
Distributed Spanner Approximation

Keren Censor-Hillel∗ Michal Dory∗

February 12, 2018

Abstract

We address the fundamental network design problem of constructing approximate minimum
spanners. Our contributions are for the distributed setting, providing both algorithmic and
hardness results.

Our main hardness result shows that an α-approximation for the minimum directed k-
spanner problem for k ≥ 5 requires Ω(n/

√
α log n) rounds using deterministic algorithms or

Ω(
√
n/
√
α log n) rounds using randomized ones, in the Congest model of distributed computing.

Combined with the constant-round O(nε)-approximation algorithm in the Local model of
[Barenboim, Elkin and Gavoille, 2016], as well as a polylog-round (1+ε)-approximation algorithm
in the Local model that we show here, our lower bounds for the Congest model imply a strict
separation between the Local and Congest models. Notably, to the best of our knowledge,
this is the first separation between these models for a local approximation problem.

Similarly, a separation between the directed and undirected cases is implied. We also prove
that the minimum weighted k-spanner problem for k ≥ 4 requires a near-linear number of rounds
in the Congest model, for directed or undirected graphs. In addition, we show lower bounds
for the minimum weighted 2-spanner problem in the Congest and Local models.

On the algorithmic side, apart from the aforementioned (1 + ε)-approximation algorithm
for minimum k-spanners, our main contribution is a new distributed construction of minimum
2-spanners that uses only polynomial local computations. Our algorithm has a guaranteed
approximation ratio of O(log(m/n)) for a graph with n vertices and m edges, which matches
the best known ratio for polynomial time sequential algorithms [Kortsarz and Peleg, 1994],
and is tight if we restrict ourselves to polynomial local computations. An algorithm with this
approximation factor was not previously known for the distributed setting. The number of rounds
required for our algorithm is O(log n log ∆) w.h.p, where ∆ is the maximum degree in the graph.
Our approach allows us to extend our algorithm to work also for the directed, weighted, and
client-server variants of the problem. It also provides a Congest algorithm for the minimum
dominating set problem, with a guaranteed O(log ∆) approximation ratio.

∗Technion, Department of Computer Science, {ckeren,smichald}@cs.technion.ac.il. Supported in part by the
Israel Science Foundation (grant 1696/14).

ar
X

iv
:1

80
2.

03
16

0v
1

 [
cs

.D
S]

 9
 F

eb
 2

01
8

1 Introduction

A k-spanner of a graph G is a sparse subgraph of G that preserves distances up to a multiplicative
factor of k. First introduced in the late 80’s [56, 57], spanners have been central for numerous
applications, such as synchronization [2, 3, 57], compact routing tables [4, 12, 58, 64], distance
oracles [6, 62,65], approximate shortest paths [25,32], and more.

Due to the prominence of spanners for many distributed applications, it is vital to have distributed
algorithms for constructing them. Indeed, there are many efficient distributed algorithms for finding
sparse spanners in undirected graphs, which give a global guarantee on the size of the spanner.
A prime example are algorithms that construct (2k − 1)-spanners with O(n1+1/k) edges, for a
graph with n vertices [7, 17,18,28,40], which is optimal in the worst case assuming Erdős’s girth
conjecture [33].

As opposed to finding spanners with the best worst-case sparsity, this paper focuses on the network
design problem of approximating the minimum k-spanner, which is a fundamental optimization
problem. This is particularly crucial for cases in which the worst-case sparsity is Θ(n2) such as 2-
spanners (complete bipartite graphs) or directed spanners. Spanner approximation is at the heart of a
rich line of recent work in the sequential setting, presenting approximation algorithms [8,14,15,21,23],
as well as hardness of approximation results [19,31,45].

There are only few distributed spanner approximation algorithms known to date. A distributed
algorithm with an expected approximation ratio of O(log n) for the minimum 2-spanner problem is
given in [21]. This was recently extended to k > 2, achieving an approximation ratio of Õ(

√
n) for

directed k-spanners [22], which matches the best approximation known in the sequential setting [8].
Yet, in the distributed setting, it is possible to obtain better approximations if local computation
is not polynomially bounded. A constant time O(nε)-approximation algorithm for directed or
undirected minimum k-spanner, which takes exp(O(1/ε)) +O(k) rounds for any constant ε > 0 and
a positive integer k, is given in [5]. In addition, we show a polylogarithmic time (1+ε)-approximation
algorithm for these problems, following the framework of a recent algorithm for covering problems [39]
(see Section 6). This approximation is much better than the best approximation that can be acheived
in the sequential setting, due to the hardness results of [19,31]. All these algorithms work in the
classic Local model of distributed computing [51], where vertices exchange messages of unbounded
size in synchronous rounds.

A natural question is whether we can obtain good approximations efficiently also in the Congest
model [54], where the messages exchanged are bounded by O(log n) bits. In the undirected case,
efficient constructions of (2k − 1)-spanners with O(n1+1/k) edges in the Congest model [7, 28]
imply O(n1/k)-approximations, since any spanner of a connected graph has at least n − 1 edges.
However, for directed graphs there are no efficient algorithms in the Congest model.

Our contribution in this paper is twofold. We provide the first hardness of approximation results
for minimum k-spanners in the distributed setting. Our main hardness result shows that there are
no efficient approximation algorithms for the directed k-spanner problem for k ≥ 5 in the Congest
model. This explains why all the current approximation algorithms for the problem require large
messages, and also creates a strict separation between the directed and undirected variants of the
problem, as the latter admits efficient approximations in the Congest model. In addition, we
provide new distributed algorithms for approximating the minimum k-spanner problem and several
variants in the Local model. Our main algorithmic contributaion is an algorithm for minimum
2-spanners that uses only polynomial local computations and guarantees an approximation ratio of
O(log m

n), which matches the best known approximation for polynomial sequential algorithms [46].
On the way to obtaining our results, we develop new techniques, both algorithmically and for
obtaining our lower bounds, which can potentially find use in studying various related problems.

1

1.1 Our contributions

1.1.1 Hardness of approximation

We show several negative results implying hardness of approximating various spanner problems in
both the Local and Congest models. While there are many recent hardness of approximation
results for spanner problems in the sequential setting [14,19,31,45], to the best of our knowledge
ours are the first for the distributed setting.

(I.) Directed k-spanner for k ≥ 5 in the CONGEST model: Perhaps our main negative
result is a proof for the hardness of approximating the directed k-spanner problem for k ≥ 5 in the
Congest model.

Theorem 1.1. Any (perhaps randomized) distributed α-approximation algorithm in the Congest

model for the directed k-spanner problem for k ≥ 5 takes Ω(
√
n√

α·logn
) rounds, for 1 ≤ α ≤ n

100 .

When restricting attention to deterministic algorithms, we prove a stronger lower bound of
Ω̃(n√

α
), for any α ≤ n

c for a constant c > 1.

For example, this gives that a constant or a polylogarithmic approximation ratio for the directed
k-spanner problem in the Congest model requires Ω̃(

√
n) rounds using randomized algorithms or

Ω̃(n) rounds using deterministic algorithms. Even an approximation ratio of only nε is hard and
requires Ω̃(n1/2−ε/2) rounds using randomized algorithms or Ω̃(n1−ε/2) rounds using deterministic
ones, for any 0 < ε < 1. Moreover, in the deterministic case, even an approximation ratio of n

c , for

appropriate values of c, requires Ω̃(
√
n) rounds. This is to be contrasted with an approximation of n,

which can be obtained without any communication by taking the entire graph, since any k-spanner
has at least n− 1 edges.

LOCAL vs. CONGEST. The major implication of the above is a strict separation between
the Local and Congest models, since the former admits a constant-round O(nε)-approximation
algorithm [5]1 and a polylogarithmic (1 + ε)-approximation algorithm (see Section 6) for directed
k-spanners. Such a separation was previously known only for global problems (problems that are
subject to an Ω(D) lower bound, where D is the diameter of the graph), and for local decision
problems (such as determining whether the graph contains a k-cycle). To the best of our knowledge,
ours is the first separation for a local approximation problem.

Directed vs. undirected. Our lower bound also separates the undirected and directed k-
spanner problems, since there are efficient algorithms in the Congest model for constructing
(2k − 1)-spanners with O(n1+1/k) edges [28,40] which imply an O(n1/k)-approximation. The best
randomized algorithm for the task takes k rounds [28], and the best deterministic algorithm is
a recent algorithm which takes O(n1/2−1/k) rounds for a constant even k [40]. Achieving the
same approximation for directed graphs necessitates Ω̃(n1/2−1/2k) rounds using randomization, or
Ω̃(n1−1/2k) rounds using deterministic algorithms.

(II.) Weighted k-spanner for k ≥ 4 in the CONGEST model: In addition to the above
main result, we consider weighted k-spanners, and show that any α-approximation for the weighted
undirected k-spanner problem for k ≥ 4 requires Ω̃(nk) rounds, and that Ω̃(n) rounds are needed for
the weighted directed k-spanner problem.

1In [5], a constant time randomized algorithm for directed k-spanner is presented. However, the deterministic
network decomposition presented in [5] gives a polylogarithmic deterministic approximation for directed k-spanner as
well, which shows the separation also for the deterministic case.

2

Weighted vs. unweighted. As these lower bounds hold also for randomized algorithms, we
obtain yet another separation, between the weighted and the unweighted variants of the problem,
since the aforementioned k-round (2k − 1)-spanner constructions imply an O(n1/k) approximation
for the unweighted case.

LOCAL vs. CONGEST. Since both the constant-round algorithm for approximating k-
spanners within a factor of O(nε) [5] and the (1 + ε)-approximation algorithm that we give in
Section 6 are suitable for the weighted case, our hardness result for the weighted case implies the
separation between the Local and Congest models also when having weights. This holds also for
the undirected weighted case.

(III.) Weighted 2-spanner in the LOCAL and CONGEST models: Finally, we show lower
bounds for the weighted 2-spanner problem, which, in a nutshell, are obtained by a reduction that
captures the intuition that approximating the minimum weight 2-spanner is at least as hard as
approximating the minimum vertex cover (MVC). We emphasize that the reduction from the
set cover problem to the unweighted 2-spanner problem given in [45] is inherently sequential, by
requiring the addition of a vertex that is connected to all other vertices in the graph, and hence is
unsuitable for the distributed setting.

Our reduction implies that Ω(log ∆
log log ∆) or Ω(

√
logn

log logn) rounds are required for a logarithmic

approximation ratio for weighted 2-spanner in the Local model, by plugging in the lower bounds
for MVC given in [48]. In addition, our reduction implies an Ω̃(n2) lower bound for an exact solution
for weighted 2-spanner in the Congest model, by using the near-quadratic lower bound for exact
MVC given recently in [11]. This is tight up to logarithmic factors since O(n2) rounds allow learning
the entire graph topology and solving essentially all natural graph problems.

1.1.2 Distributed approximation algorithms

We show new distributed algorithms for approximating minimum k-spanners. Our main algorithmic
contribution is a new algorithm for the minimum 2-spanner problem that uses only polynomial local
computations (see Section 4). In addition, we show that if local computation is not polynomially
bounded it is possible to achieve (1 + ε)-approximation for minimum k-spanners (see Section 6).

(I.) Distributed (1 + ε)-approximation of minimum k-spanners: In Section 6, we present
(1+ε)-approximation algorithms for spanner problems, following the framework of a recent algorithm
for covering problems [39]. We show the following.

Theorem 1.2. There is a randomized algorithm with complexity O(poly(log n/ε)) in the Local
model that computes a (1 + ε)-approximation of the minimum k-spanner w.h.p, where k is a constant.

The algorithm is quite general and can be adapted similarly to additional variants. Theorem
1.2 shows that although spanner problems are hard to approximate in the sequential setting, it
is possible to achieve extremely strong approximations for them efficiently in the Local model.
This demonstrates the power of the Local model. However, the algorithm is based on learning
neighborhoods of polylogarithmic size and solving NP-complete problems (finding optimal spanners).
It is desirable to design also algorithms that work with more realistic assumptions. We next focus
on the 2-spanner problem and show a new algorithm that uses only polynomial local computations
and uses the power of the Local model only for learning neighborhoods of diameter 2.

3

(II.) Distributed approximation of minimum 2-spanners: If we restrict ourselves to polyno-
mial local computations, the best algorithm for the minimum 2-spanner problem is the O(log n)-round
O(log n)-approximation in expectation of Dinitz and Krauthgamer [21],2 which solves even the more
general problem of finding fault-tolerant spanners.

However, this still leaves several open questions regarding minimum 2-spanners. First, the best
approximation to the problem in the sequential setting is O(log m

n) where m is the number of edges
in the graph. Can we achieve such approximation also in the distributed setting? Second, the
approximation ratio holds only in expectation. Can we design an algorithm that guarantees the
approximation ratio? Third, this algorithm requires learning neighborhoods of logarithmic radius,
and hence a direct implementation of it in the Congest model is not efficient. Can we design a
more efficient algorithm in the Congest model?

We design a new algorithm for the minimum 2-spanner problem, answering some of these
questions. Our algorithm obtains an approximation ratio of O(log m

n) always, within O(log n log ∆)
rounds w.h.p,3 where ∆ is the maximum vertex degree, summarized as follows.

Theorem 1.3. There is a distributed algorithm for the minimum 2-spanner problem in the Local
model that guarantees an approximation ratio of O(log m

n), and takes O(log n log ∆) rounds w.h.p.

Our approximation ratio of O(log m
n) matches that of the best approximation in the sequential

setting up to a constant factor [46], and is tight if we restrict ourselves to polynomial local
computations [45]. In addition, the approximation ratio of our algorithm is guaranteed, rather
than only holding in expectation. This is crucial for the distributed setting since, as opposed
to the sequential setting, running the algorithm several times and choosing the best solution
completely blows up the complexity because learning the cost of the solution requires collecting
global information. Note that although our algorithm can be converted into an algorithm with
a guaranteed polylogarithmic time complexity and an approximation ratio that holds only in
expectation, the opposite does not hold. Another feature of our algorithm is that it uses the power
of the Local model only for learning the 2-neighborhood of vertices. A direct implementation of
our algorithm in the Congest model yields an overhead of O(∆) rounds, which is efficient for small
values of ∆. We address this issue further in Section 1.3.

(III.) Distributed approximation of additional 2-spanners: The techniques we develop for
constructing and analyzing our spanner have the advantage of allowing us to easily extend our
construction to the directed, weighted and client-server variants of the problem. We obtain the
same approximation ratio for the directed case as in the undirected case, and for the weighted case
we give an approximation ratio of O(log ∆), both improving upon the O(log n) approximation in
expectation of [21]. For the client-server 2-spanner case, which to the best of our knowledge ours
is the first distributed approximation, we obtain an approximation ratio that matches that of the
sequential algorithm [29].

(IV.) Distributed approximation of MDS: Finally, our technique also gives an efficient
algorithm for the minimum dominating set (MDS) problem, which obtains an approximation
ratio of O(log ∆) always. Our algorithm for MDS works even in the Congest model and takes
O(log n log ∆) rounds w.h.p. The MDS problem has been studied extensively by the distributed

2In [21], a time complexity of O(log2 n) rounds is claimed. However, the algorithm is based on sampling a certain
decomposition O(logn) times independently, which takes O(logn) rounds each time. From the independence of the
decompositions, the computations can be parallelized in the Local model, achieving a time complexity of O(logn)
rounds. See also [22].

3As standard in this setting, a high probability refers to a probability that is at least 1− 1
nc for a constant c ≥ 1.

