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1 INTRODUCTION
Side channel attacks represent one of the most significant threats to the security of embedded systems, which
are in charge of an increasing number of tasks in the modern, deeply interconnected era. Indeed, providing
confidentiality and data/endpoint authentication on embedded platforms is a widely present and increasing
concern, that is also strengthened by the ubiquitous interconnection of everyday objects, including the ones
performing critical tasks (e.g., cars and building automation systems) [9, 10, 33, 38, 43, 44, 47]. Cryptographic
primitives and protocols have proven to be the prime means to provide the aforementioned security features
in an effective and efficient way. However, their use in an embedded scenario calls for a security-oriented
design which takes into account both their mathematical strength, and their resistance against attacks led
by someone having physical access to the computing device. The latter class of attacks, known as Side
Channel Attacks (SCAs), exploit the additional information coming from the measurement of the computing
device’s environmental parameters to infer information on the data that the device itself is processing. One
of the most prominent parameter in this respect is the power consumption of the device, which is proven
to be a rich source of information. Indeed, since the pioneering works on extracting secret keys from smart-
cards, a significant amount of literature has focused on the improvement of both the understanding of the
principles and effectiveness of side channel attacks [1], and on the identification of sound, provably secure
countermeasures [46]. A broad spectrum of devices has been successfully attacked via SCAs, ranging from
dedicated cryptographic accelerators in Radio-Frequency IDentification (RFIDs) devices [42] to full fledged
Systems-on-Chip (SoCs), running an operating system and endowed with external DRAM [8]. The reason
for such a wide success is the fact that the power measurement can either be performed through a minimal
modification of the power line to insert a shunt measurement resistor, or in a completely tamper-free way

Authors’ addresses: Davide Zoni, Politecnico di Milano, Department of Electronics, Information and Bioengineering – DEIB, Via G. Ponzio
34/5, Milano, 20133, ITALY, davide.zoni@polimi.it; Alessandro Barenghi, Politecnico di Milano, Department of Electronics, Information and
Bioengineering – DEIB, Via G. Ponzio 34/5, Milano, 20133, ITALY, alessandro.barenghi@polimi.it; Gerardo Pelosi, Politecnico di Milano,
Department of Electronics, Information and Bioengineering – DEIB, Via G. Ponzio 34/5, Milano, 20133, ITALY, gerardo.pelosi@polimi.it;
William Fornaciari, Politecnico di Milano, Department of Electronics, Information and Bioengineering – DEIB, Via G. Ponzio 34/5, Milano,
20133, ITALY, william.fornaciari@polimi.it.

2018. 1084-4309/2018/0-ART0 $15.00
https://doi.org/0000001.0000001

ACM Trans. Des. Autom. Electron. Syst., Vol. 0, No. 0, Article 0. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


0:2 Davide Zoni, Alessandro Barenghi, Gerardo Pelosi, and William Fornaciari

measuring the radiated electromagnetic emissions of decoupling capacitors [8]. Open literature classifies
the techniques exploiting the information leakage on the power consumption side channel in two sets [34]:
simple power attacks and differential power attacks. The first set encompasses techniques which exploit the
changes in power consumption caused by key-dependent divergences in the control flow of the computation,
while the second one contains techniques extracting information from the differences in power dissipation
caused by discrepancies in the switching activity of a device induced by processing different values. In the
following, we will focus on the second set of techniques, i.e., differential power attacks, since it is the one
where the architectural characteristics of the underlying CPU play a stronger role. Indeed, while a successful
simple power attack exploits flaws in the application control flow design, differential power attacks are tightly
coupled to the way data is processed. For this reason they require a combined understanding of the hardware
and software platforms implementing the cryptographic primitive to prevent unwanted information leakage.

Counteracting power consumption based side channel attacks requires the designer to break the link
between the amount of power consumed during the computation and the data being processed. Depending
on whether the issue of side channel resistance was tackled devising dedicated hardware co-processors or
software implementation of the cryptographic primitives, the proposed solutions target different design
layers encompassing the technology and gate levels, the architecture and microarchitecture of the design,
up to the software side if any. Ad-hoc technology libraries were shown to be highly effective in preventing
power-based SCAs [15, 50], although they require a considerable area and power consumption increase, and a
significant engineering effort to be interconnected to standard CMOS components. Conversely, the design
of balanced logic circuits [50] to provide a data independent power consumption, or the use of circuits that
split the computation of Boolean functions in shares [46] to achieve a randomized power consumption have
also proven to be successful in hindering SCAs, without the need to resort to a custom technology library.
However, such logic level SCA countermeasures impose a performance and/or energy overhead that is far from
negligible [46, 50], if they are applied to the whole system without considering that some parts of the design
are not actually leaking. These dramatic overheads imposed by technology and logic level countermeasures
make their use not viable to protect an entire general purpose CPU based on a Reduced Instruction Set
Computing (RISC) design. This, in turn, leaves software implementations of cryptographic primitives as a
potential target for side channel attacks when running on full fledged CPUs. Indeed, in [8, 21, 22] SCAs
to software implementations of standardized ciphers have proven to be successful against both RISC and
Complex Instruction Set Computer (CISC) CPU targets.

To this extent, the problem of preventing key retrieval via side channel has been also approached at
software level, either by randomizing the data being computed while preserving the semantic equivalence
of the results [5, 29], or by changing continuously the code employed to perform the computation [2–6].
Traditionally, software-based countermeasures rely on the architectural information of the CPU executing the
code to prevent unintended side channels. However, as our findings will highlight, the leaked side channel
information depends on the actual CPU microarchitecture. The architectural view observed by the software
architect is therefore seen as a viable simplification to implement software that however can be proven to
be not sufficient to design SCA resistant cryptographic libraries. Besides, the software architect designing
SCA resistant cryptographic primitives is willing to be informed on the possible leakage source in the form of
a set of hints emerged as the result of a more accurate microarchitectural side channel characterization. In
particular, those hints should be general enough to be used with all the CPU implementations that fall in the
same class of the one from which the hints have been extracted.

This work aims at providing a precise, “clean room” characterization of the effects of the microarchitectural
design choices on the side channel leakage of a general purpose RISC CPU. The analysis leverages the netlist
level simulation to ensure a “clean room” environment that removes the uncertainty of the measurements
while enabling accurate data collection on a per-module granularity.

The intent of such characterization is to precisely pinpoint which portions of the CPU microarchitecture
leak information via side channel when a cryptographic primitive is executed, thus demonstrating that the ar-
chitectural view alone is not enough to deliver SCA resistant software. An additional effort of our investigation
aims at generalizing the obtained results for the class of in-order RISC CPUs, thus serving a twofold objective.
First, we take steps from the coarse grained characterization of the side channel leakage sources in the CPU
microarchitecture [16] and the pioneering works that analyze 8-bit PIC and AVR microcontrollers [24, 47],
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to carefully identify, for the first time, the side channel information leakage in a 32-bit in-order RISC CPU.
This effort also allows to extend and complement the current findings in the open literature. Second, we
extract a set of practical guidelines from the investigated CPU to improve the design of SCA resistant software.
The application of such guidelines to the benchmarks used in our investigation effectively removes the side
channel leakage that was revealed to lead to the correct key guess. We note that such guidelines can be also
included in the backend of the OpenRISC compiler to automatically emit SCA resistant code.

Contributions. Starting from a precise “clean room” characterization of the side channel of the open-hardware
RISC CPU implemented within the ORPSoCv3 SoC [30], this work encompasses three different contributions:

• Microarchitectural components inducing side channel information leakage. The reported anal-
ysis points out a serialization effect concerning sensitive signal values asserted on the same bus in
two consecutive clock cycles, thus inducing an easily captured information leakage. Indeed, we note
that unintended serialization of sensitive data values is the source of the side channel leakage arising
from the write-back stage, the forwarding paths, and the operand dispatch stage of the pipeline. As a
consequence, the reasons for the ineffectiveness of software based SCA countermeasures (implemented
according to the current best practices) are inferred, while the need to extend the current architectural-
level perspective in applying SCA countermeasures to encompass the microarchitectural characteristics
of the underlying CPU is also supported. The load/store unit (LSU) represents another source of
exploitable side channel leakage due to its typical microarchitectural implementation, which retains
the last loaded or stored value to minimize the power consumption through reducing the number
of unnecessary signal toggles. Indeed, such design strategy entails that values fetched by two load
instructions may leak sensitive information on the power side channel, regardless of the number of
non-LSU instructions being processed between them and regardless of register re-use. We verified
that also the design strategy of the LSU component is accountable for the ineffectiveness of software
based SCA countermeasures. In addition, we highlight how the signals driving the values into/from the
output/input ports of the register file (RF) are accountable for the information leakage arising from the
transitions between two values that are consecutively transmitted to/read from the RF, regardless of the
specific RF locations addressed by the operations at hand. This observation confirms and extends the
results about the RF leakage in [47] allowing to pinpoint the reasons underlying the information leakage
arising from sequence of instructions with no register re-use (at the level of Instruction Set Architecture).
Moreover, it allows to assess to which extent an automatically performed random renaming of the
registers employed by an assembly code snippet [36], may be effective to prevent the information
leakage from the RF.

• Microarchitectural hints to improve the application of SCA countermeasures. We generalize
the findings of our investigation in a set of programming hints which allow to prevent the microarchi-
tecture dependent side channel leakage when applied. Our hints apply to any in-order RISC CPU, with
some of them being dependent on specific design choices of the CPU components. In particular, they
describe how to modify the architectural level description of the SCA countermeasure, i.e., the assembly
code, to take into account the microarchitectural serialization effects arising across several components
of the CPU pipeline (e.g, rescheduling some instructions and/or inserting new dummy instructions).
We validate the effectiveness of the proposed hints applying them to our case study microbenchmarks,
where their application is shown to prevent serialization induced leakage. We note that the constraints
kept into account to properly apply the SCA countermeasures, might be fruitfully employed in the
back-end of a common C compiler tool-chain during the optimization passes that precede the binary
code emission.

