
Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover

Mohsen Ghaffari

ETH Zurich

ghaffari@inf.ethz.ch

Themis Gouleakis

MIT

tgoule@mit.edu

Christian Konrad

University of Bristol

christian.konrad@bristol.ac.uk

Slobodan Mitrović

EPFL

slobodan.mitrovic@epfl.ch

Ronitt Rubinfeld

MIT and Tel Aviv University

ronitt@csail.mit.edu

ABSTRACT

We present O(log logn)-round algorithms in the Massively Parallel

Computation (MPC) model, with Õ(n) memory per machine, that

compute a maximal independent set, a 1 + ε approximation of

maximum matching, and a 2 + ε approximation of minimum vertex

cover, for anyn-vertex graph and any constant ε > 0. These improve

the state of the art as follows:

• Our MIS algorithm leads to a simple O(log log∆)-round
MIS algorithm in the CONGESTED-CLIQUE model of dis-

tributed computing, which improves on the Õ(
√
log∆)-round

algorithm of Ghaffari [PODC’17].

• OurO(log logn)-round (1+ε)-approximate maximummatch-

ing algorithm simplifies or improves on the following prior

work: O(log2 logn)-round (1 + ε)-approximation algorithm

of Czumaj et al. [STOC’18] and O(log logn)-round (1 + ε)-
approximation algorithm of Assadi et al. [arXiv’17].

• OurO(log logn)-round (2+ε)-approximate minimum vertex

cover algorithm improves on an O(log logn)-round O(1)-
approximation of Assadi et al. [arXiv’17].

CCS CONCEPTS

• Theory of computation → Massively parallel algorithms;

Distributed algorithms;

KEYWORDS

Maximal Independent Set; Maximum Matching; Vertex Cover; Mas-

sively Parallel Computation; Congested Clique

ACM Reference Format:

Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović,

and Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algo-

rithms for MIS, Matching, and Vertex Cover. In PODC ’18: ACM Symposium

on Principles of Distributed Computing, July 23–27, 2018, Egham, United King-

dom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3212734.

3212743

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’18, July 23–27, 2018, Egham, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5795-1/18/07. . . $15.00

https://doi.org/10.1145/3212734.3212743

1 INTRODUCTION

A growing need to process massive data led to development of a

number of frameworks for large-scale computation, such as MapRe-

duce [16], Hadoop [43], Spark [44], or Dryad [28]. Thanks to their

natural approach to processing massive data, these frameworks

have gained great popularity. In this work, we consider the Mas-

sively Parallel Computation (MPC) model [32] that is abstracted out

of the capabilities of these frameworks.

In our work, we study some of the most fundamental problems

in algorithmic graph theory: maximal independent set (MIS), max-

imum matching and minimum vertex cover. The study of these

problems in the models of parallel computation dates back to PRAM

algorithm. A seminal work of Luby [39] gives a simple randomized

algorithm for constructing MIS in O(logn) PRAM rounds. When

this algorithm is applied to the line graph of input graph G, it
outputs a maximal matching ofG , and hence a 2-approximate max-

imum matching of G. The output maximal matching also provides

a 2-approximate minimum vertex cover. Similar results, also in the

context of PRAM algorithms, were obtained in [3, 29, 30]. Since

then, the aforementioned problems were studied quite extensively

in various models of computation. In the context of MPC, we de-

sign simple randomized algorithms that construct (approximate)

instances for all the three problems.

1.1 The Models

We consider two closely related models: Massively Parallel Compu-

tation (MPC), and the CONGESTED-CLIQUE model of distributed

computing. Indeed, we consider it as a conceptual contribution of

this paper to (further) exhibit the proximity of these two models.

We next review these models.

1.1.1 The MPC model. The MPC model was first introduced

in [32] and later refined in [4, 9, 23]. The computation in this model

proceeds in synchronous rounds carried out by m machines. At

the beginning of every round, the data (e.g. vertices and edges) is

distributed across the machines. During a round, each machine

performs computation locally without communicating to other

machines. At the end of the round, the machines exchangemessages

which are used to guide the computation in the next round. In every

round, each machine receives and outputs messages that fit into its

local memory.

Space: In this model, each machine has S words of space. If N is

the total size of the data and each machine has S words of space,

the typical settings that are of interest are when S is sublinear in N

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

129

https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1145/3212734.3212743
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3212734.3212743&domain=pdf&date_stamp=2018-07-23


PODC ’18, July 23–27, 2018, Egham, United Kingdom M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, R. Rubinfeld

and S ·m = Θ(N ). That is, the total memory across all the machines

suffices to fit all the data, but is not much larger than that. If we are

given a graph on n vertices, in our work we consider the regimes

in which S ∈ Θ(n/polylogn) or S ∈ Θ(n).

Communication vs. computational complexity: Our main fo-

cus is the number of rounds required to finish the computation,

which is essentially the complexity of the communication needed

to solve the problem. Although we do not explicitly state the com-

putational complexity in our results, it will be apparent from the

description of our algorithms that the total computation time across

all the machines is nearly-linear in the input size.

1.1.2 CONGESTED-CLIQUE. A secondmodel that we consider

is theCONGESTED-CLIQUEmodel of distributed computing, which

was introduced by Lotker, Pavlov, Patt-Shamir, and Peleg[38] and

has been studied extensively since then, see e.g.,[10, 11, 13, 14, 17,

18, 20–22, 24–27, 31, 33, 35, 41, 42]. In this model, we have n players

which can communicate in synchronous rounds. In each round, ev-

ery player can sendO(logn) bits to every other player. Besides this

communication restriction, the model does not limit the players,

e.g., they can use large space and arbitrary computations; though,

in our algorithms, both of these will be small. Furthermore, in study-

ing graph problems in this model, the standard setting is that we

have an n-vertex graph G = (V , E), and each player is associated

with one vertex of this graph. Initially, each player knows only the

edges incident on its own vertex. At the end, each player should

know the part of the output related to its own vertex, e.g., whether

its vertex is in the computed maximal independent set or not, or

whether some of its edges is in the matching or not.

We emphasize that CONGESTED-CLIQUE provides an all-to-

all communication model. It is worth contrasting this with the

more classical models of distributed computing. For instance, the

LOCAL model, first introduced by Linial [36], allows the players to

communicate only along the edges of the graph problem G (with

unbounded size messages).

1.2 Related Work

MaximumMatching andMinimumVertex Cover: If the space

per machine is O(n1+δ ), for any δ > 0, Lattanzi et al. [34] show

how to construct a maximal matching, and hence a 2-approximate

minimum vertex cover, in O(1/δ ) MPC rounds. Furthermore, in

case the machine-space is Θ(n), their algorithm requires O(logn)
many rounds to output a maximal matching. In their work, they

apply filtering techniques to gradually sparsify the graph. Ahn and

Guha [2] provide a method for constructing a (1+ε)-approximation

of weighted maximum matching in O(1/(δε)) rounds while, simi-

larly to [34], requiring that the space per machine is O(n1+δ ).
If the space per machine is Õ(n

√
n), Assadi and Khanna [7] show

how construct an O(1)-approximate maximum matching and an

O(logn)-approximate minimum vertex cover in two rounds. Their

approach is based on designing randomized composable coresets.

Recently, Czumaj et al. [15] designed an algorithm for construct-

ing a (1 + ε)-approximate maximum matching in O((log logn)2)
MPC rounds of computation and O(n/polylogn) memory per ma-

chine. To obtain this result, they start from a variant of a PRAM algo-

rithm that requires O(logn) parallel iterations, and showed how to

compressmany of those iterations (on average,O(logn/(log logn)2)
many of them) intoO(1)MPC rounds. Their result does not transfer

to an algorithm for computing O(1)-approximate minimum vertex

cover.