4

computing community, with several efficient algorithms for MDS in the Congest obtaining an
approximation ratio of O(log ∆) in expectation [43, 48, 49]. To the best of our knowledge, our
algorithm is the first that guarantees this approximation ratio always.

1.2 Technical overview

1.2.1 Hardness of approximation

We prove Theorem 1.1 by a reduction from 2-party communication problems, as has been proven
fruitful for various lower bounds for the Congest model [1, 11, 24,35,42, 63]. In principle, a family
of graphs is constructed depending on the input strings of the two players, such that the solution to
the required Congest problem uniquely determines whether the input strings of the players satisfy
a certain Boolean predicate. The most common usage is of set-disjointness, although other 2-party
communication problems have been used as well [10, 26, 34, 55]. The two players can simulate a
distributed algorithm for solving the Congest problem, and deduce their output for the 2-party
communication problem accordingly. This yields a lower bound for the Congest problem, based
on known lower bounds for the communication complexity of the 2-party problem, by incorporating
the cost of the simulation itself.

The prime caveat in using this framework for approximation problems is that in the above
examples a modification of a single input bit has a slight influence on the graph. For example, when
showing a lower bound for computing the diameter, any bit of the input affects the distance between
one pair of vertices [1, 35, 42]. This is sufficient when computing some global property of the graph.
Indeed, the distance between a single pair of vertices can change the diameter of the graph. The
challenge in designing a construction for approximating k-spanners is that now any single bit needs
to affect drastically the size of the minimum k-spanner. In more detail, any k-spanner has at least
n− 1 edges and, hence, for a meaningful lower bound for an α-approximation, any input bit must
affect at least Ω(αn) edges.

We manage to overcome the above challenge by constructing a graph that captures this re-
quirement and allows a reduction from set-disjointness. The main technical ingredient is a dense
component in which many edges are affected by single input bits. This component resides in its
entirety within the set of vertices that is simulated by a single player of the two, thus resulting in a
non-symmetric graph construction. This is crucial for our proof, as otherwise the density of this
component would imply a dense cut between the two sets of vertices simulated by the players, which
in turn would nullify the achievable lower bound. For having this property, we believe that our
construction may give rise to follow-up lower bound constructions for additional local approximation
problems.

Our graph construction is designed using several parameters, which allows us to show trade-offs
between the time complexity of an algorithm and its approximation ratio, and gives lower bounds
even for large values of α.

Our stronger lower bounds for the deterministic case are obtained using the 2-party gap-
disjointness problem rather than the more common set-disjointness problem. Since gap-disjointness
allows more slack, we obtain stronger lower bounds, at the price of them holding only for deterministic
algorithms. We believe that the flexibility of the gap-disjointness problem may be useful in showing
additional strong lower bounds for approximation problems. Our stronger lower bounds for the
weighted case are obtained by assigning weights to the edges of the graph in a manner which allows
us to shave off certain edges that affect the bound.

5

1.2.2 Distributed approximation of minimum 2-spanners

Our algorithm for approximating minimum 2-spanners is inspired by the sequential greedy algorithm
of Kortsarz and Peleg [46], in which dense stars are added to the spanner one by one, obtaining an
approximation ratio of O(log m

n). A star is a subset of edges between a vertex v and some of its
neighbors. The density of a star is the ratio between the number of edges 2-spanned by the star
and the size of the star, where an edge e = {u, v} is 2-spanned by a star S if S includes a path of
length two between u and v. A roughly intuition for the greedy algorithm is that if S is a dense
star then adding its edges to the spanner allows 2-spanning many edges by adding only a small
number of edges to the spanner.

A direct implementation of this greedy approach in the distributed setting is highly expensive,
since deciding upon the densest star inherently requires collecting global information. Moreover,
one would like to leverage the ability of the distributed setting to add multiple stars to the spanner
simultaneously. To address both sources of inefficiency, rather than computing the star that is
the densest in the entire graph, we compute all the stars that are the densest in their local 2-
neighborhood. While greatly speeding up the running time, adding all of these locally densest stars
to the spanner is too extreme, and results in a poor approximation ratio. Instead, we consider these
stars as candidates for being added to the spanner.

The key challenge is then to break symmetry among the candidates, while balancing the need
to choose many stars in parallel (for a fast running time) with the need to bound the overlap in
spanned edges among the candidates (for a small approximation ratio). We tackle this conflict
by constructing a voting scheme for breaking symmetry by choosing among the stars based on a
random permutation. Interestingly, our approach is inspired by a parallel algorithm for set cover [60].
We let each edge vote for the first candidate that 2-spans it according to the random permutation.
A candidate that receives a number of votes which is at least 1

8 of the edges it 2-spans is added to
the spanner, and we continue this process iteratively.

Since we add to the spanner only stars receiving many votes, this approach guarantees that
there is not too much overlap in the edges 2-spanned by different stars, which eventually culminates
in a proof of an approximation ratio of O(log m

n), which matches the one obtained by the greedy
approach.

A tricky obstacle lies in showing that our algorithm completes in O(log n log ∆) rounds w.h.p.
This is because, as opposed to the set cover case, there may be as many as 2∆ different stars centered
at each vertex, and a vertex may be required to add candidate stars multiple times during the
execution of the algorithm. It turns out that an arbitrary choice for a candidate among all densest
stars centered at a vertex is incapable of providing an efficient time complexity. To overcome this
issue, we design a subtle mechanism for proposing a candidate star, and pair it with a proof that
our algorithm indeed completes in the claimed number of rounds.

1.3 Discussion

While our results in this paper significantly advance the state-of-the-art in distributed approximation
of minimum k-spanners, intriguing questions remain open. First, the landscape of the trade-offs
between the approximation ratio and the running time of distributed minimum k-spanner algorithms
is yet to be fully mapped. For example, the O(log ∆) factor in the running time of our approximation
algorithm for weighted 2-spanner is tight up to an O(log log ∆) factor, due to our reduction from
MVC and the known lower bounds for it. However, it remains open whether the O(log n) factor
is necessary. Additional gaps remain open for other various approximation ratios. In particular,
an interesting question is to show a lower bound for approximating the undirected unweighted

6

minimum k-spanner problem.
A curious question is whether our algorithm can be efficiently made to work in the Congest

model. A direct implementation would yield an overhead of O(∆) for the running time, for computing
the densities of stars, and for sending the candidate stars. We emphasize that knowing the density
of the neighborhood of vertices is crucial for additional algorithms, such as the state-of-the-art
(∆ + 1)-coloring algorithm of Harris et al. [41]. Another interesting question is to design an efficient
deterministic algorithm achieving the same approximation ratio.

For larger values of the stretch k, our lower bounds imply a strict separation between the Local
and Congest models for the number of rounds required for approximating directed minimum
k-spanners. Such a separation was previously known only for global problems (problems that are
subject to an Ω(D) lower bound, where D is the diameter of the graph), and for local decision
problems (such as determining whether the graph contains a k-cycle). Interestingly, ours is the first
separation for a local approximation problem. It is a central open question whether such separations
hold also for local symmetry breaking problems.

Interestingly, our algorithm, as well as other distributed approximation algorithms for the
minimum k-spanner in the Local model, work also for directed graphs, achieving the same
approximation ratio and round complexity. However, our hardness results create a strict separation
between the undirected and directed variants in the Congest model. It will be interesting to show
such separations for other problems.

1.4 Additional related work

Spanners have been studied extensively in the distributed setting, producing many efficient algorithms
for finding sparse spanners in undirected graphs [7, 17, 18, 27, 28, 40]. These algorithms construct
(2k − 1)-spanners with O(n1+1/k) edges for any fixed k ≥ 2, with the fastest completing in k
rounds [17, 28], which is tight [17]. Many additional works construct various non-multiplicative
spanners in the distributed setting, such as [59] and the excellent overview within.

Many recent studies address spanner approximations in the sequential setting. The greedy
algorithm of [46] achieves an approximation ratio of O(log m

n) for the minimum 2-spanner problem.
This was extended to the weighted, directed and client-server cases [29,45]. Approximation algorithms
for the directed k-spanner problem for k > 2 are given in [8,9,20,23,30], with the best approximation
ratio of O(

√
n log n) for k > 4, and an approximation ratio of Õ(n1/3) for k = 3, 4 [8, 23]. These

approximation ratios are matched by a recent distributed O(k log n)-round algorithm, that uses
only polynomial local computations [22]. Approximation algorithms are given also for pairwise
spanners and distance preservers [14], for spanners with lowest maximum degree [13,15,22, 47], for
fault-tolerant spanners [21,23], and more.

Hardness of approximation results in the sequential setting give that for k = 2, no polynomial
algorithm gives an approximation ratio better than Θ(log n) [45], which shows that the sequential
greedy algorithm is optimal. For k > 2, the problem is even harder. For any constant ε > 0 and
k ≥ 3 there are no polynomial-time algorithms that approximate the k-spanner problem within a
factor better than 2(log1−ε n)/k [19], or the directed k-spanner problem within a factor better than

2(log1−ε n) [31]. Similar results are known for additional variants [14,31].
Spanner problems are closely related to covering problems such as set cover, minimum dominating

set (MDS), and minimum vertex cover. Indeed, some of the ingredients of our algorithms borrow
ideas from distributed and parallel algorithms for such problems. Our symmetry breaking scheme
is inspired by the parallel algorithm for set cover of Rajagopalan and Vazirani [60], however, the
general structure of this algorithm requires global coordination and hence is not suitable for the
distributed setting. There are also several ideas inspired by the distributed MDS algorithm of Jia et

7

al. [43], such as, rounding the densities and comparing densesties in 2-neighborhoods. However, [43]
breaks the symmetry between the candidates in a different way which results in an approximation
ratio of O(log ∆) in expectation. The connection between spanners to set cover is used also in [9]
where they show that covering the edges of a graph by stars is also useful for approximating the
directed k-spanner problem for k > 2. In this context, we also mention the distributed algorithm
of [37] for the minimum connected dominating set problem, which also uses stars as the main
component for its construction. Our work is, however, incomparable, especially since the minimum
connected dominating set problem is a global problem, admitting an Ω(D) lower bound even in the
Local model.

1.5 Preliminaries

Let G = (V,E) be a connected undirected graph with n vertices and maximum degree ∆. Let
S ⊆ E be a subset of the edges, and let k ≥ 1. We say that an edge e = {u, v} is covered by S if
there is a path of length at most k between u and v in S. A k-spanner of G is a subgraph of G that
covers all the edges of G. A k-spanner of a subgraph G′ ⊆ G is a subgraph of G that covers all the
edges of G′. For a directed graph, we say that a directed edge e = (u, v) is covered by a subset of
edges S, if S includes a directed path of length at most k from u to v, and define a k-spanner for a
directed graph accordingly.

In the minimum k-spanner problem the input is a connected undirected graph G = (V,E) and
the goal is to find the minimum size k-spanner of G. The directed k-spanner problem is defined
accordingly, with respect to directed graphs. In the weighted k-spanner problem each edge e has a
non-negative weight w(e) and the goal is to find the k-spanner of G having minimum cost, where
the cost of a spanner H is w(H) =

∑
e∈H w(e).4 In the client-server k-spanner problem, introduced

in [29], the input is a connected undirected graph G = (V,E) that its edges are divided to two types:
clients C and servers S (there may be edges e ∈ C ∩ S), and the goal it to find the minimum size
k-spanner of C that includes only edges of S.

In the distributed setting, the input for the k-spanner problem is the communication graph G
itself. Each vertex initially knows only the identities of its neighbors, and needs to output a subset
of its edges such that the union of all outputs is a k-spanner. The communication in the network is
bidirectional, even when solving the directed k-spanner problem.

Roadmap: In Section 2, we present our hardness of approximation results for directed and
weighted k-spanners in the Congest model. In Section 3, we provide hardness of approximation
results for weighted 2-spanners. In Section 4, we present our algorithm for the minimum 2-spanner
problem and show its extensions to other variants. In Section 5, we describe our MDS algorithm.
Finally, in Section 6, we show our (1 + ε)-approximation for minimum k-spanners.

2 Hardness of approximation in the CONGEST model

In this section, we prove hardness of approximation results for approximating k-spanners in the
Congest model. As explained in Section 1.2.1, we build upon the previous used framework of
reducing 2-party communication problems to distributed problems for the Congest model. The
key technical challenge that we overcome is how to plant a dense subgraph into the construction,

4There is another variant of the weighted k-spanner problem, in which the weight of an edge represents a length.
We emphasize that in our case all the edges have length 1.

8

without inducing a large cut between the vertices simulated by the two players, but while still
having the choice of edges taken from the dense subgraph to the spanner depend on both inputs.

We describe a graph construction that allows us to provide a reduction from problems of
2-party communication. In the latter setting, two players, Alice and Bob, receive input strings
a = (a1, ..., aN) and b = (b1, ..., bN), respectively, of size N . Their goal is to solve a problem related
to their inputs, while communicating a minimum number of bits. For example, the set disjointness
problem requires the players to decide if their input strings represent disjoint subsets of [N], that is,
they need to decide if there is a bit 1 ≤ i ≤ N such that ai = bi = 1. The communication complexity
of set disjointness is known to be linear in the length of the strings [50,61].

Lemma 2.1. Solving the set disjointness problem on input strings of size N , requires exchanging
Ω(N) bits, even using randomized protocols.

We start by showing that approximating the directed k-spanner problem in the Congest model
is hard for k ≥ 5, and then modify our construction to provide hardness results for the weighted
case.

The general approach is to build a dense graph G, where some of its edges depend on the inputs
of Alice and Bob, such that if the inputs of Alice and Bob are disjoint then there is a sparse 5-spanner
in G (which is also a k-spanner for k ≥ 5), and otherwise any k-spanner has many edges. By
simulating the distributed approximation algorithm for the k-spanner problem, Alice and Bob solve
set disjointness. Hence, depending on the parameters of our graph construction, a communication
lower bound for the latter would imply a lower bound on the number of rounds required for the
former.

In [35,42], a reduction from set disjointness is used in order to show a lower bound for computing
the diameter of a graph. The main idea is that each bit of the inputs affects the distance between
two vertices in the graph, and if the distance between any of these pairs of vertices is long it affects
the diameter of the graph. This idea is useful also for showing lower bound for spanner problems,
and indeed one of the elements in our construction is similar to the constructions in [35,42]. However,
the main difference in our case is that the distance between one pair of vertices in the graph does
not affect significantly the size of the minimum spanner.

In order to overcome it, we suggest the following construction. Our graph consists of two
subgraphs. One of them depends on the inputs, and the other one is a complete bipartite graph D
that each of its sides is divided to blocks of size β. We connect the two subgraphs in such a way
that each bit i of the inputs affects β2 edges of D, which must be added to the spanner if and only
if ai = bi = 1.

Let `, β be positive integers. We construct a graph G = G(`, β) according to the parameters ` and
β. Later we plug-in different values of ` and β in order to obtain several trade-offs. The graph G(`, β)
is a directed graph, with V = X1∪X2∪Y1∪Y2∪Y3, where X1 = {x1

i |1 ≤ i ≤ `}∪{x2
i |1 ≤ i ≤ `}, Y1 =

{y1
i |1 ≤ i ≤ `} ∪ {y2

i |1 ≤ i ≤ `}, X2 = {xij |1 ≤ i ≤ `, 1 ≤ j ≤ β}, Y2 = {yij |1 ≤ i ≤ `, 1 ≤ j ≤ β},
and Y3 = {y3

i |1 ≤ i ≤ `}. See Figure 1 for an illustration.
The set of edges consists of a matching between X1 and Y1 that includes all the directed edges

(x1
i , y

1
i) and (x2

i , y
2
i), for 1 ≤ i ≤ `. In addition, there is a complete bipartite graph D between the

vertices of X2 and Y2 that includes all the directed edges (xij , yrs) for 1 ≤ i, r ≤ `, 1 ≤ j, s ≤ β. For
each vertex xij ∈ X2 there is an edge (xij , x

1
i). For each vertex yij ∈ Y2 there is an edge (y3

i , yij).
In addition, the graph includes the edges (y2

i , y
3
i), for 1 ≤ i ≤ `.