• Ghost peak characterization. Our detailed analysis allows to precisely pinpoint the causes of side
channel behaviors appearing as information leakage, despite not containing any secret key related
information. We clarify the reasons causing the non specific SCA robustness test, performed via t-
test [23, 25], to erroneously report an implementation as potentially leaking information and we provide
a detailed explanation of the causes of this behavior. We also suggest a complementary test which
should be paired with the common non-specific t-test to cope with such unwanted false alarms.
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Structure of the manuscript. The rest of the paper is organized as follows. Section 2 summarizes the
fundamentals on the current state of the art of power based SCA, and reports the related work. Section 3
describes the reference CPU architecture employed, and the power consumption simulation framework.
Section 4 contains the results of our analysis of the side channel information leakage, and the classification of
its sources. Section 5 summarizes the findings of the proposed investigation taking steps from the accurate
microarchitectural side channel analysis. Section 6, draws our conclusions.

2 PRELIMINARIES
In this section we provide the preliminary notions on power analysis attacks and survey the existing work in
the realm of design time assessment of side channel leakage.

2.1 Power Analysis Attacks and Countermeasures
The typical differential power analysis workflow is an instance of either a known plaintext attack or a known
ciphertext attack against a symmetric cryptographic primitive, aiming at retrieving the secret key being
employed by the cipher. The attacker is assumed to know all the details of the implementation of the cipher
and is able to measure the power consumption of the device to derive information regarding the secret key
from it. The main strength of a SCA lies in the possibility of considering the effect of the secret key bits on the
computation of the cipher separately, instead of as a whole, leading to a reduction of the security margin.
The attack workflow starts by choosing an intermediate value in the cipher computation depending on a small
portion of the key (usually 8 bits) and a known quantity (usually the plaintext in input or the ciphertext in
output). The side channel (e.g., the power consumption) is continuously measured during the execution of the
operation computing the said intermediate value, for a large set of different, randomly distributed known
inputs. Subsequently, the attacker tries to predict the actual power consumption of the device, according
to a chosen leakage model [31], relying on the knowledge of the inputs of the cryptographic primitive and
constructing an hypothesized power consumption for each of the values of the secret key portion taken into
account. Each one of these predictions on the power consumption is compared with the measured side channel
value at each considered time instant, through the use of a statistical test. The correct value of the secret key
portion is revealed, as the prediction depending on it will fit best the measurements. From a computational
point of view, the attacker is required to compute hypothetical power consumption values for a number of
hypotheses which grows exponentially in the number of key bits involved in the computation of the chosen
intermediate value. As a consequence, the attacker will choose as an intermediate value of the computation,
one which involves the least amount of key bits to be guessed (with the limit case being a single one).

2.2 Leakage Modeling
The choice of which intermediate value of the computation of an algorithm should be predicted, and which
data-dependent model of power consumption should be chosen to build hypotheses on its side channel values
is typically obtained exploiting a trial and error strategy, especially in the case of large devices [31]. However,
one of the main strengths of SCAs, as claimed by [31], is that even a reasonably coarse modeling of the power
consumed by the device is sufficient to lead an attack.

The most significant portion of data dependent power consumption in CMOS devices is constituted by
the switching power consumption of the circuit. Following this consideration, it is common to make the
assumption that all the logic components of the same kind will consume the same amount of power when
switching, and thus the switching power required is proportional to their amount. As a consequence, a popular
model for the data dependent power consumption of memory elements in a circuit is the Hamming Distance
(HD) between two values held by them in consecutive cycles, which considers the amount of single-bit
memory cells switching when the new value is memorized. Such a model requires the attacker to have further
information with respect to one obtainable simply predicting an intermediate value of the algorithm: indeed
he should be aware of which memory elements are storing it, and what was their previous content. The
information obtainable from this model is formalized in [7] according to the notion of transition leakage.

Definition 2.1 (Transition leakage). Given two Boolean values held by a single bit memory element in
subsequent clock cycles, the transition leakage is defined as the portion of the side channel behavior directly
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dependent on the difference, i.e., the bit wise eXclusive OR of the two values. The transition leakage of a
multi-bit memory element is defined, by extension as the portion of the side channel behavior proportional to
the count of single-bit values exhibiting a Boolean difference equal to 1.

However, given the fact that, in practice, the attacker may not be knowing the structure of the device being
targeted with a precision sufficient to determine which combinatorial and which sequential elements are
present, an alternate power consumption model commonly employed is the Hamming Weight (HW) of an
intermediate value being computed by the algorithm. This model is intended to capture the power dissipated
by logic gates in charging their fan-out, and is defined in literature as value leakage [7].

Definition 2.2 (Value leakage). Given a logic circuit computing a value, its value leakage is defined as the
portion of the side channel behavior depending on the number of signals being set during the aforementioned
computation, i.e., the Hamming weight of the computed value.

The HWmodel represents another popular choice, as it requires extremely limited information on the structure
of the computing device [18]. In particular, in [8] the authors were able to perform a successful key retrieval
on a 1 GHz ARM SoC running Linux, employing the HW model, regardless of the lack of knowledge of the
detailed CPU implementation. A straightforward, albeit useful observation is that the HW model may be
capturing transition leakages, should the transitions happen either from- or to a fixed, all-zeros value.

2.3 Statistical Distinguishers
A large variety of statistical tests have been introduced. In particular, the Difference-of-Means (DoM) test
was first employed to derive the secret key of a DES cipher. Subsequent works, investigated ways to enhance
the accuracy and the efficiency (in terms of number of measurements) of the differential power analysis [19].
Recent work [28] proved that when the leakage model is perfectly known to the attacker, the optimal statistical
distinguisher depends only on the statistical distribution of the noise superimposed onto the measurements.
Under the assumption of the additive measurement noise being Gaussian, if the leakage model of the targeted
sensitive operation arises from a linear relation between the operand values and the power consumption, the
optimal statistical distinguisher is the sample Pearson correlation coefficient. The sample Pearson correlation
coefficient r is a biased estimator of the actual Pearson correlation coefficient ρ between two random variables
when both of them are normally distributed. Let X be the variable representing the instantaneous power
consumption values of the device when processing randomly distributed inputs, and let Y be the predicted
power consumption according to a model depending on a given key value. Consider X ,Y as two random
variables, with their expected values being E[X ],E[Y ]. When employed as a statistical distinguisher in SCAs,
the sample Pearson correlation coefficient is computed between two realizations of the said variables. Recalling
that the expression of Pearson’s correlation coefficient is

ρ =
E[XY ] − E[X ]E[Y ]√

E[X 2] − E[X ]2
√
E[Y 2] − E[Y ]2

the expected value of its sample estimator, computed over two sample sets, both taken from normal populations
X={x1,x2, . . .}, Y={y1,y2 . . .} and of size n, is approximately E[r ]=ρ

(
1 − 1−ρ2

2n

)
, with an even more exact

result given by an infinite series containing terms of smaller magnitude. Elaborating the previous equation,
the recommended unbiased estimator for the correlation coefficient is obtained as: ρ̂=r

(
1 + 1−r 2

2(n−3)
)
[39]. In

the setting of SCAs, n is relatively high (usually greater than 50), thus the bias is ignored assuming:

ρ̂ = r =
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i − (∑xi )2

√
n
∑
y2i − (∑yi )2

.

Concerning the use of statistical tools to extract useful information from a side channel, a separate mention
should be made concerning the use of a statistical test to distinguish whether a variation in the circuit inputs
causes a measurable change in its side channel behavior. This approach, pioneered in [18], proposes (as a
leakage-model independent test) to compare two sets of power dissipation measurements obtained employing
a fixed key value and gathering the first set with a uniformly distributed set of input values, while feeding
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a single fixed input for the second set. For each time instant in which the samples are collected, a t-test is
performed to determine whether the set of samples collected with the uniformly distributed inputs has the
same expected value of the set collected with a constant input. In case the t-test accepts such an hypothesis,
the implementation is not providing sufficient information for a successful (first order) attack in the time
instant to which the compared sample sets are pertaining. However, if the t-test rejects the hypothesis of the
expected values being equal, the authors of [18] state that such a result “confirms the probable existence of
secret-correlated emanations”. Due to the convenience of not requiring to model the side channel behavior
of a device, the t-test was suggested in [25] as a testing methodology to assert the SCA resistance of an
implementation of a symmetric cipher.

2.4 Related Work
Framing accurately the form in which the information is leaked on the power consumption side channel
is a longstanding issue that has been tackled at different levels among which: a system view of the device
under exam [37], a Register-transfer Level (RTL) view [41], a gate level exam [47], and a transistor-level
characterization [49]. Depending on the chosen level, an increasing amount of detail about the information
leaked by the power consumption is obtained from the logic simulation, at the cost of a corresponding increase
in the computational requirements. However, starting the inspection at the lowest possible level, i.e., transistor-
level simulations, does not provide insights on whether the SCA vulnerabilities are caused from issues present
at the same level of abstraction or in any of the higher ones. We note that applying SCA countermeasures
only at the lowest levels incurs in significant penalties either in term of efficiency, due to a less structured
description of the device, which either forces a blanket application of countermeasures, or requires technically
challenging solutions to be applied manually to large portions of it. Contrariwise, mitigating side channel
vulnerabilities only at the topmost level may result in information leakage, as the applied countermeasures
are not aware of low-level effects [49].

The authors of [37] present a system-level cycle accurate simulation approach to obtain the side channel
behavior of SoCs. The authors assess the leakage of both a software Advanced Encryption Standard (AES)
cipher implementation in ARMv5 assembly, and an RTL-described hardware implementation of the same cipher,
highlighting the fact that exploitable information is leaked by both of them. While the analysis performed on
the simulation results reports coherent leakage for the unprotected implementations, the authors state that
the protected ones show a leakage which cannot be explained at system level.

In [41] the authors compare the results of an attack carried out against an ASIC implementation of the
AES cipher with one performed against a RTL-level simulation of the same core described in a Hardware
Description Language (HDL). The reported results provide good evidence towards the fact that RTL-level
simulation still retains the ability of predicting side channel leakage, albeit underestimating the number of
measurements required to recover the secret key by two orders of magnitude with respect to measurements
taken on a physical device. Sensible causes for the mismatch are the absence of measurement noise in the
simulation and RTL-level simulations not taking into account the propagation delay of the signals.