Building on [15] and [7], Assadi [5] shows how to produce an

O(logn)-approximate minimum vertex cover in O(log logn)MPC

rounds when the space per machine is O(n/polylogn). The work
by Assadi et al. [6] also addresses these two problems, and provides

a way to construct a (1 + ε)-approximate maximum matching and

anO(1)-approximate minimum vertex cover in O(log logn) rounds
when the space per machine is Õ(n). Their result builds on tech-

niques originally developed in the context of dynamic matching

algorithms and composable coresets.

Maximal Independent Set: Maximal independent set has been

central in the study of graph algorithms in both the parallel and

the distributed models. The seminal work of Luby [39] and Alon,

Babai, and Itai [3] provide O(logn)-round parallel and distributed

algorithms for constructing MIS. The distributed complexity in the

LOCALmodel was first improved by Barenboim et al.[8] and conse-

quently by Ghaffari [20], which led to the current best round com-

plexity of O(log∆) + 2O (
√
log logn)

. In the CONGESTED-CLIQUE
model of distributed computing, Ghaffari [21] gave another algo-

rithmwhich computes anMIS in Õ(
√
log∆) rounds. A deterministic

O(logn log∆)-round CONGESTED-CLIQUE algorithm was given

by Censor-Hillel et al. [14].

It is also worth referring to the literature on one particular MIS

algorithm, known as the randomized greedy MIS, which is relevant

to what we do for MIS. In this algorithm, we permute the ver-

tices uniformly at random and then add them to the MIS greedily.

Blelloch et al. [12] showed that one can implement this algorithm

in O(log2 n) parallel/distributed rounds, and recently Fischer and

Noever [19] improved that to a tight bound of Θ(logn). We will

show a O(log log∆)-round simulation of the randomized greedy

MIS algorithm in the MPC and the CONGESTED-CLIQUE model.

1.3 Our Contributions

As our first result, in Section 3 we present an algorithm for con-

structing MIS.

Theorem 1.1. There is an algorithm that with high probability

computes an MIS in O(log log∆) rounds of the MPC model, with

Õ(n)-bits of memory per machine. Moreover, the same algorithm

can be adapted to compute an MIS in O(log log∆) rounds of the
CONGESTED-CLIQUE model.

As our second result, in Section 4, we first design an algorithm

that returns a (2+ε)-approximate fractionalmaximummatching and

a (2+ε)-approximate integral minimum vertex cover inO(log logn)
MPC rounds. In the full version of this paper we show how to

round this fractional matching to a (2 + ε)-approximate integral

maximummatching. In comparison to previous work: our result has

somewhat better round-complexity than [15], provides a stronger

approximation guarantee than [6], and appears to be simpler than

both. After applying vertex-based random partitioning (that was

proposed in this context in [15]), the algorithm repeats only a couple

of simple steps to perform all its decisions.

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

130



Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover PODC ’18, July 23–27, 2018, Egham, United Kingdom

Theorem 1.2. There is an algorithm that with high probability

computes a (2 + ε)-approximate integral maximum matching and a

(2 + ε)-approximate integral minimum vertex cover in O(log logn)
rounds of the MPC model, with Õ(n)-bits of memory per machine.

Following similar observations as Assadi et al. [6], it is possible to

apply the techniques of [40] on Theorem 1.2 to obtain the following

result.

Corollary 1.3. There exists an algorithm that with high probability

constructs a (1 + ε)-approximate integral maximum matching in

O(log logn) · (1/ε)O (1/ε ) MPC rounds, with Õ(n)-bits of memory per

machine.

As noted by Czumaj et al. [15], the result of Lotker et al. [37] can

be used to obtain the following result.

Corollary 1.4. There exists an algorithm that outputs a (2 + ε)-
approximation to maximum weighted matching inO(log logn · (1/ε))
MPC rounds and Õ(n)-bits of memory per machine.

For the sake of clarity, we present our algorithms for the case

in which each machine has Õ(n)-bits of memory (or O(n) words of
memory). However, similarly to [15], our algorithm for matching

and vertex cover can be adjusted to still run in O(log logn) MPC

rounds even when the memory per machine is O(n/polylogn).

1.4 Our Techniques

Maximal independent set: Our MPC algorithm for MIS is based

on the randomized greedy MIS algorithm. We show how to ef-

ficiently implement this algorithm in only O(log logn) MPC and

CONGESTED-CLIQUE rounds.

Maximummatching and vertex cover: In Section 4.1, we start

from a sequential algorithm that outputs a (2 + ε)-approximate

fractional maximum matching and a (2 + ε)-approximate integral

minimum vertex cover. The algorithm maintains edge-weights. Ini-

tially, every edge-weight is set to 1/n. Then, gradually, at each
iteration the edge-weights are simultaneously increased by a multi-

plicative factor of 1/(1 − ε). Each vertex whose sum of the incident

edges becomes 1 − 2ε or larger is frozen, and its incident edges do

not change their weights afterward. The vertices that are frozen

in this process constitute the desired vertex cover. It is not hard to

see that after O(logn/ε) iterations every edge will be incident to at

least one frozen vertex, and at this point the algorithm terminates.

In Section 4.3, we show how to simulate this sequential algorithm

in the MPC model, by on average simulating Θ(logn/log logn) iter-
ations in O(1) MPC rounds. As the first step, motivated by [15], we

apply vertex-based sampling. Namely, the vertex-set is randomly

partitioned across the machines into disjoint sets, and each machine

considers only the induced graph on its local copy of vertices. Then,

during each MPC round, every machine simulates several itera-

tions of the sequential algorithm on its local subgraph. During this

simulation, each machine estimates weights of the vertices that it

maintains locally in order to decide which vertices should be frozen.

However, even if the estimates are sharp, only a slight error could

potentially cause many vertices to largely deviate from their true

behavior. To alleviate this issue, instead of having a fixed threshold

1 − 2ε , for each vertex and in every iteration we choose a random

threshold from the interval [1 − 4ε , 1 − 2ε]. For most vertices, this

prevents slight errors in estimates from having large effects. Then,

vertices are frozen only if their estimated weight is above their

randomly chosen threshold. Intuitively, this significantly reduces

the chance of these decisions (on whether to freeze a vertex or not)

deviating from the true ones

As our final component, in the full version of the paper, we

provide a rounding procedure that for a given fractional matching

produces an integral one of size only a constant-factor smaller than

the size of the fractional matching. Furthermore, every vertex in that

rounding method chooses edges based only on its neighborhood,

i.e., makes local decision. Thus it is straightforward to parallelize

the rounding procedure.

2 PRELIMINARIES

For a graph G = (V , E) and a set V ′ ⊆ V , G[V ′] denotes the sub-
graph of G induced on the set V ′, i.e. G[V ′] = (V ′, E ∩ (V ′ ×V ′)).
We use N (v) to refer to the neighborhood of v in G. Throughout
the paper, we use n := |V | to denote the number of vertices in the

input graph.

Independent Sets: An independent set I ⊆ V is a subset of non-

adjacent vertices. An independent set I is maximal if for every

v ∈ V \ I , I ∪ {v} is not an independent set. Given an independent

set I , we call the graph G ′ = G[V \ ΓG [I ]] the residual graph with

respect to I . If clear from the context, we may simple call G ′ the
residual graph. We say that a vertexu ∈ V is uncoveredwith respect

to I , if u is not adjacent to a vertex in I , i.e., u ∈ V \ ΓG [I ]. Again,
if clear from the context, we simply say u is uncovered without

specifying I explicitly.
Ghaffari gave the following result that we will reuse in this paper:

Theorem 2.1 (Ghaffari [21]). Let G be an n-vertex graph with

∆(G) = poly log(n). Then, there exists a distributed algorithm that

runs in the CONGESTED-CLIQUE model and computes an MIS on

G in O(log log∆) rounds.