In addition, the two input strings a, b of length `2 bits, denoted by aij , bij for 1 ≤ i, j ≤ `, affect
G in the following way. The edge (x1

i , x
2
j) is in G if and only if aij = 0, and the edge (y1

i , y
2
j) is in G

if and only if bij = 0.

9

𝑥1
1

𝑥2
1

𝑥ℓ
1

𝑦1
1

𝑦2
1

𝑦ℓ
1

𝑥1
2

𝑥2
2

𝑥ℓ
2

𝑦1
2

𝑦2
2

𝑦ℓ
2𝑥11

𝑥12

𝑥1𝛽

𝑦11

𝑦12

𝑦1𝛽

𝑥ℓ1

𝑥ℓ2

𝑥ℓ𝛽

𝑦ℓ1

𝑦ℓ2

𝑦ℓ𝛽

𝑦1
3

𝑦2
3

𝑦ℓ
3

𝑋1 𝑌1

𝑋2 𝑌2

𝑌3

Figure 1: The graph G, with some of its edges omitted for clarity. The red dashed edges are
examples of optional edges which depend on the input strings a and b.

Note that the number of vertices in G is n = Θ(`β), and that D consists of (`β)2 = Θ(n2) edges,
and recall the goal of constructing a sparse k-spanner for G with k ≥ 5. Since D is a dense subgraph,
taking its edges to the spanner would be expensive. However, in order to avoid taking the edges of
D to the spanner, the spanner must include a directed path of length at most k between every pair
of vertices xij , yrs, which does not include edges of D. The existence of such a path depends on the
input strings in the following way.

Claim 2.2. If one of the edges (x1
i , x

2
r), (y

1
i , y

2
r) is in G, there is a directed path of length 5 between

the vertices xij , yrs that does not contain edges of D. Otherwise, the only directed path from xij to
yrs is the path that consists of the edge (xij , yrs).

Proof. Note that any directed path from xij to yrs that does not include the edges of D must begin
with the edge (xij , x

1
i) and must end with the two edges (y2

r , y
3
r), (y

3
r , yrs). Hence, the existence

of such a path depends on whether there is a directed path from x1
i to y2

r . We show that there
is a directed path of length 2 from x1

i to y2
r if at least one of the edges (x1

i , x
2
r), (y

1
i , y

2
r) is in G.

Otherwise, there is no directed path of any length from x1
i to y2

r .
Let P be a directed path from x1

i to y2
r . The path P must cross the cut between X1 to Y1 either

by the edge (x1
i , y

1
i) or by the edge (x2

r , y
2
r), since any path (of any length) from x1

i can only cross
the cut through the edge (x1

i , y
1
i) or by an edge of the form (x2

j , y
2
j). However, if j 6= r, y2

r is not

reachable from y2
j . If P crosses by the edge (x1

i , y
1
i) the only way to reach y2

r from y1
i is by the edge

(y1
i , y

2
r). In the second case, the edge (x1

i , x
2
r) must be the first edge in the path.

In conclusion, if one of the edges (x1
i , x

2
r), (y

1
i , y

2
r) is in G, then there is a directed path of length

5 between the vertices xij , yrs that does not contain edges of D. Otherwise, there is no directed
path of any length from x1

i to y2
r . In this case, the only directed path from xij to yrs is the path

that consists of the edge (xij , yrs).

10

Claim 2.2 captures the essence of why our construction is suitable for an approximation problem.
Next, we use our graph construction and this claim in order to show our hardness results.

2.1 Randomized directed k-spanner

In this section, we address the directed k-spanner problem for k ≥ 5, and show that obtaining an

α-approximation requires Ω(
√
n√

α logn
) rounds in the Congest model, even when using randomized

algorithms.

Lemma 2.3. Let G = G(`, β) for β ≥ `, let k ≥ 5, and let c = 7. If the input strings a, b are
disjoint, then there is a k-spanner of size at most c`β for G. Otherwise, any k-spanner for G
includes at least β2 edges of D.

Proof. If the input strings a, b are disjoint, then for every pair of indexes i, r at least one of the
edges (x1

i , x
2
r), (y

1
i , y

2
r) is in G. Hence, by Claim 2.2, there is a directed path of length at most 5

between every two vertices xij , yrs, which does not contain edges of D. This gives a 5-spanner of
size at most c`β edges for G by taking all the edges not in D, since there are at most 2`β + 2`2 + 3`
such edges, which is at most c`β since ` ≤ β and c = 7. This is also a k-spanner for any k ≥ 5.

If the input strings are not disjoint, then there is a pair of indexes i, r such that neither of the
edges (x1

i , x
2
r), (y

1
i , y

2
r) is in G. Hence, by Claim 2.2, there is no directed path between the vertices

xij , yrs except for the path that includes the edge (xij , yrs). Therefore, we need to take all the
edges (xij , yrs) to the spanner for all values of j and s, which means adding β2 edges of D to the
spanner.

Let k ≥ 5 and let A be a distributed α-approximation algorithm for the minimum k-spanner
problem. Denote by T (n) the time complexity of A on a graph with n vertices. The approximation
ratio α = α(n) of the algorithm A may depend on n, and we assume that it is a monotonic increasing
function of n, and that if n = Θ(n′), then α(n) = Θ(α(n′)).

Our goal is to show that A can be used to solve set disjointness. If α · c`β < β2, then by Lemma
2.3, the algorithm A gives a protocol for set disjointness, in which case we show a lower bound of
Ω(`

logn) on the time complexity of A, as stated in the following lemma.

Lemma 2.4. Let G = G(`, β). If there is a threshold t such that if the input strings a, b are disjoint,
an optimal spanner of G has at most t edges, and otherwise each spanner of G includes more than
α(n) · t edges of D, then T (n) = Ω(`

logn).

Proof. We use A to solve set disjointness on input strings of length N = `2 in the following way.
Let a, b be two input strings of length N , given to Alice and Bob respectively. We take the graph
G = G(`, β) and define VB = Y1, VA = V \ VA. Since the input strings a and b affect only edges
between vertices within VA and within VB respectively, it holds that Alice knows all the edges
adjacent to vertices in VA and Bob knows all the edges adjacent to vertices in VB. The cut between
VA to VB consists of Θ(`) edges: the 2` edges of the matching between X1 to Y1, and the ` edges
between Y1 to Y3. Now Alice and Bob simulate A on G as follows. Alice simulates the vertices in VA
and Bob simulates the vertices in VB. At each round, Alice and Bob exchange the messages going
over the cut between VA and VB in either direction. Messages that are sent between vertices in VA or
between vertices in VB are simulated locally by Alice and Bob, without any communication. Since
the size of messages is O(log n) bits, and the size of the cut is Θ(`), they can simulate one round of
A by exchanging at most O(` · log n) bits, and therefore they can simulate the entire execution of A
by exchanging at most O(T (n) · ` · log n) bits.

11

At the end of the simulation, Alice knows which of the edges of D are taken to the spanner. If
there are more than α(n) · t edges of D in the spanner, Alice concludes that the input strings are
not disjoint, and otherwise she concludes that they are disjoint.

To show that this produces the correct output, recall the condition of the lemma that if the
input strings are disjoint then the size of an optimal spanner is at most t and otherwise it is more
than α(n) · t. Therefore, if the input strings are disjoint, since A is an α(n)-approximation algorithm,
it constructs a spanner with at most α(n) · t edges, in which case Alice indeed outputs that the
input strings are disjoint. Otherwise, if the input strings are not disjoint, the size of any spanner is
more than α(n) · t edges, in which case Alice indeed outputs that the input strings are not disjoint.

Hence, Alice and Bob solve set disjointness by exchanging O(T (n) · ` · log n) bits. However, any
(perhaps randomized) protocol that solves disjointness on inputs of size N = `2 requires exchanging

Ω(`2) bits by Lemma 2.1. This gives T (n) = Ω(`2

`·logn) = Ω(`
logn).

Using Lemma 2.3 and Lemma 2.4, we prove our following main theorem.

Theorem 1.1. Any (perhaps randomized) distributed α-approximation algorithm in the Congest

model for the directed k-spanner problem for k ≥ 5 takes Ω(
√
n√

α·logn
) rounds, for 1 ≤ α ≤ n

100 .

Proof. We show that there is a threshold t that distinguishes whether the inputs are disjoint. Then,
using Lemma 2.4, we get a lower bound on the round complexity of A.

We define G = G(`, β) with the following choice of the parameters β, `. Let n′ be a positive

integer, and let c = 7. Let q = dα(n′)ce + 1. Let ` = b
√

n′

cq c, and let β = q`. The requirement

α(n) ≤ n
100 ensures that cq ≤ n′, which shows that ` is positive. The number of vertices in G is

n = Θ(`β) = Θ(q`2) = Θ(q · n′q) = Θ(n′). In addition, note that n ≤ c`β, since the number of

vertices in G is 2`β + 5`, which gives n ≤ c`β = cq`2 ≤ cq · n′cq = n′.
Let t = c`β. By Lemma 2.3, If the inputs are disjoint, there is a k-spanner for G having at most

t = c`β edges, and otherwise any k-spanner for G includes at least β2 edges of D. By the definition
of q, it holds that α(n′) · c < q, which gives α(n′) · c`β < q`β = β2. Since n ≤ n′, it holds that
α(n) ≤ α(n′), which gives α(n) · t = α(n) · c`β < β2.

Hence, t satisfies the conditions of Lemma 2.4, which gives T (n) = Ω(`
logn). Since ` = Θ(

√
n
q) =

Θ(
√

n
α(n)), it holds that T (n) = Ω(`

logn) = Ω(
√
n√

α(n)·logn
).

Theorem 1.1 shows that achieving a constant or a polylogarithmic approximation ratio for the
directed k-spanner problem in the Congest model requires Ω̃(

√
n) rounds, and even achieving an

approximation ratio of nε is hard, requiring Ω̃(n1/2−ε/2) rounds, for any 0 < ε < 1.
This proves a strict separation between the Local and Congest models, since there is a

constant round O(nε)-approximation algorithm [5], and a polylogarithmic (1 + ε)-approximation
algorithm (see Section 6) for directed k-spanner in the Local model.

It also separates the undirected and directed k-spanner problems, since there are randomized
k-round algorithms in the Congest model for constructing (2k − 1)-spanners with O(n1+1/k)
edges [28]. These algorithms obtain an approximation ratio of O(n1/k) for the undirected minimum
(2k − 1)-spanner problem in k rounds, where achieving the same approximation for the directed
problem requires Ω̃(n1/2−1/2k) rounds according to Theorem 1.1.

2.2 Deterministic directed k-spanner

We next show that any deterministic algorithm solving the directed k-spanner problem for k ≥ 5,
requires Ω(n√

α·logn
) rounds. The trick that allows a stronger lower bound is that we use a different

12

problem from communication complexity, which we refer to as the gap disjointness problem. This
problem is also mentioned in [34].

In the gap disjointness problem, Alice and Bob receive the input strings a = (a1, ..., aN) and
b = (b1, ..., bN), respectively, and their goal is to distinguish whether their input strings are disjoint
or are far from being disjoint. The inputs are far from being disjoint if there are at least N

12 indexes
i, such that ai = bi = 1. If the inputs are neither disjoint nor far from being disjoint, any output of
Alice and Bob is valid. The gap disjointness problem can be easily solved by randomized protocols
exchanging O(1) bits. However, solving the problem deterministically requires exchanging Ω(N)
bits.

Lemma 2.5. Solving the gap disjointness problem deterministically on input strings of size N
requires exchanging Ω(N) bits.

For a proof of Lemma 2.5, see example 5.5 in [50], where it is shown that approximating the
size of the intersection |a ∩ b| requires exchanging Ω(N) bits. The proof relies only on showing that
distinguishing between disjoint inputs and inputs with intersection of more than N

6 bits is difficult
(note that any such inputs have intersection of size at least N

12). Hence, the exact same proof shows
that solving gap disjointness requires exchanging Ω(N) bits using a deterministic protocol.

In order to use set disjointness for the proof of Theorem 1.1, it was necessary to devise a
construction where each bit of the input affects many edges of the spanner, in order to argue that
even if there is only one index i such that ai = bi = 1, then the players can correctly decide whether
the inputs are disjoint by checking the size of the spanner. However, when we use gap disjointness,
the players need to distinguish only between the case that the inputs are disjoint and the case that
they are far from being disjoint, which allows much more flexibility and gives stronger lower bounds
for the deterministic case.

Lemma 2.6. Let G = G(`, β) for 1 ≤ β ≤ `, let k ≥ 5 and let c = 7. If the input strings a, b are
disjoint, then there is a k-spanner of size at most c`2. If the input strings are far from being disjoint,

any k-spanner for G includes at least β2

12 `
2 edges of D.

Proof. If the input strings are disjoint, taking all the edges not in D is a 5-spanner, as shown in the
proof of Lemma 2.3. These are at most 2`β + 2`2 + 3` edges not in D, which is at most c`2 since
β ≤ ` and c = 7. This is also a k-spanner for any k ≥ 5.

If the input strings are far from being disjoint then there are at least `2

12 pairs (i, r) such that

none of the edges (x1
i , x

2
r), (y

1
i , y

2
r) are in G. Hence, by Claim 2.2, there are at least `2

12 pairs (i, r)
such that there is no directed path between the vertices xij , yrs except for the path that consists
of the edge (xij , yrs). For each such pair, we need to take all the directed edges (xij , yrs) to the
spanner for all the values of j and s, which means adding β2 edges to the spanner. Summing over

all the `2

12 pairs, we get that any k-spanner must include at least β2

12 `
2 edges of D.

Let k ≥ 5 and let A be a deterministic distributed α-approximation algorithm for the minimum
k-spanner problem. Denote by T (n) the round complexity of A on a graph with n vertices. The
following lemma adapts Lemma 2.4 to the gap disjointness problem. Its proof is the same as the
proof of Lemma 2.4, with the difference that now Alice concludes that the input strings are far
from being disjoint if and only if the constructed spanner has more than α(n) · t edges of D. Also,
now the lower bound holds only for the deterministic case, since it relies on the communication
complexity of gap disjointness.

Lemma 2.7. Let G = G(`, β). If there is a threshold t such that if the input strings a, b are disjoint
then an optimal k-spanner of G has at most t edges, and if the input strings are far from being
disjoint then each k-spanner of G includes more than α(n) · t edges of D. Then, T (n) = Ω(`

logn).

13

Using Lemma 2.6 and Lemma 2.7, we show the following.

Theorem 2.8. Any deterministic distributed α-approximation algorithm in the Congest model
for the directed k-spanner problem for k ≥ 5 takes Ω(n√

α·logn
) rounds, for 1 ≤ α ≤ n

c′ for a constant

c′ > 1.

Proof. We construct the graph G = G(`, β) with the following choice for the parameters `, β. Let
n′ be a positive integer, and let c = 7. Let β = d

√
12α(n′)ce+ 1, and let ` = b n′cβ c.