In [49] the authors analyze the results of SCAs with a circuit level simulation of an AES core, examining
different modeling strategies employed for the capacitive load relative to the interconnection between logic
gates. The work shows that choosing a model for such physical factors impacts in a significant way on the
predicted effectiveness of the key retrieval procedure.

In [45] the authors describe a methodology to automatically implement ad-hoc hardware accelerators
employing side channel resistant logic, which are employed to compute the sensitive portions of a software
based cryptosystem. Differently from our work, the methodology focuses on the automatic extraction and
generation of the hardware accelerators rather than analyzing the side channel leakage sources in the target
CPU. Indeed the selection of the portion of the software to be hardware accelerated is supposed to be manually
pointed out by the software architect.

The work presented in [16] observes that the side channel leakage from a software computation is stemming
from components on the datapaths present between the register file, ALU and memory, and employs this
observation to design a side channel countermeasure relying on Dual-Rail Precharge logic. In this work we
carefully identify the side channel leakage sources in the CPU microarchitecture at hand, and we present
guidelines to apply software based SCA countermeasures without resorting to technology level solutions.
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In [11] the authors present a compiler-based approach to insert two software countermeasures (i.e., Boolean
Masking and Random Precharging) to protect cryptographic algorithms against power-based differential side
channel attacks. In particular, the methodology leverages on the data dependencies within the algorithm that
can possibly highlight side channel leakage to drive the application of the countermeasures. The differentiating
point from this contribution is the fact that we analyze the microarchitectural structure of a 32-bit CPU,
while [11] relies on black box physical measurements of the power consumption for an 8-bit Atmel AVR
ATmega µC to locate the leaking points. Furthermore, our analysis shows that without keeping into account
the microarchitectural features of a 32-bit CPU the Boolean masking countermeasure becomes ineffective.

In this work, we employ a gate-level simulation approach, estimating, for the first time, the power dissipated
by the circuit on a post synthesis and map design of a full fledged pipelined RISC CPU. The methodology
trades off the accuracy provided by circuit-level simulations with the ability of providing a faster feedback
into the design loop, while retaining the capability to produce a detailed analysis of the portions of the
design, pinpointing the sources of exploitable side channel leakages down to the individual CPU modules.
When compared directly with an RTL-simulation approach [37], which exploits the toggle count as a power
consumption gauge, our strategy allows us to provide a time-based power trace derived from actual technology
library information, and take into account the effect of glitches, providing an overall best fit of the actual
device. A similar intent in attributing with precision the blame of causing a side channel information leakage
onto a specific processor component is presented in [47], where the authors perform a side channel leakage
evaluation on two implementations of an 8-bit AVR µC, namely a commercial grade Atmel ATMega32 and an
FPGA implementation of the same core. The focus of their analysis is to infer whether the leakage exhibited
by the device can be attributed to the register selection mechanism in the register file. To this end they apply
specific tests to the measurements taken on the physical devices. While sharing the intent of investigation
with [47], we provide a reproducible and accurate binding between the leakage causes and all the individual
CPU components and their interactions, proposing a taxonomy of the leakage sources. Finally, in [24] the
authors employ side channel information derived from an 8-bit PIC16F687 microcontroller with the purpose of
performing reverse engineering of the running code. This work performs an analysis of the leaking portions
of the microcontroller architecture to distinguish instructions from their power signature, while our work
focuses on the side channel leakage revealing information on the processed data.

3 ARCHITECTURE AND SIMULATION FLOW
This section overviews the framework used to characterize the side channel information leakage of the
reference CPU microarchitecture according to the popular value leakage and transition leakage models
described in Section 2.2. The 32-bit in-order RISC architecture used as a reference platform for the embedded,
in-order CPU family is detailed in Section 3.1. The side channel information leakage assessment workflow is
described in Section 3.2 and the description of the power estimation model employed is provided in Section 3.3.

3.1 The OpenRISC Reference Platform System-on-Chip
The employed case study architecture is the OpenRISC Platform System-on-Chip (ORPSoC) Version 3 [30],
implementing the royalty-free OpenRISC 1000 architectural specification [40]. Implementations of this archi-
tecture specification have been realized in silicon [17] proving its relevance as a test platform, and is currently
used by the AR100 power management unit in Allwinner SoCs [32], and supported in the mainline Linux
Kernel since version 3.1 [12]. Moreover, its free availability allows an easy reproducibility of the results.

The ORPSoC contains a single 32-bit, single-issue, in-order CPU with a 4-stage pipeline, the main memory
and a Wishbone [27] compliant bus connecting the two, implementing a Single Read/Write data transfer
protocol. The reason for the deviation from the common 5-stage pipeline design is that the load-store unit
of the ORPSoC is able to start executing the load/store instruction in the execution stage of the pipeline, as
it is endowed with a dedicated adder to compute the memory address, forfeiting the need of receiving it in
input from an ALU computation result. The implementation of the reference architecture considered in this
work does not implement caches nor pre-fetchers, matching common implementations strategies for several
low- and high-end microcontrollers (e.g. Cortex-M0, Cortex-M3, Cortex-M4 and Cortex-M7) [35].

ACM Trans. Des. Autom. Electron. Syst., Vol. 0, No. 0, Article 0. Publication date: 2018.



0:8 Davide Zoni, Alessandro Barenghi, Gerardo Pelosi, and William Fornaciari

  
Memory Data PortMemory Instruction Port

Instruction fetch (IF)

Main Memory

PC
Instr
Load

Add

IR

4

ALU

Sign­
exts

Imm

Instruction Decode 
(ID)

Instruction execution(EX) 
and Memory Access (M) 

Write Back
(WB)

opA

opB

rW
base_addr

lsu_dataout

addr_offset
LSU FF

NPC

3216

RF WB-Mux

BIU

Wishbone Instruction Bus

Core

Uncore

Wishbone Data Bus

Operand-Muxes

FFFF
opA opB

BIU

rA

rB

Fig. 1. Overview of the OpenRISC System-on-Chip reference platform, depicting the OpenRISC CPU, Bus Interface Units
(BIUs) and two Wishbone compliant buses towards the two-ported memory. The FF blocks indicate latched modules

A schematic view of the considered SoC is provided in Figure 1 implementing both an instruction and a
data bus. The access to each one of the buses is mediated by a sequential Bus Interface Unit (BIU) manipulating
signals coming from the CPU exposing a Wishbone compliant interface to the on-chip bus fabric. The BIU
requires a clock cycle for the signals to traverse it when asserted by the CPU.

The Wishbone bus architecture is capable of managing multiple masters and slaves, and takes two clock
cycles to propagate the signals from the BIU to the main memory ports, while a datum requires one clock cycle
to be propagated back after memory observes the request. The main memory read ports retain and propagate
the contents of the last requested address until the next request is made, saving unneeded signal toggles.

The Instruction Fetch (IF) stage of the CPU fetches a single, fixed-length instruction per clock cycle, save for
the requested transfer time, and updates the program counter following the standard MIPS-like architecture
approach as described in [26]. Due to the memory access latency, the IF stage receives the fetched instruction
after one additional cycle starting from the clock cycle when the memory instruction port observes the request.
For the sake of clarity, we point out that all the pipeline stages in the CPU are frozen when the IF stage is
stalled waiting for the fetched instruction. The performance impact taken by this architectural choice is not
affecting the precision of the side channel leakage assessment, since the datapath transition patterns are
preserved. In particular, a potentially more conservative estimate of the entity of the vulnerabilities can be
observed due to the lower amount of temporal superimposition of the instructions in the pipeline.

The Instruction Decode (ID) stage extracts from the instruction loaded into the Instruction Register (IR) the
information required to drive the Register File (RF) and the immediate operand logic to set up the operands for
the execution stage. Moreover, the ID stage also forwards the signals derived from the instruction operation
code (opcode) to the Functional Units (FUs), i.e., the Arithmetic-Logic Unit (ALU) and the Load-Store Unit
(LSU) present in the pipeline. The operands are not directly forwarded from the register file into the FUs;
instead, they are collected side by side to the values forwarded by the pipeline stages and multiplexed in the
Operand-Muxes module that actually implements the microarchitectural forwarding paths (see Figure 1). In
particular, the Operand-Muxes module presents the required operands to all the available FUs exposing them
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Fig. 2. Detailed view of the Load Store Unit of the ORPSoC. The Mem2Reg and Reg2Mem data alignment modules are
used to implement the load and store instructions for half-word and bytes. The FF blocks indicate latched modules

on the latched signals denoted as opA and opB in Figure 1, which are derived multiplexing inputs from the RF,
the immediate value from the IR, and the forwarding paths.

The EXecution and Memory access (EX/M) stage contains both the ALU and the LSU which compute the
result of the decoded instruction, in turn collected by the subsequent pipeline stage. Both units are always
active, regardless of the actual instruction transiting in the EX/M stage. The ALU is designed as a fully
combinatorial module taking three primary inputs, i.e., the two operands coming from the Operand-Muxes
and the opcode. All the supported instructions are executed in parallel and the opcode is employed as the
driving signal of a multiplexer which selects the result meant to be propagated.