Routing: As a subroutine, our algorithm needs to solve the follow-

ing simple routing task: Let u ∈ V be an arbitrary vertex. Suppose

that every other vertex v ∈ V \ {u} holds 0 ≤ nv ≤ n messages each

of size O(logn) that it wants to deliver to u. We are guaranteed that∑
v ∈V nv ≤ n. Lenzen proved that in the CONGESTED-CLIQUE

model there is a deterministic routing scheme that achieves this

task in O(1) rounds [35]. In the following, we will refer to this

scheme as Lenzen’s routing scheme.

3 MAXIMAL INDEPENDENT SET

The Greedy algorithm for maximal independent set processes the

vertices of the input graph in arbitrary order. It adds the current

vertex under consideration to an initially empty independent set I
if none of its neighbors are already in I .

This algorithm progressively thins out the input graph, and the

rate at which the graph loses edges depends heavily on the order in

which the vertices are considered. Consider a sequential random

greedy algorithm that ranks/permutes vertices 1 to n randomly and

then greedily adds vertices to the MIS, while walking through this

permutation. As it was observed in [1] in the context of correlation

clustering in the streaming model, the number of edges in the

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

131



PODC ’18, July 23–27, 2018, Egham, United Kingdom M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, R. Rubinfeld

residual graph decreases relatively quickly with high probability.

In this section, we simulate this algorithm in O(log log∆) rounds
of the CONGESTED-CLIQUE model, thus proving the following

result:

Theorem 1.1. There is an algorithm that with high probability

computes an MIS in O(log log∆) rounds of the MPC model, with

Õ(n)-bits of memory per machine. Moreover, the same algorithm

can be adapted to compute an MIS in O(log log∆) rounds of the
CONGESTED-CLIQUE model.

3.1 Randomized Greedy Algorithm for MIS

Let us first consider a randomized variant of the sequential greedy

MIS algorithm described below, that we show how to implement in

the CONGESTED-CLIQUE and the MPC model. We remark that

this algorithm has been studied before in the literature of parallel

algorithms[12, 19].

Greedy Randomized Maximal Independent Set:

• Initially, choose a permutation π : [n] → [n] uniformly at random.

• Repeat until the next rank is at least n/log10 n and the maximum

degree is at most log
10 n:

(A) Mark the vertexv which has the smallest rank among the remain-

ing vertices according to π , and add v to the MIS.

(B) Remove all the neighbors of v .

• Run O (log log∆) rounds of the Sparsified MIS Algorithm of [21] in

the remaining graph. Remove from the graph the constructed MIS

and its neighborhood.

• Deliver the remaining graph on a single machine and find its MIS.

• At the end, output the constructed MIS sets.

3.2 Simulation in O(log log∆) rounds of MPC

and CONGESTED-CLIQUE

Simulation in the MPCmodel: We now explain how to simulate

the above algorithm in the MPC model withO(n logn)-bits of mem-

ory per machine, and also in the CONGESTED-CLIQUE model. In

each iteration, we take an induced subgraph ofG that is guaranteed

to have Õ(n) edges and simulate the above algorithm on that graph.

We show that the total number of edges drops fast enough, so that

O(log log∆) rounds will suffice. More concretely, we first consider

the subgraph induced by vertices with ranks 1 to n/∆α , for α = 3/4.

This subgraph has O(n) edges, with high probability. So we can

deliver it to one machine, and have it simulate the algorithm up to

this rank. Now, this machine sends the resulting MIS to all other

machines. Then, each machine removes its vertices that are in MIS

or neighboring MIS. In the second phase, we take the subgraph in-

duced by remaining vertices with ranks n/∆α to n/∆α
2

. Again, we

can see that this subgraph has O(n) edges (a proof is given below),

so we can simulate it in O(1) rounds. More generally, in the i-th

iteration, we will go up to rank n/∆α
i
. Once the next rank becomes

n/log10 n, which as we show happens after O(log log∆) rounds,
the maximum degree of the graph is some value ∆′ ≤ O(log11 n)

(see Lemma 3.1). Note that clearly also ∆′ ≤ ∆. At that point, we
apply the MIS Algorithm of [21] for sparse graphs to the remaining

graph. This algorithm is applicable whenever the maximum degree

is at most 2
O (
√
logn)

(see Theorem 1.1 of [21]). After O(log log∆′)
rounds, w.h.p., that algorithm finds an MIS which after removed

along with its neighborhood results in the graph havingO(n) edges.
Now we deliver the whole remaining graph to one machine where

it is processed in a single MPC round.

We note that the Algorithm of [21] performs only simple local

decisions with low communication, and hence every iteration of

the algorithm can be implemented in O(1) MPC rounds, with Õ(n)
memory per machine, by using standard techniques.

Simulation in CONGESTED-CLIQUE: We now argue that each

iteration can be implemented in O(1) rounds of CONGESTED-
CLIQUE. To simulate the first step of the algorithm, all vertices

agree on a uniform random order as follows: the vertex with the

smallest ID choses a uniform random order locally and informs

all other vertices about their positions within the order. Then, all

vertices broadcast their positions to all other vertices. As a result,

all vertices know the entire order. Also, in each iteration, we make

all vertices with permutation rank in the selected range send their

edges to the leader vertex. Here, the leader is an arbitrarily cho-

sen vertex, e.g., the one with the minimum identifier. As we show

below, the number of these edges per iteration is O(n) with high

probability, and thus we can deliver all the messages to the leader

inO(1) rounds using Lenzen’s routing method[35]. Then, the leader

can compute the MIS among the vertices with ranks in the selected

range. It then reports the result to all the vertices in a single round,

by telling each vertex whether it is in the computed independent

set or not. A single round of computation, in which the vertices in

the independent set report to all their neighbors, is then used to

remove all the vertices that have a neighbor in the independent set

(or are in the set). After these steps, the algorithm proceeds to the

next iteration.

Regarding the round-complexity of the algorithm once the rank

becomes n/log10 n: The work [21] already provides a way to solve

MIS in O(log log∆′) CONGESTED-CLIQUE rounds for any ∆′ =

2
O (
√
logn)

. Here, ∆′ is the maximum degree of the graph remained

after processing the vertices up to rank n/log10 n, and, as we show

by Lemma 3.1, that ∆′ ≤ polylogn ≪ 2
O (
√
logn)

. Hence, the overall

round complexity is again O(log log∆) rounds.

3.3 Analysis

Since by the i-th iteration the algorithm has processed the ranks

up to n/∆α
i
, the rank n/log10 n is processed within O(log log∆)

iterations. In the proof of Theorem 1.1 presented below, we prove

that with high probability the number of edges sent to one machine

per phase is O(n). Before that, we present a lemma that will aid in

bounding the degrees and the number of edges in our analysis. A

variant of this lemma was proved in [1].

Lemma 3.1. Suppose that we have simulated the algorithm up to

rank r . Let Gr be the remaining graph. Then, the maximum degree

in Gr is O(n logn/r ) with high probability.

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

132



Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover PODC ’18, July 23–27, 2018, Egham, United Kingdom

Proof. We first upper-bound the probability that Gr contains

a vertex of degree at least d . Then, we conclude that the degree of
every vertex in Gr is O(n logn/r ) with high probability.

Consider a vertex whose degree is still d . When the sequential

algorithm considers one more vertex, which is like choosing a

random one among the remaining vertices, one of this vertex or its

neighbors gets hit with probability at least d/n. If that happens, this
vertex would be removed. The probability that this does not happen

throughout ranks 1 to r is at most (1 − d/n)r ≤ exp(−rd/n). Now,
the probability that a vertex inGr has degree more than 20n logn/r
is at most 1/n5, which implies that, the maximum degree of Gr is

at most 20n logn/r with probability at least 1 − n−4. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 1.1. We first argue about the MPC round-

complexity of the algorithm, and then show that it requires Õ(n)
memory.

Round complexity: Recall that the algorithm considers ranks of

the form ri := n/∆
α i
, until the rank becomes n/log10 n or greater.

