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Abstract

In this paper, we look at the problem of randomized leader election in synchronous distributed
networks with a special focus on the message complexity. We provide an algorithm that solves
the implicit version of leader election (where non-leader nodes need not be aware of the identity
of the leader) in any general network with O(

√
n log7/2 n · tmix) messages and in O(tmix log2 n)

time, where n is the number of nodes and tmix refers to the mixing time of a random walk
in the network graph G. For several classes of well-connected networks (that have a large
conductance or alternatively small mixing times e.g. expanders, hypercubes, etc), the above
result implies extremely efficient (sublinear running time and messages) leader election algorithms.
Correspondingly, we show that any substantial improvement is not possible over our algorithm,
by presenting an almost matching lower bound for randomized leader election. We show that
Ω(
√
n/φ3/4) messages are needed for any leader election algorithm that succeeds with probability

at least 1− o(1), where φ refers to the conductance of a graph. To the best of our knowledge,
this is the first work that shows a dependence between the time and message complexity to solve
leader election and the connectivity of the graph G, which is often characterized by the graph’s
conductance φ. Apart from the Ω(m) bound in [24] (where m denotes the number of edges of
the graph), this work also provides one of the first non-trivial lower bounds for leader election in
general networks.

∗Authors are listed alphabetically.
†This author is the corresponding author.
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1 Introduction

Leader election is one of the most classical and fundamental problem in the field of distributed
computing having applications in numerous problems relating to synchronization, resource allocation,
reliable replication, load balancing, job scheduling (in master slave environment), crash recovery,
membership maintenance etc. Computing a leader can be thought of as a form of symmetry breaking,
where exactly one special node or process (denoted as leader) is chosen to take some critical decisions.

Loosely speaking, the problem of leader election requires a set of nodes in a distributed network
to elect a unique leader among themselves, i.e., exactly one node must output the decision that it is
the leader. There are two well known variants of this problem (cf. [3, 27]), the explicit variant where
at the end of the election process all the nodes are required to be aware of the identity of the leader
and the implicit variant where the non-leader nodes need not be aware of the identity of the leader.

Often, the implicit variant is sufficient for many practical applications, e.g. its original application
for token generation in token ring environments [26] etc. This variant also allows us to clearly
distinguish between the two aspects of explicit leader election and costs associated to each of them,
i.e. electing a leader (implicitly) as compared to broadcasting the unique id of the leader to all the
other nodes. Clearly, any solution for the explicit variant of leader election also solves the implicit
variant. However, it is to be noted that any solution for the implicit leader election could solve
explicit leader election by broadcasting the identity of the leader to all the nodes. In this paper, we
mainly focus on the implicit variant of leader election on a network without edge or link failures.

Compared to deterministic solutions that provide absolute guarantees for the election of a unique
leader, randomized solutions guarantees unique leader election with high probability. However, this
weakened assumption is still sufficient for many practical applications. With an acceptable error
probability, randomization can result in a significant reduction in time and message complexities.
This is highly advantageous for large scale distributed systems (e.g. P2P systems, overlay and
sensor networks [35, 36, 40]), where scalability is an important issue. Furthermore, in anonymous
networks, a randomized solution is often possible by randomly assigning unique identifiers to nodes
(as done herein) whereas a corresponding deterministic solution is impossible (see [2]).

This paper focuses on studying the message complexity of implicit leader election in synchronous
distributed networks. Here, we show the relationship between the graph connectivity (which is
characterized by the graph’s conductance φ) with the time and number of messages required
for leader election. We provide an algorithm that solves implicit leader election in any general
network with Õ(

√
n · tmix) messages and in Õ(tmix) time, where n is the number of nodes and

tmix refers to the mixing time of a random walk in the network graph G.1 Correspondingly, we
show that Ω(

√
n/(φ)3/4) messages are needed for any leader election algorithm that succeeds with

high probability, where φ refers to the graph’s conductance. We also show that the knowledge of
the network size n is critical to achieve the said message and time complexities, but surprisingly,
knowledge of other graph properties, such as the conductance, mixing time, or diameter is not
needed.
Computing Model. We model the network as a connected, undirected graph G = (V,E) with
|V | = n nodes and |E| = m edges where nodes communicate over the graph edges. We assume
synchronous communication that follows the standard CONGEST model [32]. In each round, each
node can perform some local computation which can involve accessing a private source of randomness.
Additionally, each node u is allowed to send a message of size O(logn) bits through each edge (u, v)

1Throughout the paper, we use the Õ notation to hide log n factors.
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incident on u. Nodes do not have predefined ids and there are no node or link failures.
Port Numbering Model. We assume that the nodes know the network size n and wake up
simultaneously at the beginning of the execution. Also, nodes are anonymous in the sense that they
do not have unique IDs.2 Each node chooses an id uniformly at random from within the range
[1, n4].3 Each node u with degree |du| has ports 1, . . . , du, over which it can send messages across
undirected links to its neighbors; that is, each neighbor of u is the endpoint of exactly 1 of u’s ports.
Nodes only know the port numbers of connections and are unaware of their neighbors’ identities.
We do not assume these mappings to be symmetric: in particular, it can happen that u is connected
to v via port number i, whereas v is connected to u via port number j 6= i.
Randomized Implicit Leader Election. Every node of a given distributed network has a
flag variable (or a boolean variable) initialized to 0 and, after the process of election, with high
probability (w.h.p), only one node, called the leader, raises its flag by setting the flag variable to 1.
An algorithm A is said to solve leader election in T rounds, if within T rounds nodes elect a unique
leader w.h.p., and none of the nodes send any more messages after T rounds.
Results. In this paper, we present both upper and lower bounds for the problem of implicit
leader election in general networks. We provide an algorithm that solves implicit leader election
in any general network with O(

√
n log7/2 n · tmix) messages and in O(tmix log2 n) time, where n is

the number of nodes and tmix refers to the mixing time of a random walk in the network graph
G. If larger message sizes of O(log3 n) is allowed, the message and time complexity reduces to
O(
√
n log3/2 n · tmix) and O(tmix) respectively. This implies significantly faster and efficient solutions

(that are sub-linear in terms of message complexity) for leader election in several important classes
of well-connected graphs that have a large conductance or alternatively a small mixing time. For
example, to solve implicit leader election, in expander graphs (see [20] for applications) that have a
mixing time of O(logn), it takes only O(log3 n) time and O(

√
n log9/2 n) messages; in hypercube

graphs, that have a mixing time of O(logn log logn), it takes only O(log3 n log logn) time and
O(
√
n log9/2 n log logn) messages. The algorithm can also be used for solving the explicit variant of

leader election by adding a broadcasting procedure, wherein the leader broadcasts its identity to all
other nodes. For well connected graphs, this breaks the Ω(m) lower bound given in [24] (where m
denotes the number of edges of the graph) and nearly matches the Ω(

√
n) lower bound for clique

graphs [25] (as cliques have constant conductance).
We show that a dependence on the graph conductance is unavoidable, by presenting a message

complexity lower bound of Ω(
√
n/φ3/4) messages that holds for any leader election algorithm that

succeeds with probability at least 1− o(1). This nearly matches the upper bound since we know
that Θ(1/φ) 6 tmix 6 Θ(1/φ2) from [37].

By a similar analysis, we also provide lower bounds for other graph problems like broadcast and
spanning tree construction in terms of the graph’s conductance. Our lower bounds also apply for
the LOCAL model [32], where there are no restrictions on the message size. Other than the Ω(m)
bound in [24], to the best of our knowledge, this is the first non-trivial lower bound for randomized
leader election in general networks. Also, ours is one of the first results to show the dependence of
the time and message complexity to solve leader election on the connectivity of the graph G, which
is often characterized by the graph’s conductance φ.

Additionally, we show that the knowledge of the network size n is critical for our algorithm to
succeed by giving a lower bound of Ω(m) for all graphs if n is not known. However surprisingly, the

2Our lower bound holds even if nodes start with unique IDs.
3This range guarantees that the chosen values are unique with high probability [27] (Chapter 4, page 72).
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knowledge of other graph properties, like the conductance, mixing time, or diameter is not needed.
Prior Works. Leader election, being one of the fundamental paradigms in the theory of distributed
computing has been widely studied. The problem was first stated by Gérard Le Lann in [26] in
the context of token ring networks, and thereafter has been extensively studied for various types
of networks, scenarios and communication models. For particular types of networks topologies
like token rings, mesh, torus, hypercubes and cliques the problem of leader election has been
well-studied resulting in specialized algorithms and lower bounds in terms of both, time and message
complexities (e.g. [10, 12, 39, 32, 27, 14, 1, 23, 25, 34] and references therein). In a seminal paper
Gallager, Humblet and Spira [16], provided a deterministic solution for general graphs by finding
the minimum spanning tree of the graph in O(n logn) time and exchanging a total of O(m logn)
messages. Thereafter, Awerbuch [5] provided an O(n) round deterministic algorithm with a message
complexity of O(m+ n logn) messages, where m refers to the total number of edges in the graph.
Peleg [33] provided an O(D) time optimal algorithm for leader election with a message complexity
of O(mD), where D the diameter of the graph. More recently, in [24], the authors provide an
algorithm that requires only O(m) messages though it could take arbitrary (albeit finite) time.
There also exists significant amount of literature (see [19, 13, 38, 9] and references therein) that
provides a solution for leader election on fault prone networks, with possible node or link failures.

The best known bounds for general graphs are as follows. In [24] Kutten et al. show that Ω(m)
is the lower bound on messages and Ω(D) is the lower bound on time for any implicit leader election
algorithm. They compare and contrast the deterministic algorithms to randomized algorithms while
trying to simultaneously achieve optimal time and message complexity for leader election. Unlike
the deterministic case where an algorithm cannot be simultaneously time and message optimal
(e.g. in a cycle any O(n) time deterministic algorithm requires at least Ω(n logn) messages even
when nodes know n [15]), they show that for the randomized case simultaneous optimality can be
achieved in certain cases. In particular, to show the bounds are tight they give an algorithm that
takes O(m) messages (not time optimal), an algorithm that takes O(m log logn) messages and O(D)
time (almost simultaneously optimal).

In [25], Kutten et al. show that in terms of message complexity, there exists a gap between the
implicit and the explicit variants of leader election. For the explicit variant, all nodes needs to be
informed of the identity of the leader, and as such Ω(n) messages is the obvious lower bound for
all graphs. However, for the implicit version the authors by provide a sub-linear bound algorithm
on complete networks that runs in O(1) rounds and (w.h.p.) uses only O(

√
n log3/2 n) messages to

elect a unique leader (w.h.p.). Thereafter, they extend this algorithm to solve leader election on any
connected graph G in O(tmix) time and O(tmix ·

√
n log3/2 n) messages, where tmix is the mixing

time of a random walk on G.
A key difference, however, was that they assume that every node in the graph knows the mixing

time of the graph, which significantly simplifies the problem. An important challenge addressed by
our algorithm is (effectively) estimating when a collection of random walks is well-enough mixed.
While there is a recent result in [29] that shows how nodes can quickly estimate the mixing time of
the graph, their algorithm requires Ω(m) messages and hence cannot be used for the purpose of
achieving a small message complexity, where m is the total number of edges in the graph.