The Write Back (WB) stage of the pipeline is composed of two modules. The first one is a combinatorial
multiplexer which selects the actual EX result between the ones provided by the ALU and the LSU and
propagates it to the Operand-Muxes module. The second module is a latched component that retains the
results from the first module to prevent value loss during pipeline stalls.
The Load-Store Unit (LSU). The OpenRISC CPU follows a strict load-store architecture design, thus the
only operations able to access the main memory are load and store instructions. All memory accesses
are mediated by the LSU, detailed in Figure 2, which communicates with the main memory via the BIU.
The memory word is 32-bit wide, and memory accesses are made to 32-bit aligned addresses. However,
the OpenRISC 1000 architecture specification contains also load and store instructions allowing to load
half-words and bytes, thus requiring the LSU to handle the proper alignment of the contents to be transmitted,
deducing it from the last two bits of the memory address. Concerning load operations, the LSU needs to
extract bytes and half words from the 32-bit loaded word and perform zero extensions whenever required
(e.g., by the l.lbz load byte with zero extend instruction). To this end, the Mem2Reg module of the LSU
receives as input the 32-bit data word from the memory through the BIU (reported in Figure 2 as the din
signal), the memory address to determine the data alignment and the lsu_opcode that contains the actual
load operation to be performed (i.e., the amount of data to be loaded). The Mem2Reg module, depicted in
Figure 2, is a fully combinatorial module acting on the 32-bit word fetched from the memory to transparently
present the requested data to the multiplexer in the WB stage. Figure 2 reports a sample dataflow of a load
byte instruction requiring the second byte of the data word: the 0xb0b1b2b3 word is loaded from the memory,
and the realigned 0xb1 byte is supplied by the Mem2Reg module to the WB stage via the lsu_datain signal.
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Fig. 3. Overview of the simulation methodology. The HW design is synthesized, mapped onto the standard cell library and
simulated, to obtain its switching activity in the form of a Value Change Dump file. The said switching activity is fed into a
power consumption simulator which generates the power traces required to evaluate the goodness of fit with the SCA
prediction models

Whenever a store operation must be executed, the LSU coordinates the memory transaction while the
Reg2Mem module provides the proper alignment of the bytes which should be stored into the main memory.
The Reg2Mem module takes as inputs the 32-bit data word to be stored, the destination memory address and
the lsu_opcode employed to determine the amount of data to be stored. The Reg2Mem sets the byte to be
written back in the correct position within the 32-bit dout signal, employing the one-hot encoded sel signal
to inform the main memory on which actual byte(s) be written back to the target address location. Both signals
are latched into the BIU, and once stable, the data bus is arbitrated and the byte is stored back into the main
memory. It is worth noticing all the bytes which are not selected for write-back can be assigned to any value
depending on the Reg2Mem implementation, as they are specified to be don’t cares by the OpenRISC 1000
specification. Figure 2 reports an example of the dataflow of a store byte instruction, requiring the retention
of the second most significant byte of the memory word with value 0xb0b1b2b3. This results in the Reg2Mem
module outputting only the byte to be updated on the dout bus, and set the selection signal to (0100)2 to mark
it as the one to be stored.

3.2 Simulation Workflow
The proposed workflow 1 (see Figure 3) is general enough to allow an SCA vulnerability assessment of any
architecture for which the HDL description is available. In our settings, we employed a Xeon E5-2650 v3
machine, with 64 GiB RAM running an x86_64 Ubuntu 14.04 OS. Starting from the HDL description of the
ORPSoC, in the Logic Synthesis, Mapping and Switching Computation Phase, the design is first synthesized and
mapped onto the 45 nm, standard-cell library FreePDK [48], employing Cadence Encounter RTL Compiler,
with a target frequency of 100 MHz for the main clock, while not enforcing area constraints. The gate-level
netlist activity is simulated by running multiple times the software benchmark on a set of randomly distributed
inputs to extract the corresponding Value Change Dump (VCD) data. The VCD contains timing information
for all the transitions of each signal of the simulated architecture. To detect the beginning and the end of the
simulation of a single execution of the benchmark, we inserted a few ad-hoc nop instructions at the beginning
and end of the benchmark code.

In the Power Dissipation Computation Phase, the Cadence Encounter Power System toolchain is used to
extract the power traces, starting from the VCD computed in the previous phase and the FreePDK technology
library [48]. A power trace for each instance of the simulated benchmark is computed for the CPU, without
taking into account the main memory and the bus interconnect. Despite being not directly taken into account,
the memory and interconnect indirectly contribute to the computation of the power consumption of the CPU,
as their values are sampled at the LSU and IF modules. Focusing on the CPU power consumption allows us to
pinpoint the sources of SCA leakage, avoiding the power noise effects introduced by additional components
that are not of interest in this work. This choice matches also the typical avenue for a SCA on modern SoCs,
where separate power lines for the CPU and the rest of the components are often present, allowing an attacker

1https://github.com/GerardoPe/OpenRISC-Gate-Level-Simulation-SCA
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Fig. 4. Depiction of the power consumption model employed by Cadence RTL Compiler Power Engine for a logical-and
equivalent circuit made out of a NAND and an inverter

to single out the power consumption of the CPU. The use of ad-hoc nop instructions, to mark the beginning
and the end of each benchmark instance, ensures that the extracted power traces are perfectly aligned in time,
a crucial factor to obtain accurate results when evaluating side channel information leakage. The power traces
are computed considering a 5 ns time precision, thus, two power samples per each simulated clock cycle are
collected. We note that each power sample is constituted by the sum of the dissipated power over the entire
half clock cycle thus also including the contribution due to the glitches.

Each power trace is then stored paired with the corresponding input data, to be employed in the Side-Channel
Analysis Phase of the workflow (see Figure 3). The SCA leakage characterization stage is made of a C++ of the
Pearson correlation based side channel analysis [31]. The implementation computes the sample correlation
coefficient for each one of the collected power sample sets, and reports the results to be analyzed. To the end
of providing a sound statistical evaluation of the results, we collected 2000 simulated power traces (employing,
for all our benchmarks ≈1 hour, on average, for the VCD generation, and ≈10 hours for the power trace
generation), resulting in a confidence interval of around ±0.03 for the sample Pearson correlation coefficient
r , with a 95% confidence level. Given the complete absence of measurement noise, we deem the width of the
confidence interval to be narrow enough for the purpose of our analysis. Computing the Pearson correlation
coefficient for 2000 traces, employing 256 key-dependent models takes tens of milliseconds with a Matlab
implementation. We note that, in case multiple models need to be evaluated, an optimized implementation of
the same computation is able to obtain the results of all the tests prescribed in [23] in around 20 minutes.

3.3 Power Dissipation Computation
Starting from the gate-level netlist of the OpenRISC CPU and the VCD, power traces are computed at a module
granularity. This choice allows a balanced trade off between the possibility to observe a portion of the circuit
that has a well defined architectural functionality and the need to investigate the information leakage sources
among the CPU submodules.

The Cadence RTL Compiler Power Engine is the element of the Cadence Encounter Power System which
computes the total power consumption accounting for all the transitions of each signal in the design for
which the power has to be estimated within the specified time-frame (i.e., 5 ns in the reported scenario). The
implemented power model takes into account four separate contributions to estimate the power consumption
of the considered logic circuit as depicted in Figure 4 – where a NAND gate and a not cell are considered. First
of all, the internal power dissipation of a logic gate is the sum of the power consumed by the short-circuit
taking place at switching time, and the one dissipated when charging or discharging the gate-to-substrate
capacitance. The data to compute the internal power are obtained from the technology library and are a
function of the input slew rate, the drive strength of the transistors, and the load driven by the output of the
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gate. The second contribution to the circuit power dissipation is the leakage power dissipation, i.e., the power
dissipated due to the leakage current between source and drain in modern transistors that, due to a reduction
of the threshold voltage, can not be completely turned off. The dissipated leakage power is totally technology
dependent and thus fully determined by the characteristics of the exploited technology library. The third
and fourth contributions are a consequence of the fanout power dissipation, i.e., the power dissipated when
charging or discharging the capacitive load of the networks connected to the output of the logic gate at hand.
Such a power consumption includes the energy required to charge the capacitance of both the input lines of
the connected gates (Gate p.d. in Figure 4) and the wires linking the output of the logic gate with the inputs
of each gate on its fanout (Network p.d. in Figure 4).

The power dissipation estimation of a module is computed as a natural extension of the gate-level one, i.e.,
the sum of all the power consumption of its gates considering the instances of cells of the technology library
present in it. The power dissipation of all said gates is part of the considered module, with the exception of
the fanout power on the primary output signals. The fanout network power is usually accounted in the signals
which are directly connected to the logic that is downstream with respect to the primary output signals.
Conversely, a change in the primary inputs of a module causes a power consumption that is attributed to the
module itself, due to the leakage and internal power consumed by the logic gates driven directly or indirectly
by those input signals.

4 SIDE CHANNEL LEAKAGE ANALYSIS
This section describes the side channel information leakage of the reference CPU presented in Section 3.1.
In particular, the section characterizes the said SCA leakage with two main objectives. First, to motivate
the importance of using the microarchitectural side channel information to design SCA resistant software.
Second, to precisely characterize the side channel information leakage evaluated on an open hardware
microarchitecture to later generalize some of the findings to the class of in-order RISC CPUs.

The CPU is initially analyzed as a whole and, to increase the precision in pinpointing the information
leakage, different CPU modules are investigated in isolation: the Arithmetic-Logic Unit (ALU), the Register
File (RF), and the Datapath - as made of the LSU, the Operand-Mux and the WB stage modules. The side
channel leakage analyses has been also performed on the remaining modules, namely the IF pipeline stage and
the control logic unit, but no leakage is reported, in accordance with their behavior being data-independent,
thus they are omitted in the following description. To the end of exposing the side channel leakage caused
by microarchitectural features of the CPU at hand, we devised ad-hoc assembly benchmarks to activate the
datapaths according to the observation presented in [16], i.e. the paths connecting the memory to and from
the RF, and the RF to itself via the pipeline. Among the viable instruction sequences fitting this purpose, we
chose some which are ubiquitous in the software implementations of several cryptographic libraries.
Benchmark 1 - loads two operands from the main memory, a known input and a secret key, combines them
via xor, and stores back the result into the main memory. This execution pattern matches the key addition
present in symmetric block ciphers, where the round key is added to the cipher state via bitwise eXclusive OR
(xor). We note that this is a widely employed approach, as 7 out of the 9 ISO standardized block ciphers [20]
perform key addition only with this strategy, and the remaining 2 mix this approach with an integer addition
based one. We note that, while alternative instruction schedules are possible for a key addition, in particular
ones reducing the amount of transfer to/from the main memory, the effects observed in Benchmark 1 are still
relevant. Moreover, even in the fortunate case of a schedule free from interactions with the main memory, the
side channel leakage we report from other CPU components is still matching the behavior of the device.