The number of vertices in G is n = Θ(`β) = Θ(n
′

β β) = Θ(n′). In addition, it holds that n ≤ c`β
since the number of vertices in G is 2`β + 5`, which gives n ≤ c`β ≤ n′

cβ cβ = n′. In order to use
Lemma 2.6 we need to verify that β ≤ `. Note that n = c1`β for a constant 2 ≤ c1 ≤ c. It follows
that β ≤ ` if and only if c1β

2 ≤ n. Since β = Θ(
√
α(n)) = c2

√
α(n) for a constant c2, if we choose

c′ = c1c
2
2, we get that if α(n) ≤ n

c′ , then β ≤
√

n
c1

, which gives c1β
2 ≤ n as needed.

We now define t = c`2. By Lemma 2.6, if the input strings a, b are disjoint, then there is a
k-spanner of size at most t = c`2. Otherwise, if the input strings are far from being disjoint, then any

k-spanner for G includes at least β2

12 `
2 edges of D. By the choice of β and since n ≤ n′, it holds that

12α(n) · c < β2, which gives α(n) · t = α(n) · c`2 < β2

12 `
2, which shows that t satisfies the conditions

of Lemma 2.7. Using Lemma 2.7 we get that T (n) = Ω(`
logn). Note that now ` = Θ(nβ) = Θ(n√

α(n)
),

which shows that T (n) = Ω(n√
α(n)·logn

).

Theorem 2.8 shows that achieving a constant or a polylogarithmic approximation ratio for the
directed k-spanner problem in the Congest model requires Ω̃(n) rounds for any deterministic
algorithm. In addition, even an approximation ratio of nε is hard, requiring Ω̃(n1−ε/2) rounds, for
any 0 < ε < 1. Notably, even an approximation ratio of n

c for appropriate values of c is hard,

requiring Ω̃(
√
n) rounds. This is to be contrasted with the fact that obtaining an approximation

ratio of n requires no communication, since any k-spanner has at least n− 1 edges.
Theorem 2.8 separates the Local and the Congest models, since the deterministic network

decomposition described in [5] gives a deterministic O(nε)-approximation for directed k-spanner for
a constant k in polylogarithmic time in the Local model.

It also separates the undirected and directed k-spanner problems for deterministic algorithms.
Currently the best deterministic algorithm in the Congest model for the undirected k-spanner
problem, is a recent algorithm [40] which constructs (2k−1)-spanners of size O(n1+1/k) in O(n1/2−1/k)
rounds for a constant even k (in the Local nodel there is a k-round deterministic algorithm for this
problem [17]). This gives an O(n1/k)-approximation for undirected (2k− 1)-spanners. Achieving the
same approximation for the directed problem requires Ω̃(n1−1/2k) rounds according to Theorem 2.8.

2.3 Weighted k-spanner

We extend our construction to the weighted case, showing that any approximation for the weighted
k-spanner in the Congest model takes Ω̃(n) rounds for k ≥ 4, even for randomized algorithms. A
similar result holds for the weighted undirected case. In the weighted case, rather than guaranteeing
that each input bit affects many edges of the spanner, we simply assign weight 0 to all the edges
that are not in D and weight 1 to all the edges of D. Hence, taking even a single edge from D
is very expensive if we can avoid it. This allows us to show a simpler construction, obtaining a
stronger lower bound for the weighted case, as follows.

We build a graph Gw(`) = Gw = (Vw, Ew) which is the same as G, except for the following
differences (see Figure 2). We define β = 1, and change the set of vertices to be Vw = V \ Y3.

14

Since β = 1, the vertices in X2 and Y2 are only of the form xi1, yi1 for 1 ≤ i ≤ `. We change
their names from xi1, yi1 to xi and yi, respectively. For each 1 ≤ i ≤ ` we replace the two edges
(y2
i , y

3
i), (y

3
i , yi1) ∈ E by the edge (y2

i , yi) ∈ Ew. Since β = 1, the size of the cut between Y1 and the
rest of the graph is still Θ(`).

𝑥1
1

𝑥2
1

𝑥ℓ
1

𝑦1
1

𝑦2
1

𝑦ℓ
1

𝑥1
2

𝑥2
2

𝑥ℓ
2

𝑦1
2

𝑦2
2

𝑦ℓ
2

𝑥1

𝑥2

𝑥ℓ

𝑦1

𝑦2

𝑦ℓ

𝑋1 𝑌1

𝑋2 𝑌2

Figure 2: The graph Gw, with some of its edges omitted for clarity. The red dashed edges are
examples of optional edges which depend on the input strings a and b.

The following theorem states our lower bound for the weighted directed case.

Theorem 2.9. Any (perhaps randomized) distributed α-approximation algorithm in the Congest
model for the weighted directed k-spanner problem for k ≥ 4 takes Ω(n

logn) rounds.

Proof. Let n = 6` for a positive integer `, and let Gw = Gw(`). Note that the number of vertices in
Gw is exactly n. There is a 4-spanner of cost 0 for Gw if and only if there is a path of length at
most 4 of edges of weight 0 between every pair of vertices xi, yj . A path of length at most 4 between
xi and yj that includes only edges of weight 0, must start with the edge (xi, x

1
i) and must end with

the edge (y2
j , yj). Following the proof of Claim 2.2, we argue that there is such a path if and only if

one of the edges (x1
i , x

2
j), (y

1
i , y

2
j) is in Gw. Otherwise, there is no directed path of weight 0 between

xi and yj .
It follows that for every k ≥ 4, there is a k-spanner of cost 0 for Gw if and only if the inputs a

and b are disjoint. Hence, a distributed α-approximation algorithm A for the weighted k-spanner
problem can be used to solve set disjointness: we define VB = Y1, VA = V \ VB and let Alice and
Bob simulate the algorithm on Gw as before. At the end of the simulation, Alice concludes that the
inputs are disjoint if and only if none of the edges of D are taken to the spanner.

If the inputs are disjoint, then there is a spanner of cost 0. Hence, for any α ≥ 1, an α-
approximation must return a spanner of cost 0 if such exists. Otherwise, any spanner must include
at least one of the edges of D which proves that the output of Alice is indeed correct.

As in the proof of Lemma 2.4, we get that T (n) = Ω(`
logn). Since n = 6`, this gives T (n) =

Ω(n
logn).

We prove a similar bound for the weighted undirected k-spanner problem for k ≥ 4. In the
undirected case, we would like to construct a similar graph Gw, with only modifying all of its edges
to be undirected. It would still hold that there is a path of length at most 4 of edges of weight 0

15

between the vertices xi, yj if and only if one of the edges {x1
i , x

2
j}, {y1

i , y
2
j } is in Gw, following the

same proof. However, since the edges are undirected, there may be a path of length longer than 4 of
edges of weight 0 between the vertices xi, yj , even if none of the edges {x1

i , x
2
j}, {y1

i , y
2
j } is in Gw,

which requires us to modify our construction in order for our bounds to apply also for k > 4.
We change the construction of Gw as follows. For each 1 ≤ i ≤ ` we replace the edge {y2

i , yi} by
a path of length k − 3, by adding to the graph k − 4 vertices y3

i , ..., y
k−2
i and the required edges for

constructing the path {y2
i , y

3
i , ..., y

k−2
i , yi}. All of the edges of the path have weight 0.

Any path of length at most k of edges of weight 0 between xi to yj must start with the edge
{xi, x1

i } and must end with the path of length k − 3 that we added between y2
j to yj . Hence, there

is a path of length at most k between xi to yj of edges of weight 0 if and only if there is a path of
length 2 between x1

i and y2
j . This can only happen if one of the edges {x1

i , x
2
j}, {y1

i , y
2
j } is in the

graph.
The rest of the proof is exactly the same as in the directed case. However, we added Θ(k`)

vertices to the graph. Hence, the number of vertices in the graph is n = Θ(k`) and not Θ(`) as
before, which gives ` = Θ(nk). This allows us to prove a lower bound of Ω̃(nk) to the undirected

problem (which is still Ω̃(n) for small values of k).

Theorem 2.10. Any (perhaps randomized) distributed α-approximation algorithm in the Congest
model for the weighted undirected k-spanner problem for k ≥ 4 takes Ω(n

k·logn) rounds.

3 Hardness of approximation of weighted 2-spanner

In this section, we show that approximating the weighted 2-spanner problem is at least as hard as
approximating the (unweighted) minimum vertex cover (MVC) problem. Therefore, known lower
bounds for MVC translate directly to lower bounds for the weighted 2-spanner problem.

In the MVC problem the input is a graph G = (V,E) and the goal is to find a minimum set of
vertices C that covers all the edges. That is, it is required that for each edge e = {v, u}, at least
one of v and u is in C.

Let G = (V,E) be an input graph to the MVC problem. We construct a new graph GS = (VS , ES)
in the following way (see Figure 3). For each vertex v ∈ V , there are 3 vertices in VS : v1, v2, v3.
We connect these 3 vertices by a triangle, where the edge {v1, v2} has weight 1, and the edges
{v1, v3}, {v2, v3} have weight 0. In addition, for each edge {v, u} ∈ E, there are 3 edges in ES :
{v1, u1}, {v2, u2}, both having weight 0, and one of the edges {v1, u2}, {u1, v2}, according to the
order of the IDs of v and u, having weight 2.

𝑣1

𝑣2

𝑣3

𝑢1

𝑢2

𝑢3

0

11 2

0

0

0

0

0

Figure 3: For each vertex v ∈ G, there is a corresponding triangle in GS between the vertices
v1, v2, v3. The edge {v, u} ∈ G has 3 corresponding edges in GS : {v1, u1}, {v2, u2}, {v1, u2}.

We show that a solution for the weighted 2-spanner problem in GS gives a solution for MVC in
G.

16

Claim 3.1. The cost of the minimum 2-spanner in GS is exactly the size of the minimum vertex
cover in G.

Proof. Let C be a minimum vertex cover in G. We construct a 2-spanner HC for GS as follows.
First, HC includes all the edges having weight 0. In addition, for every v ∈ C, we add to HC the
edge {v1, v2}. Note that these edges have weight 1, and all the other edges we add to HC have
weight 0, hence, the cost of HC is exactly |C|. We now show that HC is a 2-spanner. All the
edges having weight 0 in GS are added to the spanner, and hence they are covered. All the edges
having weight 1 are covered by edges of weight 0, since an edge {v1, v2} is covered by the path
{v1, v3}, {v3, v2}. Let {v1, u2} be an edge of weight 2 in GS , and let {v, u} be the corresponding
edge in G. Since C is a vertex cover, at least one of the vertices v, u is in C. In the former case,
we add {v1, v2} to HC , hence, the edge {v1, u2} is covered by the path {v1, v2}, {v2, u2} (note that
{v2, u2} has weight 0 and is included in HC). In the latter case, {v1, u2} is covered by the path
{v1, u1}, {u1, u2}. Hence, HC is a 2-spanner having cost |C|.

In the other direction, let H be a minimum cost 2-spanner in GS having cost w(H). We construct
a vertex cover CH in G with size w(H). We start by converting H into a 2-spanner H ′ with the
same cost. First, H ′ contains all the edges having weight 0 in GS and all the edges having weight 1
in H. In addition, if H includes an edge {v1, u2} having weight 2, we replace it in H ′ by the two
edges {v1, v2}, {u1, u2}, each having weight 1. This transformation clearly cannot increase the cost.
We next show that H ′ is still a 2-spanner. Since H ′ includes all the edges having weight 0 in GS , it
covers all the edges of weight 0 or 1 by edges of weight 0, as explained above. In addition, any edge
of weight 2 that is covered in H by a path of length 2 that includes only edges of weight 0 or 1, is
covered in H ′ in the same way. Let e = {x1, y2} be an edge of weight 2, covered in H by a path P of
length at most 2 that includes the edge e′ = {v1, u2} ∈ H having weight 2 (e′ may be different than
e). It holds that e′ 6∈ H ′, since e′ has weight 2, hence, we added the edges {v1, v2} and {u1, u2} to
H ′. Since P has length at most 2, it follows that x1 = v1 or y2 = u2. In the first case, e = {v1, y2}
and the path {v1, v2}, {v2, y2} covers e (we added {v1, v2} to H ′, and since {v1, y2} ∈ ES , then
{v2, y2} is also in ES and has weight 0). In the second case, e = {x1, u2} and {x1, u1}, {u1, u2} is a
path of length 2 that covers e in H ′.

Therefore, H ′ is a 2-spanner with the same cost of H. We define CH = {v|{v1, v2} ∈ H ′}. The
size of CH is exactly w(H ′) since the edges {v1, v2} ∈ H ′ are exactly all the edges of H ′ having
weight 1, and H ′ includes only edges of weight 0 or 1. In addition, we claim that CH is a vertex
cover. Let {v, u} ∈ E, then one of the edges {v1, u2} or {u1, v2} is in ES . Assume w.l.o.g that
e = {v1, u2} ∈ ES . Note that e 6∈ H ′ since it has weight 2. Since H ′ is a 2-spanner it includes a
path of the form {v1, x}, {x, u2} that covers e. It must hold that x = v2 or x = u1 (if, for example,
x = w1 such that w1 6= u1, then the edge {w1, u2} has weight 2 and is not in H ′). Hence, at least
one of the edges {v1, v2}, {u1, u2} is in H ′, which means that at least one of v, u is in CH as needed.

In conclusion, the cost of a minimum 2-spanner in GS is exactly the size of the minimum vertex
cover in G.

We can now relate the above to the number of rounds required for distributed algorithms that
solve or approximate these two problems.

Lemma 3.2. Let A be a distributed α-approximation algorithm for the weighted 2-spanner problem
that takes T (n) rounds on a graph with n vertices. Then there is an α-approximation algorithm for
MVC that takes 3T (3n) rounds on a graph with n vertices.

Proof. We describe an algorithm AMVC that approximates MVC. Let G be an input graph for
MVC. The algorithm AMV C simulates A on the graph GS , in the following way. Each vertex

17

v ∈ V simulates AMV C on the vertices v1, v2, v3. Each time a message is sent on one of the 3 edges
corresponding to an edge {v, u} ∈ E, we send this message over the edge {v, u} ∈ E. Since we
may need to send 3 different messages on this edge, each round of A can be simulated in three
rounds of AMVC .5 When A finishes, we convert the solution H to a vertex cover CH as described
in the proof of Claim 3.1, without any communication. From Claim 3.1, it follows that if H is an
α-approximation for the weighted 2-spanner problem in GS , then CH is an α-approximation for
MVC in G. Let n be the number of vertices in G. The number of vertices in GS is 3n from the
definition of GS , hence the time complexity of simulating A on GS is 3T (3n).

Lemma 3.2 shows that if A works in the Congest model, then AMV C works in the Congest
model as well. Hence, lower bounds for approximating MVC in both the Local and the Congest
models give lower bounds for the weighted 2-spanner problem. This gives the following results.

Theorem 3.3. To obtain a constant or a polylogarithmic approximation ratio for the weighted
2-spanner problem, even in the Local model, there are graphs on which every distributed algorithm

requires at least Ω(log ∆
log log ∆) rounds and Ω(

√
logn

log logn) rounds.

Theorem 3.3 follows from Theorem 14 in [48] and from Lemma 3.2. Note that the number of
vertices and the maximum degree in GS are equal up to a constant factor to the number of vertices
and maximum degree in G. In addition, Theorem 13 in [48], allows us to show trade-offs between
the time complexity of a distributed algorithm for weighted 2-spanner to the approximation ratio it
gets.

Theorem 3.4. For every integer k > 0, there are graphs G, such that in k communication rounds
in the Local model, every distributed algorithm for the weighted 2-spanner problem on G has

approximation ratios of at least Ω

(
n

1−o(1)
4k2

k

)
and Ω

(
∆

1
k+1

k

)
.