When that occurs, it applies other algorithms for O(log log∆) iter-
ations, as described in Section 3.2. Hence, the algorithm runs for at

most i⋆ + log log∆ iterations, where i⋆ is the smallest integer such

that rank ri⋆ := n/∆α
i⋆
≥ n/log10 n. A simple calculation gives

i⋆ ≤ log
4/3 log∆, for α = 3/4. Furthermore, every iteration can be

implemented in O(1) rounds as discussed above.

Memory requirement: We first discuss the memory required to

implement the process until the rank becomes O(n/log10 n). By
Lemma 3.1 we have that after the graph up to rank ri is simulated,

the maximum degree in the remaining graph is O(n logn/ri ) w.h.p.
Observe that it also trivially holds in the first iteration, i.e. the initial

graph hasmaximumdegreeO(n). LetGi be the graph induced by the

ranks between ri and ri+1. Then, a neighbor u of vertex v appears

in Gi with probability (ri+1 − ri )/(n − ri ) ≤ ri+1/n. Hence, the
expected degree of every vertex in this graph is at most

µ := Θ(n logn/ri · ri+1/n) = Θ
(
∆(1−α )α

i
logn

)
.

Since µ ≥ logn, by Chernoff bound we have that every vertex in

Gi has degree O(µ) w.h.p. Now, since there are O(ri+1) vertices in
Gi , we have that Gi contains

O
(
ri+1∆

(1−α )α i
logn

)
= O

(
n∆−α

i /2
logn

)
(1)

many edges w.h.p., where we used that α = 3/4. Recall that the al-

gorithm iterates over the ranks until the maximum degree becomes

less than log
10 n. Also, Θ(n logn/ri ) upper-bounds the maximum

degree (see Lemma 3.1). Hence, we have

Θ(n logn/ri ) ≥ log
10 n =⇒ ∆α

i
≥ Ω

(
log

9 n
)
.

Combining the last implication with Eq. (1) provides that Gi con-

tains O(n) edges w.h.p.
After the rank becomesn/log10 n or greater, we run theCONGESTED-

CLIQUE algorithm of [21] for O(log log∆) iterations. Since that

algorithm performs only simple local decisions with low commu-

nication, every iteration of the algorithm can be implemented in

O(1)MPC rounds, with Õ(n) memory per machine, by using stan-

dard techniques. Finally, using Theorem 2.1, we conclude that the

MIS will be computed after O(log log∆) rounds in the MPC or the

CONGESTED-CLIQUE model.

�

4 MATCHING AND VERTEX COVER, SIMPLE

APPROXIMATIONS

In this section, we describe a simple algorithm that leads to a frac-

tional matching of weight within a (2 + ε)-factor of (integral) maxi-

mum matching and, the same algorithm, leads to a 2 + ε approxi-
mation of minimum vertex cover, for any small constant ε > 0. In

Section 4.4 we prove our main technical lemma, while the complete

proof of correctness of the algorithm is deferred to the full version

of this paper. Also in the full version, we design an algorithm that

efficiently constructs an integral (2 + ε)-approximate maximum

matching from a fractional one. That result along with standard

techniques underlined in Section 1.3 provides 1 + ε approximation

of maximum matching.

In Section 4.1, we first present the advertized algorithm that runs

inO(logn) rounds. Then, in Section 4.2 and Section 4.3, we explain

how to simulate this algorithm in O(log logn) rounds of the MPC

model.

4.1 Basic O(logn)-iteration Centralized

Algorithm

We now provide a simple centralized algorithm for obtaining the

described fractional matching and minimum vertex cover. We refer

to this algorithm as Central.

Central: Centralized O (logn)-round Fractional Matching

and Vertex Cover:

• Initially, for each edge e ∈ E , set xe = 1/n.

• Then, until each edge is frozen, in iteration t :

(A) Freeze each vertex v for which yv =
∑
e∋v xe ≥ 1 − 2ε and

freeze all its edges.

(B) For each active edge, set xe ← xe /(1 − ε ).

• At the end, once all edges are frozen, output the set of values xe as a

fractional matching and the set of frozen vertices as a vertex cover.

Lemma 4.1. For any constants ε such that 0 < ε ≤ 1/10, the

algorithm Central terminates after O(logn) iterations, at which
point all edges are frozen. Moreover, we have two properties:

(A) The set of frozen vertices—i.e., thosev for whichyv ,t =
∑
e ∋v xe ≥

1 − 2ε—is a vertex cover that has size within a (2 + 5ε) factor
of the minimum vertex cover.

(B)

∑
e ∈E xe ≥ |M

⋆ |/(2 + 5ε), that is, the computed fractional

matching has size within (2 + 5ε)-factor of the maximum

matching

Proof. We first prove the claim about vertex cover, and then

about maximum matching.

Vertex cover: Let C be the vertex cover obtained by the algorithm.

Every vertex added to C has weight at least 1 − 2ε . Furthermore,

an edge can be incident to at most 2 vertices of C . LetWM be the

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

133



PODC ’18, July 23–27, 2018, Egham, United Kingdom M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, R. Rubinfeld

weight of the fractional matching the algorithm constructs. Then,

we have |C | ≤ 2WM /(1 − 2ε) ≤ 2(1 + 5ε)WM , for ε ≤ 1/10. Note

that the algorithm ensures that at every step yv ≤ 1. Hence, from

the strong duality we have that the weight of fractional minimum

vertex covers is at leastWM . Therefore, the minimum (integral)

vertex cover has size at leastWM as well. This now implies that |C |
is a 2(1 + 5ε)-approximate minimum vertex cover.

Maximummatching: LetW⋆
M be the weight of a fractional max-

imum matching. Then, it holds |M⋆ | ≤ W⋆
M ≤ |C |. From our

analysis above and the last chain of inequalities we haveWM ≥

|M⋆ |/(2(1 + 5ε)). �

4.2 An Attempt for Simulation in O(log logn)
rounds of MPC

An Idealized MPC Simulation: Next, we explain an attempt to-

ward simulating the algorithm Central in the MPC model. Once

we discuss this, we will point out some shortcomings and then

explain how we plan to adjust the algorithm to address these short-

comings.

The algorithm starts with every vertex and every edge being

active. If not active, an edge/vertex is frozen. Throughout the al-

gorithm, the minimum active fractional edge value increases and

consequently, the degree of each vertex with respect to active edges

decreases gradually. We break the simulation into phases, where

the ith phase ensures to simulate enough of the algorithm until

the minimum active fractional edge value is 1/∆−(0.9)
i
, which im-

plies that the active degree is at most ∆(0.9)
i
. Hence, we finish

within O(log logn) phases. Remark: In our final implementation,

the number of iteration one phase simulates is slightly different

than presented here. However, that final implementation, that we

precisely define in the sequel, follows the exact same behavior as

presented here.

Let us focus on one phase. Suppose that G ′ is the remaining

graph on the active edges, the minimum active fractional edge

value is 1/d , and thus G ′ has degree at most d . In this phase, we

simulate the algorithm until the minimum active fractional edge

value reaches 1/d0.9, which implies that the active degree is at most

d0.9.
We randomly partition the vertex-set of G ′, that consists only

of active edges, among m =
√
d machines; let G ′i be the graph

given to machine i . In this way, each machine receives O(n) edges
w.h.p. Machine i for the next log

1/(1−ε ) d/10 rounds simulates the

basic algorithm on G ′i . For that, in each round the machine which

received a vertex v estimates yv =
∑
e ∋v xe by ỹv defined as

ỹv =m ·
∑

e ∋v ; e ∈G′i

xe +
∑

e ∋v ; e ∈G\G′
xe .