The proposed investigation highlights the side channel information leakage as a consequence of the data
serialization effect imposed by the microarchitecture on the two operands and not due to the specific instruction
executed to combine them, thus allowing to generalize the result to any instruction that combines the secret
key and the known input.
Benchmark 2 - combines two values, known input and secret key, contained in two registers with two
copies of the same random value held in a separate register. Similarly to the scenario in Benchmark 1, different
schedules for the instructions are possible, depending on the number of available registers and the order of the
masking employed. However, we note that in this case it is even less likely to have a schedule free frommemory
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sb 1(rA),rK ID EX/M EX/M WB

lbz rK,0x12(rA) IF ID ID EX/M EX/M EX/M WB

lbz rP,0x2(rA) IF-st IF ID ID ID EX/M EX/M EX/M WB

xor rK,rP,rK IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

sb 0x2(rA),rK IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

lbz rK,0x13(rA) IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

lbz rP, 0x3(rA) IF-st IF-st IF ID ID ID EX/M

xor rK,rP,rK IF-st IF-st IF ID

(a) State of the pipeline during the computation of the instructions on the left side
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(b) Time-wise Pearson sample correlation coefficient for the power
consumption of the CPU executing the code in (a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
−1

−0.5
0

0.5
1

(Clock Cycle)

(c) Time-wise Pearson sample correlation coefficient for the
power consumption of the ALU executing code in (a)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
−1

−0.5
0

0.5
1

(Clock Cycle)

Sa
m
pl
e
Pe
ar
so
n

Co
rr
el
at
io
n
Co

eff

(d) Time-wise Pearson sample correlation coefficient for the power
consumption of the RF executing the code in (a)
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Fig. 5. Pipeline state (a) and side channels (b)–(e) of the execution of Benchmark 1 on the reference platform. Both the
known input and the secret key are loaded from the main memory of the SoC, computing their address starting from the
base address value stored in register rA. The known input is stored in register rP and the secret key in register rK before
being xor-ed. The result is stored back into main memory

interactions due to the increased register pressure caused by masking schemes. This instruction sequence
is the one computing the randomized encoding required by all the Boolean masking countermeasures [31],
which are the ones providing provable security guarantees on symmetric ciphers. Our results show that a
possible reduction in the security margin of a masking scheme may happen if the known input and secret key
are processed by two subsequent, unrelated operations both as first operands or both as second operands.

The Pearson’s sample correlation coefficient r is used as the statistical tool of choice to quantify the fitness
of the power model to the simulated power consumption. We employ the Hamming Weight of the xor between
input and secret key as our power consumption prediction, and we observe that, while it correlates successfully
with a significant amount of instantaneous power consumption values, the motivations for this correlations are
diverse. The choice of Pearson’s r was made in accordance with the results on the optimality of the statistical
distinguisher presented in [28] (see Section 2).

Figure 5 and Figure 6 report the results for Benchmark 1 and Benchmark 2, respectively, obtained by
computing r between the power consumption of either the entire CPU (Figure 5b and Figure 6b), the ALU
(Figure 5c and Figure 6c), the RF (Figure 5d and Figure 6d), or the datapath (Figure 5e and Figure 6e) and the
key dependent prediction as a function of time. For the sake of representation, the execution of boilerplate
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1 2 − 5 6 7 8 − 10 11 12 13 − 15 16 17

lbz rK,0x0(rK) ID EX/M EX/M WB

xor rTmpA,rK,rRng IF ID ID EX/M EX/M EX/M WB

xor rTmpB,rP,rRng IF-st IF ID ID ID EX/M EX/M EX/M WB

xor rRes,rTmpA,rTmpB IF-st IF-st IF ID ID ID EX/M

movhi r21,0x0 IF-st IF-st IF ID

(a) State of the pipeline during the computation of the instructions on the left side (bench-
mark 2,boilerplate code not reported)
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(b) Time-wise Pearson sample correlation coefficient for the power
consumption of the entire CPU executing the assembly in (a)
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(d) Time-wise Pearson sample correlation coefficient for the power
consumption of the RF executing the assembly in (a)
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Fig. 6. Pipeline state (a) and side channel analysis (b)–(e) of the execution of Benchmark 2 (randomized encoding of input
and secret key) on the ORPSoC platform. The known input and the secret key are held in registers rP and rK, respectively,
while rRng contains a random value

code at the beginning and at the end of the benchmark is omitted. Figure 5a also reports the state of the CPU
pipeline, starting from the clock cycle when the first instruction of an intermediate iteration of Benchmark
1 pattern is fetched, as the benchmark pattern is iterated multiple times in real world ciphers. Each line of
Figure 5a depicts the progress of a CPU instruction (represented without its fixed syntactic decorator prefix
l. for the sake of clarity) in the pipeline for Benchmark 1, while Figure 6a displays the same information
for Benchmark 2 for which the correlation obtained with the power consumption of the entire CPU is also
reported. It is also noteworthy that, despite the correlation values are bound to the ones of the results for the
CPU modules, the values of r for the entire CPU cannot be obtained simply by adding together the ones of the
separate modules due to the non-additive nature of Pearson’s sample correlation coefficient. To provide the
complete picture of the instructions being processed by the ORPSoC, we also report some of the instructions
preceding and following the ones in an iteration of the benchmark.

In the code reported for Benchmark 1, rK is the register into which a byte of the secret key is loaded
and it acts as a storage for the result, while rP is the storage for the known input. rA contains the base
address in memory from which the position of both the known input and the key is computed. In the second
benchmark rP and rK contain the known input and key values, respectively, while rRng contains a random
number, different for each execution of the code. rTmpA and rTmpB are supposed to store constant values
at the beginning of the benchmark code. Before detailing the results obtained from the leakage analysis
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Table 1. Taxonomy of transitions causing potentially information leaking power dissipation on the ORPSoC platform,
together w/ the involved modules. For each pair of transition type and CPU component we report the instant in time when
the leakage is observed according to Figure 5 and Figure 6

Transition Type

CPU component Event in time

ALU
Register Datapath ALU Register File Datapath and LSU

File and LSU Fig 5c Fig 6c Fig 5d Fig 6d Fig 5e Fig 6e

Register (Over-)Write ✓ ✓ 21, 32 12 11, 16, 22, 27

LSU Data Remanence ✓ ✓ 11, 16 11, 16, 22, 27

WB Buffer (Over-)Write ✓ 17 16

ALU Computation ✓ 17, 18, 19

EX Stage Operand Assertion ✓ ✓ ✓ 22, 27 12 12 22, 32 11, 12

Signal Glitches ✓ ✓ 17, 22, 27 7 21, 26

of the benchmarks, a classification of the different types of information leaking transitions emerged from
our investigation is highlighted in Table 1 also binding each type of leakage to the affected portions of the
microarchitecture.

• Register (Over-)Write. This type of transition is the one taking place whenever a new value is written
into a register, i.e., the value to be written is asserted on the write port of the RF, causing the input latch
of the register to toggle if the previously held value is different from the new one. Such an operation
also involves the datapath as the carrier of information towards the RF write port.

• LSU Data Remanence. In the ORPSoC a common choice on the management of the data bus is made,
i.e., the bus does not toggle unless a memory access is required. Such a design decision implies that
transitions between the values involved in subsequent memory accesses will take place regardless of
the amount of purely computational operations taking place in between them. Since such values are
propagated by the WB forwarding path of the pipeline to the RF, such transitions involve both the
Datapath and the RF.

• WB Buffer (Over-)Write. The WB buffer employs as enable signal the negated freeze signal of the
pipeline and latches the value coming from the previous stage at each clock cycle to forward it in case
of a pipeline stall.

• ALU Computation. Since the ALU in the ORPSoC design is fully combinatorial, any change of its
primary inputs, either its operands or the opcode will trigger a computation which is operand dependent,
and thus may be leaking information.

• EX Stage Operand Assertion. At the beginning of the EX stage, the operands are asserted on both
the ALU and the LSU primary inputs by the sequential elements in the Operand-Muxes module of
the Datapath. Such a transition may be a cause for information leaking power dissipation between
operands sharing the ALU as well as the LSU input port in subsequent clock cycles.

• Signal Glitches. Unbalanced combinatorial paths give rise to signal glitches before the setup time of a
clock cycle. Whenever such glitches occur on signals carrying known input and key dependent values,
an information leaking power consumption may take place.

4.1 The ALU Information Leakage
A widespread assumption in open literature is that the portion of a digital circuit performing the computation
of a result provides a significant information leakage on the side channel [31], and it is believed that such value
leakage is well modeled by the Hamming weight of the said result. Our investigation examines the information
leakage from the ALU in accordance to the previously presented classification appearing in Table 1 and further
refines the validity of the open literature assumption.
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ALU Computation. Concerning Benchmark 1, Figure 5c shows how, and in contrast with the open literature
assumption, the said consumption model fails to capture the behavior of the ALU at hand, as the key-dependent
model exhibiting the highest correlation at cycle 17 is not the one depending on the correct key hypothesis. We
ascribe such a behavior to the fully combinatorial nature of the ORPSoC ALU, which computes simultaneously
all the available operations on its inputs, to propagate the required result only to its primary output, thus
superimposing the power consumption of all the arithmetic-logic computations to the one of the bit wise
eXclusive OR (xor). The presence of key-dependent models exhibiting non-negligible correlation suggests that
employing a model, different from the value leakage applied to the output of the operation being computed,
might allow to successfully capture the information contained in the side channel. Such a behavior is depending
on the specific ALU design strategy, which is not investigated in further detail, as it exceeds the scope of the
current work, i.e., relate microarchitectural design features to side channel leakage. We note that investigating
the most appropriate leakage models given specific ALU design strategies may provide interesting future
research directions.

A second valuable observation is devoted again to the fully combinatorial nature of the ALU that provokes
stray information leakage in the two cycles, i.e., 18 and 19, following the beginning of an EX stage computation.
The investigation verified that such a behavior is the result of the combinatorial paths forwarding a spurious
opcode to the ALU, despite the pipeline being frozen. This fact causes an input-dependent power consumption
which, however, is not well fit by the value leakage of the computed value consumption model.