In the context of using random sampling for leader election, the work of [4] uses random walks
to limit the impact of Byzantine nodes on electing an honest leader in dynamic networks.
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2 Preliminaries

In this section, we describe some basic definitions and concepts that we make use of throughout
the paper. First, we give a brief overview and the definition of graph conductance. Next, we
describe some basic notation for random walks on a graph G including its mixing time, and state
the relationship between the mixing time and the conductance of G.

Conductance, in general, is a characterization of the bottleneck in communication of a graph.
The notion of graph conductance was introduced by Sinclair [21]. For a given graph G = (V,E), a
subset of nodes U ⊆ V and cut K = (U, V \U), we define EK to be the subset of edges across the cut
K, and the volume Vol(U) =

∑
v∈U dv, where dv refers to the degree of node v. The cut-conductance

is defined as φK = |EK|/min{Vol(U),Vol(V \ U)}. The conductance of the graph G is defined as
the minimum of the cut-conductance across all possible cuts K̃, i.e., φ(G) = min{φK | K ∈ K̃}. We
simply write φ instead of φ(G), when graph G is clear from the context.

For a random walk on G(V,E), we define a node set V = {v1, . . . , vn} and an n× n transition
matrix P of G. Each position of the form P [i, i] in the transition matrix has an entry pvi,vi = 1/2,
else if i 6= j then P [i, j] has an entry pvi,vj = 1/2dvi if there is an edge (vi, vj) ∈ E, otherwise
pvi,vj = 0. At a particular step, the entry pvi,vj gives the probability of a random walk moving from
node vi to node vj . This exactly corresponds to a lazy random walk wherein a random walk either
stays in the current node with probability 1/2; otherwise moves to a neighbor with probability
1/2dvi . The probability distribution πt determined by P represents the position of a random walk
after t steps. If some node vi starts a random walk, the initial distribution π0 of the walk is an
n-dimensional vector having all zeros except at index i where it is 1. After the node vi has chosen
to forward the random walk token, either to itself or to a random neighbor, the distribution of the
walk (after 1 step) is given by π1 = Pπ0 and in general we have πt = P tπ0. For any connected graph
G, the distribution will eventually converge to the stationary distribution π∗ = (q1, . . . , qn), which
has entries qi = dvi/(2|E|) and satisfies π∗ = Pπ∗. The mixing time of an n-node graph G, tmix(G)
is defined as the minimum t such that, for each starting distribution π0, ‖ Pπt − π∗ ‖∞ 6 1

2n , where
‖ · ‖∞ denotes the usual maximum norm on a vector. We simply write tmix instead of tmix(G),
when graph G is clear from the context.

Note that, the connectedness of a graph G (determined by its conductance φ) and the mixing
time of a random walk on G are closely related. Better connectivity implies fast mixing and vice
versa. There is a well known result that formally relates the graph conductance φ to the mixing
time (see [37]) as follows

Θ(1/φ) 6 tmix 6 Θ(1/φ2) (1)

3 A Leader Election Algorithm for Well-Connected Networks

In this section, we provide an algorithm that solves implicit leader election for any given graph G
with time complexity of Õ(tmix) and more importantly, with Õ(

√
ntmix) message complexity, where

tmix refers to the mixing time of a random walk on the graph G.
The proposed algorithm, in its initial phase is similar to the algorithms given in [18, 25]

where the initial objective is to reduce the number of competing nodes (contenders), while also
ensuring that there exists at least one contender (w.h.p.). For this purpose, each node v in the
network graph G, elects itself as a contender with a probability of c1 log(n)/n, where c1 is a
sufficiently large constant. As such, the probability of no node electing itself as a contender is
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(1 − c1 logn
n )n ≈ exp(−c1 logn) = n−c1 ; thus, implying that w.h.p. the number of contenders is

nonzero.
Now, imagine a scenario in which each of these contenders contacts a set of nodes, which we refer

to as the contender’s target set. If the target set is large enough (say, n/2 + 1), then for any two
contenders we can say that there would be common/intersecting node that would have communicated
with both contenders. Thereafter, the contenders can communicate via this intersecting node. If all
contenders have a sufficiently large target set then all contenders would be able to communicate
with one another. We design our algorithm based on this idea.

First, we determine the minimum size of the target set needed to guarantee an intersection w.h.p.
between the target sets of any two contenders. It can be easily shown with the birthday paradox
argument that if any two contender nodes u and v contact O(

√
n logn) random nodes, then w.h.p.

there is at least one node w that was chosen by both u and v. By the definition of mixing time, if a
random walk has taken at least tmix steps, then (for all practical purposes) its end point can be
considered as a random node. Therefore, each contender node can find O(

√
n logn) random nodes

by performing O(
√
n logn) independent random walks in parallel. The random walks essentially

function as mechanisms for selecting/sampling “random” nodes, where the guarantee is if the length
of the walk is long enough, the choice is close to uniform. We might as well think of the random
walks as a black box that return a collection of random nodes. However, as nodes are not aware of
the mixing time of the graph, this technique cannot be used directly to obtain random nodes.

Without knowledge of the mixing time, it is difficult (if not impossible) to obtain a set of nodes
that are chosen uniformly at random by using random walks. Therefore, the major challenge reduces
to correctly obtaining a set of possibly non-random nodes (as random walks might be of length less
than the mixing time) that satisfy the required properties that we had hoped to achieve from a
uniformly random chosen target set. One difficulty here lies is in determining the ideal length of the
random walks of each contender without the knowledge of the mixing time. To deal with this, in
our algorithm, we use a guess and double strategy where in each iteration nodes guess a length for
the random walk, perform random walks of the chosen length, determine based on some criteria if
the length is sufficient; if not the next iteration begins with double the previous estimate.

The critical part is to determine the criterion for which we can consider the length of the random
walks to be sufficient. A natural solution would be to check if there are enough intersections in the
target set (with target sets of other contenders). For example, if the target set of each contender
had an intersection with target sets of all other contenders, all of them can communicate via
the intersecting node(s). However, then we would require the knowledge of the exact number of
contenders to determine termination, which is difficult to obtain with certainty. In fact, we show
that an intersection with greater than half of the contenders is sufficient and obtainable.

Given such a criterion, it creates another challenge, as it might be the case that all the random
walks do not terminate in the same round. For example, consider the case where a large number of
contenders belong to the same locality of the graph and as a result they contact each other quickly,
via their random walks. However, a few of the contenders do not belong to this neighborhood and
are slightly far off from this locality. In this case, the target set of the locally placed contenders
would belong to the same locality (and not be nearly randomly spread). As such, it would be
difficult for the far flung contenders to make contact with any of the locally placed contender’s target
sets, requiring much longer lengths of random walks than the mixing time. For this case, we would
also need to guarantee that the random walks that terminate early are still easily discoverable.

To deal with the above challenges, we provide a twofold stopping criterion: first, we want to
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ensure that the end points of the random walks of a contender intersect with the random walks of at
least half of the total number of contenders; second, we would also like to ensure that the end points
of these random walks are sufficiently spread out, such that other random walks do not spend too
much time discovering them. Another crucial part to consider is dealing with the congestion that
might be caused by the information carried along the random walks.

Basically, the given randomized leader election algorithm can be divided into three major parts.
First, a node makes a probabilistic decision determining its candidature, i.e., whether or not it
becomes a contender. Then, in the second part, contenders guess and double length of random
walks until it satisfies some required properties. Lastly, based on information retrieved from random
walks, a node elects itself as the leader if it satisfies a certain winning condition.

We provide the following contender lemma which restricts the total number of possible contenders.

Lemma 1. (Contender Lemma) With high probability the number of contenders is in the range
[3
4c1 logn, 5

4c1 logn], where c1 is a sufficiently large constant.

Proof. Since each node becomes contender independently with probability (c1 logn)/n, we can apply
two tail bounds to show concentration around the expected number of contenders c1 logn. Let X be
the number of contenders. By standard Chernoff Bounds (Theorems 4.4 and 4.5 in [28]), we know that
Pr[X > (1 + 1/4)c1 logn] 6 exp

(
−(1/4)2c1 log(n)/3

)
and, similarly, Pr[X 6 (1− 1/4)c1 logn] 6

exp
(
−(1/4)2c1 log(n)/2

)
. For sufficiently large c1, both of these bounds can be shown to hold with

high probability and hence the lemma follows by a simple union bound.

Each contender node u creates c2
√
n logn tokens and starts c2

√
n logn random walks of length

tu in parallel, where c2 is a constant > 2. Each random walk is represented by a token 〈u, tu〉 (of
O(logn) bits), where u represents the node’s id, and tu represents the length of the random walk.
At each step of the random walk tu is decremented by 1, until it finally becomes 0. We define proxies
of node u as the nodes where the random walks generated by u complete tu steps, where tu is either
u’s current or final guess of the length of the random walk. Two contender nodes are said to be
adjacent if they share at least one proxy.
The algorithm guarantees the following properties at the end of the execution:
• Intersection Property: A contender u satisfies the intersection property iff u is adjacent to

at least > 3
4c1 logn of the other contender nodes. Using Lemma 1, we see that any node

which satisfies the intersection property is adjacent to greater than half of the total number of
contenders (as 3

4c1 logn > 1
2

(
5
4c1 logn

)
) w.h.p.

• Distinctness Property: A contender node u satisfies the distinctness property if > c2
2
√
n logn

of its proxies are distinct. For a particular guess of tu, a proxy pu of a random walk belonging
to u is called a distinct proxy only if pu is the end node of exactly one random walk belonging
to u (from among the c2

√
n logn many random walks belonging to u) i.e. no other random

walks belonging to u ends at pu. For any contender node, the spreading out of its random
walks is characterized by the number of distinct proxies.

In the CONGEST model, due to the restriction on the message size, it is impossible to perform
too many walks in parallel along an edge. We solve this issue by sending only one token and the
count of tokens that need to be sent by a particular contender which is still O(logn), and not all
the tokens themselves. Similarly, our algorithm also requires some id information (set of ids of other
contenders) to be sent along the random walk. We note that the maximum possible number of
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contenders is 6 5
4c1 logn w.h.p. (c.f. Lemma 1). In the worst case, an intermediate node might

have to deal with O(logn) messages of O(log2 n) size each, introducing a maximum possible delay
of O(log2 n) rounds. To account for this delay, in the algorithm, we define T = 25

16c1tu log2 n, and
use this upper bound estimate to keep the execution of the algorithm in synchrony. We relegate the
formal details of handling congestion to the proof of Lemma 12.

Algorithm 1 Leader Election: Initialization
1: Each node generates a random id in the range [1, . . . , n4].
2: Each node designates itself a contender with probability c1(logn/n).
3: Each contender begins the protocol by executing a Random Walk Phase of length O(1).
4: Any node that is not a contender declares itself as non-leader.

