Check for
Updates

On the Time Required to Perform Addition

S. WiNoGgrap
IBM Corporation,* Yorktown Heights, New York

Abstract. The time required to perform a group operation using logical circuitry is
investigated. A lower bound on this time is derived, and in the case that the group is abelian
it is shown that the lower bound can be approached as the complexity of the elements used
increases. In particular, if the group operation is adding integers modulo y, it is shown that
the lower bound behaves as log log «(u), where «(u) is the largest power of a prime which
divides u.

1. Introduction

A study is made in this paper of the amount of time required to add two in-
tegers using logical circuitry. Each of the addends ranges over the set Zy =
0,1, ---, N — 1}, and the addition is performed modulo N. This problem was
considered by U. Ofman {1], who studied it in the case that N = 2"; and the
input signals representation of the addends as well as the output signals repre-
sentation of the sum correspond to the radix 2 representation of integers. He
showed that under these conditions the addition can be performed requiring an
gimount of time which grows as log, loge N = logs n; while the amount of hard-
ware required grows as loge N = n. Another addition scheme which also requires
an amount of time which grows as log, n, under the above mentioned conditions,
was reported in [2]. An evaluation of the relative merits of various schemes for
addition ecan be found in [6}.

In this paper only the amount of time required to perform addition is inves-
tigated, disregarding the amount of hardware required for the implementation
of the addition schemes. A lower bound on the amount of time is derived, and it
is shown that this lower bound can be approached as the complexity of the
logical elements used increases.

In Section II, a more precise formulation of the problem is to finite abelian
groups. It is then shown that for finite abelian groups the lower bound can be
approached as the complexity of the logical elements used increases.

In Section II, a more precise formulation of the problem is given; the lower
bound is derived in Section III; and Seetion IV describes schemes which require
an amount of time which is close to the lower bound.

IL Formulation of the Problem

This section is devoted to giving a more precise definition of a logical circuit,
as well as its ability to add integers or perform any other group operation in a
given amount of time.

Definition 1. A d-values logical element is an object with » input lines and one
output line. The output line and each of the input lines can be in one of d distinct
states. The state of the output line at time ¢ + 1, is a function of the states of
the input lines at time ¢

* Thomas J. Watson Research Center.
277

Journal of the Association for Computing Machinery, Yol. 12, No. 2 (April, 1965), pp. 277-285

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321264.321279&domain=pdf&date_stamp=1965-04-01

278 8. WINOGRAD

Definition 2. A d-values logical circuit is a finite set of d-values logical elo.
ments and a rule of interconnections which partitions the set of lines of the
logical elements and identifies (connects) two lines if and only if they are in the
same class. This rule of interconnections is subject to the restriction that no
two output lines are to be in the same class. The classes which do not include an
output line are called the inputs of the circuil, and a designated set of clageg
which do include an output line is called the outpuls of the circuat.

Let C be a logical circuit. We designate by S. the (finite) set of all possible
configurations of the states of the output lines of the logical elements of ¢ (8,
is termed the set of internal stales); we designate by I. the (finite) set of gjf
possible configurations of states of the inputs of C (I, is termed the set of npy
states), and we designate by O. the (finite) set of all possible configurations of
the states of the outputs of C (O, is termed the set of output states). Note that
since the outputs of C are a subset of the set of output lines of elements of ¢
the output state is determined by the internal state, we use 0: S, — O, to designate
this function.

The behavior of a logical circuit €' is described in terms of a function f: §, x
I.— S, where f(s,7) (s € S,, ¢ € I.) is determined by setting the state of each
input line of an element of €' at time ¢ equal to the state of the output line or
input of the circuit with which it is associated, as determined by s and 4, and
taking the resulting state of the circuit at time ¢ + 1 as f(s, ¢). The function
f(s, ©) can be extended to f*: S, X I, X N — 8. where N is the set of natural
integers, and where f*(s, 4, 1) = f(s, 1) and *(s, 5, n + 1) = f(f*(s, i, n),9).
Finally we define ¢: S, X I. X N by ¢(s, 2, n) = o(f*(s, 4, n)).