In the Congest model, solving MVC optimally takes Ω
(

n2

log2 n

)
rounds (see Theorem 2 in [11]),

which carries over to exact spanners, as follows.

Theorem 3.5. Any distributed algorithm in the Congest model that solves the weighted 2-spanner

problem optimally requires Ω
(

n2

log2 n

)
rounds.

All of these lower bounds hold also for randomized algorithms.

Remarks: Our reduction from MVC can be adapted to obtain additional bounds. First, by
changing the weights of all edges having weight 2 to have weight 1, we obtain that an α-approximation
for the weighted 2-spanner problem gives a 2α-approximation for MVC. This implies the lower
bounds of Theorem 3.3 and Theorem 3.4 also for graphs with 0, 1 weights. This can be viewed as
lower bounds for the 2-spanner augmentation problem, in which we are given an initial set of edges
and need to augment it with the minimal number of edges that induces a 2-spanner.

Further, the same lower bounds hold for the directed weighted case. We modify the construction
such that the edges of the triangle for vertex v are (v1, v2), (v1, v3), (v3, v2). For an edge {v, u} ∈ E,
ES includes 5 directed edges: (v1, u1), (u1, v1), (v2, u2), (u2, v2) and one of the edges (v1, u2), (u1, v2).
The weights of all the edges remain as in the undirected case.

5In the Local model we can send these 3 messages in one round. However, we spend three different rounds in
order for the simulation to work also in the Congest model.

18

4 Distributed approximation for 2-spanner problems

Here we present our distributed approximation algorithm for the minimum 2-spanner problem. We
need the following terminology and notation.

A v-star is a non-empty subset of edges between v and a subset of its neighbors. The density
of a star S with respect to a subset of edges H, denoted by ρ(S,H), equals |CS ||S| , where CS is the

set of edges of H 2-spanned by the star S, where an edge e = {u,w} is 2-spanned by the v-star
S if S includes the edges {v, u}, {v, w}. Note that S covers all the edges 2-spanned by S and also
the edges of S, but it 2-spans only non-star edges. The densest v-star with respect to H is the
v-star having maximal density with respect to H. The density of a vertex v with respect to H,
denoted by ρ(v,H), is the density of the densest v-star. If H is clear from the context, we refer to
ρ(S,H) and ρ(v,H) as the density of S and the density of v, and denote them by ρ(S) and ρ(v),
respectively. The rounded density of a star S with respect to H, denoted by ρ̃(S,H), is obtained
by rounding ρ(S,H) to the closest power of 2 that is greater than ρ(S,H). Similarly, the rounded
density of a vertex v with respect to H, denoted by ρ̃(v,H), is obtained by rounding ρ(v,H) to
the closest power of 2 that is greater than ρ(v,H). The full v-star is the star that includes all the
edges between v and its neighbors. The 2-neighborhood of a vertex v consists of all the vertices at
distance at most 2 from v.

In our algorithm, each vertex v maintains a set Hv that includes all the edges 2-spanned by the
full v-star that are still not covered by the edges added to the spanner. The algorithm proceeds in
iterations, where in each iteration the following is computed:

1. Each vertex v computes its rounded density ρv = ρ̃(v,Hv), and sends it to its 2-neighborhood.

2. Each vertex v such that ρv ≥ ρu for each u in its 2-neighborhood and ρ(v,Hv) ≥ 1 is a
candidate. Let Sv be a v-star with density at least ρv

4 , chosen according to Section 4.1 (a
choice which is central for our analysis to carry through). Vertex v informs its neighbors
about Sv. Let Cv be the edges of Hv 2-spanned by Sv.

3. Each candidate v chooses a random number rv ∈ {1, ..., n4} and sends it to its neighbors.6

4. Each uncovered edge that is 2-spanned by at least one of the candidates, votes for the first
candidate that 2-spans it according to the order of the values rv. If there is more than one
candidate with the same minimum value, it votes for the one with minimum ID.

5. Each star Sv for which v receives at least |Cv |8 votes from edges it 2-spans is added to the
spanner.

6. Each vertex v updates the set Hv in its 2-neighborhood by removing from it edges that are
now covered.

7. If the maximal density in the 2-neighborhood of v is at most 1, v adds to the spanner all the
edges adjacent to it that are still not covered, and outputs the edges adjacent to it that were
added to the spanner during the algorithm.

At the end of the algorithm all the edges are covered by spanner edges, since we add to the
spanner edges that are not 2-spanned during the algorithm.

6Knowing the exact value of n is unnecessary, and the typical assumption that the vertices know a polynomial
upper bound on n suffices.

19

Since all the candidates have maximal rounded density in their 2-neighborhood, it follows that
all the candidates that cover the same edge have the same rounded density, which is crucial in the
analysis. In addition, rounding the densities guarantees that there are only O(log ∆) possible values
for the maximal rounded density, which allows us to show an efficient time complexity.

Each iteration takes constant number of rounds in the Local model. For example, to calculate
ρ̃(v,Hv), each vertex v learns all the edges between its neighbors that are still uncovered, by having
each vertex u send to its neighbors a list of its neighbors w such that the edges {u,w} are still not
covered. We next show that the algorithm requires only polynomial local computations.

We can compute the densest v-star in polynomial time as in the sequential algorithm (see Lemma
2.1 in [46]). This is the maximal density problem, that can be solved in polynomial time using flow
techniques [36]. This allows us to compute the rounded density of a vertex. We next explain how we
choose the star Sv in polynomial time. Other computations in the algorithm are clearly polynomial.

4.1 Choosing the star Sv

In step 2 of each iteration, a candidate vertex v chooses a v-star with density at least ρv
4 . However,

there may be multiple v-stars with such density, and choosing an arbitrary star between them does
not meet our claimed round complexity, and it is crucial to choose the stars in a certain way. In
addition, we have to find such star using only polynomial local computations. We next describe
how to choose the star Sv.

Let H i
v be the subset Hv at the beginning of iteration i. It holds that H i+1

v ⊆ H i
v for all i. Let

ρ = ρ̃(v,H i
v). The star Siv that v chooses in iteration i is defined as follows. If i is the first iteration

in which v is a candidate with rounded density ρ, then Siv is chosen as follows. First, v computes
the densest v-star, denote it by S. Now, if there is an edge e such that ρ(S ∪ {e}, H i

v) ≥
ρ
4 , then v

adds such an edge to S. Otherwise, if there is a disjoint v-star S′ such that ρ(S′, H i
v) ≥

ρ
4 , then v

adds the edges of S′ to S. Now v continues in the same manner until there is no edge or disjoint
star it can add to S without decreasing the density below ρ

4 . The resulting star is Siv.
If v is already a candidate with rounded density ρ in iteration i− 1, then if ρ(Si−1

v , H i
v) ≥

ρ
4 , we

define Siv = Si−1
v . Otherwise, if Si−1

v contains a star with density at least ρ
4 with respect to H i

v, we
define Siv as follows. v starts by computing the densest v-star S that is contained in Siv, and then
adds to it edges or disjoint stars as before, however, it only considers adding edges or disjoint stars
from Si−1

v . This guarantees that Siv ⊆ Si−1
v . If Si−1

v does not contain a star with density at least ρ
4

with respect to H i
v, v chooses an arbitrary v-star with rounded density ρ. (We later show that this

never happens).
The computations are polynomial. v adds edges to S at most n times. Each time it adds edges

it does the following computation: it checks if there is an edge such that ρ(S ∪ {e}, H i
v) ≥

ρ
4 , and

since there are at most n optional edges, the computation is polynomial. It also checks if there is a
disjoint star with density at least ρ

4 . To compute this, it computes the densest star that is disjoint
to S.

4.2 Analysis

In this section, we present the analysis of our distributed approximation algorithm for the minimum
2-spanner problem, and prove the following theorem.

Theorem 1.3. There is a distributed algorithm for the minimum 2-spanner problem in the Local
model that guarantees an approximation ratio of O(log m

n), and takes O(log n log ∆) rounds w.h.p.

Let H be the set of edges of the spanner produced by the algorithm. When the algorithm ends,
all the edges are covered, hence H is a 2-spanner. We show that its size it at most O(log m

n)|H∗|,

20

where H∗ is the set of edges of a minimum 2-spanner. Afterwards, we show that the time complexity
of the algorithm is O(log n log ∆) rounds, w.h.p.

4.2.1 Approximation ratio

We start by showing that our algorithm guarantees an approximation ratio of O(log m
n). The analysis

of the sequential algorithm of [46] that obtains the same approximation ratio strongly depends on
the facts that stars are added to the spanner one by one and that the star that is added at each step
has maximal rounded density. These allow dividing the edges to several subsets according to the
order in which they are covered in the algorithm, and bounding the number of edges in each subset.

Our analysis borrows ideas from the above analysis, but requires a more sophisticated accounting,
since our algorithm adds multiple stars in each iteration, with varying densities. In addition to
overcoming these uncertainties, a compelling aspect of our approach is that it easily extends to
other variants of the problem, such as the client-server 2-spanner problem [29].

To show the approximation ratio, we assign each edge e ∈ E a value cost(e) such that the sum
of the costs of all edges is closely related both to |H| and |H∗|, by satisfying

|H| ≤ 8
∑
e∈E

cost(e) ≤ O
(

log
m

n

)
|H∗|,

which implies our claimed approximation ratio.
We write H = H1 ∪H2, where H1 are edges added to the spanner during the algorithm, and

H2 are edges added to the spanner at the end of the algorithm, when the maximal density in the
2-neighborhood of a vertex is at most 1.

For an edge e ∈ H2, we set cost(e) = 1. For an edge e ∈ H1, let i be the iteration in which e is
first covered in the algorithm. The edge e may be covered by a candidate star Sv that it votes for
and is added to the spanner at iteration i. In this case, we set cost(e) = 1

ρ , where ρ is the density of
the star Sv that e chooses at iteration i. Another option is that e is covered as a result of adding
other stars to the spanner at iteration i: it may be covered either by a different star than the one
it votes for, or by a path of length 2 that is created by edges added to the spanner at iteration i
together with edges added at previous iterations. In each of these cases, we set cost(e) = 0. We first
show the left inequality above.

Lemma 4.1. |H| ≤ 8 ·
∑

e∈E cost(e).

Proof. To prove that |H| ≤ 8
∑

e∈E cost(e), it is enough to show that |H1| ≤ 8
∑

e∈E\H2
cost(e) and

|H2| ≤ 8
∑

e∈H2
cost(e). The second inequality follows since |H2| =

∑
e∈H2

1 =
∑

e∈H2
cost(e). We

next prove the first inequality.
Let Stars be the set of stars added to H1 in the algorithm. It holds that |H1| ≤

∑
S∈Stars |S|,

since each edge of H1 is included in at least one star. Let Sv be a star added to H1 at iteration i,
having density ρ at that iteration. Recall that we add Sv to the spanner since it gets at least |Cv |8
votes from the edges it 2-spans. Denote by V otes(Sv) the set of edges that vote for Sv at iteration i.
For each e ∈ V otes(Sv), we defined cost(e) = 1

ρ , which gives,

∑
e∈V otes(Sv)

cost(e) ≥ 1

ρ
· |Cv|

8
=
|Sv|
|Cv|

· |Cv|
8

=
|Sv|

8
.

Hence, for each S ∈ Stars, |S| ≤ 8 ·
∑

e∈V otes(S) cost(e). For each edge e, there is at most one star
S ∈ Stars such that e ∈ V otes(S), since an edge votes for at most one star at the iteration in which

21

it is covered. In addition, an edge e ∈ V otes(S) is 2-spanned during the algorithm, which means
that e 6∈ H2. Hence, we get

|H1| ≤
∑

S∈Stars
|S| ≤ 8 ·

∑
S∈Stars

∑
e∈V otes(S)

cost(e) ≤ 8 ·
∑

e∈E\H2

cost(e).

This completes the proof of Lemma 4.1.

To bound
∑

e∈E cost(e) from above, let r = m
n , and f = dlog re. We divide the edges of E

to f + 2 subsets {Ej}f+1
j=0 according to their costs, and show that for each j, the sum of costs

of edges in Ej is at most O(|H∗|). Since there are f + 2 = O(log r) subsets, we conclude that∑
e∈E cost(e) ≤ O(log r)|H∗|.
Let E0 = {e : cost(e) = 0} and Ef+1 = H2. Note that all the edges not in E0 and Ef+1 are

edges that were 2-spanned in the algorithm by the candidate star they vote for. We divide these
edges to f subsets as follows. Let E1 = {e 6∈ H2 : 0 < cost(e) ≤ 2

r}, and for 2 ≤ j ≤ f , let

Ej = {e 6∈ H2 : 2j−1

r < cost(e) ≤ 2j

r }. For each edge e, it holds that cost(e) ≤ 1, since the density
of stars added to H1 during the algorithm is at least 1, and since we defined cost(e) = 1 for edges

e ∈ H2. Hence, for each edge e, we have cost(e) ≤ 2f

r , which gives E = ∪f+1
j=0Ef .

Lemma 4.2. For every 0 ≤ j ≤ f + 1,
∑

e∈Ej cost(e) = O(|H∗|).

Proof. For j = 0, the claim holds trivially. For j = 1, it holds that
∑

e∈E1
cost(e) ≤ 2

r · |E| ≤ 2n =
O(|H∗|), where the last equality follows from the fact that any 2-spanner for G has at least n− 1
edges, since G is connected.

For 2 ≤ j ≤ f , let H∗j be the set of edges of a minimum 2-spanner for Ej . For each vertex v, let
S∗j (v) be the full v-star in H∗j . We define Starsj = {S∗j (v)}v∈V . We next show that

∑
e∈Ej cost(e) ≤

9
∑

S∈Starsj |S|. To prove this, we write
∑

e∈Ej cost(e) =
∑

e∈Ej∩Starsj cost(e)+
∑

e∈Ej\Starsj cost(e).

Since cost(e) ≤ 1, we get
∑

e∈Ej∩Starsj cost(e) ≤
∑

S∈Starsj |S|.
We now show that

∑
e∈Ej\Starsj cost(e) ≤ 8

∑
S∈Starsj |S|. Consider a specific star S ∈ Starsj ,

and let (e1, ..., e`) be the edges of Ej 2-spanned by S according to the order in which they were
2-spanned in the algorithm, breaking ties arbitrarily. Note that all the edges in Ej for 1 ≤ j ≤ f are
2-spanned in the algorithm as explained above. The density of S at the beginning of the iteration
in which e1 is 2-spanned is at least `

|S| , since S may 2-span additional edges that are not in Ej .
Since all the candidates that 2-span an edge have the same rounded density because they all have
maximal rounded density in their 2-neighborhood, it holds that the density of the star Sv that
2-spans e1 is at least `

4|S| , as v chooses a star with density at least ρv
4 ≥

`
4|S| . Hence, cost(e1) ≤ 4|S|

` .

This gives, ` ≤ 4|S|
cost(e1) ≤

r
2j−1 4|S|, where the last inequality follows since e1 ∈ Ej . Note that for

each edge e ∈ Ej , cost(e) ≤ 2j

r . Therefore,

∑̀
i=1

cost(ei) ≤
2j

r
` ≤ 2j

r
· r

2j−1
4|S| = 8|S|.

Let CS be the set of edges of Ej 2-spanned by the star S. Since H∗j is a 2-spanner for Ej , every
edge e ∈ Ej \ Starsj is 2-spanned by at least one star S ∈ Starsj . Summing over all the stars in
Starsj gives ∑

e∈Ej\Starsj

cost(e) ≤
∑

S∈Starsj

∑
e∈CS

cost(e) ≤ 8
∑

S∈Starsj

|S|.