EX Stage Operand Assertion. The assertion of the operands to the functional units at the beginning of the
EX stage is a cause for significant information-leaking power dissipation that can be practically exploited, as
shown by executing Benchmark 2. Indeed, in Figure 6c, at cycle 12, a clear correlation between the Hamming
weight of the xor combination of known input and key, and the power consumption emerges. This suggests
that the Hamming distance between the operands of two subsequent operations is indeed a good model for
the power dissipation of the ALU. The correlation is due to the fact that both the known input and the secret
key appear as first operand of the two consecutive xor instructions that combine the two operands with the
random value, with the second one starting its EX phase at cycle 12. We note that such a behavior is particularly
detrimental, as it effectively removes the protection that masking schemes are supposed to provide, despite
the code fragment respects the best practices in terms of avoiding careless register reuse [7]. In particular,
the masking security is reduced by one order, as the microarchitecture induced leakage matches the share
recombination function of the masking scheme at hand (i.e., Boolean masking). Different masking schemes
may equally be affected, although the relation with their share recombination function must be considered on
a per-scheme basis. In addition to the presence of non-negligible values of r when a computational instruction
is in the EX stage, we note that two other points in time are characterized by a significant correlation with the
ALU power dissipation (cycles 22 and 27 in Benchmark 1). In both cases, the root cause of the correlation is the
fact that the Operand-Muxes propagates the operands to both the ALU and the LSU (see Figure 1) regardless
of which instruction is in the execution phase. As a consequence, whenever an operand of the ALU depends
on both the known input and the secret key, the ALU will dissipate power providing an information leakage
even if a non-ALU instruction is in the execution stage.

The first point in time when this happens in Benchmark 1 (Figure 5c, cycle 22) is when the currently
asserted ALU inputs, i.e., the input and key values used by the xor operation, are replaced by the base address
and the result of the xor itself when the store byte operation (sb) enters EX, while the second time instant
(Figure 5c, cycle 27) sees the second operand of the aforementioned sb instruction being replaced by the fixed
offset of the address of the subsequent load byte with zero extension instruction (lbz). In both cases, the value
leakage model does not fit the instantaneous power consumption, thus resulting in an incorrect key value
being the one employed by the prediction with the highest correlation. However, this still does not exclude
the possibility of extracting the correct key value with a different model of the ALU power consumption.

Finally, we are able to justify the fact that, despite the transitions between the values of operands of
subsequent instructions take place also at other cycles, substantially no correlation is present. Indeed, in these
cases, the starting and ending values of the transitions are statistically independent from the known input,
and will thus result in an independent power consumption.
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4.2 The Register File Information Leakage
Considering a load-store architecture, the register file is known to be a significant source of exploitable
information leakage [14, 31, 47], due to the fact that it stores both operands and results of each instruction. In
particular, the most common assumption is that a register will provide an information rich power leakage,
which is well modeled by the Hamming distance of its previous and next contents. Such a transition is typically
associated with the write back of the result of an instruction.
Register (Over-)Write. The common transition model from open literature matches three different time
instants in the benchmarks, namely cycles 21 and 32 in Benchmark 1 (Figure 5d) and cycle 12 in Benchmark 2
(Figure 6d). In particular, the former information leakage is caused by the xor rK,rP,rK completing its EX
transit, and asserting the result up to the sense portion of the FFs of the destination register, which contains
the value of the key. This results in a signal transition having a number of toggles equal to the input value
Hamming weight, and consequentially fitting the employed power consumption model, i.e., the Hamming
weight of the xor combination of input and key with an apparent key value of zero. A consequence of this
fact is that, despite it is possible to obtain an effective power model for the transition taking place, it is not
possible to retrieve the actual value of the key from it, giving rise to the first so-called ghost peak [13] we
observed in our evaluation. A spike in the sample Pearson correlation coefficient is deemed to be a ghost peak
according to [13] whenever it is related to a computation from which it is not possible to extract information
regarding the secret key. A similar ghost peak is present at cycle 32 when the value of the key byte used in
the subsequent benchmark iteration and loaded from the lbz rK,0x13(ra) instruction is written into the rK
register, which contains the xor combination of the actual known input byte and the actual key byte. We had
practical confirmation of this ghost peak noting that the best power model for clock cycle 32 in Benchmark 1 is
the one with the key value equal to the xor-combination of the actual and next key bytes (namely, 1).
EX Stage Operand Assertion. The assertion of the operands to the functional units in Benchmark 2 causes
a practically exploitable information-leaking power dissipation on the Register File. Indeed, Figure 6d, at cycle
12, shows a clear correlation between the Hamming weight of the xor combination of known input and key,
suggesting that the Hamming distance between the operands of two subsequent operations is indeed a good
model for the power dissipation of the RF. The correlation is due to the fact that both the known input and
the secret key are encoded in the assembly to appear as first operands of the two consecutive xor instructions
that combine the two operands with the random value, with the second one starting its EX phase at cycle 12.
In particular, we note that in this case the detrimental effect reduces the masking security by one order, as the
microarchitecturally induced leakage matches the share recombination function of the masking scheme at
hand (i.e., Boolean masking). Different masking schemes may equally be affected, although the relation with
their share recombination function must be considered on a per-scheme basis.
LSU Data Remanence. Besides the leakage due to the write back of the result of an instruction, our analysis
of the causes of information-supplying power dissipation identified a source of vulnerability in the load/store
operations acting on single bytes, in combination with the last-transmitted-value retention policy of the data
bus (see Section 3). This security issue produces information leakages which are far from intuitive from an
assembly programmer point of view, such as the one appearing at cycle 11 of Benchmark 1 (Figure 5d), where
the transition leakage between a key and an input byte models perfectly (r=1) the power dissipation of the
RF. The aforementioned leakage can be explained considering the evolution of the data port of the memory,
and which portion of it is propagated to the write port of the register file by the LSU between cycles 6 and
11. We note that the analyzed iteration of the benchmark manipulates the third byte in the 32-bit word. In
particular, at cycle 6 the sb instruction storing the second byte of the known input word leaves on the data
bus a value containing the first and second byte obtained as a combination of known input and key, and the
third and fourth being simply the unmodified known input bytes. When the subsequent lbz rK,0x12(rA)
instruction enters EX at cycle 7, the LSU is instructed to forward the contents of the third byte obtained from
the data bus to the RF write port, and does so asserting the unmodified third byte of the known input. We
note that, while such a value is not actually memorized by the destination register, the data port of the FFs
constituting the register are charged. At cycle 11, the value being loaded by lbz rK,0x12(rA), i.e., the actual
key byte, is made available from the memory, and is asserted on the lines connected to the destination register,
effectively causing a known-input-to-key transition, which is perfectly modeled by a transition leakage. An
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analogous transition takes place at cycle 16 of Benchmark 1, when the value requested by the lbz rP,0x2(rA)
instruction, i.e., the known input, is provided on the data bus, replacing the key value thus producing a
key-to-known-input transition (see Figure 5d).
Signal glitches. The last among the information leakage causes we detected in our analysis concerns the
power dissipation due to logic glitches during the computation. Inspecting the VCD, we confirmed that the
presence of correlation at cycles 17, 22, and 27 of Benchmark 1 and at cycle 7 of Benchmark 2 is caused
by multiple transition glitches which occur before the result is stable. We note that, given our simulation
environments, the presence of a glitch in a synthesized design is deterministic, given the known input
triggering it. This in turn allows the power dissipation caused by glitches detected at this simulation level to
appear clearly as information leaking whenever it is the case. In particular, at cycles 22 and 27 of Benchmark
1, when the result of the xor rK,rP,rK operation is being propagated in the datapath, a glitch causes the
carrying signals to transition to zero before asserting the said value. This in turn results in a power dissipation
matching perfectly the one predicted by the consumption model employing the correct key. A similar glitching
issue is root cause of the power model with a zero-valued key having the best correlation at cycle 17 of
Benchmark 1 (Figure 5d). In particular, a transition of the write port of the register file glitches to zero before
the final value, i.e., known input xor key, is asserted. We thus observe that also glitches may be one of the
causes of ghost peaks during a side channel attack. A similar ghost peak is present at cycle 7 of the Benchmark
2, where a power dissipation well fit by the same zero-key model is caused by the assertion of the known
input value by the RF, which stabilizes only after having a glitch to zero.