Definition 3. Let ¢: [[f=1 X; — ¥ be any finite function. A circuit C s said to
be capable of computing the function ¢ in time 7, if there exists a state s, € S,
a partition of the inputs of C into ¢ equivalence classes, a set of ¢ functions
gi: X;—=1I.; (j=1,2,--,1) where I, is the set of configurations of states
of the inputs of the jth equivalence class, a function h: ¥ — O, such that for each
(@, 22, o @) € Xi X Xy oo0 X Xee(so, (gulm), go(2a), + -, gel@n)), 1) =
h(e(xy, 22, +-+, x)). We also say that a circuit C is capable of computing the
Junction ¢ if there exists an integer 7 such that C is capable of computing ¢ in
time 7.

The notion of a circuit computing a function as described in definition 3
essentially consists of the following,

(i) The internal state of the circuit is set to s, at time 0.

(ii) Each of the arguments of the functions is coded and applied as inputs
to the cireuit.

(i11) The inputs are held fixed until time 7, in which time the output of the
circuit is “sampled” to yield the result of the computation (in a coded form).

In Section IIT we derive a lower bound on the time required to compute the
function ¢: G X G — @, where G is a finite group, and e is the group operation.

II1. The Lower Bound

Let C be a logical circuit. We use ¢;(s, 7,) to denote the jth component of
¢(s, 1, 7), Le. if the state of output o; is the jth component of the output state,
then ¢;(s, 4, 7) is the state of o; at time = if the circuit “started” in internal state s
and the input is held fixed as <.

TIME REQUIRED TO PERFORM ADDITION 279

Definition 4. An output line o, is said to be s independent (s € S.) on input
line'ly tn time 7, if for all 4, € I, and ¢, € I, differing only in the state of Lic; (s, i, 1)
C}.(s; i, 7). If an output line is not s-independent on line I, in time 7, it is said to
be s-dependent on l; in time 7. Note that if output o; is s-dependent on input I
there exists & “‘path” from I to o, if the circuit is viewed as a directed graph.

Lemva 1. Let C be a logical circuit; each of whose elements has at most f(> 1)
input lines. For all output lines o; of C, if 0; is ss-dependent on ¢ nputs of C at time
7, then 7 = [log, t]. ([2] denotes the smallest integer not smaller than x.)

Proor. We prove the lemma by induction on t. If t < », the inequality ob-
viously holds.

Suppose o; depends on ¢ > k inputs of C, and o; is the output line of element
¢;. Let O be the set of input lines of ¢, , at least one of those lines is an output of
another element of ¢ which depends on at least [t/] inputs of €' at time r — 1.
By induction hypothesis we obtain

T—12 [IOgr [;]:} = {:IOgr ?] = [IOgT t] - 1’
sor 2 [log, t].

Let C be a d-values logical circuit which computes ¢: G X G — G, where ¢/ is
a finite group, and ¢ is the group operation. In the remainder of the section we
use g1+ g2 to denote o(g1 , g2). Since C computes ¢, there exists a function b: G —0, .
We use hi(g) to denote the state of the jth component of h(g).

Definition 5. An element a € G is said to have property E; with respect to a
cireuit C which computes ¢ if for all b € gp(a), hy(b) = hy(e), where gp(a)
denotes the group generated by a, and e denotes the identity of G. We denote the
fact that ¢ € G has property E; by E;(a).

Lemma 2. Suppose E;(a) does not hold, and b, ¢ € G are such that ¢gi(b) and
nle) (g2(b) and go(c)) differ only in inputs on which o; does not depend, then
o gp(b-c™)(a € gp(b7"-¢)). Here ¢y and g, are as in definition 3.

Proor. We prove here only one half of the assertion, the other half is provable
in an analogous way. By hypothesis, for any element z ¢ ¢

h;(b.l?) = Cj(Su, (gl(b)r gz(ﬁ,)), 7') = CJ‘(SO) (g1(0>7 92(13)), T) = hj(C'.’l?)

(since o; was independent of the input lines in which ¢:(b) and gi(c) differ).
Thus A;((b-¢™")2z) = h(b-(¢a)) = hle-(¢x)) = hi(z), forallz € G.
Setting « = e we obtain h;(b-¢™") = h;(e), setting 2 = b-¢™* we obtain h;(e) =
hitb-c™") = hy((b-¢™)?), by setting z = (b-¢™)" for all integers s, we obtain
that B;(b-c™') holds. But if a € gp(b-¢™) then E;(a) would hold as well, so
e gp(b-c).