22

Note that
∑

S∈Starsj |S| = 2|H∗j |, since each edge of H∗j is included in exactly two stars in Starsj .

In addition |H∗j | ≤ |H∗| since H∗ covers all the edges of E, and in particular all the edges of Ej ,
and H∗j is the minimum 2-spanner of Ej . This gives

∑
e∈Ej cost(e) = O(|H∗|), which completes the

proof for 2 ≤ j ≤ f .
For j = f + 1, we define H∗j and Starsj as before. Let S ∈ Starsj , and let (e1, ..., e`) be the

edges of Ej = H2 that are 2-spanned by S according to the order in which they were added to H2

in the algorithm, breaking ties arbitrarily. It must hold that ` ≤ |S|, as otherwise the density of S
is greater than one at the iteration in which e1 is added to H2, which contradicts the algorithm.
This gives

∑`
i=1 cost(ei) ≤ ` ≤ |S|. Following the same arguments for the case 2 ≤ j ≤ f , we get∑

e∈Ej cost(e) = O(|H∗|), which completes the proof.

Lemmas 4.1 and 4.2 give |H| ≤ 8
∑

e∈E cost(e) ≤ O(log r)|H∗|, which proves the following
claimed approximation ratio.

Lemma 4.3. The approximation ratio of the algorithm is O(log m
n).

4.2.2 Time complexity

We now show that our algorithm completes in O(log n log ∆) rounds, w.h.p. In [43, 60], a potential
function argument is given for analyzing the set cover and minimum dominating set problems that
are addressed. We analyze our algorithm along a similar argument, but our algorithm necessitates a
more intricate analysis, mainly due to the fact that each vertex may be the center of multiple stars
that are added during the algorithm, rather than being chosen only once for a dominating set. The
latter may contain at most n vertices, while for the spanner constructed by our algorithm there
are initially n2∆ possible stars which may constitute it. Nevertheless, we show how to get a time
complexity of O(log n log ∆) rounds for our minimum 2-spanner algorithm, which matches the time
complexity of the above set cover and dominating set algorithms.

The crucial component in proving our small time complexity is showing that as long as the
rounded density of v does not change between iterations, v always chooses a star Sv that is equal to
or contained in the star that it chooses in the previous iteration. As explained in Section 4.1, if
the rounded density of v is the same in iterations i and i+ 1, v tries to choose a star Si+1

v which is
contained in Siv. We show that this is always the case.

The following will be useful in our analysis.

Observation 1. Let x1, x2, ..., xn be non-negative numbers, and let y1, y2, ..., yn be positive numbers,
then

min
i

{
xi
yi

}
≤
∑n

i=1 xi∑n
i=1 yi

≤ max
i

{
xi
yi

}
.

In addition, the inequalities become equalities only if for all j,
xj
yj

= mini

{
xi
yi

}
= maxi

{
xi
yi

}
.

Observation 1 follows from writing
∑n

i=1 xi =
∑n

i=1
xi
yi
· yi. We now prove the following.

Claim 4.4. Let v be a candidate star in iteration i. If ρ̃(v,H i
v) = ρ̃(v,H i+1

v) = ρ, then v chooses a
star contained in Siv in iteration i+ 1.

Proof. Assume to the contrary that there is an iteration i such that ρ̃(v,H i
v) = ρ̃(v,H i+1

v) = ρ, and
there is no star contained in Siv with density at least ρ

4 with respect to H i+1
v . Let i0 be the first

iteration in which ρ̃(v,H i0
v) = ρ, and let i′ be the first iteration after i0 where ρ̃(v,H i′

v) = ρ and
there is no star contained in Si

′−1
v with density at least ρ

4 with respect to H i′
v . Let S∗ be the densest

23

v-star with respect to H i′
v . Then ρ(S∗, H i′

v) ≥ ρ
2 since ρ̃(v,H i′

v) = ρ. Let S0 be the full v-star, and
let (S1, S2, ..., Sk) be the sequence of stars chosen by v between iteration i0 and iteration i′ − 1 in
the order in which they were chosen. For all 0 ≤ j ≤ k, it holds that Sj ⊆ Sj−1, since i′ is the first
iteration in which this does not hold.

We next show by induction that S∗ ⊆ Sj for all 0 ≤ j ≤ k. In particular this will give S∗ ⊆ Sk.
Hence, at iteration i′ there is a star contained in Si

′−1
v = Sk with density at least ρ

4 , in contradiction
to the definition of i′.

For j = 0, the claim holds trivially since S0 is the full v-star.
Assume that S∗ ⊆ Sj−1, and assume to the contrary that S∗ * Sj . Note that both Sj and S∗

are contained in Sj−1 by the induction hypothesis. Let j′ be the iteration in which Sj is chosen.
Since S∗ * Sj , we can write S∗ = S1 ∪ S2 where S1 = S∗ ∩ Sj and S2 = S∗ \ Sj . It holds that

ρ(S∗, Hj′
v) ≥ ρ(S∗, H i′

v) ≥ ρ
2 . We can write ρ(S∗, H i′

v) = |C1|+|C2|+|C12|
|S1|+|S2| where C1 are edges of H i′

v

2-spanned by S1, C2 are edges 2-spanned by S2, and C12 are edges 2-spanned by S∗ with one
endpoint in S1 and one endpoint in S2. Since S∗ is the densest star with respect to H i′

v it follows

that |C2|+|C12|
|S2| ≥ ρ(S∗, H i′

v) ≥ ρ
2 , as otherwise by Observation 1, |C1|

|S1| > ρ(S∗, H i′
v), which shows that

S1 is a denser star than S∗. This shows that at least one of |C2|
|S2| and |C12|

|S2| is at least ρ
4 .

In the first case, ρ(S2, H
j′
v) ≥ ρ(S2, H

i′
v) = |C2|

|S2| ≥
ρ
4 , which shows that S2 is a disjoint star to

Sj with density at least ρ
4 that is contained in Sj−1. In the second case, |C12|

|S2| ≥
ρ
4 . For an edge

e = {v, u} ∈ S2, denote by Ce12 all the edges of C12 with endpoint u. It follows that there is an
edge e ∈ S2 such that |Ce12| ≥

ρ
4 . By Observation 1 and since the density of Sj is at least ρ

4 we

get ρ(Sj ∪ {e}) ≥
|Cj |+|Ce12|
|Sj |+1 ≥ ρ

4 , where Cj are the edges 2-spanned by Sj . Either way we get a

contradiction to the definition of Sj . This completes the proof.

The rest of the analysis is based on a potential function argument which is described in [43, 60]
for the set cover and minimum dominating set problems. Let ρ = maxv∈V ρv at the beginning of
iteration i. We define the potential function φ =

∑
v:ρv=ρ |Cv|, where Cv is the set of edges of Hv

that are 2-spanned by the star Sv which v chooses at iteration i. Note that the potential function
may increase between iterations if the value of ρ changes. However, since we round the values ρv
to powers of two, there may be only O(log ∆) different values for ρ. The obstacle is that φ may
increase between iterations even if the value of ρ does not change, because a vertex v might change
the stars Sv in different iterations. However, by Claim 4.4, as long as the rounded density of the
vertex remains the same among iterations, it always chooses a star that is contained in the star that
it chooses in the previous iteration. Hence, the size of the set of edges Cv can only decrease between
the end of the last iteration to the beginning of the next one. It follows that as long as ρ does not
change, the value of φ can only decrease between iterations. Our goal is to show that if the value of
ρ does not change between iterations, the potential function φ decreases by a multiplicative factor
between iterations in expectation. Having this, we get a time complexity of O(log n log ∆) rounds
w.h.p.

The following lemma shows that if the value of ρ does not change between iterations, the
potential function φ decreases by a multiplicative factor between iterations in expectation. The
proof follows the lines of the proofs in [43,60], and is included here for completeness.

We say that an iteration is legal if the random numbers rv chosen by the candidates in this
iteration are different.

Lemma 4.5. If φ and φ′ are the potentials at the beginning and end of a legal iteration, then
E[φ′] ≤ c · φ for some positive constant c < 1.

24

In order to prove Lemma 4.5 we need the following definitions. Let s(e) be the number of
candidates that 2-span the edge e. For a candidate v, we sort the edges in Cv according to s(e) in
non-increasing order. Let T (v) and B(v) be the sets of the first d|Cv|/2e edges, and the last d|Cv|/2e
edges in the sorted order, respectively. Indeed, if |Cv| is odd, the sets T (v) and B(v) share an edge.

For a pair (Sv, e), where Sv is a candidate star that 2-spans e, we say that (Sv, e) is good if
e ∈ T (v). We next show that if e ∈ T (v) chooses Sv in a legal iteration, then the star Sv is added
to the spanner with constant probability.

Claim 4.6. Let i be a legal iteration. If e, e′ are both 2-spanned by S in iteration i, and s(e) ≥ s(e′),
then Pr[e′ chooses S|e chooses S] ≥ 1

2 .

Proof. Let Ne, Ne′ , Nb be the number of candidates that 2-span e but not e′, e′ but not e, and both
e and e′, respectively.

Pr[e′ chooses S|e chooses S] =
Pr[e and e′ choose S]

Pr[e chooses S]
=

1
Ne+Ne′+Nb

1
Ne+Nb

=
|Ne|+ |Nb|

|Ne|+ |Ne′ |+ |Nb|
.

It holds that Ne ≥ Ne′ since s(e) ≥ s(e′). This gives,

Pr[e′ chooses S|e chooses S] =
|Ne|+ |Nb|

|Ne|+ |Ne′ |+ |Nb|
≥ |Ne|+ |Nb|

2|Ne|+ |Nb|
≥ 1

2
.

Claim 4.7. If (Sv, e) is a good pair in a legal iteration i, then Pr[Sv is chosen|e chooses Sv] ≥ 1
3 .

Proof. Assume that e chooses Sv. Denote by X the number of edges in B(v) that choose Sv, and
let X ′ = |B(v)| − X. Note that e ∈ T (v) since (Sv, e) is good, therefore s(e) ≥ s(e′) for any
edge e′ ∈ B(v). By Claim 4.6, any edge e′ ∈ B(v) chooses Sv with probability at least 1

2 . Hence,

E[X] ≥ |Bv |2 . Equivalently, E[X ′] ≤ |Bv |2 . Using Markov’s inequality we get

Pr[X <
|Bv|

4
] = Pr[X ′ >

3

4
|Bv|] ≤ Pr[X ′ ≥

3

2
E[X ′]] ≤ 2

3
.

Hence, we get Pr[X ≥ |Bv |4] ≥ 1
3 . Since |Bv| ≥ |Cv |2 , it holds that X ≥ |Cv |8 with probability at least

1
3 . In this case, at least |Cv |8 edges choose Sv, and it is added to the spanner. This completes the
proof.

We can now bound the value of the potential function, by proving Lemma 4.5.

Proof of Lemma 4.5. Let φ and φ′ be the values of the potential function at the beginning and end
of a legal iteration i. It holds that φ =

∑
v:ρv=ρ |Cv| =

∑
(Sv ,e)

1 =
∑

e s(e), where we sum over all
the edges 2-spanned by candidates having rounded density ρ, and over all the pairs (Sv, e) where
v is a candidate having rounded density ρ that 2-spans e. Note that the rounded density of all
the candidates that 2-span an edge e is the same, since they have maximal rounded density in
their 2-neighborhood. If the edge e chooses the star Sv, and the star Sv is added to the spanner, φ
decreases by s(e). We ascribe this decrease to the pair (Sv, e). Since e chooses only one candidate,

25

any decrease in φ is ascribed only to one pair. Hence, we get

E[φ− φ′] ≥
∑

(Sv ,e)

Pr[e chooses Sv, Sv is chosen] · s(e)

≥
∑

(Sv ,e) is good

Pr[e chooses Sv] · Pr[Sv is chosen|e chooses Sv] · s(e)

≥
∑

(Sv ,e) is good

1

s(e)
· 1

3
· s(e) =

1

3

∑
(Sv ,e) is good

1.

Since at least half of the pairs are good, we get E[φ− φ′] ≥ 1
6φ, or equivalently E[φ′] ≤ 5

6φ, which
completes the proof.

In conclusion, we get the following.

Lemma 4.8. The time complexity of the algorithm is O(log n log ∆) rounds w.h.p.

Proof. It holds that the maximum density of a star of size k is at most O(k2) and the algorithm
terminates when the maximum density is at most 1. Since densities are rounded to powers of 2,
ρ = maxv∈V ρv may obtain at most O(log ∆) values, where ∆ is the maximum degree. In addition,
by Lemma 4.5, if ρ has the same value at iterations j and j + 1, and j is a legal iteration, then the
value of φ decreases between these iterations by a factor of at least 1/c in expectation. Since the
random numbers rv are chosen from {1, ..., n4}, they are different w.h.p, giving that if ρ has the same
value in any two consecutive iterations then the value of φ decreases between these iterations by a
constant factor in expectation. Since φ ≤ n3, after O(log (n3)) = O(log n) iterations in expectation,
the value of ρ must decrease. This shows that the time complexity is O(log n log ∆) rounds in
expectation. A Chernoff bound then gives that this also holds w.h.p.

Lemma 4.3 and Lemma 4.8 complete the proof of Theorem 1.3.

4.3 Additional 2-spanner approximations

Here we show that the algorithm extends easily to the following variants: the directed 2-spanner
problem, the weighted 2-spanner problem and the client-server 2-spanner problem. We describe the
differences in the algorithm and analysis in each of these cases.

4.3.1 Directed 2-spanner approximation

In the directed case we consider directed stars. A v-star 2-spans a directed edge (u,w) if it includes
the directed edges (u, v), (v, w). A v-star may include both ingoing and outgoing edges of v. The
definition of densities follows the definition in the undirected case.

In order to give an algorithm that requires only polynomial local computations for the directed
variant, we show how to approximate the rounded density and the densest star in the directed case.
The rest of the analysis follows the undirected case, and gives the following.

Theorem 4.9. There is a distributed algorithm for the directed 2-spanner problem in the Local
model that guarantees an approximation ratio of O(log m

n), and takes O(log n log ∆) rounds w.h.p.

To compute an approximation for the densest (directed) v-star, we look at all the edges between
neighbors of v, and remove all the directed edges (u,w) that cannot be 2-spanned by a v-star (such
an edge can be 2-spanned by a v-star, only if the two directed edges (u, v), (v, w) exist in the graph).

26

Now we ignore the directions of edges and compute the densest v-star as in the undirected case. Let
Sv be the star computed. Let ρU = ρU (Sv) be the undirected density of v (when ignoring edges that
cannot be 2-spanned by a directed path), and let ρD be the directed density of v. We will show that
ρU
2 ≤ ρD ≤ ρU , and that ρU

2 ≤ ρD(Sv), which shows that Sv gives a 2-approximation for the densest
directed v-star. When computing ρD(Sv) we replace each undirected edge {v, u} in Sv by the two
directed edges (v, u), (u, v) if both of them exist in the graph, or by the one that exists otherwise.

Claim 4.10. ρU
2 ≤ ρD(Sv).

Proof. Let Cv be the edges 2-spanned by Sv in the undirected case. Since Sv is the densest
undirected v-star, ρU = ρU (Sv) = |Cv |

|Sv | . The directed star Sv 2-spans all the edges in Cv (some of

them may be counted twice in the directed case, which only increases the density), and it contains
at most twice edges because we replaced each undirected edge by at most two edges, which gives
ρD(Sv) ≥ |Cv |

2|Sv | = ρU
2 .