Algorithm 2 Leader Election: Random Walk Phase of length tu of contender u.
1: Each contender u initiates c2

√
n logn parallel random walks of length tu for time T =

O(tu log2 n).
2: When a random walk completes, the last node in the random walk is called a proxy of u.
3: Node u then performs three synchronized rounds of information exchange with its proxies, each

taking time T = O(tu log2 n):
Round 1. Each proxy sends back its id, a Boolean d determined by distinctness, and the set
I1, which contains the ids of the other contenders for which it is also a proxy.
Round 2. u sends set I2 to its proxies, which is the union of the I1 sets received in round 1.
Round 3. Proxies send back set I3: the union of the I2 sets received.

4: Contender u decides to stop if the Intersection Property and the Distinctness Property are met
for the set I2.

5: Let I4 be the union of all I3 sets received by u. If u decides to stop, has the largest id in set I4,
and it has not previously received any winner messages, then it designates itself as the leader
and sends its proxies a winner message.

6: The first time a proxy receives a winner message, it sends it to all its contenders.
7: The first time a contender receives a winner message, it sends it to all its proxies and appends

it to all future messages.
8: At the end of the random walk phase, a contender that has not decided to stop waits 2T time

(for winner messages to propagate) and then begins a new Random Walk Phase of length 2tu.
9: Any contender that has stopped and is not a leader, declares itself as non-leader.

Consider contender nodes that are yet to satisfy the intersection and distinctness properties
as active nodes; consequently nodes that have already satisfied the said properties are considered
inactive. That is, all nodes that will not double their estimate of tu are considered as inactive. It is
to be noted that all the active nodes are synchronous and for all inactive nodes, the distance to
their respective proxies is less than the current estimate of T (of the active nodes).

Observation 2. All inactive contender nodes satisfy both the intersection and the distinctness
properties.

Lemma 3. For any active contender node y, after the iteration where ty = c3tmix (c3 > 1), w.h.p.
y satisfies both the intersection and distinctness properties. In fact, y has intersecting proxies with
all of the other contenders (both active and inactive).

7



Proof. Consider a set Y consisting of all active contenders and a set X of all the inactive contenders
(contenders that decide not to double their estimate after some previous epoch). We prove the
lemma using the following claims.

Claim 4. Each contender node in Y is adjacent to (has intersecting proxies with) all the other
contender nodes, w.h.p.

Proof. For a contender node y ∈ Y , when ty = c3tmix (c3 > 1), y has c2
√
n logn random proxies

by running c2
√
n logn independent random walks of length = c3tmix (proxies are random by the

definition of mixing time). For any contender node x ∈ X, since x satisfies the distinctness property,
it has at least c2

2
√
n logn distinct proxies. The probability of non-intersection between this set of

c2
2
√
n logn distinct proxies and the set c2

√
n logn random proxies is given by a birthday-paradox

style argument to be (1− (c2/2)
√
n logn
n )c2

√
n logn = exp(− (c2)2

2 logn) = O( 1
n). The statement is true

for all pair of nodes by taking a simple union bound. Thus, with high probability, each contender
node in Y has at least one common/intersecting proxy with any contender node in X.

Now, consider two different contenders y1, y2 ∈ Y , each of which has a set of c2
√
n logn random

proxies. Using similar arguments as above it can be easily shown that each contender node in Y
has at least one common/intersecting proxy with every other contender node in Y , w.h.p.

This implies that each contender in Y has intersecting proxies with all the other contenders,
both in X and Y , and thus is adjacent to all the other contenders.

Claim 5. Each contender node y in Y satisfies the distinctness property, w.h.p., when ty = c3tmix,
where c3 is a constant > 1.

Proof. To show the number of distinct proxies, we name the c2
√
n logn independent random walks

of any contender y ∈ Y as w1, w2, . . . , wc2
√
n logn. After the random walks have taken c3tmix (c3 > 1)

number of steps, the probability that two of these random walks wi and wj do not share a proxy is
≈ 1− 1

n (by the definition of mixing time). The probability that no other the random walks of node
u ends up at the same node as wi is obtained by taking an union bound.

Pr[wi has a distinct proxy] >
(

1− 1
n

)c2
√
n logn

> exp

−c2

√
logn
n

 > 1− c2

√
logn
n

(2)

The above equation holds as
(
1− 1

x

)
= exp(−1) and exp(x) > 1 + x.

Let X be a binary random variable such that Xi = 0 when wi has a distinct proxy (no other
wj ends at the proxy of wi), and Xi = 1 when it does not. This implies (from above) that
Pr[Xi = 0] > 1− c2

√
logn
n and Pr[Xi = 1] 6 c2

√
logn
n . We define another binary random variable Y

such that Yi = 1 with probability c2

√
logn
n , otherwise 0. Clearly, Pr[Yi = 1] is always > Pr[Xi = 1].

Since each Yi is independent of one another,

E

c2
√
n logn∑
i=0

Yi

 = c2

√
logn
n
· c2
√
n logn = c2

2 logn

Thereafter, using a standard chernoff’s bound we show a bound on the summation over Yi.

Pr

c2
√
n logn∑
i=0

Yi >
(

1− 1
2

)
c2

2 logn

 6 exp
(
−c2

2 log(n)/2
)
6

1
n(c22/2)
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Since each Yi stochastically dominates over the corresponding Xi, it implies

Pr

c2
√
n logn∑
i=0

Xi >
(

1− 1
2

)
c2

2 logn

 6 exp
(
−c2

2 log(n)/2
)
6

1
n(c22/2)

Therefore, we can say that with high probability
∑c2

√
n logn

i=0 Xi 6
(

1
2

)
c2

2 logn. This means that

the number of non-distinct proxies of the contender y is 6
(

1
2

)
c2

2 logn, w.h.p. The statement holds
over all contender nodes at the same time by taking a simple union bound.

Thus, when ty = c3tmix, each contender y ∈ Y would have found at least c2
2
√
n logn (which is

< c2
√
n logn− (c2

2 logn)/2) distinct proxies and therefore satisfying the distinctness property.

The time complexity of the algorithm, is determined by the following lemma.

Lemma 6 (Safety Lemma). In O(tmix log2 n) time, w.h.p. all contender nodes satisfy both the
intersection and the distinctness properties. Consequently, for the given algorithm, every node
eventually stops, no later than O(tmix log2 n) time.

Proof. Each contender u in parallel, runs several random walks till it satisfies the intersection
and distinctness properties. u begins with an initial estimate of 1 and doubles each time till the
above condition is not satisfied. This is the standard guess and double strategy and this does not
increase the overall complexity by more than a constant factor of the maximum estimate. From
Observation 2 and Lemma 3, we see that all contender nodes satisfy both the conditions w.h.p.
when tu = c3tmix (c3 > 1). Since the algorithm runs an upper-bound of tu, i.e. T = O(tu log2 n)
to avoid congestion, the time required to satisfy both the intersection and distinctness property is
O(T ) = O(tmix log2 n).

Lemma 7 (At least one leader). After the iteration where the active nodes estimate tu = c3tmix,
where c3 is a constant > 1, if no node had elected itself as leader in any of the earlier rounds, at
least one contender node elects itself as the leader.

Proof. Consider the iteration i, where the active nodes estimate tu = c3tmix (c3 > 1). We look at
the contender node with the highest id, say vh. In iteration i, vh can either be inactive or active
depending on whether it has stopped. (If vh is inactive, we look at the iteration j (j < i) in which
vh became inactive). We show that for either case, if no other node has elected itself as the leader
in any of the earlier rounds then vh becomes leader.

Suppose that vh becomes inactive in iteration j where (j < i) and no other node has elected itself
as the leader in any of the earlier iterations. By Observation 2, vh satisfies both the intersection and
the distinctness properties. Alternatively, it could be that vh is active until iteration i, where the
active nodes estimate tu = c3tmix. Also in that case, Lemma 3 says that vh satisfies the intersection
and the distinctness properties. For either case, since vh has the highest id among the contender
nodes, satisfies both the distinctness and the intersection properties and none of the other nodes has
elected itself as the leader in any of the earlier rounds (implying that vh has not received a winner
message), vh satisfies all the required conditions and becomes leader.

Lemma 8 (At most one leader). After the completion of the algorithm, at most one contender node
elects itself as the leader.

9



Proof. We prove the lemma by combining the following two claims:

Claim 9. Two different nodes cannot elect themselves as the leader in an iteration of the algorithm.

Proof. Suppose two nodes u and v elect themselves as the leader in the same iteration of the
algorithm. We know by the description of the algorithm that any node that becomes the leader
would first need to satisfy both the intersection and the distinctness properties. Therefore, both
contenders u and v would have at least c2

2
√
n logn distinct proxies and would be adjacent to

> 3
4c1 logn, i.e., more than half of the contenders. Recall that the sets I2 of u and v (denoted

by I2(u) resp. I2(v)) contain the ids of their adjacent contenders. Let w be a contender whose id
is in the intersection of I2(u) and I2(v). As both u and v are adjacent to more than half of the
contenders, there must be at least one such node w.

Without loss of generality, assume that the id of u is larger than the id of w. Since w ∈ ID2(u),
some proxy p1 of u must have also been a proxy of w in this iteration. Similarly, since w ∈ ID2(v),
some proxy p2 of v must have also been a proxy of w in this iteration. Then, by the description of
the algorithm w would obtain the ids of both u and v in the set I2(w), which it then disseminated
to all its proxies. The proxies p1 and p2 both get this information I2(w) (of ids of u and v) which is
then forwarded to u and v respectively as sets I3(p1) and I3(p2) respectively. This means that v
must have known about u while checking the winning condition and hence it knows that its id was
not maximal, a contradiction.

Claim 10. If a node elects itself as the leader in some iteration i, no other node can elect itself as
the leader in any subsequent iteration.

Proof. Suppose two nodes u and v elect themselves as the leader and suppose that u does so in
iteration i whereas v does so in iteration j > i. For this case we show that when iteration i + 1
begins, more than half of the contender nodes are aware that some node u has become the leader.
If any other contender node v satisfies both, the intersection and the distinctness properties, then it
must have interacted with at least one of the nodes that is aware of the existence of a leader and
thereby also becomes aware of the leader. This means that v must have known about the existence
of a leader by receiving a winner message (either directly or indirectly), leading to a contradiction.

If u becomes leader in iteration i, then it immediately sends a winner message to all its proxies,
which is then immediately forwarded it to all the other adjacent contenders (see Algorithm 2).
The winner message reaches all the adjacent contenders of u before the next iteration begins (as
active contenders wait for 2T time at the end of random walk phase). As u has to satisfy both the
intersection and the distinctness properties to satisfy the winning condition, the number of adjacent
contenders of u is > 3

4c1 logn, which in turn is greater than half of the total number of contenders.
Any other contender node that also satisfies the intersection and the distinctness properties has
to have at least one intersecting proxy with at least one of the adjacent contender nodes of u (by
the pigeon hole principle). Any interaction with adjacent contender nodes of u is accompanied
with an additional winner message notifying v of the existence of a leader, and thus leading to a
contradiction.

