > 3, there exists a d-values logical circuit, each of whose 
elements has at most r input  lines, which can compute Z~,~ -~ Zp,~ rood p" in time 
T ~ 1 n 2 + [log<(~+1)/2) ( 1 / ( r / 2 ) )  [ oga p ]]. 

PaooF. L e t s  = [ l o g a p n ] . O b s e r v e t h a t i f a  + b  < p ~ t h e n a +  b m o d p "  = 
a + b m o d d  * , a n d i f a + b >  p " t h e n a + b +  (d * - p n )  m o d d * =  a + b m o d p ~ ;  
moreover a + b > p~ if and only if a + b + (d* - p'~) > d ~. Thus  we first, con- 
struct two adders,  one which adds a + b rood d * and one which adds  a + b + 
(d ~ - p~) rood d*. B y  Corol lary  4, those two adders can compute  their respec- 
tive functions in t ime r -- 1 + [log((~+~)/2) @/@/2 })]. B y  choosing the ou tpu t  of 
the appropriate adder  according to whether  the second one has a car ry  or not  we 
obtain a + b rood p". No te  t h a t  the selection of the appropr ia te  ou tpu t  cast be 
perfornled in one uni t  of t ime since r > 3. Thus  the  to ta l  t ime to perform 
a +  b m o d p " i s  

r = 2 -t- [log<(~+t)/2> ( s / ( r /2 ) ) ]  = 2 + [log<(~+~)n) ( 1 / ( r / 2 ) )  [loga p"]]. 

THEOREM 2. Let G be a finite abelian group. For each r >= 3 there exists a 
d-values logical circuit, whose elements have at most r input  lines, which computes 
,~: G × G --> G in time 

r = 2 -t- [log((,+1)/2) ( 1 / ( r / 2 ) )  [log,, a (G)] ] .  

PROOF. Since G is a finite abel ian group, G can be decomposed as G = G~ ) 
6'2 × . . .  × G m  where each G~ is a cyclic group of order  a power of a prime. 
Thus we can cons t ruc t  m circuits which compute  ~ : G~ × G~ --> G~, each of 
which will require rl = 2 -t- [iog((r+~)/2) ( 1 / ( r / 2 ) )  [loga I G~ I]] to compute  its 
function. Thus  the whole circuit can compute  its funct ion in t ime 

r = m a x  r~ = 2 -t- [log((~+1)/2) ( 1 / ( r / 2 ) )  [loge a(G)]] .  
l ~ i < = m  

(The idea of the proof  is the same as the  scheme of [3].) 
Comparison of the resul t  of T h e o r e m  2, wi th  those of Theo rem 1, shows tha t  as 

r increases the t ime required to compu te  f :  G × G - *  G for finite abcl ian groups 
approaches the lower bound.  More  specifically, let r,¢t denote  the t ime obta ined 
in Theorem 2, and  rm~ denote  the lower bound obta ined  in Theorem 1, then:  

r~¢t = 2 + [10g((~+i)/2) (1 / ( r /2 } )  [loga a (G) l ]  

~-~ 2 -{- log((~+~)/2> (1/(r/2}) [log~ a(a)] 

2 - log((~+I)/2) ( r /2)  -]- [log~ loga a(G)]/log<o.+l)/2) r. 
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So for large enough 'i' such tha~ log<(~+~)/2? @/2) ~-- 1 and log<(~+~)/2p' ~,~ 1 weob 
tain r~+~t " - ~  T r a i n  "@ 1. 

V. Discussion 

In Section I l I  we saw that a lower bound of (~he amount of time required to 
compute the group operation of a finite group (; depends on the logarithm of the 
logarithm of the order of a certain p-subgroup of G. In the case that g is a~ 
abelian group (and in particular if G is Z~ where the group operation is addition 
modulo ~), this p-subgroup is the largest cyclic subgroup with order a power of a 
prime. In Section I[  we saw that  this lower bound can be approached as the 
number of input lines to the logical elements used to construct the circuit in- 
creases. 

These results depend on the particular definition used for '% logical circuit C 
is capable of computing tile function ~,." In  the definition we required that the 
inputs of the circuit be partitioned, and each equivMenee (:lass would eorrespot~d 
to one argument of the function to be computed. This was done to insure that 
the function ~ will be actually computed by the circuit and therefore that the 
inputs will carry information on the arguments only and not on the way they 
are to combine to yield the result. The reader can readily convince himself that 
if we had replaced the requirement on gi in definition 3 by requiring the existence 
of g/ :  I'o,i c I,,.j -~ X~, we would have an equivalent definition. 

The requirement on the existence of a function h: Y --* 0~ is equivalent to 
requiring the existence of h': O/ ~ O~ ~:L~ y.  The reason for h' being 1:1 is 
to avoid the possibility of having the outputs carry just the same information 
as the inputs, and having the function h' "actually" perform the computation. 
Of course there are alternative definitions of computation which will still con- 
form to our intuitive notion. In [4] an addition scheme was described in which the 
requirement on h' was relaxed, instead it was required that  the same code will 
be used to code each of the addends as well as the result. 

Another feature of definition 3 was that  there is a fixed time r whet, the output 
is sampled. An alternative approach is to consider the time the circuits "settle 
down," which will of course depend on the particular values the arguments take, 
and then consider the average time for the circuit to "settle down" as the com- 
putation time (see [5]). I t  is conjectured that  this average time is still the same 
order of magnitude as tile lower bound, but  we could not prove this conjecture. 

Another avenue of investigation is to consider both the time of eoinputatio1~ 
and the number of logical elements required to construct the circuit (see [1]). 
This approach Inight even be coupled with relaxing the assumption that. the 
inputs carry all the information about the arguments at  time r = 0, and allow- 
ing the inputs to be fed into the circuit "sequentially." 
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