Definition 6. Let e % a € H £ (G, we say that P(a, H) holds if and only if
le} # Hi £ H = o € H,. We say, that property P(H) holds for H £ @ if
either H = {e}, or there exists e 3¢ a € H such that P(a, H) holds.

Lemma 3. Let C be a d-walues logical circuit which computes o2 G X G — G.
Lete s« o € H < @ be such that P(a, H) holds, and let o; be such that h;(a)
hile), then o; depends on at least (logy |H|| input lines in each equivalence class of
the inpuis of C. (|H| denotes the order of H.)

Proor. Assume o, depended only on ¢ < [log; |H|] of the inputs lines of the
first equivalence class, then there are b, ¢ € H such that ¢1(b) and ¢:(¢) differ
only in input lines on which 0; does not depend. By lemma 2, a ¢ gp(b-c”l)

280 S, WINOGRAD

contradiction. Similar arguments establish the result for the second equivalenc,
class of the input lines.

Let «(G) = max {|H||H £ G and P(H)}. Note that if G = {e}, the,
a(G) > 1,becauscife # a € G thcn let the order of a be p'q (where ¢ 151elatm1
prime to p) observe that P(a” % gp(a*)) holds and that | gp(a”) | = p* > 1.

TuroreMm L. Let C be a d- values logical circuat, each of whose elements hag g
most v input lines, which computes ¢: G X G — G in time 7, then if G 5 |q)
7 = [log, 2[logs a(G)]]-

Proor. Let H = @ be such that P(H) holds and that | H | = «(G). Let
a € H be such that P(a, H) hold. There exists o; such that hj(a) = hye),
and therefore, by lemma 3, o; depends on at least 2[logs | H |] = 2[log, a()]
input lines of C. Applying Lemma 1 we obtain 7 Z [log, 2{logs a(G)]].

We see, in Theorem 1, that the lower bound on the time required to compute
¢: G X G — @ by a logical circuit depends on «(G). It might be of interest 1o
further investigate a(G), and the subgroups H such that P(H) holds.

Remark 1. If H is such that P(H) holds and b, ¢ € H are of orders p’, ¢,
respectively (where p and ¢ are prime numbers), then p = g;forlete #a ¢
be such that P(a, H) holds, then the order of a divides p’ and ¢". Therefore if
P(H) holds, H has to be a p-group, i.e. the order of H as well as the order of
each element of H is a power of p for some prime number p.

Remark 2. 1f H = Hy X Hs, then P(H) cannot hold, for P(H) holds if and
only if Nyuncr H' # {e}, but H = Hy X H.if and only if H: N Hy = {¢}.

Remark 3. 1f H is abelian, then P(H) holds if and only if H is a cyclic group
of order p° for some prime number p.

Since any abelian group can be written uniquely as the product of cyclic
p-groups, we obtain that if @ is abelian. «(@) is the order of the largest cyelic
p-subgroup of G.

In particular if ¢ = Z, = {0, 1,2, -+ , u — 1} where the group operation ¢ is
defined by (21, 22) = 2z + 2 mod g, we obtain that a(G) = «a(p), where
a(p) is defined as a(u) = max {p/"|p. is a prime, n is positive integer, and
pi" | uh

Before ending this section we will give two immediate corollaries of Theorem 1.

CoroLrARryY 1. If C s a d-values logical circuit, each of whose element has ot
most 1 input lines, which computes ¢': G X G — G in time 7, where ¢ (a, b) =
a-b, then r = [log, 2[logs a(G)]].

Proor. Let g;, g, and k be the decoding and encoding functions. Consider the
functions ¢ = g1, g2 (¢) = g2(a™) and b’ = k. It is clear that with these func-
tions C computes ¢: G X G — G where ¢(a, b) = a-b in time , therefore 7 Z
[log, 2[loga a(G)]].