Claim 4.11. ρU
2 ≤ ρD ≤ ρU .

Proof. By Claim 4.10, ρU
2 ≤ ρD(Sv) ≤ ρD. We next show ρD ≤ ρU . Let SD be the densest directed

v-star, and let CD be the directed edges 2-spanned by SD. We write CD = C1 ∪ C2 where an edge
(u,w) ∈ CD is in C2 if and only if the edge (w, u) is also in CD. We write SD = S1 ∪ S2 where an
edge (v, u) ∈ SD is in S2 if and only if the edge (u, v) is also in SD. Now we look at the undirected
density of SD (if we have two directed edges (w, u), (u,w) they are replaced by one undirected edge).

ρU (SD) =
|C1|+ |C2|

2

|S1|+ |S2|
2

=
|C1|

2 + |C1|+|C2|
2

|S1|
2 + |S1|+|S2|

2

≥ min

{
|C1|
|S1|

,
|C1|+ |C2|
|S1|+ |S2|

}
= min

{
|C1|
|S1|

, ρD

}
,

where the second inequality follows from Observation 1, and the last equality follows since SD is the
densest directed v-star, and its directed density equals |C1|+|C2|

|S1|+|S2| .

We next show that |C1|
|S1| ≥ ρD. Since ρD = |C1|+|C2|

|S1|+|S2| , if |C1|
|S1| < ρD, we get by Observation 1

that |C2|
|S2| > ρD. Note that the directed star S2 2-spans all the directed edges in C2 (and it may

2-span additional edges), because all the edges in C2 appear in both directions, which means
that the paths that 2-span them also appear in both directions in SD, which means that all
the edges of these paths are in S2. This shows that S2 is a directed star with density greater
than ρD, in contradiction to the definition of ρD. In conclusion |C1|

|S1| ≥ ρD, which shows that

ρU ≥ ρU (SD) ≥ min
{
|C1|
|S1| , ρD

}
= ρD.

Claims 4.10 and 4.11 show that we can approximate the directed density and the densest
directed star using polynomial local computations. Having this, we can adapt the algorithm to the
directed 2-spanner problem. We approximate the directed density of v with ρD(Sv), which gives a
2-approximation. Then, we round the value of it to the closest power of two that is greater than
ρD(Sv), and denote the rounded value by ρv, this is a 2-approximation to the rounded density of
v.7 While the value of ρv remains the same we choose stars similarly to the undirected case, the
only difference is that when we look for a dense disjoint star, we do not necessarily find the densest
directed disjoint star but a 2-approximation for it. For the analysis to work, we need to look for

7Since we compute an approximation to the density, the value of ρv may increase between iterations. To avoid
such cases, we always define it to be the minimum between the value in the last iteration and the value computed in
the current iteration. This is always a 2-approximation for the rounded density since the density can only decrease
between iterations.

27

disjoint stars with density at least ρv
8 and not ρv

4 as in the undirected case, and we add edges or
disjoint stars to the star S we choose as long as the density of S is at least ρv

8 . The rest of the
analysis is similar, the constants change sightly since we choose stars that are less dense, and work
with an approximation to the density.

4.3.2 Weighted 2-spanner approximation

In the weighted case, the cost of a spanner is w(H), rather than |H| as in the unweighted case.
This requires several changes in the algorithm and the analysis. Let W be the ratio between the
maximum and minimum positive weights of an edge. We show the following.

Theorem 4.12. There is a distributed algorithm for the weighted 2-spanner problem in the Local
model that guarantees an approximation ratio of O(log ∆), and takes O(log n log (∆W)) rounds
w.h.p.

We next describe the differences in the weighted case. For a star S, we define w(S) =
∑

e∈S w(e).

If w(S) 6= 0, we define ρ(S,H) = |CS |
w(S) , where CS is the set of edges of H 2-spanned by the star S. If

w(S) = 0, we define ρ(S,H) = 0. We emphasize that we take the number of potentially 2-spanned
edges and not the sum of their weights, since, intuitively, all edges need to be covered (as opposed
to taking the sum of weights of the edges of the star, which is due to the need to optimize the cost
of the spanner).

In the beginning of the algorithm we add all the edges of weight 0 to the spanner. By doing
this, all the edges covered by stars S of weight 0 are already covered. Hence, the algorithm should
only consider stars for which w(S) > 0. When we round the densities to the closest power of
two, we include also negative powers of two, since the density of a star may be smaller than 1,
depending on the weights. A slight difference is that now a vertex terminates if the density in its
2-neighborhood is at most 1

wmax
where wmax is the maximal weight of an edge adjacent to a vertex

in its 2-neighborhood. In such case, it adds to the spanner all the edges adjacent to it that are still
not covered. We denote by H2 all these edges. The rest of the algorithm is the same, according to
the new definition of ρ. As was observed in the sequential algorithm for the weighted case [45], we
can find the densest star in the weighted case using flow techniques as well.

We next describe the differences in the analysis. The cost of the solution obtained by the
algorithm is now w(H), and the cost of an optimal solution is w(H∗). We give to edges e 6∈ H2 a
cost as in the unweighted case, but depending on the new definition of the density ρ. In addition,
for edges e ∈ H2 we define cost(e) = w(e). Our goal is to show that

w(H) ≤ 8
∑
e∈E

cost(e) ≤ O(log ∆)w(H∗).

The proof that w(H) ≤ 8
∑

e∈E cost(e) is the same as the proof of Lemma 4.1 with minor
changes. Note that w(H2) =

∑
e∈H2

cost(e) by definition. Now w(H1) ≤
∑

S∈Starsw(S), for
the same reason as in the unweighted case. In addition, the new definition of ρ, gives that
w(S) ≤ 8

∑
e∈V otes(S) cost(e), and the rest of the proof follows.

However, the difference from the unweighted case is that we can no longer show an approximation
ratio of O(log m

n). This is because the density of stars added in the algorithm may now be smaller
than 1, and because the weight of an optimal 2-spanner may be smaller than n− 1. Still, we show
an approximation ratio of O(log ∆). Some elements of our analysis have similar analogues in the
classic analysis of the greedy set cover algorithm [16,44,53]. First, instead of Lemma 4.2 we show
the following.

28

Lemma 4.13.
∑

e∈E cost(e) ≤ O(log ∆)w(H∗).

Proof. First, we show that
∑

e∈E′ cost(e) ≤ O(log ∆)w(H∗), where E′ = E \ (H2 ∩ E0) and E0 are
edges with cost 0. Edges in E0 clearly do not affect

∑
e∈E cost(e). All the edges not in E0 or H2

are 2-spanned in the algorithm, as in the unweighted case.
For each vertex v, let S∗(v) be the full v-star in H∗. We define Stars∗ = {S∗(v)}v∈V . Consider

a star S ∈ Stars∗ and let (e1, ..., e`) be the sequence of edges 2-spanned by S according to the order
in which they are 2-spanned in the algorithm. Assume first that w(S) 6= 0. The density of S at the
beginning of the iteration in which e1 is 2-spanned is `

w(S) . All the candidates that 2-span e1 have
the same rounded density since they all have maximal rounded density in their 2-neighborhood. In
particular, the density of the star that 2-spans e1 is at least `

4w(S) , as v chooses a star with density

at least ρv
4 ≥

`
4w(S) . Hence, cost(e1) ≤ 4w(S)

` . Similarly, the density of S at the beginning of the

iteration in which ej is 2-spanned is at least `−j+1
w(S) , which gives cost(ej) ≤ 4w(S)

`−j+1 . This gives,

∑̀
j=1

cost(ej) ≤ 4w(S) ·
∑̀
j=1

1

`− j + 1
= O(log `)w(S) = O(log ∆)w(S).

The last equality is because the number of edges ` 2-spanned by a star is at most ∆2.
For a star S ∈ Stars∗ such that w(S) = 0, note that cost(e) = 0 for all the edges 2-spanned by

S, since they are all covered at the beginning of the algorithm without voting for any candidate.
Hence, we get in this case

∑`
j=1 cost(ej) = 0 = O(log ∆)w(S).

We now write
∑

e∈E′ cost(e) =
∑

e∈E′∩Stars∗ cost(e) +
∑

e∈E′\Stars∗ cost(e). It holds that∑
e∈E′∩Stars∗ cost(e) ≤

∑
S∈Stars∗ w(S). We next bound

∑
e∈E′\Stars∗ cost(e).

Let CS be the set of edges 2-spanned by the star S. Since H∗ is a 2-spanner, every edge
e ∈ E′ \ Stars∗ is 2-spanned by at least one star S ∈ Stars∗. Summing over all the stars in Stars∗

we get, ∑
e∈E′\Stars∗

cost(e) ≤
∑

S∈Stars∗

∑
e∈CS

cost(e) ≤ O(log ∆)
∑

S∈Stars∗
w(S).

In conclusion,
∑

e∈E′ cost(e) = O(log ∆)
∑

S∈Stars∗ w(S).
It holds that

∑
S∈Stars∗ w(S) = 2w(H∗) since each edge of H∗ is included in exactly two stars.

This gives,
∑

e∈E′ cost(e) = O(log ∆)w(H∗).
To complete the proof, we bound

∑
e∈H2

cost(e). Let H∗2 be an optimal spanner for H2. We
define Stars∗ as before, with respect to H∗2 . Let S ∈ Stars∗ and let (e1, ..., e`) be the sequence of
edges of H2 2-spanned by S according to the order in which they are added to H2 in the algorithm.
From the definition of H2 it must hold that `

w(S) ≤
1

wmax
where wmax is the maximal weight in

the 2-neighborhood of e1 (which in particular contains the star S and all the edges 2-spanned by
it), as otherwise e1 was not added to H2. This gives

∑`
i=1 cost(e) =

∑`
i=1w(e) ≤ ` · wmax ≤ w(S).

Following the same arguments as before, this gives
∑

e∈H2
cost(e) ≤ O(w(H∗2)). Since |H∗2 | ≤ |H∗|,

we get
∑

e∈E cost(e) =
∑

e∈E′ cost(e) +
∑

e∈H2
cost(e) = O(log ∆)w(H∗). This completes the

proof.

In conclusion, we get w(H) ≤ 8
∑

e∈E cost(e) ≤ O(log ∆)w(H∗), which completes the proof of
the O(log ∆)-approximation ratio, giving the following lemma.

Lemma 4.14. The approximation ratio of the algorithm is O(log ∆).

To prove the round complexity, there are minor changes in the proof of Claim 4.4. First, we
replace the size of a star |S| by its cost w(S) in order to work with the new definition of ρ. Note

29

that adding edges of weight 0 to a star can only increase its density, which shows that all the v-stars
chosen in the algorithm, and in particular the star Sj , contain all the edges of weight 0 adjacent
to v. This shows that the star S2 = S∗ \ Sj includes only edges with positive weight. The proof
carries over if w(S1) 6= 0. If w(S1) = 0, then all the edges 2-spanned by S1 are already 2-spanned at

the beginning of the algorithm which shows ρ
2 ≤ ρ(S∗, H i′

v) = |C1|+|C2|+|C12|
w(S1)+w(S2) = |C2|+|C12|

w(S2) , as needed.
In addition, in the second case of the proof instead of showing that there is an edge e ∈ S2 with

|Ce12| ≥
ρ
4 , we show that

|Ce12|
w(e) ≥

ρ
4 .

The number of possible densities depends on the weights, in the following way. Let Wmax,Wmin

be the maximum and the minimum positive weights of an edge. Recall that W = Wmax
Wmin

. The

maximum density of a star is at most ∆2

Wmin
since a star 2-spans at most ∆2 edges. In addition, the

algorithm terminates when the maximum density is 1
Wmax

. Since we round the densities to powers
of two, there may at most O(log ∆W) different non-zero values for the densities. The rest of the
proof is exactly the same as in the unweighted case.

4.3.3 Client-server 2-spanner approximation

Recall that in the Client-Server 2-spanner problem, the edges of the graph are divided to two types:
clients and servers, and the goal is to cover all the client edges with server edges.

Let C be the set of client edges, let V (C) be all the vertices that touch client edges, and let
∆S be the maximum degree in the subgraph of G that includes all the server edges. We show the
following.

Theorem 4.15. There is a distributed algorithm for the client-server 2-spanner problem in the
Local model that guarantees an approximation ratio of O(min{log |C|

|V (C)| , log ∆S}), and takes

O(log n log ∆S) rounds w.h.p.

There are slight differences in the algorithm. First, throughout the algorithm and analysis,
we consider only stars composed of server edges, and for each such star we define ρ(S,H) = |CS |

|S| ,
where CS is the set of client edges of H 2-spanned by the star S. The set of edges Hv that a vertex
v maintains consists only of client edges 2-spanned by the star that includes all the server edges
adjacent to v. Now v terminates if the maximal density in its 2-neighborhood is below 1

2 and not at
most 1 as before (since not all the client edges are server edges, perhaps the best way to cover a
client edge is to take a path of length 2 that covers it, the density of the corresponding star is 1

2).
Now cost(e) ≤ 2 which changes slightly the constants in the analysis. When v terminates, it adds
an uncovered edge e to the spanner only if e is both a client and a server edge. These edges are the
edges of H2.

Note that since not all the edges are server edges, there may be client edges that cannot be
covered by server edges, in which case there is no solution to the problem, and our algorithm covers
only all the edges that may be covered by server edges. When we analyze the algorithm, we assume
that there is a solution to the problem, otherwise H∗ is not defined. For other cases, we can restrict
the client edges to be only edges that can be covered by server edges, and get a new problem that
has an optimal solution H∗, and the approximation ratio we get is w.r.t to H∗.

For the analysis, there are slight differences as follows. First, we give costs only to client edges,
since these are the only edges we need to cover. We give the costs as in the minimum 2-spanner
algorithm. In particular, cost(e) = 1 for e ∈ H2. Our goal is to show that

|H| ≤ 8
∑
e∈C

cost(e) ≤ O
(

log
|C|
|V (C)|

)
|H∗|.

30

The proof that |H| ≤ 8
∑

e∈C cost(e) is exactly the same as the proof of Lemma 4.1. We next

show that
∑

e∈C cost(e) ≤ O
(

log |C|
|V (C)|

)
|H∗|. Let r = |C|

|V (C)| , and f = dlog re. We define the

sets Ej according to the new definition of r. Let E1 = {e ∈ C \ H2 : 0 < cost(e) ≤ 2
r}, and for

2 ≤ j ≤ f + 1, let Ej = {e ∈ C \H2 : 2j−1

r < cost(e) ≤ 2j

r }. We define E0 as before, and Ef+2 = H2.
Since the stars added to H1 in the algorithm have density at least 1

2 , then cost(e) ≤ 2 for each edge

e ∈ C. This gives, C = ∪f+2
j=0Ej . We next show the following.

Lemma 4.16. For every 0 ≤ j ≤ f + 2,
∑

e∈Ej cost(e) = O(|H∗|).

Proof. For j = 0, 2 ≤ j ≤ f + 1, and j = f + 2 the proof follows the cases j = 0, 2 ≤ j ≤ f and
j = f + 1 in the proof of Lemma 4.2. For j = 1, it holds that

∑
e∈E1

cost(e) ≤ 2
r · |C| ≤ 2|V (C)| =

O(|H∗|). In the first inequality, we use the fact that we give costs only to edges of C. The last

equality follows from the fact that H∗ includes at least |V (C)|
4 edges, which we prove next.