That is, ỹv is the summation of edge-values ofG ′-edges incident on
v whose other endpoint is in the same machine, multiplied bym (to

normalize for the partitioning), plus the value of all edges remaining

from G \G ′, i.e., edges that were frozen before this phase. In each

round and for every vertexv, if ỹv ≥ 1−2ε , then themachine freezes

v and the edges incident to v. After this step, for any active edge

e ∈ G ′i the machine sets xe ← xe · 1/(1 − ε). The phase ends after
log

1/(1−ε ) ∆/10 rounds. At the end, the round in which different

vertices were frozen determines when the corresponding edges got

frozen (if they did). So, it suffices to spread the information about

the frozen vertices and the related timing to deduce the edge-values

of all edges. Since per iteration each active edge increases by a factor

of 1/(1 − ε), after log
1/(1−ε ) ∆/10 rounds, the minimum active edge

value reaches 1/d0.9 and we are done with this phase.

The Issue with the Direct Simulation: Consider first the follow-

ing wishful-thinking scenario. Assume for a moment that in every

iteration it holds |yv − (1 − 2ε)| > |yv − ỹv |, that is, yv and ỹv are

"on the same side" of the threshold. Then, the algorithm Central

and the MPC simulation of it make the same decision on whether

a vertex v gets frozen or not. Moreover, this happens in every it-

eration, as can be formalized by a simple induction. This in turn

implies that the MPC algorithm performs the exact same compu-

tations as the Central algorithm and thus it provides the same

approximation as Central. However, in general case, even if yv
and ỹv are almost equal, e.g., |yv − ỹv | ≪ ε , it might happen that

yv ≥ 1−2ε and ỹv < 1−2ε , resulting in the two algorithms making

different decisions with respect to v. Furthermore, this situation

could occur for many vertices simultaneously, and this deviation

of the two algorithms might grow as we go through the round;

these complicate the task of analyzing the behavior of the MPC

algorithm.

Random Thresholding to the Rescue: Observe that if |yv − ỹv |
is small then there is only a “small range" of values of yv around

the threshold 1 − 2ε which could potentially lead to the two algo-

rithms behaving differently with respect to v. Motivated by this

observation, instead of having one fixed threshold throughout the

whole algorithm, in each iteration t and for each vertex v the algo-

rithm will uniformly at random choose a fresh threshold Tv ,t from

the interval [1 − 4ε , 1 − 2ε]. We call this algorithm Central-Rand,

and state it below. Then, if v is not frozen until the t th iteration,

v gets frozen by Central-Rand if yv ,t ≥ Tv ,t (and similarly, v

get frozen by the MPC simulation if ỹv ,t ≥ Tv ,t ). In that case, if

|yv − ỹv | ≪ ε , then most of the time yv would be far from the

threshold and the two algorithms would behave similarly. We make

this intuition formal in the next section by Lemma 4.4.

4.3 Our Actual Simulation in O(log logn)
rounds of MPC

We now present the modified Central-Rand algorithm with the

random thresholding and then discuss how we simulate it in the

MPC model.

Central-Rand: CentralizedO (logn)-round FractionalMatch-

ing and Vertex Cover with Random Thresholding:

• Each vertex v chooses a list of thresholds Tv ,t such that: the thresh-

olds are chosen independently; each threshold is chosen uniformly at

random from [1 − 4ε , 1 − 2ε ].

• Initially, for each edge e ∈ E , set xe = 1/n.

• Then, until each edge is frozen, in iteration t :

(A) Freeze each vertex v for which yv ,t =
∑
e∋v xe ≥ Tv ,t and

freeze all its edges.

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

134



Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover PODC ’18, July 23–27, 2018, Egham, United Kingdom

(B) For each active edge, set xe ← xe /(1 − ε ).

• At the end, once all edges are frozen, output the set of values xe as a

fractional matching and the set of frozen vertices as a vertex cover.

Our Actual MPC Simulation: We now provide an MPC simula-

tion of Central-Rand, that we will refer to by MPC-Simul, and

discuss it below.

Our algorithm begins by selecting a collection of random thresh-

olds T . In the actual implementation, since these thresholds are

chosen independently and each from the same interval, threshold

Tv ,t can be sampled when needed ("on the fly"). During the simula-

tion, we maintain a vertex set V ′ ⊆ V that consists of vertices that

we consider for the rest of the simulation. The algorithm defines the

initial weight of the edges to bew0 = (1 − 2ε)/n. Also, it maintains

variable d representing the upper-bound on the maximum degree

in the remaining graph (in principle, the maximum degree can be

smaller than d).
MPC-Simul is divided into phases. At the beginning of a phase,

we consider a subgraphG ′ ofG[V ′] that consists only of the active

edges. In the full version we prove that the maximum degree in G ′

is at most d . Also at the beginning of a phase, the algorithm defines

yoldv (see line (b)). This is part of the vertex-weight that remains

the same throughout the execution of the phase. It corresponds to

the sum of weights of the edges incident to v that were frozen in

prior phases. Then, the vertex set V ′ is distributed acrossm =
√
d

machines. Each machines collects the induced graph of G ′ on the

vertex set assigned to it. In the full version we prove that each of

these induced graphs consists of O(n) edges.
Each phase executes the steps under line (e), which simulates

I iterations of Central-Rand. During a phase, we maintain the

iteration-counter t . The value of t counts all the iterations since
the beginning of the algorithm, and not only from the beginning

of a phase. After this simulation is over, the weight xMPC
e of each

edge e is properly set/updated. For instance, if e was not assigned
to any of the machines (i.e., its endpoints were assigned to distinct

machines), then xMPC
e was not changing during the simulation

of Central-Rand in this phase even if both of its endpoints were

active. To account for that, at line (g) the value xMPC
e is set to

w0

1

(1−ε )t ′
, where t ′ is the last iteration when both endpoints of e

were active. To implement this step, each vertex will also keep a

variable corresponding to the iteration when it was last active.

Every vertex v that has weight more than 1, i.e., yMPC
v > 1, is

along with its incident edges removed from the consideration, e.g.,

removed from V ′ at line (i), but v is added to the vertex cover that

is reported at the end of the algorithm. Note that after the removal

of such v, the edges incident to it are not considered anymore

while computing yMPC
or ỹ. This step ensures that throughout the

algorithm the fractional matching onG[V ′]will be valid. But it also
ensures that all the edges that are in G[V \V ′], in particular those

incident to v, will be covered by the final vertex cover.

MPC-Simul: MPC Simulation of algorithm Central-Rand:

(1) Each vertexv chooses a list of thresholds Tv ,t such that: the thresh-

olds are chosen independently; each threshold is chosen uniformly

at random from [1 − 4ε , 1 − 2ε ].

(2) Init: V ′ = V ; ∀e ∈ E , set xMPC
e = w0 =

1−2ε
n ; d = n; t = 0.

(3) While d > log
20 n:

(a) Let G′ be a graph on V ′ consisting only of the active edges of

G[V ′].

(b) For each v ∈ V ′, define yoldv =
∑
e∋v ; e∈G [V ′]\G′ xMPC

e .

(c) Set: # machinesm =
√
d ; # iterations I = logm

10 log 5
.

(d) Partition V ′ intom sets V1 , . . . , Vm by assigning each vertex

to a machine independently and uniformly at random.

(e) For each i ∈ {1, . . . ,m } in parallel execute I iterations

(A) For eachv ∈ Vi such that ỹv ,t =m ·
∑
e∋v ; e∈G′[Vi ] x

MPC
e +

yoldv ≥ Tv ,t : freeze v and freeze all its edges.

(B) For each active edge of G′[Vi ], set xMPC
e ←

xMPC
e
1−ε .

(C) Increment the total iteration count: t ← t + 1.

(f) Update d ← d (1 − ε )I .

(g) For every edge e = {u , v }: set xMPC
e = w0

1

(1−ε )t ′
, where t ′ is

the last iteration in which both u and v were active.

(h) For each v ∈ V ′ let yMPC
v =

∑
e∋v ; e∈G [V ′] xMPC

e .

(i) For each v ∈ V ′ such that yMPC
v > 1: remove v from V ′.

(j) For each v ∈ V ′ such that yMPC
v > 1 − 2ε : freeze v and freeze

all its edges.