CoROLLARY 2. Let C be a d-values logical circuit, each of whose elements has al

most v inputs, which compules
k

e GXGX o X GG

wherep(Qy, G, -+ ,) = Q1 Qs - -+ G , in time 7, then 7 = [log, k[logs a(@)]]-

Proor. Incasek = 2, then we have the statement of Theorem 1. It is clear
that Lemmas 2 and 3 hold also for circuits which compute ¢ , then by the sam¢
argument used to prove Theorem 1 the result of the corollary follows.

TIME REQUIRED TO PERFORM ADDITION 281

Iv. Computation Scheme for Abelian Groups

In this section we deseribe a scheme for computing the group operation for
abelian groups. This scheme requires time which is close to the lower bound
obtained in the last section, and actually approaches the lower bound as the
qumber of inputs of the elements comprising the eircuit inereases.

We first describe the scheme for cyclic groups of order p° using d-values cireuits,
and finally we consider the general case of any finite abelian group using d-values
cireuit.

In considering cyclic groups of order it will be convenient to deseribe the
group operation as addition modulo k, and use terms like “a carry.” In the case
of eyelic groups we “‘encode” and “decode” the elements of the group using the
regular radix d representation of the positive integers.

Before describing the scheme we digress to show that if we use p-values logical
cireuits to compute ¢ for a cyclic group of order p*, then the radix p representation
of integers for both arguments and result yields as little dependence of output
lines on input lines as possible. In talking about cyclic groups of order p" we
consider Zpn = {0, 1, -- -, p" — 1} as the carrier and addition modulo p” as the
group operation. If we use radix p representation of both summands and the
result, then one output line depends on » inputs of each summand, two outputs
depend on n — 1 inputs of each summand, and in general & outputs depend on
n — k -+ 1 inputs of each summand.

The following proposition shows the minimality of this dependence.

ProrositioN. Let C be a p-values logical circuit which computs Zpo + Zpm
mod p°, then for each 1 £ k = n there are ot least k outputs which depend on at least
n — k 4+ 1 inpuls in each equivalence class.

Proor. Consider the set of outputs O = {o;] At-p" ™ € Z,» such that
hi(t-p™™*) # h;(0)}. It is clear that since there are p* — 1 elements of Z, of
the form £+p""* that the cardinality of Oy is at least k. We show here that each
output of O, depends on at least n — &k - 1 input lines of each equivalence class
and thus establish the result. Consider the set Q. = {0,1,2, --+, p"™*™ — 1},
if 0; € Oy, depended only on ¢ < n — k + 1 input lines of the first equivalence
class, then there would be two elements a, b € @, such that g:(a) and ¢.(b)
will differ only in input lines on which o; does not depend. But then since
tp"™* € gp(a — b) we obtain a contradiction to Lemma 2. Similar arguments
hold for the second addend.

Lemma 10. For each v = 3, there exists a d-values logical circuit with elements
which have ot most » input lines, which computes Zge + Zq mod d', where t =
/2)(r +1)/2) intime r = s + 1, where (x) denotes the integer part of x.

Proor. We prove the theorem by induction on s. In the proof, the addends
as well as the sum are represented by their radiz d representation.

In case s = 0, we can represent any number in Zg by (r/2) digits, and thus
we can compute the sum in time 7 = 1 using logical elements with up to r inputs.
(Actually only one such element is needed per digit of the output.) Moreover,
I time » = 1 we can determine whether, for any two elements b, ¢ € Zg,
b+ ¢ = d'or not, i.e. we can generate the carry as well. Notice also, that in this
case we could compute 1 4+ Za: + Zar mod d° as well as generate the carry in
time T = 1.

282 8, WINOGRAD

SECOND O P
SUMMAND - LR avw SUMMAND

Y i
PN [y
. J
—
RESULTY
Fra. 1
Assume it is true that for s = m we can compute Zg -+ Zg mod d

and 1 + Za + Zae mod d° as well as generate the carries in both cases in time
= m + 1. Let s = m -+ 1. We may build the desired circuit from
2A(r 4+ 1)/2> — 1 circuits each of which will compute a + Za¢+ + Za mod &
fors=m (a = 0 or1l),and then obtain the desired result by combining the
outputs of those cireuits in one unit of time, and thus obtain the result in time
s=m+1+1=m+2=s5-+1

