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ABSTRACT
This evaluation study explores how automated movement analysis
can be used to catch the biomechanical skills needed for a physically
accurate violin performance, maximizing efficiency and minimizing
injuries. Starting from a previously recorded multimodal dataset,
we compute movement features from motion captured data of five
violinists performing three violin exercises: octave shift, string
crossing, and a Romantic repertoire piece. Three violin teachers
were asked to evaluate audio, video, and both audio and video
stimuli of the selected exercises. We correlated their ratings with
automatically extracted movement features. Whereas these features
are purely visual (i.e., they are computed from motion captured
data only), we asked teachers to also evaluate audio because it
can be considered as the direct translation of movement skills into
another modality. In this way, we can also look at possible rela-
tions between evaluation of the audio aspects of the performance
and biomechanical skills of violin playing. Results show that the
proposed movement features can be partially used to measure the
biomechanical skills of the violin players to support learning and
mitigate the risk of injuries.
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1 INTRODUCTION
In literature, the interest in music performance has grown, con-
sidering several contributions from neuroscience, e.g., [1, 8–10]
to music pedagogy, e.g., [11, 16, 17] exploring music performance
and learning. An emerging literature investigates how technology,
and in particular full-body and motion analysis technologies, may
enhance music performance and learning outcomes, by minimiz-
ing at the same time the risk of injuries [13, 14]. Playing violin is
mostly based on a master-apprentice relationship and it is difficult
because student’s interaction with the teacher is often restricted
to the time of the weekly lectures, followed by long periods of
self-study. This make the teacher’s feedback to be dissociated from
the on-line proprioceptive and auditory sensations accompanying
the performance [20]. In addition, traditional teaching methods
of the biomechanics components of musical performance may be
based on subjective and vague perception, rather than on accurate
understanding of the principles of human movement [4].

Moreover, musical performance shares many characteristics, in-
cluding health risks, in common with other skill-oriented activities
[15]. It is reasonable to postulate that some methodologies suc-
cessfully used in sports medicine could be useful in studying the
biomechanical aspects of music performance. These understandings
include the motor learning theory, learning models, and technology-
based system to analyse and validate the effects of training [12]. It
is, e.g., a common expectation that students engage in long hours
of repetitive practice to acquire technical skills, often not consider-
ing the efficacy of such practice and its health implications due to
many repetitions of the same movements. Despite many individ-
ual success stories, documented rates of injuries among musicians
challenge traditional methods [7].

This study aims at exploring whether methodologies and tech-
nologies from movement analysis can be applied to investigate
aspects of the biomechanics of violin performance. These kind
of methodologies applied to music performance and learning is
not completely new. In [21] the authors applied motion capture
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technologies and quantitative analysis of motion to the analysis of
prototypical gestures in music conduction. We exploited automated
movement analysis to capture the biomechanical skills needed for
a physically accurate violin performance, aiming at identifying fea-
tures able to maximize efficiency and minimize injuries. Starting
from a multimodal dataset of previously recorded performances, we
selectedmotion captured data of five violinists performing three vio-
lin exercises: octave shift, string crossing, and a Romantic repertoire
piece. We asked three experts to evaluate the recorded performance
for the three exercises, by providing their ratings for 2 audio (i.e.,
intonation and note production) and 3 movement (i.e., shoulders
dynamic and position, and trunk dynamic) features. We finally
explored whether and how movement features extracted from full-
body motion captured data correlate with the ratings provided by
experts.

2 METHOD
This study is based on two grounded concepts: motor learning
and motor control. In [2], theory of motor learning identifies three
elements needed to success: the characterization of the skills to
be acquired; skills transfer between dissimilar systems, and skills
acquisition without injuries. Characterizing skills to be acquired
involves a scientific analysis and understanding to identify and
describe motor control patterns, such as the coordination of neural
and muscoloskeletal systems. The motor patterns of professional
players can be generalized and used as references for a model, to fa-
cilitate the identification of skills to be transferred from professional
to student musicians. By directing attention to specific motions
patterns, learners can assimilate the new skills into their technique
efficiently and effectively. In our study, we analyze the data of a
multimodal archive of recordings to study movement patterns of
shoulders, elbows, and hips. Looking at the variation of angles
between such parts of the body, we hypothesize how muscular
and posture patterns affect music performance in terms of pitch
intonation and dynamic.