This completes the proof of Lemma 8.

Combining Lemma 7 and Lemma 8, we obtain the following lemma that determines the correctness
of the algorithm.
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Lemma 11 (Unique Leader Lemma). With high probability and in O(tmix log2 n) time, exactly one
contender becomes the leader.

Lemma 12 (Message Complexity Lemma). With high probability, the total number of messages
sent by the above algorithm is at most O(

√
n log7/2 n · tmix). If larger message size of O(log3 n) is

allowed the total number of messages comes down to O(
√
n log3/2 n · tmix).

Proof. To calculate the message complexity, we look at the various messages that are sent by the
algorithm. Considering Algorithm 2, we observe that all the information is sent only along the
random walks. The messages that are sent include the random walk tokens, the sets I1, I2 and I3,
the Boolean d and the winner messages. In each phase (iteration), the maximum number of steps
taken by any of these messages is proportional to the estimate of the length of the random walk
tu. The maximum possible estimate is O(tmix) (c.f. Lemma 6) and as this estimate is chosen in
a guess-and-double style which only increases the overall complexity to a constant factor of the
maximum guess for a successful trial, the overall number of steps taken throughout the algorithm
(without accounting for congestion) by any of these messages is O(tmix) as well.

Individually, the Boolean d and the winner messages are of O(1) bits and the random walk
tokens are of O(logn) bits. Since the ids of the contenders are of O(logn) bits and number of
contenders is 6 5

4c1 logn (c.f. Lemma 1), the sets I1, I2 and I3 can be of size O(log2 n) as they can
contain the ids of O(logn) other contenders. This implies that an intermediate node might receive
up to O(logn) many O(log2 n) sized messages.
First, consider the case where O(log3 n) message sizes are allowed to be sent over an edge. Each
contender node (O(logn) many) initiates a total of O(

√
n logn) messages which backtracks after

reaching the proxies taking a total of O(tmix) steps. Additionally, the winner message also takes
only O(tmix) many steps. As there would be no congestion, the message complexity here would be
O(logn)×O(

√
n logn)×O(tmix) w.h.p. , which equals O(

√
n log3/2 n · tmix).

Now, we consider the standard CONGEST model where message sizes are restricted to O(logn).
Firstly, during the execution of the random walk, a contender node u does not send O(

√
n logn)

different tokens for each random walk, but rather sends only one token along with a count of tokens
that need to be sent in a particular path. For multiple instances of the variable d originating
from different proxies of the same contender, only the summation value is sent (which is O(logn)).
Multiple messages coming from either the same or different nodes could possibly lead to congestion.
For messages that have the same destination, we send only one distinct copy of id information over
a particular edge (i.e. we use a filtering and forwarding technique wherein if an intermediate node
has sent the information to a particular destination once it does not send the same information
again to that destination). For messages having different destinations, there is a possibility that
O(logn) many messages of O(log2 n) size could arrive at a particular intermediate node. Larger
sized messages of O(log2 n) bits would have to be broken down into O(logn) sized messages, i.e. we
can assume that each O(logn) sized message contains the information of the id of a node and some
additional O(1) bits. The maximum delay possible here an at intermediate node is O(log2 n). We
note that we use the variable T = O(tmix log2 n) in the algorithm to deal with this possible delay.
Hence, the number of messages sent in the worst case is O(logn)× c2

√
n logn× tmix ×O(log2 n)

w.h.p. , which equals O(
√
n log7/2 n · tmix).

We conclude with the following theorem that combines the results of all the previous lemmas.
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Theorem 13. For any given graph G that has a mixing time of tmix, there exists an implicit leader
election algorithm that succeeds w.h.p. in O(tmix log2 n) time and has a message complexity of
O(
√
n log7/2 n · tmix), assuming that nodes know n.

After finding the leader we can use the well known push-pull broadcast [22] to disseminate the
id of the leader to all the other nodes to obtain a solution for the explicit variant of leader election.

Corollary 14. For any graph G that has a conductance of φ and a mixing time of tmix, there exists
an explicit leader election algorithm that succeeds w.h.p. in O(tmix log2 n) time and has a message
complexity of O(

√
n log7/2 n · tmix + n logn

φ ), assuming that nodes know n and there are no failures.

Proof. The corollary follows by appending a simple push-pull broadcast procedure [17] at the
end of the implicit leader election algorithm. The push-pull broadcast takes logn

φ time and n logn
φ

messages. From equation 1, we know that Θ(1/φ) 6 tmix 6 Θ(1/φ2), it implies logn
φ 6 O(tmix log2 n).

Therefore the running time of leader election dominates the running time for broadcast.

4 Lower bounds

In this section, we show the lower bounds for implicit leader election by showing that there exists
a class of graphs with conductance φ on which any leader election algorithm that succeeds with
probability 1−o(1) requires Ω

(√
n/(φ)3/4

)
messages in expectation. We also obtain some corollaries

that lower bound the total number of messages required by other graph problems like broadcast
and spanning tree construction.

Theorem 15. Suppose there is a randomized leader election algorithm that succeeds with probability
1− o(1) in n-node networks where each node has a unique ID and knows the network size n. Then,
for every α, where 1

n2 < α < 1
122 , there exists a graph G of Θ(n) nodes and conductance φ = Θ(α)

such that the algorithm requires Ω
(√

n/φ3/4
)

messages in expectation.

We prove the above theorem through a contradiction. Given a particular n and a value of α
(within a specified range), we first construct a lower bound graph with n nodes and conductance
φ = Θ(α). Then, we assume towards a contradiction that there exists an algorithm that solves
implicit leader election on the graph G by sending at most o(n(1−ε)/2) messages in expectation. The
key intuition of the proof is to show that given this message budget, different distinct parts of the
network are unable to communicate with one another. This lack in communication ensures that
either all symmetric parts elect a leader or they do not. If all of the distinct parts do elect a leader it
would imply more than one leaders, and if none of them elect a leader it implies zero leaders. Thus,
leading to a contradiction. In the final step of the proof, we leverage the assumed upper bound on
the expected message complexity, to show that distinct parts of the network, where nodes might be
initiating the exploration of their neighborhoods, are likely to never communicate, and this lack of
communication results in having no leaders or multiple leaders with constant probability.

Throughout the proof of Theorem 15, we assume that nodes start without unique ids. However,
since nodes have knowledge of the network size n, it is straightforward to generate unique IDs with
high probability. Hence we can use the same reduction as [11] (Sec. 3, paragraph “Unique IDs
vs Anonymous”) to remove this assumption and show that our result holds even when nodes are
equipped with unique ids.
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s1 s2

sN s3

Figure 1: A random 4-regular super-node graph GS with N = n1−ε super-nodes.

4.1 The lower bound graph(s)

Graphs G and GS. We start out by describing the construction of the graph G that we use to
prove the message complexity lower bound. For any given n and α such that

(
1
n2

)
< α <

(
1

122

)
, we

create the graph G that has a total number of n nodes and a conductance φ = Θ(α). In this regard,
we also define a parameter ε =

(
log(1/α)
2 logn

)
.

We first construct a super-node graph GS with N = bn1−εc super-nodes, and later derive the
graph G from GS. The graph GS is created as a random regular graph (as in [8],[7]) where each
super-node has a degree 4. See Figure 1. For the purpose of analysis, since it does not change our
bounds, we assume that both n1−ε and nε are integers.

Say V (GS) = {s1, s2, . . . sn1−ε} and E(GS) = {e1, e2, . . . , e4n1−ε} be the vertex set and the edge
set of the graph GS. To create the graph G from GS, each super-node si is replaced with a clique
Ci of dnεe nodes. For each edge ei of GS, that exists between two super-nodes say sj and sk, a
corresponding edge e′i is created in the graph G between a (previously unchosen) node chosen
randomly from the clique Cj and a (previously unchosen) node chosen randomly from the clique Ck.
As each super-node has exactly 4 edges connected to it, for each clique there would exist 4 such
chosen nodes (called external-edged nodes). An edge between any two nodes belonging to the same
clique is called an intra-clique edge, whereas an edge between nodes belonging to different cliques is
called an inter-clique edge. To maintain uniform node degrees of exactly nε, two intra-clique edges
are removed, one from between any two of the external-edged nodes, and the other from between
the remaining two external-edged nodes. See Figure 2. Thus, in any clique of the graph G there
would be two types of nodes, nε − 4 nodes with only intra-clique edges called internal-edged nodes
and 4 nodes with both intra-clique edges and one inter-clique edge called external-edged nodes.

Based on the construction of G, there exists a one to one mapping between the nodes of the
super-node graph GS and the cliques in the graph G.
Graph CG. We define the clique communication graph CG as a graph whose vertex set is equivalent
to the vertex set of the super-node graph GS, which we simply call cliques. An edge exists in CG
from clique C1 to C2 iff a message is sent on the inter-clique edge from some node in C1 to a node
in C2. Note that the edge set of CG can grow over the course of the algorithm. For the purpose of
our analysis, we only keep track of the first message sent on an inter-clique edges and so we treat
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cN

c1 c2

c3

Figure 2: Graph G constructed from GS, where each super-node is replaced by a clique of size nε.
The red dashed lines indicate the edges of the cliques that are removed to maintain uniform node
degree.

CG as a simple graph.

High-Level Overview of the Lower Bound Proof

We begin by showing that the conductance of the constructed lower bound graph G is φ = Θ(1/n2ε).
Then, we assume towards a contradiction that there exists an algorithm that solves implicit leader
election on the graph G by sending at most Mn2ε messages in expectation, where M = o(n(1−ε)/2). It
implies from the construction of G, that Mn2ε = o(

√
n/φ3/4), as φ = Θ(1/n2ε) and M = o(n(1−ε)/2).

Next, on the graph G we show that any algorithm that sends at most Mn2ε many messages in
expectation, is likely to find at most O(M) inter-clique edges. Then, given the fact that only
inter-clique edges can be used for communicating in the clique communication graph CG, we show
that the random variables representing the states of the resulting connected components (in CG)
are nearly independent of one another. We leverage this “near independence” to show that the
algorithm is likely to elect either no leader or more than one leader with constant probability
(similarly to identically distributed and fully independent indicator random variables), thus resulting
in a contradiction. We formalize this overview in the remainder of this section.

Lemma 16. The conductance of the graph G is φ = Θ(α) = Θ(1/n2ε) with high probability.

Proof. First, we define an optimal cut of a graph as the cut that determines the minimum cut-
conductance of the graph, and hence also determines the conductance of the graph. We prove the
lemma by using the following claim.

14



Claim 17. The optimal cut of the graph G does not pass through any of the cliques, i.e., all the
edges that are cut by the optimal cut comprises only of inter-clique edges.