Let £ denote (r/2¥(r -+ 1)/2)". Using radix d representation of the elemenis
of ¢ (for s = m -+ 1), we can consider the digits of the representation of
Z4: as comprised of {(r + 1)/2) batches each of which consists of ¢ digits, the
first batch consisting of the lowest ¢’ digits, the second batch consisting of digits
in positions of d** " to d” ete. Let Co, €1, ++ -, Ca¢rp ey be the 2((r + 1)/2) = 1
circuits such that C; will compute Z,« + Zs mod d' if 7 is even as well as generate
a carry, and C; will compute 1 + Zu: + Zge mod d' if j is odd as well as generate
a carry. The inputs to circuit C; are the kth batch of each of the addends, where
k = [j/2] + 1. It is clear that circuit Cy adds the (% + 1)-th batches as if no
carry “propagated from the right,” while the circuit (., adds the (k + 1)-th
batches as if a carry did “propagate from the right.” Let ¢,” denote the carry
generated by Cz: and ¢i' denote the carry generated by Cu_y. It is clear that
e, o el e, ¢/, ¢ determine whether in adding the (j + 2)-th bateh
(when the actual result of adding modulo d*is desired) we have a carry “props
gated from the right” or not. Thus the number of input lines needed to deter-
mine the actual result as well as the carry does not exceed 2((r + 1)/2) — 1 57,
and therefore requires only one extra unit of time. Thus the time required
compute Zg -+ Za: mod d' as well as generate the carry is m + 2. By modifying
the proof by requiring Co to compute 1 + Za:» 4 7,.. mod d”, we obtain thaf

TIME REQUIRED TO PERFORM ADDITION 283

| 4 Za + Zae mod d’ as well as generating the carry can also be computed in
time 7 = m + 2. The scheme used to prove Lemma 4 is based on the scheme
reported 1n [2], and is illustrated in Figure 1.

The following two corollaries are obtained as an easy consequence of Lemma 4.

CoROLLARY 3. For each v Z 3 there exists a d-values logical circwit, which have
ot most v input lines to each of s elemenis, which computes Zaw ~+ Zan mod da"
intime 7 = 1 + [logwnm (n//2))].

CoROLLARY 4. For each v 2 3 and for each a € Zg there exists a d-values cir-
cuit, whose elements have al most v input lines, which compule a + Zd" + Za" mod d”
mtime r = 1 + [ogiernm (0/¢/2))].

LemMA 5. For each v = 3, there exisls a d-values logical circuit, each of whose
clements has at most © inpul lines, which can compute Zy -+ Zyn mod p* in time
7 =2 4 flogierm (1/(r/2)) lloga p"]].

Proor. Let s = [logg p"]. Observe that if @ + b < p" then ¢ + b mod p" =
a+bmod &, andifa + b = p"thena + b + (d’° — p"*) mod d’ = ¢ -+ bmod p";
moreover ¢ + b = p"if and only if @ 4+ b + (d° — p") = d’. Thus we first con-
struct two adders, one which adds @ + b mod ¢’ and one which adds a 4 b +
(@ — p") mod d'. By Corollary 4, those two adders can compute their respec-
tive functions in time 7 = 1 + [log(esns (8/{r/2))]. By choosing the output of
the appropriate adder according to whether the second one has a carry or not we
obtain ¢ 4+ b mod p”. Note that the selection of the appropriate output can be
performed in one unit of time since r 2 3. Thus the total time to perform
¢ -+ b mod p" is

7= 2 + logieinm (5/{/2))] = 2 + llog(e+nrm (1/{r/2)) llogs p"l}.

TuroreM 2. Let G be a finite abelian group. For each r Z 3 there exists a
dvalues logical circuit, whose elements have at most r input lines, which compules
v X G — G in time

r = 2 + log(tnm (1/(r/2)) llogs a(@)]].

ProoF. Since G is a finite abelian group, G can be decomposed as GG = G1 X
G X -+ X Gn where each G is a cyclic group of order a power of a prime.
Thus we can construet m cireuits which compute ¢; : G; X Gi — G, each of
which will require 7; = 2 + [ogwrnm (1/(r/2)) llogs | G:ll] to compute its
function. Thus the whole circuit can compute its function in time

T=max r o= 2 + [log (e (1/€r/2)) [loga a(G)]).
(The idea of the proof is the same as the scheme of [3].)