(4) Directly simulate log
1/(1−ε ) log

20 n iterations of Central-Rand.

(5) Output the vector xMPC
as a fractional matching and the set of

frozen vertices as a vertex cover.

If some vertex has weight between 1−2ε and 1, it has sufficiently

large fractional weight, so we simply freeze it (line (j)) before the

next phase.

Once the upper-boundd becomes less than log
20 n, the algorithm

exits from the main while loop, and the rest of the iterations needed

to simulate Central-Rand are executed one by one. During this

part of the simulation, MPC-Simul and Central-Rand behave

identically.

4.4 The Main Technical Lemma

In this section, we show that |yv − ỹv | remains small for most of the

vertices (this claim is formalized in Lemma 4.8). Before we provide

an outline of the analysis, we state some definition and describe

the notation we use.

Definition 4.2 (Bad and good vertex). We say that vertex is bad if

it gets frozen in Central-Rand and not in MPC-Simul (or the other

way around). Once bad, the vertex remains bad throughout the whole

phase. If a vertex is not bad, we say it is good.

Definition 4.3 (Local neighbor). If a neighbor u of vertex v is in the

given iteration of MPC-Simul on the same machine as v, then we say

that u is a local neighbor of v.

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

135



PODC ’18, July 23–27, 2018, Egham, United Kingdom M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, R. Rubinfeld

Notation: We usewt to refer to the weight of active edge in the t th

iteration. Let N central
A (v, t) (resp. N local

A (v, t)) denote the active

neighbors of v at the beginning of the t th iteration of the ideal

(resp. MPC) algorithm. Similarly, we use N local (v, t) to denote the

local neighbors of v in iteration t . If it is clear from the context

which iteration we are referring to, sometimes we omit t from the

notation. Throughout our proofs, we will be making claims of the

following form a = b ± c , which should be read as a ∈ [b − c ,b + c].

Analysis Outline: Recall that ỹv ,t and yv ,t represent the frac-

tional weight of vertex v in the t th iteration of MPC-Simul and

Central-Rand, respectively. From the definition, we have yv ,t =

yv ,t−1 + εwt−1 |N
central
A (v, t)|, and similarly ỹv ,t = ỹv ,t−1 +

εwt−1m |N
local
A (v, t)|. To say that the algorithms stay close to each

other, we upper-bound

��yv ,t − ỹv ,t �� inductively as a function of t .

Suppose that we already have an upper bound on

��yv ,t−1 − ỹv ,t−1��;
we focus on upper-bounding the difference between |N central

A (v, t)|

andm |N local
A (v, t)|. There are two sources of difference between

|N central
A (v, t)| andm |N local

A (v, t)|:

(1) Some of the neighbors of v might be bad. Notice that this

also implies that in general the set N local
A (v, t) might not

even be a subset of N central
A (v, t).

(2) Even in the very first iteration (or more generally even if

there is no bad vertex in N local
A (v, t)), the set N local

A (v, t) is

a random sample of N central
A (v, t) and hence |N local

A (v, t)|

might deviate from its expectation |N central
A (v, t)|/m.

Furthermore, in our analysis, we assume that at the beginning of

each phase MPC-Simul and Central-Rand start from the same

fractional matching. Namely, we compare MPC-Simul to the be-

havior of Central-Rand assuming that initially x equals xMPC
,

for the value of xMPC
at the beginning of a given phase. Since we

ensure that xMPC
is at the beginning of a phase always a valid frac-

tional matching, Central-Rand in our approach will also maintain

a valid fractional matching.

Also, we assume that the thresholds, i.e., Tv ,t for each v ∈

V and each iteration t , are the same for both MPC-Simul and

Central-Rand. Note that the latter algorithm is only a hypotheti-

cal one, whose purpose is to compare our simulation to a process

that constructs a fractional matching, so this assumption is made

without loss of generality.

Analysis:

The following claim is a direct consequence of choosing the

thresholds randomly at each iteration.

Lemma4.4. Consider the t th iteration of a phase. Let

��yv ,t − ỹv ,t �� ≤
σ for every vertexv that is active in bothCentral-Rand andMPC-Simul.

Then, v becomes bad in the t th iteration with probability at most ε/σ
and independently of other vertices.

Proof. If

��ỹv ,t − Tv ,t �� > σ , then the algorithms MPC-Simul

and Central-Rand would behave the same with respect to vertex

v. Since Tv ,t is chosen uniformly at random within interval of size

2ε ,MPC-Simul and Central-Randwould differ in iteration t with
respect to v with probability at most 2σ/(2ε) = σ/ε . Furthermore,

as Tv ,t is chosen independently of other vertices, v becomes bad

independently of other vertices. �

There are two distinct steps where MPC-Simul directly or indi-

rectly estimates y. The first one is computing ỹ, which is used to

deduce whether a vertex should be frozen or not. The second one

corresponds to the actual weight that MPC-Simul assigns to the

vertices. Namely, at the end of a phase, weight is assigned to each

edge (line (g)) – for edge e = {u,v}, if u or v is frozen, then it is

set xMPC
e = wt , where t is the iteration when the first of the two

vertices got frozen; otherwise, xMPC
e = wt for t being the most

recent simulated iteration. Then, the weight of a vertex v, that we

denote by yMPC
v , is simply the sum of all xMPC

e incident to v. This

can be seen as an indirect estimate of yv .
Our next goal is to understand how does the estimate ỹv and

simulated vertex weight yMPC
v relate to yv . To that end, we define

the notion to capture the difference in how the weights yv and

yMPC
v are composed.

Definition 4.5 (Weight-difference). We use diff(v, t) to denote the
total weight of the edges that contributed to the weight of yv ,t and

not to yMPC
v ,t , and the other way around. Formally, let xMPC

e ,t be the

updated weight of edge e in iteration t inMPC-Simul (updated in the

sense as given by line (g) of the algorithm). Let xe ,t be the weight of
edge e in iteration t in Central-Rand. Then,

diff(v, t) :=
∑

e ∈N (v)

���xe ,t − xMPC
e ,t

��� .
Notice that

���yv ,t − yMPC
v ,t

��� ≤ diff(v, t). In general it might be

the case that

���yv ,t − yMPC
v ,t

��� < diff(v, t). For instance, consider two

edges e1 and e2 both incident to v. Assume that in Central-Rand

e1 is active, while e2 is frozen. On the other hand, assume that in

MPC-Simul it is the case that e1 is frozen while e2 active. So, these
two edges alone do not make any difference in the change of the

weight of yv ,t and y
MPC
v ,t – their effect cancels out. However, their

effect does not cancel each other in the definition of diff(v, t).
As a first step, we state the following lemma that shows that yv

is close to yMPC
v in the first iteration of some phase. Its proof is

deferred to the full version.

Lemma 4.6. Let iteration t⋆ be the first iteration of some phase, and

let v be an active vertex by iteration t⋆. Then, w.h.p.��yv ,t⋆ − ỹv ,t⋆ �� ≤ m−0.2.
Furthermore, diff(v, t⋆) = 0 with certainty.

We now prove our main technical lemma, which quantifies the

increase in the difference between yv and its estimates ỹv and

yMPC
v over the course of one phase.

Lemma 4.7 (Evolution of weight-estimates). Let v be an active

vertex in iteration t − 1 in both Central-Rand and MPC-Simul.

Then, if

��yv ,t−1 − ỹv ,t−1�� ≤ σ and diff(v, t) ≤ σ , the following holds
w.h.p.:

•
��yv ,t − ỹv ,t �� ≤ 4(σ + εm−0.2), and

• diff(v, t) ≤ 4(σ + εm−0.2).