Proof. Let us assume for the sake of contradiction that a given cut K of the graph G, with cut-
conductance φK < 1/6, is the optimal cut of G. We show that, if K intersects with (passes through)
any clique, the conductance can always be reduced to φnew such that φnew < φK by moving a group
of nodes from one side of the cut to the other. This will contradict our assumption of K being the
optimal cut and thereby prove the above claim. If φK > 1/6, we compare this cut to the middle
cut of the graph G that cuts the graph into two equal parts and does not pass through any cliques.
With a simple calculation it is easily show that this middle cuts’ conductance is < φK.

We refer to the total volume of the graph (summation of all node degrees) as Vtotal. The side of
the cut K that has the (initial) lower volume (< Vtotal/2) is called as the min side of the cut and
the side (initially) having the larger volume (> Vtotal/2) is called as the max side of the cut. If
volumes of both sides are equal then we arbitrarily assign one side as min and the other as max.
For the given cut K, we consider φK = C/V , where C represents the cut edges (edges with end
nodes on either side of the cut K) and V represents the volume of the min side of the cut. Note
that, since node degrees are uniform, each node contributes nε towards the volume, and thus the
side having the lesser number of nodes has the minimum volume.

We look at the cliques that are cut by K, the side of the clique that has < nε/2 nodes is labeled
as the minority side and the side of the clique that has > nε/2 nodes is labeled as the majority
side. If both sides have exactly nε/2 nodes labeling is done arbitrarily. In this regard, note that
whenever we say min/max side we refer to the side of the cut of the entire graph, whereas when we
say minority/majority side we refer to the cut sides of the particular clique under consideration.

Consider any clique Ci that is divided by the cut K. Let there be k nodes in the minority side
of the Ci and nε − k nodes in the majority side, where k 6 nε/2. To show that we can obtain a
lower conductance, we always move k nodes from the minority side of the clique to the opposite
side of the cut K (except Case 3, where moving the k nodes leads to the volume of the min side of
the cut becoming 0 : in this case (nε − k) nodes are moved from the majority side of the clique to
the other side of the cut). After the nodes are moved, we show that for all cases that the maximum
possible value of conductance obtained after moving the nodes (φnew), is less than the conductance
prior to the nodes being moved (φK), giving us a contradiction. Observe that the denominator is
always greater than 0 as in no case all the nodes are moved out of the eventual min side.

For each case (except Case 3), when k nodes are moved, say there are k1 internal-edged nodes
and k2 external-edged nodes such that k1 + k2 = k. Each of the k1 internal-edged nodes in the
minority side was previously connected to nε− k nodes in the majority side (due to the clique edges)
and each of the k2 external-edged nodes in the minority side was previously connected to at least
(nε − k)− 1 nodes in the majority side (case that maximizes φnew). Therefore, comparing φK with
φnew, the reduction in the number of cut edges is at least k1(nε−k)+k2(nε−k−1) = k(nε−k)−k2.
The total possible number of external-edged nodes is at most 4 (as the super-node graph was
4-regular), therefore in this case k2 6 4. Also by our choice of ε (and the range of α), we see that
4 < nε/3 =⇒ 4 < knε/3. We consider the following cases for a clique Ci while moving k nodes
from the minority side to the opposite side of the cut.
Case 1 : If k nodes move from min side of the cut to the max side.
Moving k nodes reduces the volume of the min side of the cut by knε.

φnew = C − (k(nε − k)− k2)
V − knε

6
C − knε + k2 + 4

V − knε
<
C − knε + knε/2 + knε/3

V − knε
= C − knε/6

V − knε
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φK − φnew >
C

V
− C − knε/6

V − knε
= knε(V/6− C)

V (V − knε) = V knε(1/6− φK)
V (V − knε)

As φK is < 1/6, φK − φnew > 0, which implies that φnew < φK.
Case 2 : If k nodes move from max side of the cut to the min side.
Case 2A : If min side’s volume still remains 6 Vtotal/2 after the nodes are moved.
Moving k nodes into the min side of the cut increases the volume by knε.

φnew = C − k(nε − k) + k2
V + knε

6
C − knε + k2 + 4

V + knε
<
C − knε + knε/2 + knε/3

V + knε
= C − knε/6

V + knε

The number of cut-edges strictly decrease from previous while the volume increases therefore it is
clear that φnew < φK.
Case 2B : If min side’s volume becomes > Vtotal/2 due to the k moved nodes.
The max side now becomes the side with the lower value of volume as a result of k nodes moving to
the other side with its volume = Vtotal − V − knε, where Vtotal is the total volume of the graph.

φnew = C − k(nε − k) + k2
Vtotal − V − knε

6
C − knε + k2 + 4
Vtotal − V − knε

<
C − knε + knε/2 + knε/3

Vtotal − V − knε
= C − knε/6
Vtotal − V − knε

φK − φnew >
(CVtotal − 2CV ) + (V knε/6− Cknε)

V (Vtotal − V − knε)
= C(Vtotal − 2V ) + V knε(1/6− φK)

V (Vtotal − V − knε)
As V 6 Vtotal/2 (because initially V was the volume of the side having the lower volume among the
two sides of the cut) and as φK is < 1/6, we see that the terms in the numerator, C(Vtotal − 2V ) > 0
and V knε(1/6− φK) > 0, i.e. φK − φnew > 0, which implies that φnew < φK.
Case 3 : In a special case, when moving k nodes from minority side of the clique to the majority
side results in making the volume of the min side of the cut = 0. (This is the case where the min
side of the cut contains only the minority side of a clique). Instead of moving k nodes from the
minority side of the clique to the majority, (nε − k) nodes are moved from the majority side to the
minority side (such that the min side of the cut now has exactly one clique). In contrast to all
the previous cases, in this case nodes move from the majority side of the clique to the minority
side. It is to be noted that this movement cannot result in increasing the volume of the min side of
the cut to a value > Vtotal/2. Say there are k1 internal-edged and k2 external-edged nodes in the
majority such that k1 + k2 = (nε − k). Each of the k1 internal-edged nodes in the majority side was
previously connected to k nodes in the minority side (due to the clique edges) and each of the k2
external-edged nodes in the majority side was previously connected to at least k − 1 nodes in the
minority side (case that maximizes φnew). Therefore, comparing φK with φnew, the reduction in the
number of cut edges is at least k1(k) + k2(k − 1) = k(nε − k)− k2. The total possible number of
external-edged nodes is at most 4 (as the super-node graph was 4-regular), therefore in this case
k2 6 4. Also by our choice of ε (and the range of α), we see that 4 < nε/3 =⇒ 4 < knε/3. Moving
(nε − k) nodes into the min side of the cut increases the volume by nε(nε − k).

φnew = C − k(nε − k) + k2
V + nε(nε − k) 6

C − knε + k2 + 4
V + nε(nε − k) <

C − knε + knε/2 + knε/3
V + nε(nε − k) = C − knε/6

V + nε(nε − k)

The number of cut-edges strictly decrease from previous while the volume increases therefore it is
clear that φnew < φK.

Since for each case we can obtain a conductance of φnew < φK if cut K passes through a clique,
we conclude that the optimal cut would not pass through any of the cliques.
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Now, we give a one to one correspondence between the cuts on the super-node graph GS and the
cuts on G that do not pass through any cliques by considering any cut KGS of GS and an identical
cut KG on G such that if KGS cuts an edge e′ in the graph GS, then the cut KG would cut edge e
of the graph G that was created in behest of e′ while constructing graph G from GS (refer to the
construction of G described in the beginning of Section 4).

Note that, this also creates a one to one correspondence of their respective cut-conductances
such that φKG(G) = 4φKGS (GS)/n2ε. Clearly, the number of cut edges across the cuts KGS and
KG remains same in either case. Let the volume of the smaller side the cut KGS be V . Since each
super-node has a degree = 4, the total number of super nodes present in the smaller side of the cut
equals V/4. As described earlier, while constructing graph G from GS each super-node is replaced by
a clique of nε nodes with each node having a degree = nε, wherein the degree is adjusted to include
the 4 inter-clique edges by removing 2 intra-clique edges. Therefore, the volume of the smaller
side of the corresponding cut KG of the graph G would be (V/4)n2ε. Thus, if the cut conductance
determined by KGS in GS is φKGS , it implies that the cut conductance given by the cut KG in G
would be φKG = 4φKGS/n2ε.

It immediately follows from the correspondence that if cut KGS is the optimal cut that determines
the conductance of the graph GS, then its corresponding identical cut KG would be the cut
determining the conductance of G. From [7], we know that for a sufficiently large n, almost every
random regular graph with degree = 4 has a constant conductance which implies that w.h.p. the
conductance of G, φ(G) = Θ(1/n2ε).

4.2 Distinct parts remain disjoint

Recall that we assume M = o(n(1−ε)/2) and, assume towards a contradiction that the algorithm
sends at most Mn2ε messages in expectation. In this section, we show that parts of the network
where nodes might be initiating the exploration of their neighborhoods, evolve independently in the
sense that they are likely to never communicate.

Let random variable Msgs give the number of messages sent by the algorithm and let random
variable Msgs(C) give the number of messages sent by the nodes in clique C.

Lemma 18. Without receiving any messages, if a clique C sends a message4 over an inter-clique
edge, then it follows that the nodes in C have sent at least Ω(n2ε) messages in expectation, i.e.
E[Msgs(C)] = Ω(n2ε).

Proof. Recall from the construction of the super-node graph GS that we have assigned the inter-
clique ports uniformly at random among all available ports of C. Any clique C has a total of n2ε

ports out of which only 4 ports belong to inter-clique edges. Also, the nodes are unaware of their
neighbors’ identities, and in particular, the four nodes containing inter-clique port are unaware of
this fact. First, we see that if a clique C sends more than n2ε/2 messages before sending its first
inter-clique message, the lemma is vacuously true. Otherwise, given that no messages were received
via an inter-clique edge, it holds that, at any point before sending the first inter-clique edge, there
are at least n2ε/2 ports among the nodes in C over which no message has been sent yet, and each of
them is equally likely to connect to an inter-clique edge. Thus, the probability that a message is
sent over an inter-clique edges for the first time (in clique C) is at most 4/(n2ε − n2ε

2 ) = 8/n2ε.
4We slightly abuse notation by saying a clique C sends a message when, in fact, some node in C performs the

sending action.
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Therefore, in expectation the number of messages sent by any clique C before sending its first
inter-clique message is at least n2ε/8 which is Ω(n2ε).

In the rest of our proof, will analyze the probability that certain subgraphs of the clique
communication graph CG (see section 4.1) contain a leader node. We will first state a crucial
consequence of Lemma 18 in the language of clique communication graphs:

Lemma 19. With probability 1− o(1), the clique communication graph CG contains at most O(M)
edges.

Proof. Let B = cM , for a sufficiently large constant c, and suppose towards a contradiction that
CG contains at least B edges with constant probability γ > 0.