Comparison of the result of Theorem 2, with those of Theorem 1, shows that as
7 increases the time required to compute ¢: ¢ X G — @ for finite abelian groups
approaches the lower bound. More specifically, let 7., denote the time obtained
in Theorem 2, and 7min denote the lower bound obtained in Theorem 1, then:

Tat = 2 [lqg<(r+l)/2> (1/(’)’/2)) [I()gd a(G)]]
' ~ 2 + log(rinpmy (1/(r/2)) llogs «(G)]
~ 2 — logur+n/2) (r/2) + [log; loga a(G)]/IOg«m)/w .

284 8., WINOGRAD

So for large enough r such that log(sym 7/2) ~ 1 and log(oinmr ~ 1 we ob.
tain 7.0 ~ Tmin + 1.

V. Discussion

In Section IIT we saw that a lower bound of the amount of time requireq t,
compute the group operation of a finite group ¢+ depends on the logarithm of the
logarithm of the order of a certain p-subgroup of . In the case that (7 is 4
abelian group (and in particular if ¢ is Z, where the group operation is additioy
modulo x), this p-subgroup is the largest cyclie subgroup with order a power of 4
prime. In Section IT we saw that this lower bound can be approached as the
number of input lines to the logical elements used to construet the cireuit in.
creases.

These results depend on the particular definition used for “a logical cireuit ¢
is capable of computing the function ¢.” In the definition we required that the
inputs of the circuit be partitioned, and each equivalence class would correspond
to one argument of the function to be computed. This was done to insure thas
the function ¢ will be actually computed by the circuit and therefore that the
inputs will carry information on the arguments only and not on the way they
are to combine to yield the result. The reader can readily convince himself that
if we had replaced the requirement on g, in definition 3 by requiring the existence
of g/ I.; < I.; — X;, we would have an equivalent definition.

The requirement on the existence of a function h: ¥V — 0, is equivalent to
requiring the existence of £': 0, < 0, —%, Y. The reason for A’ being 1:1 is
to avoid the possibility of having the outputs carry just the same information
as the inputs, and having the function A’ “actually” perform the computation.
Of course there are alternative definitions of computation which will still con-
form to our intuitive notion. In [4] an addition scheme was described in which the
requirement on h’ was relaxed, instead it was required that the same code wil
be used to code each of the addends as well as the result.

Another feature of definition 3 was that there is a fixed time » when the output
is sampled. An alternative approach is to consider the time the circuits “settle
down,” which will of course depend on the particular values the arguments take,
and then consider the average time for the circuit to “settle down” as the com-
putation time (see [5]). It is conjectured that this average time is still the same
order of magnitude as the lower bound, but we could not prove this conjecture.

Another avenue of investigation is to consider both the time of computation
and the number of logical elements required to construct the circuit (see [1]).
This approach might even be coupled with relaxing the assumption that the
inputs carry all the information about the arguments at time = = 0, and allow-
ing the inputs to be fed into the circuit “sequentially.”

Acknowledgments. The author is grateful to M. O. Rabin for suggesting the
problem of computation time for addition under the restriction of r-inputs eom-
ponents as well as raising the question whether this time can be improved if one
does not use radix representation for the numbers, Many thanks are also due to
C. C. Elgot for his help in clarifying many points and to J. B. Wright for his
illuminating comments.

Recervep May, 1964

—

[

e

f=2)

TIME REQUIRED TO PERFORM ADDITION 285

REFERENCES

_orvaN, U, On the algorithmic complexity of discrete functions, Doklad? 145, 1 (1962),

48-51.

 MacSorery, O. L. High speed arithmetic in binary computers. Proc. IRE, 1961, 67-91.
GarngR, H. L. The residue number system. IRF Trans. EC-8, (June 1959), 140-147.
Avizients, A, Signed sigit number representation for fast parallel arithmetiic. IRE

Trans., EC-10 (Sept. 1961), 389-400.

Girenrist, B., PoMEreNE, J. H., axn Wone, 8. Y. Fast carry logic of digital computers.

IRE Trans. EC-4, 4 (Dec. 1955), 133-136.

gkLANSKY, J. An evaluation of several two-summand binary adders, IRE Trans. EC-9

(June 1960), 213-226.