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

136



Improved Massively Parallel Computation Algorithms for
MIS, Matching, and Vertex Cover PODC ’18, July 23–27, 2018, Egham, United Kingdom

Proof. We proceed by upper-bounding the effect of three differ-

ent kinds of vertices on

��yv ,t − ỹv ,t ��: bad vertices prior to the t th

iteration; vertices becoming bad in the t th iteration; and, the effect

of the random partitioning. Observe that diff(v, t) is not directly
affected by the random partitioning.

Old bad vertices.: Let Bv ,t−1 be the set of bad vertices prior to the

beginning of the t th iteration that are also local neighbors of v. The

set Bv ,t−1 accounts for the vertices N
local
A (v, t−1)\N central

A (v, t−

1), and for the local neighbors of v that are in N central
A (v, t − 1)

but not in N local
A (v, t − 1). Since their weight was bounded by σ in

the (t − 1)th , then their weight is bounded by (1 + ε)σ in the t th

iteration. Hence, from iteration t − 1 to iteration t , the effect of the
old bad vertices increased by εσ .

In a similar way, by defining Bv ,t−1 to be the set of bad neighbors
of v across all the machines, we get that from iteration t − 1 to

iteration t the effect of the old bad vertices on diff(v, t) increased
by εσ .

New bad vertices.: In addition to the bad vertices in Bv ,t−1, there

might be new bad vertices in the beginning of the t th iteration

– the vertices of N local
A (v, t − 1) ∩ N central

A (v, t − 1) that are not

in N local
A (v, t) ∩ N central

A (v, t). To bound the weight of those bad

vertices, we first upper-bound the cardinality of N local
A (v, t − 1) ∩

N central
A (v, t − 1). For the sake of brevity, define

nlocalv ,t−1 := |N
local (v, t − 1) ∩ N central

A (v, t − 1)|

where, as a reminder, the set N local (v, t − 1) refers to the local

neighbors (both frozen and active) of v. We trivially have

|N local
A (v, t − 1) ∩ N central

A (v, t − 1)| ≤ nlocalv ,t−1.

Then, by Lemma 4.4, the number of new bad vertices is in expec-

tation at most nlocalv ,t−1σ/ε . We now proceed by providing a sharp

concentration around this expected value. To that end, we provide

an upper-bound on nlocalv ,t−1 that holds w.h.p.

Observe that N central
A (v, t − 1) is defined deterministically and in-

dependently of the MPC algorithm. Then, if |N central
A (v, t − 1)| ≥

m1.6
, we have that w.h.p.nlocalv ,t−1 ≤ (1+m

−0.2)|N central
A (v, t−1)|/m.

Otherwise, if |N central
A (v, t − 1)| < m1.6

, then w.h.p. nlocalv ,t−1 ≤

2m0.6
. Therefore, forγ := max{(1+m−0.2)|N central

A (v, t−1)|, 2m1.6},

we have the w.h.p.

m · nlocalv ,t−1 ≤ γ .

Applying similar reasoning about nlocalv ,t−1σ/ε , i.e., considering cases

nlocalv ,t−1σ/ε ≥ m0.6
and nlocalv ,t−1σ/ε < m0.6

, we obtain that w.h.p.

the number of new bad vertices is upper-bounded by max{(1 +

m−0.2)nlocalv ,−1 σ/ε , 2m
0.6}. So, putting all together, we have that the

weight coming from new bad vertices that affects the local estimate

of yv ,t is at most

σ2 := εwt−1 ·max{(1 +m−0.2)γσ/ε , 2m1.6}.

But now, using that wt−1 ≤ m−1.8 and also that |N central
A (v, t −

1)|wt−1 ≤ 1 as v is a active vertex in Central-Rand, we derive

σ2 ≤ 2(σ + εm−0.2).

It remains to comment about the effect of new bad vertices

on diff(v, t). Note that the expected number of new bad vertices

affecting diff(v, t) is at most |N central
A (v, t − 1)|σ/ε . So, applying

the same arguments as above, the weight of new bad vertices affects

diff(v, t) by at most σ2 w.h.p.

Effect of random partitioning.: Finally, we upper-bound the ef-

fect of the random partitioning on the estimate ỹv ,t . Similarly to

our arguments given earlier, we have that w.h.p. the number of

vertices of N central
A (v, t) that are local neighbors of v deviates from

|N central
A (v, t)|/m by at most η defined as

η := max{m−0.2 |N central
A (v, t)|,m1.6}/m.

The total weight of these vertices scaled bym is at most εwt−1mη ≤
εm−0.2.

Final step: Putting altogether, if��yv ,t−1 − ỹv ,t−1�� ≤ σ

and ���yv ,t−1 − yMPC
v ,t−1

��� ≤ σ ,

then we have��yv ,t − ỹv ,t �� ≤ (1 + ε)σ + 2(σ + εm−0.2) + εm−0.2

≤ 4(σ + εm−0.2),

and similarly

diff(v, t) ≤ (1 + ε)σ + 2(σ + εm−0.2) ≤ 4(σ + εm−0.2),

as desired. �

Now, combining Lemma 4.6 and Lemma 4.7, it is not hard to

show our main technical result.

Lemma 4.8. Let v be an active vertex in iteration t − 1 in both

MPC-Simul and Central-Rand. If a phase consists of at most I :=
(logm)/(10 log 5) iterations, then it holds

��yv ,t − ỹv ,t �� ≤ m−0.1 and

diff(v, t) ≤ m−0.1 w.h.p.

Acknowledgments

We thank anonymous reviewers for their valuable feedback. S.M. is

grateful to his co-authors for the previous collaboration in [15]

that was the starting point of this project. R.R. was supported by

NSF award numbers CCF-1650733, CCF-1733808, CCF-1740751, IIS-

1741137 and Israel Science Foundation Grant 1147/09. Most of the

work on this paper has been carried out while C.K. was at the

University of Warwick, where he was supported by the Centre for

Discrete Mathematics and its Applications (DIMAP) and by EPSRC

award EP/N011163/1. Part of this work has been carried out while

S.M. was visiting MIT.

REFERENCES

[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha, AndrewMcGregor, and Anthony

Wirth. 2015. Correlation Clustering in Data Streams. In Proceedings of the 32Nd

International Conference on International Conference onMachine Learning - Volume

37 (ICML’15). JMLR.org, 2237–2246. http://dl.acm.org/citation.cfm?id=3045118.

3045356

[2] Kook Jin Ahn and Sudipto Guha. 2015. Access to Data and Number of Iterations:

Dual Primal Algorithms for Maximum Matching under Resource Constraints.

In Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and

Architectures, SPAA 2015, Portland, OR, USA, June 13–15, 2015. 202–211. https:

//doi.org/10.1145/2755573.2755586

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

137

http://dl.acm.org/citation.cfm?id=3045118.3045356
http://dl.acm.org/citation.cfm?id=3045118.3045356
https://doi.org/10.1145/2755573.2755586
https://doi.org/10.1145/2755573.2755586


PODC ’18, July 23–27, 2018, Egham, United Kingdom M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, R. Rubinfeld

[3] Noga Alon, László Babai, and Alon Itai. 1986. A Fast and Simple Randomized Par-

allel Algorithm for the Maximal Independent Set Problem. Journal of Algorithms

7, 4 (1986), 567–583. https://doi.org/10.1016/0196-6774(86)90019-2

[4] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

2014. Parallel algorithms for geometric graph problems. In Proceedings of the

46th ACM Symposium on Theory of Computing, STOC 2014, New York, NY, USA,

May 31–June 3, 2014. 574–583. https://doi.org/10.1145/2591796.2591805

[5] Sepehr Assadi. 2017. Simple Round Compression for Parallel Vertex Cover. CoRR

abs/1709.04599 (September 2017). https://arxiv.org/abs/1709.04599

[6] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,

and Cliff Stein. 2017. Coresets Meet EDCS: Algorithms for Matching and Vertex

Cover on Massive Graphs. CoRR abs/1711.03076 (2017). arXiv:1711.03076 http:

//arxiv.org/abs/1711.03076

[7] Sepehr Assadi and Sanjeev Khanna. 2017. Randomized Composable Coresets

for Matching and Vertex Cover. In Proceedings of the 29th ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA,

July 24–26, 2017. 3–12. https://doi.org/10.1145/3087556.3087581

[8] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2012. The

locality of distributed symmetry breaking. In Foundations of Computer Science

(FOCS) 2012. IEEE, 321–330.