For each clique that is in a non-singleton connected component in the clique communication
graph CG, we define its first edge as the first inter-clique edge over which its nodes have sent (or
received) a message to (from) another clique. Let F be the set of cliques that have first edges. Since
each clique can connect to at most 4 other cliques in CG, we have |F | > B/4. We have

E[Msgs] > E[Msgs | |F | > B/4 edges] · Pr[|F | > B/4 edges]
> γ · E[Msgs | |F | > B/4 edges]
> γ

∑
C∈F

E[Msgs(C) | |F | > B/4 edges] (3)

Since the number of messages required for discovering an inter-clique edge of C is independent of
the event |F | > B/4, it holds that∑

C∈F
E[Msgs(C) | |F | > B/4 edges] =

∑
C∈F

E[Msgs(C)].

Applying Lemma 18 for each C ∈ F , we obtain from (3) that

E[Msgs] = Ω
(
γn2εB/4

)
= cγMn2ε/4.

By choosing c sufficiently large, we obtain a contradiction to the assumption of sending at most
Mn2ε messages in expectation.

Spontaneous Cliques. Since we consider randomized algorithms, we assume that each node is
equipped with a random bit string of infinite length. If a clique C does not have any incoming edges
in CG throughout the execution, i.e., it does not receive any messages from nodes in other cliques,
then the actions and the state transitions of its nodes depend exclusively on the supplied random
bit strings. In particular, inspecting these random bit strings, we can determine whether nodes in
C will send messages across any inter-clique edges of C. This motivates us to call C spontaneous,
if some node in C eventually sends an outgoing message assuming that no node ever receives an
incoming message (as per its initial random string). (Note that it may not actually send an outgoing
message because it may receive a message first from some node in another clique.) We use the
notation P (C) to denote the connected component of a clique C in CG and note that P (C) can grow
over time.

Disjoint Components. We define Disj to be the event where, at any point in the algorithm’s
execution, each connected component in CG contains at most one spontaneous clique, and each
non-singleton connected component contains exactly one. This, we show is in fact likely to occur.
The next lemma summarizes the main result of this subsection:
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Lemma 20. Event Disj occurs with probability 1− o(1).

Proof. From Lemma 19, we know that with probability 1− o(1), the clique communication graph
CG contains at most cM edges, for some fixed constant c. Also note that, the only way of violating
event Disj, is the merging of two connected components, each that initially had only one spontaneous
clique. Clearly, for each non-singleton connected component, there is at least one spontaneous node.
We show that conditioned on the event that CG has 6 cM edges, the probability that a connected
component P selects an inter-clique edge to a subgraph Q, which can be either another non-singleton
connected component or a spontaneous clique (that may still be a singleton) is quite low. Denote
this event by {P → Q}. Let j and k be the number of open ports of P and Q, respectively. Then,
it holds that

Pr[P → Q] 6 k

N − j
= O

(
M

N −M

)
= o

(
1/
√
N
)
,

since M = o(
√
N) by assumption. This shows that, two non-singleton connected components do

not combine with probability at least 1− o
(

1√
N

)
. Considering that there are at most cM possible

edges in the clique graph (see Lemma 19), we know that Disj occurs with probability at least(
1− 1√

N

)cM
= 1− o(1).

4.3 Bounding the dependencies between connected components.

So far, we have shown that connected components are likely to remain disjoint throughout the
execution. However, we cannot directly argue that this implies a small probability of electing a
leader, since the conditioning on event Disj restricts the evolution of a given connected component,
as we explain in more detail below.

We view the execution of the algorithm as a sequence of steps performed by cliques, where a
step involves either an update to a clique’s state (defined below) or the sending of a message. Note
that a step here is different from a round as there may be simultaneous actions at cliques happening
in the same round, but we can consider an arbitrary order on such simultaneous events for analysis.

We define the state of clique C in CG as either (1) empty, if C is not spontaneous, or (2) its state
consists of the local states of the nodes that are part of the connected component in CG. In this
notation, sending a message between two nodes in the same clique corresponds to a local update to
the clique’s state.

Formally, we use the notation S(C, t) to denote the state of clique C after t steps and define
S(t) to be the collective state of all the cliques after t steps. By inspecting S(C, t), we can derive
whether there is a leader in one of the cliques of the connected component of C in CG.

For the rest of the proof, we assume that all connected components remain disjoint throughout
the execution, i.e., event Disj occurs (see Lemma 20).

Let κ be a collection of states after step t for all the cliques and suppose that κ represents
a state in which Disj holds; formally, the event S(t) = κ has nonzero probability conditioned
on Disj. We use the notation κ(C) to refer to the state of the clique C in the collection of
states κ. If the clique nodes eventual states were completely independent, then we would have
Pr[S(t) = κ] =

∏
C∈CG Pr(S(C, t) = κ(C)]. Note that, the conditioning on Disj can introduce

dependencies between the event that some clique transits to a given state and the state of some other
cliques and thus we cannot assume that the equality holds. However, we prove that any possible
dependency due to event Disj, cannot decrease the probability of S(t) = κ, which is sufficient for
our purposes:
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Lemma 21. Let κ be a collection of the clique states after step t that has positive probability of
occurring conditioned on Disj. Then, it holds that

Pr[S(t) = κ] >
∏
C∈CG

Pr[S(C, t) = κ(C)]. (4)

Proof. We use induction over the number of steps t. In the base case, i.e. the first step t = 1, (4)
holds with equality as no other steps have been made yet. Next, we assume the statement holds for
step t− 1 and show that it holds for any step t > 2:

Pr[S(t) = κ] =
∑

states κ′
Pr[S(t− 1) = κ′] · Pr[step t transitions from κ′ to κ]

>
∑

states κ′
Pr[ step t transitions from κ′ to κ]

∏
C′∈CG

Pr[S(C ′, t− 1) = κ′(C ′)], (5)

by the inductive hypothesis. For each possible predecessor state κ′, the probability of transitioning
to κ depends on the needed step to move from κ′ to κ. This, however, depends on a single
clique taking a step and changing its state accordingly. Let C refer to the clique node that must
perform a step to transform κ′ into κ and denote the corresponding event that this happens by
{C takes step: κ′ →t κ} . (We ignore states κ′ from which κ is unreachable in one step; obviously
their contribution to the probability of κ is zero.) We get

Pr[ step t transitions from κ′ to κ] = Pr[C takes step: κ′ →t κ].

Plugging this into the right-hand side of (5) and factoring out Pr[S(C, t − 1) = κ′(C)] from the
product, yields

Pr[S(t) = κ] >
∑
κ′

Pr[C takes step: κ′ →t κ] · Pr[S(C, t− 1)=κ′(C)]
∏
C′ 6=C

Pr[S(C ′, t− 1)=κ′(C ′)].

=
∏
C′ 6=C

Pr[S(C ′, t)=κ(C ′)] ·
∑
κ′

Pr[C takes step: κ′ →t κ] · Pr[S(C, t− 1)=κ′(C)],

(6)

where the last equality follows because the conditioning on Disj tells us that C is the only clique
updating its state in step t, i.e., κ(C ′) = κ′(C ′) and S(C ′, t) = S(C ′, t− 1), for all C ′ 6= C.

To complete the proof, we will show that

Pr[C takes step: κ′ →t κ] > Pr[S(C, t) = κ(C)]. (7)

In calculating Pr[C takes step: κ′ →t κ], we have to exclude the events that are prohibited by
the fact that we have conditioned on Disj, which implies that this probability depends not just
on the state of C after step t − 1, but also on the other connected components. Let Pt(C) be
the connected component of a spontaneous clique C after step t. Since we condition on event
Disj, it cannot happen that some node in Pt−1(C) receives a message from a node in some clique
C ′ /∈ Pt−1(C), as this would result in a connected component Pt(C) having 2 spontaneous cliques.
For a similar reason, step t cannot be such that a node in Pt−1(C) sends a message to a node in
some non-singleton component Pt−1(C ′), where C ′ 6= C. Thus, we are left with the following two
possibilities to show that (7) holds:
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1. Step t concerns only nodes in Pt−1(C): In this case, the event corresponding to step t is
independent of the state of the cliques not in Pt−1(C) and hence (7) holds with equality.

2. Step t consists of some node in Pt−1(C) sending a message m to a clique C ′ /∈ Pt−1(C), and
C ′ is not part of any non-singleton connected component: The left-hand side of (7) assumes
that we do not condition on any additional state, and therefore C ′ can be any of the, say `,
cliques not in Pt−1(C). On the other hand, when conditioning on the state of components
other than Pt−1(C), the number of possible cliques where m can be sent to might be smaller
than `, to avoid hitting a clique that is in some other non-singleton connected component
(which would violate Disj). In other words, the number of cliques that m can be sent to cannot
increase when we conditioning on additional state on the right-hand side of (7).

Plugging (7) into (6), we get

Pr[S(t) = κ] >
∏
C∈CG

Pr[S(C, t)=κ(C)] ·
∑
κ′

Pr[S(C, t− 1)=κ′(C)].

The lemma follows by using the fact that
∑
κ′ Pr[S(C, t− 1)=κ′(C)] = 1.

4.4 Disjoint connected components cannot break the symmetry

At this point, we have shown that, conditioned on the connected components remaining disjoint,
the state of the individual connected components is almost independent. In particular, we have
shown that the probability of collectively being in any specific disjoint state is at least as large
as the product of the individual probabilities. Throughout, we are conditioning on the connected
components being disjoint.

To complete the proof, we need three further steps. First, we need to relate the states of the
cliques to whether or not a given clique has elected a leader. Then, we need to relate this almost
independent process to a collection of independent random variables that are easier to analyze.
Finally, we show that with constant probability the algorithm elects zero or more than one leaders.

Leadership. We want to analyze the probability of a given set of outcomes in terms of leader
election. We define an indicator random variable Y (C, t) such that Y (C, t) = 1 if and only if clique
C is spontaneous and has a leader in its connected component after step t; we simply write Y (C)
when t is clear from the context or not important. By symmetry, all cliques are identical, and hence
are equally likely to be spontaneous and also equally likely to be in a connected component with a
leader. We define s as the probability of the clique C being spontaneous and p as the probability of
the spontaneous clique C having a leader, i.e, p = Pr[Y (C) = 1 | C is spontaneous]. It follows that
Pr[Y (C)=1] = sp.

As noted earlier, observe that with the conditioning on Disj, the Y s are not necessarily inde-
pendent. For example, the knowledge that Y (C ′) = 1, for some clique C ′, might imply that the
connected component of C ′ has a certain minimum size, which in turn limits the ways in which the
connected component of C can expand in the next step.

Let Z be a vector of desired outcomes for these indicator random variables, i.e., for each clique C
we consider whether Y (C) = ZC . Let L(C) be the set of states for C compatible with the outcomes
ZC , i.e., where component C does or does not elect a leader as specified by L(C). Let L be the
product of all the L(C) subspaces, i.e., L is exactly the set of states compatible with Z for all C.
Let F be the state of the algorithm when it stops sending messages.
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In the following lemma, we show that the probability of being in one of the states compatible
with Z can be decomposed into the probabilities of the individual indicator random variables. (If
the connected components were really independent, it would be exact equality, rather than >.)