4.3 The Datapath Information Leakage
We complete the analysis of the information leaking power dissipation of our architecture considering the
contribution arising from the datapath, as made of the LSU, the logic contained in the WB stage of the pipeline
and the Operand-Mux module. The power consumption of the datapath does not include the ALU and the RF
which have been analyzed in precedence, nor it includes the power dissipated by non data-processing CPU
modules, such as the IF stage.
Register (Over-)Write and LSU Data Remanence. Two instances of leakage arising from the value per-
sistence on the data bus are the ones allowing a correct key retrieval at cycles 11 and 16 of Benchmark 1. In
both cases the exploitable leakage is the result of the data memory bus asserting the last value transmitted on
it, before switching to the next required one. It is worth noticing once more that the considered iteration of
both benchmarks manipulate the third byte in the 32-bit data word. In particular, at cycle 11 the third byte
of the known input word, a remanence of the sb 1(rA),rK instruction, is substituted by the third key byte
requested by lbz rK,18(rA), while at cycle 16 the third key byte loaded by the aforementioned instruction
is again substituted on the data bus by the third one of the known input, as requested by lbz rP,0x2(rA).
A similar information leakage, which instead is leading to an incorrect key hypothesis given the employed
power model is present at cycle 27 of Benchmark 1. In that clock cycle, the opB of the LSU toggles from the
value of the known input combined with the key via xor, required to complete the EX phase of sb 2(rA),rK,
to the value of the offset of the address required to perform lbz rK,19(rA). Such a transition leads to a
transition leakage model with a wrong key hypothesis being the one with the highest correlation. A last point
in time exhibiting leakage in Benchmark 1 is cycle 22, where the realignment logic contained in the Reg2Mem
module asserts the byte to be stored twice in an internal buffer, previously zero-filled. Since such a value is
the xor combination of known input and key, an exploitable power dissipation is present.
WB Buffer (Over-)Write. Instances of power dissipation due to the memorization of a value in the WB
buffer of the ORPSoC pipeline, leading to information leakage are present in both benchmarks. In particular, at
cycle 66 of Benchmark 1, the WB buffer memorizes the value being output by the EX stage, i.e., the key value
retrieved by the lbz operation, due to the incoming pipeline stall. Further on in the computation, namely at
cycle 17, the key value is replaced by the one being produced by the EX stage, i.e., the input value loaded lbz
operation, in turn giving rise to a power dissipation which is well modeled by the Hamming distance between
the input value and the secret key, thus allowing key value retrieval. A similar transition takes place at cycle
16 of Benchmark 2, where the WB buffer replaces with the value of the xor combination of the key value and
the random value its previous contents, i.e., the xor combination of the known input and the same random
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value. Such a transition is once again well modeled by the Hamming distance between the input value and the
secret key, and undermines the effectiveness of the masking technique, should it take place in a real world
implementation.
EX Stage Operand Assertion. Typical conditions causing information revealing power dissipation are the
ones an cycles 11 and 12 of Benchmark 2. At cycle 11, the sequential portion of the Operand-Mux latches both
operands due to a pipeline stall taking place the next clock cycle. The latched value for opA, i.e., the input byte
at hand, replaces the previously stored value memorized at cycle 7, i.e. the secret key byte. Such a transition
will in turn cause a power dissipation which is perfectly modeled by the prediction depending on the correct
key value. In the subsequent cycle (cycle 12), the effects of the aforementioned transition are replicated on the
entire datapath, as the flip flop toggles its output, resulting in a considerable information leakage. A more
sophisticated leakage due to the operand assertion into the ALU, despite the result is not needed is the one
taking place at cycle 32 of Benchmark 1. The root cause of such a leakage is the accidental assertion of the
combination of known input and key as an operand, and an offset value as the second operand, taking place
at cycle 27. An accidental ALU opcode (namely, an inclusive or) is also asserted at cycle 27, despite a sb
instruction being actually in the EX stage. The ALU accidentally computes the or of its operands, which gets
stored into the WB buffer as a result of the oncoming stall. The contents of the WB buffer are replaced at
cycle 32 by the loaded value, namely the key, in turn exhibiting a ghost peak due to the known input and key
dependent transition. A last case of leakage due to the assertion of the EX operands is the one of cycle 22 in
Benchmark 1. During cycle 22 the base address of the sb instruction is asserted as an operand to both the LSU
and the ALU, in turn replacing the previous value, which was indeed the input byte. Since the actual value of
the byte of the address being asserted differs only by a single bit from the correct key value (namely, 0x14
instead of 0x15), the transition results in a ghost peak, which is completely unrelated with the actual key
value, despite being remarkably similar in appearance. We note that an address ending in 0x15 would have
caused a ghost peak looking perfectly like a correct key extraction, given the secret key value considered in
our test.
Signal Glitches.We report the fact that leakage coming from glitching behavior at cycles 21 and 26 is caused
by the very same glitching behavior as the one reported in precedence, i.e., due to both the structure of the
synthesized design and the critical information contained in the datapath. In particular, the value equal to the
bitwise eXclusive OR between the key value and the known input value is at the output of the ALU (cycle 21)
and propagated from the RF to the LSU at cycle 26 ready to be stored while the main memory continuously
forwards the old stored value until the new one is written.

5 DISCUSSION
This section summarizes the findings emerged in Section 4 and classifies them according to the contributions
detailed in Section 1, providing a set of programming hints aimed at preventing information leakage due to
data serialization. Such hints can be applied to the assembly of any in-order single-issue RISC CPU.

5.1 Microarchitectural components inducing side channel information leakage
The data serialization effect arises when two values are updated on the same wire of the microarchitecture
in two consecutive clock cycles, thus yielding a power consumption which correlates with the Hamming
distance between the two values. Our investigation marks this microarchitectural effect as the cause of theWB
Buffer (Over-)Write, the Register (Over-)Write and the EX Stage Operand Assertion information leakage types
(see Section 4) and shows the possibility to exploit the corresponding leakage to recover the secret key. The
leakages classified as either WB Buffer (Over-)Write or Register (Over-)Write arise from the WB pipeline stage
and the forwarding paths of the CPU, respectively. The two components are present in any modern in-order
RISC CPU microarchitecture to provide precise exception handling support and to minimize pipeline stalls,
respectively. We note that both the WB and the Forwarding Path components are also present in the design of
superscalar and out-of-order CPUs, with the same end. Indeed, in out-of-order CPUs, the WB stage embodies
the data serialization point needed to perform an in-order update of the architectural register file, while the
forwarding paths are implemented as a mechanism to notify the availability of the intermediate results to
the reservation stations. The leakage classified as EX Stage Operand Assertion arises from the serialization of
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lwz rRng1,0(rRng1)

lbz rP,0(rP) WB

lwz rRng0,0(rRng0) EX/M EX/M EX/M WB

lbz rK,0(rK) ID ID ID EX/M EX/M EX/M WB

xor rT1,rRng0,rP IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

add rT0,rRng1,rRng1 IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

xor rT2,rK,rRng0 IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

xor rC,rT1,rT2 IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

add rT0,rRng1,rRng1 IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

sb 0(rC),rC IF-st IF-st IF ID ID ID EX/M EX/M EX/M WB

add rT0,rRng1,rRng1 IF-st IF-st IF ID ID ID EX/M

(a) State of the pipeline during the computation of the instructions on the left side. Dummy instructions are reported in bold font
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(b) Time-wise Pearson sample correlation coefficient for the power consumption of the CPU executing the code in (a)

Fig. 7. Pipeline state (a) and side channels (b) of the execution of Benchmark 3 on the reference platform. The known
input and the secret key are held in registers rP and rK. Registers rRng0 and rRng1 contain two different random values.
Moreover, registers rT0, rT1 and rT2 store intermediate values while the result of the computation is held in rC. (rX)
defines the memory location of the X value, where X ∈ {P, K, Rnд0, Rnд1, T 0, T 1, T 2}. We note that the Pipeline state
(a) reports the dummy instructions in bold

operand values in input to the functional units. Our investigation highlights how the effectiveness of a side
channel countermeasure (i.e., Boolean masking) may be forfeit due to the serialization of a two shares of the
same value on the same input of a functional unit, despite the fact that they are never combined, from an
Instruction Set Architecture (ISA) point of view.

The data serialization effect also induces an exploitable information leakage in the RF and LSU components.
The information leakage in the RF arises from the signals that drive the values into/from the input/output
ports of the RF itself. This observation confirms and extends the results about the RF leakage in [47] allowing
to clarify the reasons underlying the information leakage happening in a sequence of instructions with no
register re-use (at ISA level). In contrast, the leakage classified as LSU data remanence arises from the transition
between two consecutive loaded or stored values in the LSU, regardless of the number of non-LSU instructions
being computed in between.

Open literature states that the ALU is a further source of an information leakage that is fairly captured
employing the Hamming weight of the output of a sensitive operation as a power consumption model.
Our analysis shows that the said consumption model fails to match the information leakage of the fully
combinatorial design of the ALU at hand. While employing a dedicated model for the combinatorial circuits in
the ALU chosen as a case study may reveal an exploitable information leakage, the study of ALU leakage and
side-channel-resistant ALU designs is out of the scope of this work.

Finally, signal glitches represent a critical issue when designing SCA resistant hardware and/or software
cryptographic primitives. The proposed investigation examines all the glitches emerged for which the employed
information leakage model shows a non negligible correlation, even in cases where a wrong key is guessed.
Coherently with the open literature, we state that a necessary condition for a glitch to induce exploitable
information leakage is that it happens on a signal carrying both a known input and a secret key dependent
value. Whenever that is not the case, a glitch inducing a non negligible correlation with a wrong key guess
falls results in a so-called ghost correlation peak.
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5.2 Microarchitectural hints to improve the application of SCA countermeasures
This section presents four practical programming hints to allow the assembly programmer to prevent a
realization of an SCA protected cryptographic implementation from leaking due to data serialization effects.
These hints consist of adopting a given programming style or inserting dummy instructions in specific locations
of the (assembly) source code. We denote as a dummy instruction an ISA instruction that processes, fetches or
stores random values, without any effect on the original program semantics.
Hint 1: prevent LSU remanence with dummy load/store instructions. The leakage classified as LSU
data remanence leverages the transition in the LSU between the values involved in a consecutive pair of
load/store instructions regardless the number of non-load/store instructions being processed in the between.
Whenever a transition between the aforementioned values may imply an information leakage, a dummy
load/store instruction should be inserted between them.
Hint 2: remove LSU intrinsic leakage avoiding in-place computation.We recall that our analysis high-
lighted how, in case an in-place computation is performed, the LSU observes a transition between the
pre-computation value, which is still being forwarded to the LSU by the memory, and the one which should
be stored. If such a design strategy for the LSU is adopted (which is reasonable from a power consumption
reduction standpoint), we suggest that in-place computation is avoided altogether.
Hint 3: Leakage aware operand order choice. The leakage labeled as EX Stage Operand Assertion can
induce an exploitable information leakage due to the assertion of two data values on the input operand of the
functional unit in two consecutive clock cycles. In these cases, either a swap of the source operand order of
the instruction should be performed, or a dummy computational instruction should be inserted to prevent the
said unwanted information leakage.
Hint 4: Avoid unwanted write back serialization with dummy computational instructions. The two
leakages labeled as WB Buffer (Over-)Write and the Register (Over-)Write can induce an exploitable leakage at
the write back stage and the CPU forwarding paths due to the serialization of the two values computed and/or
fetched during the EX/M stages. We suggest to insert a dummy computational instruction anywhere between
the two consecutive instructions which see their outputs serialized in the WB buffer or the forwarding paths.