3 THE TELMI MULTIMODAL ARCHIVE
The TELMI Project1 is an ongoing three years H2020-ICT Euro-
pean Project, aimed to design and implement a multimodal interac-
tion system for music learning, providing the user with assistive,
self-learning, augmented-feedback, and social-aware prototype in-
teractions. Such a system is conceived to be complementary to
traditional music pedagogy. The project grounds on a tightly cou-
pled interaction between technical and pedagogical partners, to
implement new multimodal interaction prototypes for music learn-
ing and training, based on state-of-art audio processing, computer
vision, and motion capture technologies. To reach its objectives, the
TELMI Project built a corpus of multimodal data [19], structured
as a collection of exercises to follow the learning path of classical
violin programmes. The corpus includes several sources of data,
such as motion capture of the performer, of the violin and of the
bow, ambient and instrument audio, video, physiological data, (elec-
tromyography) and Kinect data. The music material encompasses
41 exercises, subdivided in handling the instrument, techniques of
the right and left hands, articulation and some expressive works
1http://telmi.upf.edu

Figure 1: Example of the segmentation we made to obtain
the evaluation stimuli

Figure 2: The joints (written in rounds) and angles (written
in rectangles) we exploit for extracting movement features.

(e.g., Elgar, Salut d’amour, Op. 12). The score of an excerpt is re-
ported in Figure 1. All the recorded data were synchronized and
played back using the EyesWeb XMI platform [5], [18].

4 RECORDING AND SEGMENTATION
We focused on 5 players performing three selected exercises (Octave
shift from Yost System for Violin, String Crossing from Kreutzer
Etude n.13, and Salut d’amour by Edgar, see Figure 1). The violinists
received the entire list of exercises in advance and the use of music
sheets was allowed. The musicians were 4 professional players
and one high-level non-professional violinist. After the recordings,
the data was segmented, using audio and music sheet information,
to isolate single music phrases. In such a way, we extracted 21
segments from the twelve recordings we considered. Using the
EyesWeb XMI platform, we computed the measures of the angles
between right shoulder and elbow, left shoulder and elbow, the two
shoulders, and shoulder-elbow and hip.

5 MOVEMENT FEATURES
Considering the theoretical model described in [14], we focused
our analysis on full-body movement features, corresponding to
the ones taken into account by violin teachers to evaluate their
student’s performance.

http://telmi.upf.edu
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Table 1: Spearman’s correlations between the ratings provided by the raters and the automatically computed features. Signifi-
cance level: * for p < 0.05, ** for p < 0.01

Stimulus Shoulders’ dynamics Body joints’ angles Trunk’s dynamics
rho p-value rho p-value rho p-value

Audio .43 .05* .04 .87 -.03 .91
Video .55 .008** -.24 .28 .11 .63
Audio-Video .61 .005** -.07 .77 .17 .46

Figure 3: Web interface for evaluation of biomechani-
cal violin playing skills: "Quality of intonation" ("Qual-
ità dell’intonazione"), "Note production" ("Produzione della
nota"), "Shoulders’ dynamics" ("Dinamica del movimento
delle spalle"), "Shoulders’ position" ("Posizione delle spalle"),
"Trunk’s dynamics" ("Dinamica del busto")

According to such model, in order to achieve a better perfor-
mance and minimize the rick of injuries, one could ask a performer
"to consciously choreograph movements that minimize static con-
ditions or postures". Moreover, "left elbow should have a degree
of lateral movement to accommodate playing on different strings".
Also, players that tend to assume unbalanced (and physically risky)
postures usually "locked their shoulders in a highly abducted posi-
tion". Some expert violin teachers we interviewed before computing
movement features confirmed that “the fight against the tendency
to raise one’s shoulders is a constant in the teaching, as well as an es-
sential prophylaxis against the onset of very boring and often very
damaging professional diseases”. Provided the above background
experience, we identified a small initial set of movement features
mainly based on (i) angles between joints and (ii) energy of joints
movement. The joints and angles we looked at are highlighted in
Figure 2 and include:

• joints: C7 (base of the neck), T10 (trunk vertebra), shoulder,
elbow, wrist

• angles: the angle between the line C7-T10 and the line C7-
shoulder (A1 in Figure 2); the angle between the line shoulder-
hip and the line shoulder-elbow (A2 in Figure 2); the angle
between the line shoulder-elbow and the line elbow-wrist
(A3 in Figure 2).

The above joints and angles are considered both for the right and
the left side of the player’s body (i.e., angles A1-3 will be computed
on both sides). The 3 movement features we compute on the above
joints and angles are: F1, shoulders dynamic - we compute the Ki-
netic Energy of left/right shoulder and the first derivative of angles
A2 and A3, and we sum up these 3 quantities; the mean between
the right and the left side of the body is then calculated, obtaining
a single value for F1; F2, shoulders position - we compute the
right/left mean angle A1; F3, upper body dynamic - we sum up
the Kinetic Energy of upper body joints C7, T10, and right/left
shoulder. F1-3 are computed frame-by-frame on the 21 segments
described in the previous section. In this exploratory work, we
computed the average of F1-3 on each segment, obtaining a single
value of each feature for that segment.