Lemma 22. Pr[Y = Z] >
∏
C∈CG Pr[Y (C) = ZC ].

Proof. The Pr[Y = Z] is really the same as Pr[F ∈ L], by the way in which we have defined L. We
first observe that the probability that F ∈ L is actually the sum of a collection of disjoint events,
i.e., the individual states. For each, the probability can be decomposed by the near-independence
property of Lemma 21. We then observe that the set L is actually the product of a collection of
subspaces, allowing us to rearrange terms and recombine disjoint events.

Pr[F ∈ L] =
∑
f∈L

Pr[F = f ]

>
∑
f∈L

∏
C∈CG

Pr[F (C) = fC ] (by Lemma 21)

>
∑

f1∈L(1),f2∈L(2),...

∏
C∈CG

Pr[F (C) = fC ]

>
∏
C∈CG

∑
fC∈L(C)

Pr[F (C) = fC ]

>
∏
C∈CG

Pr[F (C) ∈ L(C)]

>
∏
C∈CG

Pr[Y (C) = ZC ]

Independent variables. Recall that Pr[Y (C) = 1] = sp, where s is the probability that C is
spontaneous and p is the probability that a clique elects a leader if it is spontaneous. (And by
symmetry, these are all identical.) We define a new set of independent indicator random variables
X(C) where Pr[X(C) = 1] = sp.

Lemma 23. For any integer k, Pr[
∑
C Y (C) > k] > Pr[

∑
C X(C) > k].

Proof. We show that this follows from Lemma 22, by summing over the collection of outcomes
where

∑
Y (C) > k. Since there are N cliques in total and we can write Pr[

∑
C Y (C) > k] =∑N

l=k+1 Pr[
∑
C Y (C) = l], we will first obtain a bound on Pr[

∑
C Y (C) = l], which is the probability

of the event that there are exactly l spontaneous cliques (with leader), for integer l > 0.
Let Z be the N -bit vector of the desired outcomes of the indicator random variables Y (C). By

abuse of notation, we can think of Y as a vector of the individual random variables Y (C). Let Z be
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the set of all N -bit vectors Z that have a support of exactly size l. It follows that

Pr
[∑
C

Y (C) = l

]
=
∑
Z∈Z

Pr[Y = Z]

>
∑
Z∈Z

∏
C

Pr[Y (C) = ZC ] (by Lemma 22)

=
∑
Z∈Z

∏
C

Pr[X(C) = ZC ] (by def. of X(C))

=
∑
Z∈Z

Pr[X = Z]

> Pr
[∑
C

X(C) = l

]

Plugging this bound into Pr[
∑
C Y (C) > k], we obtain

Pr
[∑
C

Y (C) > k

]
=

N∑
l=k+1

Pr
[∑
C

Y (C) = l

]
>

N∑
l=k+1

Pr
[∑
C

X(C) = l

]
= Pr

[∑
C

X(C) > k

]
.

This completes the proof of the lemma.

Zero leaders. We now analyse the probability that there are zero leaders, and use that to show
that sp > 1/n1−ε.

Lemma 24. sp > 1/n1−ε

Proof. We first show that Pr[
∑
C Y (C) = 0] > (1 − sp)n1−ε . We then use this to conclude that

sp > 1/n. Let us consider W as a subset of cliques of CG. When saying W is spontaneous, we mean
that all cliques in W are spontaneous.

Pr
[∑
C

Y (C) = 0
]

>
∑

W⊆CG
Pr[W are spontaneous]Pr[no leaders in W]

>
∑

W⊆CG
Pr[W are spontaneous](1− p)|W |

>
∑

W⊆CG
Pr[W are spontaneous]

∏
C∈W

(1− p)

>
∑

w1∈{0,1},w2∈{0,1},...
Pr[C spontaneous iff wC = 1]

∏
C∈W

(1− p) (8)

>
∑

w1∈{0,1},w2∈{0,1},...

∏
C:wC=1

s(1− p)
∏

C:wC=0
(1− s) (9)

>
∏
C∈CG

(s(1− p) + (1− s))

>
∏
C∈CG

(1− sp)

> (1− sp)n1−ε
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Equation 8 follows as we can introduce an indicator variable wC for each clique C in CG, where
wC = 1 iff the clique C is spontaneous. Rearranging the equation for the two different possible
values of wC and observing that wC = 1 for all C ∈W , we obtain Equation 9.

Specifically, we know that, for any algorithm to succeed the probability of zero leaders has to
be less than a constant. Here, we have shown that any algorithm that sends 6Mn2ε messages in
expectation has at most O(M) edges in the clique communication graph with probability 1− o(1),
and the connected components formed in the clique communication graph are also disjoint with
probability 1 − o(1). Conditioned on those events, we have just shown that with probability
(1 − sp)n1−ε there are no leaders and the algorithm fails. Thus, for this to be smaller than some
constant, we conclude that sp > 1/n1−ε.

This proves something that intuitively makes sense: in order to ensure at least one leader, if
the probability of a clique electing a leader is sp, and if we have n1−ε cliques, then the probability
sp > 1/n1−ε to ensure at least one leader. (It required just a bit more care because we did not have
complete independence.)

More than one leader. We now analyze the probability that there is more than one leader,
showing that this occurs with constant probability. This concludes our proof, as it indicates that
the algorithm fails to elect exactly one leader with constant probability.

Lemma 25. Pr[
∑
C Y (C) > 1] > Ω(1)

Proof. We assume from Lemma 24 that sp > 1/n1−ε. We know from Lemma 23 that Pr[
∑
C Y (C) > 1] >

Pr[
∑
C X(C) > 1]. So we are going to analyze the probability that

∑
C X(C) > 1. And this is a

straightforward analysis of independent random variables.
The probability that all the X(C) are 0 is at most:

(1− sp)n1−ε
6 (1− 1/n1−ε)n1−ε

6 1/e .

(This relies on the fact that sp > 1/n1−ε.)
We can also analyze the probability that there is exactly one C where X(C) = 1. Specifically,

this occurs with probability:
n1−εsp(1− sp)n1−ε−1 .

This is maximized when sp = 1/n1−ε, so we conclude that

Pr
[∑
C

X(C) = 1
]
6 n1−ε(1/n1−ε)(1− 1/n1−ε)n1−ε−1 6 1/e+ o(1).

Finally, then, we conclude that Pr[
∑
C X(C) > 1] > 1− 2/e− o(1). That is, with at least constant

probability there is more than one X(C) = 1, and hence Pr[
∑
C(Y (C)) > 1] > Ω(1). With constant

probability, the algorithm elects more than one leader.

We conclude that if a given algorithm sends at most Mn2ε messages in expectation, then,
with constant probability, it either elects zero leaders or more than one leader, thus resulting in a
contradiction. This completes the proof for lower bounding the number of messages required for
implicit leader election. However, for the purpose of readability we restate the theorem and the
proof outline.
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Theorem 15. Suppose there is a randomized leader election algorithm that succeeds with probability
1− o(1) in n-node networks where each node has a unique ID and knows the network size n. Then,
for every α, where 1

n2 < α < 1
122 , there exists a graph G of Θ(n) nodes and conductance φ = Θ(α)

such that the algorithm requires Ω
(√

n/φ3/4
)

messages in expectation.

Proof Outline. First, in section 4.1, we construct a lower bound graph G for which the above
theorem would hold. By lemma 16, we know that graph G has conductance φ = Θ(1/n2ε). We then
assume towards a contradiction that there exists an algorithm that solves implicit leader election
by sending at most Mn2ε = o(

√
n/φ3/4) messages in expectation, where M = o(n(1−ε)/2). Next,

lemma 19 shows that any algorithm sending at most O(Mn2ε) messages in expectation would have
at most O(M) edges in the clique communication graph CG with probability 1− o(1). Given this,
we know from lemma 20 that event Disj occurs with probability 1− o(1), i.e. connected components
(distinct parts of the network) do not merge (communicate). Thereafter, lemma 21 and 22 show
that these distinct parts are nearly independent i.e. the random variables representing the states
of the resulting connected components (in CG) are nearly independent of one another (behaves
similarly to identically distributed and fully independent indicator random variables). Lemma 24
and 25 leverage this near independence to show that the algorithm is likely to elect either no leader
or more than one leader with constant probability. This results in a contradiction and completes
our proof.

We also obtain the following corollaries that lower bounds the number of messages required
for any algorithm that solves broadcast or constructs a spanning tree. On the constructed lower
bound graph G, as opposed to implicit leader election, an algorithm for either broadcast or spanning
tree construction would need to discover all N = n1−ε cliques instead of just

√
N cliques. In the

following corollary, we lower bound the number of messages required for any broadcast algorithm.

Corollary 26. Suppose that there is a randomized broadcast algorithm that succeeds with probability
1− o(1). Then, for every α, where

(
1/n2) < α <

(
1/122), there exists a graph G of Θ(n) nodes and

conductance φ = Θ(α) such that the algorithm requires Ω
(
n/
√
φ
)

messages in expectation.

Proof. In the constructed lower bound graph G (described in Section 4.1), observe that any
broadcast algorithm would need to find all the N = n1−ε cliques. As shown in Lemma 18, we see
that discovering a yet undiscovered clique requires Ω(n2ε) messages. Consequently, the total number
of messages required to find all the cliques is Ω(n1−ε · n2ε) in expectation. From Lemma 16, we
know that the conductance of the graph G is φ = 1/n2ε. Therefore, the algorithm would require
Ω(n · nε) = Ω(n/

√
φ) messages in expectation.

We repeat the same argument to give a message complexity lower bound for spanning tree
construction.

Corollary 27. Suppose that there is a randomized spanning tree construction algorithm that succeeds
with probability 1− o(1). Then, for every α, where

(
1/n2) < α <

(
1/122), there exists a graph G

of Θ(n) nodes and conductance φ = Θ(α) such that the algorithm requires Ω
(
n/
√
φ
)

messages in
expectation.

Proof. In the constructed lower bound graph G (described in Section 4.1), observe that any spanning
tree construction algorithm would need to find at least N − 1 = O(n1−ε) cliques. As shown in
Lemma 18, we see that discovering a yet undiscovered clique requires Ω(n2ε) messages. Consequently,
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the total number of messages required to find all the cliques is Ω(n1−ε · n2ε) in expectation. From
Lemma 16, we know that the conductance of the graph G is φ = 1/n2ε. Therefore, the algorithm
would require Ω(n · nε) = Ω(n/

√
φ) messages in expectation.

5 The critical knowledge of the network size

In this section, we show that the knowledge of the network size n is critical for our algorithm to
succeed by giving a message complexity lower bound of Ω(m) for all graphs if n is not known.