We now show how applying the aforementioned hints to the code of Benchmark 1 and Benchmark 2 on our
reference CPU actually prevents leakage stemming from data serialization effects.
Benchmark 3 - is built from the combination of the instructions of Benchmark 1 and Benchmark 2. It combines
two values, a known input and secret key contained in rP and rK respectively, with two copies of the same
random value held in rRng0. The two intermediate results are then combined together and the result is stored
back into memory. The instruction sequence is the one computing a single xor employing a Boolean masking
countermeasure [31]. To derive Benchmark 3, we apply the presented programming hints as follows. We
prevent the information leakage stemming from the operand serialization due to the line of code 2 and 3 in
Figure 6b by inserting a dummy computational instruction between the two xor operations according to Hint
3. We note that, according to Hint 4, such dummy instruction also breaks the serialization of the results of the
random value additions into the WB buffer. We also apply Hint 2 by choosing a storing address for the result
(contained in rC) that is different from the addresses of both the inputs (namely the values loaded into rK and
rP). In this instruction sequence, an alternative to the avoidance of in-place computation as per Hint 2 is to
insert a dummy load/store following, Hint 1. Indeed, if an in-place computation is performed here, Hint 1
breaks the data serialization between the secret key value, that is fetched by the last LSU instruction before
the store one, and the known input, that is forwared by the memory until the store completes.

We report in Figure 7 the results of the side channel analysis performed on Benchmark 3. Figure 7a reports
the state of the CPU pipeline starting from the clock cycle when the first instruction of the Benchmark 3
pattern is executed. Figure 7b reports the results Pearson’s sample correlation coefficient between the power
consumption of the entire CPU and the key dependent prediction as a function of time, during Benchmark 3.
EX Stage Operand Assertion. Benchmark 2 shows an exploitable information leakage due to the serialization
of known input and secret key on the input operand of the ALU (see clock cycles 11 and 12 in Figure 6b).
Benchmark 3 solves the information leakage issue by introducing a dummy instruction, i.e., add rT0, rRng1,
rRng1, according to Hint 3 (see cycles 26 and 27 in Figure 7b). As a side effect, we note that the additional
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dummy instruction also solves the exploitable information leakage that affects Benchmark 2 at cycle 16 due to
the data serialization at the WB at (see Figure 6b).

Benchmark 1 shows an information leakage at cycle 22, 27 due to the serialization of the immediate zero value
used and the result of the computation (see Figure 5b). The result of the computation is materialized between
cycles 22 and 27. The immediate value is used to compose the address of the store and the subsequent load
and is asserted on the same wire before cycle 22 and at cycle 27. The introduction of two dummy instructions
before and after the store in Benchmark 3 solves the two information leakage points (see cycles 42 − 47 and
52 in Figure 7b). Benchmark 1 also shows an exploitable information leakage at cycle 26, due to a glitching
behavior caused by data serialization happening in the LSU when the store enters the EX stage (see Figure 5a).
In particular, we observe a data serialization between the actual value stored in memory, i.e., the secret key,
that is retained before the store instruction completes and the last loaded value, i.e., the known input. By
avoiding the in-place computation according to Hint 3, Benchmark 3 resolves such information leakage points
(see cycles 47-51 in Figure 7b).

WB Buffer (Over-)Write. The exploitable information leakage reported at cycle 16 of Benchmark 2 due to
the serialization effect in the WB of the two intermediate results that combine the known input and the secret
key with the same random value disappears in Benchmark 3. This is due to the insertion of the dummy add
rT0, rRng1, rRng1, between the two xor instructions that combine known input and secret key with the
random value, i.e., xor rT1, rRng0, rP and xor rT2, rK, rRng0, which follows Hint 4. We remove the
exploitable information leakage of Benchmark 1 at cycle 17 due to the serialization of the secret key and the
known input values that are loaded one after the other (see Figure 5b). We note that Benchmark 3 does not
suffer the leakage due to the load instruction that fetches the random value to be used in the Boolean masking
scheme (see cycle 17 in Figure 7b).

Register (Over-)Write and LSU Data Remanence. Benchmark 1 shows information leakage at cycles 21,
22, 26 and 27 due to the data serialization on the sense portion of the RF (see Figure 5). The introduction of two
dummy instructions, following Hint 4 before and after the store in Benchmark 3 solves the four information
leakage points (see cycle 42 − 47 and 52 in Figure 7b). Moreover, the consecutive fetch of the known input and
the secret key at cycle 11 and 16 leads to a correct key guess (see Figure 5). We note that cycle 11 represents the
beginning of the iteration of the benchmark pattern and the information leakage is due to the data serialization
betwen the last value processed by the LSU instruction in the previous loop iteration and the first one loaded in
the current iteration. In accordance with Hint 1, we fetch a random value as the first instruction in Benchmark
3 to break such data serialization effect. Figure 7b reports no information leakage until cycle 12. In particular,
the information leakage shown at cycle 12 of Benchmark 3 is independent from the secret key and always
suggest 0 as secret key guess. The information leakage is due to the sequence of two load instructions where
the first instruction zero-extends a single byte of the known input fetched from memory. At cycle 12 the
second load forces the LSU to show the entire 32-bit word to the CPU. However, the data at the address of the
previous load, i.e., the known input, is asserted until the second load completes. To this extent, we note a
data serialization between a zero-extended byte of known input and the entire work of the same known input.
Moreover, we note that Benchmark 3 does not suffer the leakage due to the load instruction that fetches the
random value to be used in the Boolean masking scheme (see cycle 17 in Figure 7b).

The wrong operand encoding in Benchmark 2 produces an exploitable leakage at cycle 12 (see Figure 6b).
According to Hint 3, Benchmark 3 solves the information leakage by introducing a dummy instruction, i.e.,
add rT0, rRng1, rRng1, in the between of the two xor that processes the known input and the plain key
with a random value (see cycle 26 and 27 in Figure 7b).

ALU Computation and Signal Glitches. According to the results obtained for Benchmark 1 and Benchmark
2, the employed consumption model fails to capture the behavior of the ALU at hand during the execution of
Benchmark 3. However, the presence of a key-related, non-negligible correlation at cycles 37-41 in Figure 7b
suggests that the use of a different model might successfully exploit the side channel information leakage
coming from the combinational portion of the ALU. The investigation of an accurate, non linear model
depending on the ALU design is out of the scope of this work.

ACM Trans. Des. Autom. Electron. Syst., Vol. 0, No. 0, Article 0. Publication date: 2018.



A Comprehensive Side Channel Information Leakage Analysis of an In-order RISC CPU 0:23

We also report a glitching behavior leading to the correct key guess in the second half of cycle 40 and 50 of
Benchmark 3. The glitching behavior is similar in nature to the other glitches discussed in Section 4 and it is
due to both the structure of the synthesized design and the presence of critical information in the datapath.

5.3 Ghost peak characterization
Our accurate analysis environment allows us to shed light on the nature of ghost peaks appearing in the
results of a side channel attack. Recalling that SCAs leverage an input data dependent variation of the power
consumption, we can classify ghost peaks into two sets according to whether the corresponding power
dissipation is also influenced by the key value or not. In case the influence from the key is present, but the
key hypothesis yielding the best fitting model is incorrect, the design may appear safe to a less accurate
analysis, while it is not. It is possible to ascertain if a ghost peak belongs to this set employing a variant of the
non-specific t-test [25] where the value of the known input is not changed while collecting the measurements,
and the value of the key is kept fixed for the first set of measures, and randomly changed in the second set. If
the t-test reports the instant of the ghost peak to have a different power consumption profile in the second set,
with respect to the first one, the ghost peak is an actual source of leakage, although the model employed to fit
its power consumption is inadequate.

Whenever a ghost peak is present in correspondence of a time instant where the power dissipation is not
related with the key, the resulting best fitting power model will point to an unrelated value as the candidate
key. Note that such a value may either be different from the correct one (e.g., the zero valued key extracted in
cycle 21, Benchmark 1), or quite similar (the off-by-1-bit one present at cycle 22, Benchmark 1). The trickiest
case is the one where the algorithmic constant causing the leakage matches the value of a portion of the key
employed in the tests. Indeed, in such a case, the system designer may be tricked into considering a ghost
peak evidence of an information leaking power consumption. Employing the same modified t test strategy
described before it is possible for a system designer to rule out ghost peaks of this kind as a source of possible
information leakage. Indeed, collecting the two traces sets, differing only by the employed key values, any
moment in time where the computation is not dependent on the key will exhibit the same behavior, and thus
be deemed as not leaking by the modified t-test.

6 CONCLUDING REMARKS
This work provides a precise, “clean room” characterization of the effects of the microarchitectural side channel
leakage that are traditionally exploited to lead passive SCAs against a software cryptographic primitive running
on a CPU. This scenario, which is increasingly common due to the widespread availability of full fledged
32-bit CPUs that execute open cryptographic software implementations, is characterized by a significantly
higher degree of complexity with respect to the analysis of 8-bit microcontrollers that have been previously
considered in the open literature. To this end, we employed two benchmarks obtained from instruction
patterns which are ubiquitous in the symmetric block ciphers standardized by ISO. Our investigation pinpoints
which portions of the CPU are sensitive to the different information leakage patterns identified, thus serving
a threefold objective. First, the correlation between the analyzed parts of the microarchitecture and the
observed information leakage patterns allows to extend the validity of our findings to a broader class of CPU
implementations falling within the RISC CPU family. Moreover, the in-depth microarchitectural investigation
confirms several findings of the open literature and allows to motivate more precisely those whose a sound
explanation is missing or incomplete. Furthermore, we presented a set of programming hints to cope with
the side channel leakage induced by different instances of the data serialization effect. The application of
such recommendations to our case study benchmarks effectively suppresses the unintended leakage that our
investigation demonstrates to lead to the correct key guess on the CPU at hand. We also note that a fruitful
future direction is the definition of a set of formal constraints stemming from the side channel analysis of the
microarchitecture of a CPU, which can be practically integrated in the back-end of a common C compiler
toolchain to the end of preserving the security properties of SCA countermeasures during code emission.

Finally, the accurate temporal match obtained in our simulation environment allows us for the first time
to show when the input dependence of the side channel behavior pointed out by a non-specific t-test is
indeed caused by a switching activity which is not depending on the secret key, and thus not exploitable by
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an attacker. We note that such an analysis is also amenable to being automated and integrated in an EDA
toolchain, to reduce the engineering effort in evaluating the security of an implementation.
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