[9] Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication steps

for parallel query processing. In Proceedings of the 32nd ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY,

USA, June 22–27, 2013. 273–284. https://doi.org/10.1145/2463664.2465224

[10] Florent Becker, Antonio Fernandez Anta, Ivan Rapaport, and Eric Reémila. 2015.

Brief Announcement: A Hierarchy of Congested Clique Models, from Broadcast

to Unicast. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC) (PODC

’15). ACM, 167–169.

[11] Andrew Berns, James Hegeman, and Sriram V Pemmaraju. 2012. Super-fast dis-

tributed algorithms for metric facility location. In the Pro. of the Int’l Colloquium

on Automata, Languages and Programming (ICALP). 428–439.

[12] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. 2012. Greedy sequential

maximal independent set and matching are parallel on average. In Proceedings

of the twenty-fourth annual ACM symposium on Parallelism in algorithms and

architectures. ACM, 308–317.

[13] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2015. Algebraic Methods in the Congested Clique. In

the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). ACM, 143–152.

[14] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2017. Deran-

domizing Local Distributed Algorithms under Bandwidth Restrictions. In 31

International Symposium on Distributed Computing.

[15] Artur Czumaj, Jakub Łacki, Aleksander Mądry, Slobodan Mitrović, Krzysztof

Onak, and Piotr Sankowski. 2018. Round Compression for Parallel Matching

Algorithms. STOC (2018).

[16] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing

on Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation, Volume 6 (OSDI’04). USENIX Association,

Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1251254.1251264

[17] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. “Tri, Tri Again”: Finding

Triangles and Small Subgraphs in a Distributed Setting. In Distributed Computing.

Springer, 195–209.

[18] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the

Congested Clique Model. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp.

(PODC). ACM, 367–376.

[19] Manuela Fischer and Andreas Noever. 2018. Tight Analysis of Parallel Ran-

domized Greedy MIS. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms. SIAM, 2152–2160.

[20] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Inde-

pendent Set. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA).

[21] Mohsen Ghaffari. 2017. Distributed MIS via All-to-All Communication. In Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing. ACM,

141–149.

[22] Mohsen Ghaffari and Merav Parter. 2016. MST in Log-Star Rounds of Congested

Clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).

[23] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, searching,

and simulation in the MapReduce framework. In International Symposium on

Algorithms and Computation. Springer, 374–383.

[24] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-

mukh, and Michele Scquizzato. 2015. Toward Optimal Bounds in the Congested

Clique: Graph Connectivity and MST. In the Proc. of the Int’l Symp. on Princ. of

Dist. Comp. (PODC). ACM, 91–100.

[25] James W Hegeman and Sriram V Pemmaraju. 2014. Lessons from the congested

clique applied to MapReduce. In the Proceedings of the International Colloquium

on Structural Information and Communication Complexity. Springer, 149–164.

[26] James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. 2014. Near-

constant-time distributed algorithms on a congested clique. In Proc. of the Int’l

Symp. on Dist. Comp. (DISC). Springer, 514–530.

[27] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A

deterministic almost-tight distributed algorithm for approximating single-source

shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on

Theory of Computing. ACM, 489–498.

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: Distributed Data-parallel Programs from Sequential Building Blocks.

SIGOPS Operating Systems Review 41, 3 (March 2007), 59–72. https://doi.org/10.

1145/1272998.1273005

[29] Amos Israeli and Alon Itai. 1986. A Fast and Simple Randomized Parallel

Algorithm for Maximal Matching. Inform. Process. Lett. 22, 2 (1986), 77–80.

https://doi.org/10.1016/0020-0190(86)90144-4

[30] Amos Israeli and Yossi Shiloach. 1986. An Improved Parallel Algorithm for

Maximal Matching. Inform. Process. Lett. 22, 2 (1986), 57–60. https://doi.org/10.

1016/0020-0190(86)90141-9

[31] Tomasz Jurdziński and Krzysztof Nowicki. 2018. MST in O (1) Rounds of Con-

gested Clique. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms. SIAM, 2620–2632.

[32] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of

Computation for MapReduce. In Proceedings of the 21st Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17–19,

2010. 938–948. https://doi.org/10.1137/1.9781611973075.76

[33] Janne H Korhonen. 2016. Deterministic MST Sparsification in the Congested

Clique. arXiv preprint arXiv:1605.02022 (2016).

[34] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.

Filtering: a method for solving graph problems in MapReduce. In Proceedings of

the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA 2011, San Jose, CA, USA, June 4–6, 2011. 85–94. https://doi.org/10.1145/

1989493.1989505

[35] Christoph Lenzen. 2013. Optimal deterministic routing and sorting on the con-

gested clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).

42–50.

[36] Nathan Linial. 1987. Distributive graph algorithms Global solutions from local

data. In Proc. of the Symp. on Found. of Comp. Sci. (FOCS). IEEE, 331–335.

[37] Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. 2009. Distributed approximate

matching. SIAM J. Comput. 39, 2 (2009), 445–460.

[38] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. 2003. MST construc-

tion in O(log logn) communication rounds. In the Proceedings of the Symposium

on Parallel Algorithms and Architectures. ACM, 94–100.

[39] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent

Set Problem. SIAM J. Comput. 15, 4 (1986), 1036–1053. https://doi.org/10.1137/

0215074

[40] Andrew McGregor. 2005. Finding Graph Matchings in Data Streams. In Ap-

proximation, Randomization and Combinatorial Optimization, Algorithms and

Techniques, 8th International Workshop on Approximation Algorithms for Com-

binatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop

on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August

22-24, 2005, Proceedings. 170–181. https://doi.org/10.1007/11538462_15

[41] Danupon Nanongkai. 2014. Distributed Approximation Algorithms for Weighted

Shortest Paths. In Proc. of the Symp. on Theory of Comp. (STOC).

[42] Boaz Patt-Shamir and Marat Teplitsky. 2011. The round complexity of distributed

sorting. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). 249–256.

[43] Tom White. 2012. Hadoop: The Definitive Guide. O’Reilly Media, Inc.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,

and Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In

2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10,

Boston, MA, USA, June 22. https://www.usenix.org/conference/hotcloud-10/

spark-cluster-computing-working-sets

Session 1D: Graph Algorithms PODC’18, July 23-27, 2018, Egham, United Kingdom

138

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1145/2591796.2591805
https://arxiv.org/abs/1709.04599
http://arxiv.org/abs/1711.03076
http://arxiv.org/abs/1711.03076
http://arxiv.org/abs/1711.03076
https://doi.org/10.1145/3087556.3087581
https://doi.org/10.1145/2463664.2465224
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1145/1272998.1273005
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1016/0020-0190(86)90141-9
https://doi.org/10.1016/0020-0190(86)90141-9
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0215074
https://doi.org/10.1007/11538462_15
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

	Abstract
	1 Introduction
	1.1 The Models
	1.2 Related Work
	1.3 Our Contributions
	1.4 Our Techniques

	2 Preliminaries
	3 Maximal Independent Set
	3.1 Randomized Greedy Algorithm for MIS
	3.2 Simulation in O(loglog) rounds of MPC and CONGESTED-CLIQUE
	3.3 Analysis

	4 Matching and Vertex Cover, Simple Approximations
	4.1 Basic O(logn)-iteration Centralized Algorithm
	4.2 An Attempt for Simulation in O(loglogn) rounds of MPC
	4.3 Our Actual Simulation in O(loglogn) rounds of MPC
	4.4 The Main Technical Lemma

	References