In [24], Kutten et al. show a message complexity lower bound of Ω(m) in expectation for implicit
leader election in general graphs (where m refers to the number of edges in the network graph) even
when the number of nodes in the network n and the diameter of the network D are known to all the
nodes. Here, we show that this lower bound applies only to graphs that are not well connected or
where nodes are not aware of the value of n. This lower bound fails for the case of well-connected
graphs for the case where n is known (as shown by our algorithm). However, we would like to point
out that the knowledge of n is critical for our algorithm to succeed.

Consider any 2-connected graph G0 of n nodes, where nodes do not know the value of n and a
range Z = [1, n4] of ID’s. G0 can have many instantiations, depending upon the node ID assignment
and the port number mapping. An ID assignment is a function ϕ : V (G0) 7→ Z. A port mapping
for node v is a mapping Pv : [1, degv] 7→ Γ(v) (namely, v’s neighbors). A port mapping for the graph
G0 is P = 〈Pv1 , . . . , Pvn〉. Every choice of ϕ and P yields a concrete graph Gϕ,P .

Theorem 28. Let R be any implicit leader election algorithm that succeeds with probability at least
1− β, for some constant β 6 3/56. If n is not known to the nodes, for any 2-connected graph G0
of n nodes and m edges, there exists an id assignment and a port mapping, for which the expected
number of messages used by R on G is Ω(m).

Proof. To show the lower bound, we rely on the construction of a graph family referred to as
dumbbell graphs and on a solution of an intermediate problem called bridge crossing on this graph
family. In this regard, we reuse some of the work done in [24] to show that solving bridge crossing
on this dumbbell graph family requires Ω(m) messages in expectation. For completeness, we rewrite
some of the definitions and lemmas used in [24].

Given any 2-connected graph G0, lets G be the collection of concrete graphs Gϕ,P obtained from
G0 by fixing the node id assignment and the port number mapping. The set of id’s of this graph is
denoted by ID(Gϕ,P ) = {ϕ(v)|v ∈ V (G0)}. An “open graph” G[e] is obtained from a graph G ∈ G
by erasing an edge e of G0 and leaving the two ports that were attached to it empty. Let Gopen be
the collection of open graphs obtained from G0.

For two open graphs G′[e′] and G′′[e′′] with disjoint sets of id’s, ID(G′[e′]) ∩ ID(G′′[e′′]) = ∅,
let Dumbbell(G′[e′], G′′[e′′]) be the graph obtained by taking one copy of each of these graphs, and
connecting their open ports. Hence, a dumbbell graph is composed of two open graphs plus two
connecting edges, referred to as bridges. Moreover, we say that G′[e′] participates on the left and
G′′[e′′] participates on the right in Dumbbell(G′[e′], G′′[e′′]). Strictly speaking, there could be two
such graphs, but let us consider only one of them.

For concreteness, if e′ = (v′, w′) and e′′ = (v′′, w′′) where ID(v′) < ID(w′) and ID(v′′) < ID(w′′),
then the graph Dumbbell(G′[e′], G′′[e′′]) contains the bridge edges (v′, v′′) and (w′, w′′). We create
a collection I of inputs for our problem consisting of all the dumbbell graphs.

I = Dumbbell(G′[e′], G′′[e′′])
∣∣ G′[e′], G′′[e′′] ∈ Gopen, ID(G′[e′]) ∩ ID(G′′[e′′]) = ∅.
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Partition the collection of inputs I into classes as follows: for every two graphs G′, G′′ ∈ G, define the
class C(G′, G′′) = Dumbbell(G′[e′], G′′[e′′])

∣∣ e′, e′′ ∈ E(G′), consisting of the m2 dumbbell graphs
constructed from G′ and G′′. Finally, create a uniform distribution Ψ on I.

Similar to in [24], we define an intermediate problem on the input collection I, called bridge
crossing (BC). An algorithm for this problem is required to send a message on one of the two bridge
edges connecting the two open graphs (from either direction). More precisely, any algorithm solving
BC is allowed to start simultaneously at all nodes, and succeeds if during its execution, a message
has crossed one of the two connecting bridge edges. (Note that in our model, the nodes are unaware
of their neighbors’ identities, and in particular, the four nodes incident to the two bridge edges are
unaware of this fact.)

We now give a high level overview of the main ideas of the proof. For any given 2-connected graph
G0, we show that there exists a graph Dumbbell(Gl[el], Gr[er]) in the collection I corresponding to
G0, for which any algorithm that solves bridge crossing requires Ω(m) messages in expectation. Here
Gl and Gr are graphs obtained from G0 by some id assignment and port mapping; Gl[el], Gr[er] are
their corresponding open graphs obtained by removing edges el and er respectively. The existence
of the dumbell graph follows from the following lemma (from [24]) and Yao’s minmax principle (c.f.
Prop. 2.6 in [30]). Thereafter, we give an indistinguishability argument in which we show that if
n is not known, no algorithm can distinguish between graphs Gl and Dumbbell(Gl[el], Gr[er]) (or
Gr and Dumbbell(Gl[el], Gr[er])) with sufficiently large probability by sending only o(m) messages.
Based on this indistinguishability argument and the fact that BC requires Ω(m) messages, we show
that one side of the dumbbell graph (either Gl or Gr) would need to send at least m/2 messages to
solve leader election.

Lemma 29. (Lemma 3.6 of [24]) Every deterministic algorithm D that achieves BC on at least
1/4 of the dumbbell graphs in the collection I has expected message complexity Ω(m) on Ψ.

Combining the above lemma with Yao’s minmax principle, we obtain the following lemma that
describes the message complexity of any algorithm for BC (both deterministic and randomized)
that succeeds with sufficiently high probability (> 5/8) on the worst case graph of I.

Lemma 30. Any algorithm A that solves BC with probability > 5/8 on the worst-case graph of I
(say Dumbbell(Gl[el], Gr[er])) has expected message complexity of at least Ω(m).

Consider a universal leader election algorithm R that succeeds on any given graph G with
probability at least 1− β, where β 6 3/56. We imagine running R in parallel on all three graphs
(Dumbbell(Gl[el], Gr[er]), Gl and Gr) using the same random bits. Let X be the time-point where
algorithm R achieves BC on the graph Dumbbell(Gl[el], Gr[er]) (if R does not achieve BC, we
consider X =∞). Also, let the expected number of messages sent by algorithm R on any graph G
until time-point t be represented by msgt(G), and so msgX (Dumbbell(Gl[el], Gr[er])) is the expected
number of messages sent by R up to the time-point X on the graph Dumbbell(Gl[el], Gr[er]).

Observe that until X , the nodes in Gl[el] (the left side of Dumbbell(Gl[el], Gr[er])) are not aware
of the existence of Gr[er] (as no message has traveled across the bridge edges and n is also not
known). As Gl has the exact same ids as Gl[el] and R uses the same random bits, until the point X ,
nodes behave identically in both cases. That is, after t steps (where t < X ), if node x in Gl[el] is in
state σ, then node x of Gl would also be in state σ. The same argument follows for Gr[er] and Gr.
This implies that until BC, the state of any node in Gl (resp. Gr) is identical to its corresponding
node in Dumbbell(Gl[el], Gr[er]) and as such, the behavior of the nodes would be identical.
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Observation 31. If n is not known, any algorithm A (using the same random bits) cannot differ-
entiate if it is running on Dumbbell(Gl[el], Gr[er]) or on Gl (resp. Gr) until the time-point X , when
it achieves BC on Dumbbell(Gl[el], Gr[er]). Therefore, until the point X the behavior of any node
in Gl (resp. Gr), would be identical to that of the corresponding node in Dumbbell(Gl[el], Gr[er]).

Let succ be the event that algorithm R successfully elects a unique leader in all the three graphs
Gl, Gr and Dumbbell(Gl[el], Gr[er]) within finite time. Conditioned on succ, let Y1 and Y2 be the
time-points where R solves leader election on Gl and Gr respectively (Y1 6=∞ and Y1 6=∞). That
is, after Y1 (resp. Y2), exactly one node elects itself as the leader and no more messages are sent
on Gl (resp. Gr). We also define Y = max(Y1,Y2). Using the fact that bridge crossing requires
Ω(m) messages on Dumbbell(Gl[el], Gr[er]), we will show that leader election takes at least Ω(m/2)
messages either for graph Gl or for graph Gr. In this regard, we consider two different possibilities,
each of which is conditioned on the event succ.
Case 1 : Y < X . We show that this case is not possible by showing a contradiction. As Y < X , it
implies that R solves LE on both Gl and Gr before solving BC on the graph Dumbbell(Gl[el], Gr[er]).
From Observation 31, we know that R cannot differentiate if it is running on Dumbbell(Gl[el], Gr[er])
or on Gl (resp. Gr) until the point X . Therefore algorithm R on Dumbbell(Gl[el], Gr[er]) would
behave in an identical fashion with that in Gl (resp. Gr) and would elect two leaders (one from Gl
and other from Gr). Thus contradicting our assumption of event succ. This also tacitly implies that
if event succ happens then R also solves BC (as X cannot be ∞).
Case 2 : Y > X . This case implies that either both Y1 > X and Y2 > X or only either
one of them is > X . Using Observation 31, we can say that the total number of messages
sent upto the point X by running R on Gl and Gr is exactly equal to the number of messages
sent by running R on Dumbbell(Gl[el], Gr[er]) until time X . There also might be some addi-
tional messages sent on Gl and/or Gr as Y > X . Therefore, the total number of messages
sent by R on Gl and Gr would be at least msgX (Dumbbell(Gl[el], Gr[er])). By Lemma 30, we
know that msgX (Dumbbell(Gl[el], Gr[er])) > Ω(m). Thus, we see that msgY1(Gl) +msgY2(Gr) >
msgX (Dumbbell(Gl[el], Gr[er])) > Ω(m).

That is, conditioned on the event succ, either msgY1(Gl) > Ω(m/2) or msgY2(Gr) > Ω(m/2).
Without loss of generality, assume that msgY1(Gl) > msgY2(Gr). Also, since R is a universal leader
election algorithm that succeeds on any given graph with probability at least 1− β, where β 6 3/56,
then the probability that event succ happens would be > (1− β)3 > 4/5. This implies from above
E[Messages sent on GL | succ] > Ω(m/2). To calculate the value of E[Messages sent on GL], we use
E[Messages sent on GL] > E[Messages sent on GL | succ] · Pr(succ) > Ω(m/2) · 4/5 = Ω(m). We
consider the msgY1(Gl) = Ω(m) as the worst case message complexity and the corresponding graph
as the worst case graph. The existence of this worst-case graph proves the theorem.

6 Conclusion

In this paper we show that implicit leader election can be achieved in sub-linear message complexity
for sufficiently well-connected graphs. This shows that the major communication cost for the explicit
variant of the leader election comes from broadcasting the leader information to all the nodes rather
than the process of electing a leader.

Furthermore, we observe that that there exists a possible gap of O(1/φ5/4) between the upper
and the lower bounds shown here. It remains an interesting open problem to see if this gap can be
reduced further.
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