6 EVALUATION
Three expert musicians, two violin teachers with more than 20
years of experience in teaching and a professional violin performer,
were recruited via email advertisements at academies of music in
Italy and France. They were asked to mark their ratings on violin
skills, through a questionnaire administered via an ad-hoc web
interface (see Figure 3). The raters provided their answers to each
question by dragging an interactive slider having a resolution of
101 values (the experts did not perceive these values, they perceived
a continuous evaluation). The questionnaire consisted of 5 bipolar
items (α = 0.80) arranged in two sub-scales: a sub-scale related
to the acoustic component of violin playing skills (2 items, α =
0.72), and a sub-scale related to the movement component of violin
playing skills (3 items, α = 0.70). Internal consistency was assessed
through Cronbach’s α . Results show an acceptable reliability both
for the whole scale and for each sub-scale [6]. The items were: pitch
intonation and note production for audio, shoulders’ dynamics and
position and trunk’s dynamics for video. 21 audio/video and audio-
video stimuli for a total amount of 63 stimuli were administered in a
randomized way. When the stimulus was only audio or video, raters
were asked to mark their answers only on the corresponding audio
or video subscale. Raters were explicitly asked to fully complete
the questionnaire. The ratings given by each rater were summed
up together over the items.
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6.1 Analysis and results
Inter-rater reliability was assessed through a two-way random, con-
sistency, average-measures ICC (McGraw &Wong, 1996). It enables
to assess the degree at which the 3 raters provided their agreement
on violin playing skills across stimuli. The results obtained for the
whole scale and each sub-scale were ICC=0.81 (audio-video, 95%
CI [0.60,0.92], F(19,38) = 5.24 ,p < .001), ICC=0.82 (video, 95% CI
[0.54,0,90], F(21,24.4) = 5.68, p < .001), ICC= 0.72 (audio, 95% CI
[0.24 -0.85], F(20,19.1) = 3.59, p < .001), respectively. These high val-
ues, falling in the range good and excellent (Cicchetti 1994), indicate
that a minimal amount of measurement error was introduced by
the 3 independent raters. The confidence interval for audio is very
large and one possible explanation we found rely on the cognitive
dynamic of audio perception: since the audio sensory modality, in
typical people, is informed by visual cues, the absence of visual
stimuli could lead to more unsure answers during the evaluation
[3]. Pearson’s and Spearman’s correlations were run to determine
the relationship between the perceived violin playing skills and the
automatically computed movement features. The analysis showed
that there was a strong positive correlation between the shoulders’
dynamics and the perceived violin playing skills, independently
of the modality of the stimuli. Spearman’s correlations showed
slightly higher values meaning that there is some deviation from
a linear increasing monotonic relationship between the variables.
Table 1 summarizes the results of the Spearman’s correlations for
each automated movement features.

7 DISCUSSION AND CONCLUSIONS
Results show a significant correlation between the evaluation of the
experts on the violin playing skills perceived through the different
modalities and the measured feature on shoulders’ dynamics. This
is promising in view of designing systems for music teaching and
learning support. Moreover, results show that all the evaluated
modalities (the visual one in particular) can provide useful feed-
back for both teachers and students on the biomechanical skills
needed for a good violin performance. Improvements can be ex-
pected, since some of the results are not significant. For example,
the measure of shoulders’ position did not correlate with the per-
ceived violin playing skills. This can be motivated by observing that
all evaluators highlighted that the violinists exhibited high-locked
shoulders.In the future, a similar evaluation could be repeated, us-
ing more recordings of different types and violinists to check the
extent to which results generalize. Moreover, shoulders position
seems to be performance-dependent, in the sense that the right
shoulder rotates vertically according to the string that is currently
played. Our algorithm does not take this into account, while human
observers did it during the evaluation. The last feature, trunk’s
dynamics, does not correlate with the experts’ ratings too. This
result can be explained by the fact that violinists movements during
the recordings were limited by the mocap suite and EMG sensors.
This non ecological setup may lead to less dynamic movements.
In the future, besides improving our algorithms and repeating the
evaluation with violinists with more variable skills, we also plan
to extend the evaluation, using a more ecological setup, based on
portable and non-intrusive devices, such as range imaging sensor.
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