Let GC = (V (C), C), and let C1, ..., C` be the connected components of GC . Note that each
connected component of GC includes at least two vertices (since it includes at least one edge of

C), which means that the number ` of connected components is at most |V (C)|
2 . For a connected

component Ci, denote by ni the number of vertices in Ci, so that |V (C)| =
∑`

i=1 ni. For a connected
component Ci, denote by Hi all the edges of H∗ that cover the edges in Ci. It holds that |Hi| ≥ ni−1
since Ci is connected, and the edges of Hi need to connect all the vertices in Ci, otherwise there
is an edge in Ci which is not covered in H∗. In addition, for each edge e ∈ Hi, at least one of the
vertices of e is in Ci, otherwise it cannot cover an edge in Ci. It follows that an edge e ∈ H∗ can be
in at most two different subsets Hi, Hj . This gives

|H∗| ≥ 1

2

∑̀
i=1

|Hi| ≥
1

2

∑̀
i=1

(ni − 1) =
1

2

∑̀
i=1

ni −
1

2
` ≥ |V (C)|

2
− |V (C)|

4
=
|V (C)|

4
,

which completes the proof.

By Lemma 4.16, we get
∑

e∈C cost(e) =
∑f+2

j=0

∑
e∈Ej cost(e) = O(log r)|H∗|. Since |H| ≤

8 ·
∑

e∈C cost(e), we have |H| ≤ 8
∑

e∈C cost(e) ≤ O(log r)|H∗|, which shows an approximation ratio

of O(log |C|
|V (C)|).

In addition, we can show that
∑

e∈C cost(e) ≤ O(log ∆S), following the proof of Lemma 4.13,
by replacing w(S) and w(H) by |S| and |H|. This shows an approximation ratio of O(log ∆S) to
the problem.

Note that in the minimum 2-spanner problem, mn is half of the average degree in G, and ∆ is the
maximum degree in G, hence an approximation ratio of O(log m

n) is better than O(log ∆). However,

in the client-server variant, it may be the case that ∆S ≤ |C|
|V (C)| depending on the client and server

edges in G. The time analysis is the same as in the minimum 2-spanner problem. Note that there
may be at most O(log ∆S) different values for ρ because we consider only stars composed of server
edges. This completes the proof of Theorem 4.15.

5 Distributed approximation for MDS

In this section, we show that our algorithm can be modified to give an efficient algorithm for the
minimum dominating set (MDS) problem, guaranteeing an approximation ratio of O(log ∆). In the
MDS problem the goal is to find a minimum set of vertices D such that each vertex is either in D
or has a neighbor in D. Our algorithm for MDS has the same structure of the algorithm of Jia et

31

al. [43], but it differs from it in the mechanism for symmetry breaking. Our approach guarantees
an approximation ratio of O(log ∆), where in [43] the O(log ∆)-approximation ratio holds only in
expectation. The following states our results for MDS.

Theorem 5.1. There is a distributed algorithm for the minimum dominating set problem in the
Congest model that guarantees an approximation ratio of O(log ∆), and takes O(log n log ∆) rounds
w.h.p.

For MDS, we define the star Sv centered at the vertex v as the set of vertices that contains v
and all of its neighbors. Note that there is only one star centered at each vertex, which simplifies
both the algorithm and its analysis. The density of a star S with respect to a subset of vertices U ,
denoted by ρ(S,U), is defined as |S ∩ U |. The density of a vertex v with respect to U , denoted by
ρ(v, U), is defined as |Sv ∩U |. The definition of the rounded density is the same as for our algorithm
for the minimum 2-spanner problem.

A vertex v maintains a set Uv that contains all the vertices in Sv that are still not covered by
the vertices that have already been added to the dominating set, where a vertex is covered by a set
if it is in that set or has a neighbor in that set. Our algorithm proceeds in iterations, where in each
iteration the following is computed:

1. Each vertex v computes its rounded density ρv = ρ̃(v, Uv), and sends it to its 2-neighborhood.

2. Each vertex v such that ρv ≥ ρu for each u in its 2-neighborhood is a candidate. Vertex v
informs its neighbors that it is a candidate. Let Cv = Sv ∩ Uv.

3. Each candidate v chooses a random number rv ∈ {1, ..., n4} and sends it to its neighbors.

4. Each uncovered vertex that is covered by at least one of the candidates, votes for the first
candidate that covers it according to the order of the values rv. If there is more than one
candidate with the same minimum value, it votes for the one with the minimum ID.

5. If v receives at least |Cv |8 votes from vertices it covers then it is added to the dominating set.

6. Each vertex updates the set Uv by removing from it vertices that are now covered. If Uv = ∅,
v outputs 1 if and only if it was added to the dominating set in the previous step.

A crucial difference from our spanner approximation algorithm is that the densities are now
based on the number of uncovered neighbors of v, and not the number of uncovered edges that
can be potentially covered by a star. For this reason, all the computations in the algorithm can be
implemented efficiently in the Congest model.

The analysis of our MDS algorithm follows the same lines as the analysis of our minimum
2-spanner algorithm. We denote by D the dominating set produced by the algorithm, and by D∗

a minimum dominating set. We assign each vertex v with a value cost(v), which equals 1
ρ if v is

covered for the first time by a candidate having density ρ that v votes for, and otherwise, cost(v) = 0.
We show that |D| ≤ 8

∑
v∈V cost(v) ≤ O(log ∆)|D∗|, which implies our claimed approximation

ratio.

Lemma 5.2. |D| ≤ 8 ·
∑

u∈V cost(u).

Proof. The proof is similar to the proof of Lemma 4.1. For a vertex v ∈ D we denote by V otes(v)

the vertices that vote for v. If v is added to D then it holds that at least |Cv |8 vertices vote

32

for it. The cost of each of these vertices is 1
ρ , where ρ is the density of v, which is |Cv|, by

definition. Hence, for each vertex v ∈ D, it holds that
∑

u∈V otes(v) cost(u) ≥ 1
ρ ·
|Cv |

8 = 1
8 . Since

each vertex u is in at most one set V otes(v), summing over all the vertices in D gives that
|D| ≤ 8 ·

∑
v∈D

∑
u∈V otes(v) cost(u) ≤ 8 ·

∑
u∈V cost(u).

The proof that
∑

v∈V cost(v) ≤ O(log ∆)|D∗| is similar to the proof of Lemma 4.13, where
Stars∗ is replaced by D∗, edges are replaced by vertices, and w(S) is replaced by 1 (note that the
equality

∑
S∈Stars∗ w(S) = 2w(H∗) is replaced by

∑
v∈D∗ 1 = |D∗|). Together with Lemma 5.2, this

proves the approximation ratio of O(log ∆).
For the time analysis, the main difference is that for each vertex v there is only one star Sv,

which simplifies the proof (Claim 4.4 is no longer required). Let ρ = maxv∈V ρv at the beginning of
iteration i. We define the potential function φ =

∑
v:ρv=ρ |Cv|. If the value of ρ does not change

between iterations, the value of φ can only decrease between iterations. By the definition of the
densities, the density of a vertex v is a at most |Sv| which is at most ∆ + 1. Since we round the
densities there may be at most O(log ∆) different values for ρ. Following the same analysis as in
the analysis of our minimum 2-spanner algorithm (with the difference that edges are replaced by
vertices, and a candidate is a vertex and not a star) we can show that if the value of ρ does not
change between iterations, then the potential function φ decreases by a multiplicative factor between
iterations in expectation. This gives a time complexity of O(log n log ∆) rounds w.h.p. Together
with the approximation ratio, this proves Theorem 5.1.

6 Distributed (1 + ε)-approximation for spanner problems

In this section, we show distributed (1+ε)-approximation algorithms for spanner problems, following
the framework of a recent algorithm for covering problems [39] (see Section 7).8 In a nutshell, the
vertices invoke a network decomposition algorithm on the graph Gr, for a value of r = O(log n/ε)
that can be computed by all vertices locally, given ε and a polynomial bound on n. This decomposes
the graph into clusters of logarithmic diameter, colored by a logarithmic number of colors. Finally,
by increasing order of colors, the vertices of each color select edges for the spanner. We show that
indeed clusters of the same color can make their choices in parallel, and that the method of choosing
edges to the spanner results in a (1 + ε) approximation factor, giving the following.

Theorem 1.2. There is a randomized algorithm with complexity O(poly(log n/ε)) in the Local
model that computes a (1 + ε)-approximation of the minimum k-spanner w.h.p, where k is a constant.

Proof. We start by describing a sequential (1 + ε)-approximation algorithm, and then explain how
to implement it in the Local model using network decomposition. In the algorithm, the vertices
start adding edges to the spanner H, which is initialized to be empty, while keeping track of all the
edges covered by edges of H. At the beginning, all the edges are uncovered. To describe how this is
done, we need the following notation. For a given integer d, denote by Bd(v) the subgraph of all the
vertices within distance at most d from v and all the edges between them. For a vertex v and d ≥ 1,
let g(v, d) be the size of an optimal spanner for all of the uncovered edges in Bd(v) (notice that the
spanner can use both covered or uncovered edges of the whole graph G).

We process the vertices according to a given order v1, v2, ..., vn. In step i, we look for the smallest
radius ri such that g(vi, ri + 2k) ≤ (1 + ε)g(vi, ri). Since an optimal spanner has size at most n2,
increasing the radius without the condition being met can only happen at most ri = O(log n/ε)
times. We add to H an optimal spanner for all the uncovered edges in Bri+2k(vi), and mark all

8The presentation of the framework in [39] is slightly different and goes through an intermediate SLOCAL model.

33

the edges covered by the new edges of H as covered. In particular, all the edges of Bri+2k(vi) are
covered after this step. Note that an optimal spanner for Bri+2k(vi) is contained in Bri+3k(vi),
which shows that step i depends only on a polylogarithmic neighborhood around vi.

We next prove the approximation ratio of the algorithm. Denote by Ei all the edges of Bri(vi)
that are uncovered before step i. Since all the edges of Bri+2k(vi) are covered after step i, it follows
that Ei and Ej are at distance at least 2k + 1 for i 6= j. Let H∗ be an optimal spanner, and let
H∗i be the minimum set of edges in H∗ that covers Ei. By the definition of a k-spanner, H∗i is
contained in Bri+k(vi), which shows that the subsets H∗i are disjoint. In step i, we added to H at
most (1 + ε)g(vi, ri) ≤ (1 + ε)|H∗i | edges, where the inequality follows since g(vi, ri) is the size of an
optimal spanner for Ei where H∗i is a spanner for Ei. Since ∪ni=1H

∗
i ⊆ H∗ and the subsets H∗i are

disjoint, summing over all i gives |H| ≤ (1 + ε)|H∗|, which completes the approximation ratio proof.
We now show how to implement the algorithm in the Local model (see also Proposition 3.2

in [38]). Let r = O(log n/ε) be such that r > ri+ 4k for all i, and consider the graph Gr on the same
set of vertices, where two vertices are connected if they are at distance at most r in the network
graph G. Notice that in the Local model, any algorithm on Gr can be simulated by the vertices
of G with an overhead of r rounds. The vertices invoke the randomized network decomposition
algorithm of Linial and Saks [52] on the graph Gr. This algorithm decomposes a graph into clusters
of diameter O(log n) that are colored with O(log n) colors, within O(log2 n) rounds. Invoked on Gr,
this completes in poly(log n/ε) rounds.

We assign a vertex v the label (qv, IDv) where qv is the color of the cluster of v and IDv is the
id of v. The lexicographic increasing order of the labels provides the order of the vertices. The
distributed k-spanner algorithm runs in O(log n) phases, where in each phase `, the vertices of color
` are active, and collect all of the information of their cluster in Gr and its neighbors. Since the
diameter of each cluster is at most O(log n), this completes in poly(log n/ε) rounds. Each vertex of
the cluster then locally simulates the sequential algorithm for all the vertices in its cluster, according
to their order. It can do so, since the sequential algorithm depends only on r-neighborhoods of
vertices, and every two vertices in the same r-neighborhood are neighbors in Gr, which means they
are either in the same cluster or in two clusters with different colors. This guarantees that the
algorithm can indeed be executed in parallel for vertices of the same color. This completes the
proof.

The correctness of the algorithm relies only on the fact that the definition of k-spanners is
local: an optimal spanner for Bd(v) is contained in Bd+k(v). Hence, the algorithm can be adapted
similarly to the weighted, directed and client-server variants. In the weighted case the complexity is
O(poly(log (nW)/ε)), where W is the ratio between the maximum and minimum positive weights
of an edge.

Acknowledgment: We would like to thank Seri Khoury for fruitful discussions.

References

[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed
distance computations, even in sparse networks. In Proceedings of the 30th International
Symposium on Distributed Computing (DISC), pages 29–42, 2016.

[2] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael Saks. Adapting to asynchronous
dynamic networks. In Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing (STOC), pages 557–570, 1992.

34

[3] Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead.
In Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS),
pages 514–522, 1990.

[4] Baruch Awerbuch and David Peleg. Routing with polynomial communication-space trade-off.
SIAM Journal on Discrete Mathematics, 5(2):151–162, 1992.

[5] Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition algorithm
and its applications to constant-time distributed computation. Theoretical Computer Science,
2016.

[6] Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs in
expected O(n2) time. ACM Transactions on Algorithms (TALG), 2(4):557–577, 2006.

[7] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–
563, 2007.

[8] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner
forest. Information and Computation, 222:93–107, 2013.

[9] Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser directed spanners. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 424–435, 2010.

[10] Keren Censor-Hillel, Telikepalli Kavitha, Ami Paz, and Amir Yehudayoff. Distributed con-
struction of purely additive spanners. In International Symposium on Distributed Computing
(DISC), pages 129–142, 2016.

[11] Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds
for the CONGEST model. In 31st International Symposium on Distributed Computing, DISC
2017, October 16-20, 2017, Vienna, Austria, pages 10:1–10:16, 2017.

[12] Shiri Chechik. Compact routing schemes with improved stretch. In Proceedings of the 2013
ACM symposium on Principles of distributed computing (PODC), pages 33–41, 2013.

[13] Eden Chlamtác and Michael Dinitz. Lowest degree k-spanner: Approximation and hardness. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 80–95, 2014.

[14] Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed steiner forest: Upper and lower bounds. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 534–553, 2017.

[15] Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via
dense subgraphs. In IEEE 53rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 758–767, 2012.

[16] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

35

[17] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distributed
sparse spanner construction. In Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing (PODC), pages 273–282, 2008.

[18] Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Sublinear fully distributed partition with
applications. Theory of Computing Systems, 47(2):368–404, 2010.

[19] Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and
the hardness of approximating basic k-spanner. ACM Transactions on Algorithms (TALG),
12(2):25, 2016.

[20] Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs. In
Proceedings of the forty-third annual ACM symposium on Theory of computing (STOC), pages
323–332, 2011.

[21] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing (PODC), pages 169–178, 2011.

[22] Michael Dinitz and Yasamin Nazari. Distributed distance-bounded network design through
distributed convex programming. In Proceedings of the The 21st International Conference on
Principles of Distributed Systems (OPODIS), 2017.

[23] Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
821–840, 2016.

[24] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing
(PODC), pages 367–376, 2014.

[25] Michael Elkin. Computing almost shortest paths. ACM Transactions on Algorithms (TALG),
1(2):283–323, 2005.

[26] Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433–456, 2006.

[27] Michael Elkin. A near-optimal distributed fully dynamic algorithm for maintaining sparse
spanners. In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing (PODC), pages 185–194, 2007.

[28] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and
emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 652–669, 2017.

[29] Michael Elkin and David Peleg. The client-server 2-spanner problem with applications to
network design. In 8th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 117–132, 2001.

[30] Michael Elkin and David Peleg. Approximating k-spanner problems for k > 2. Theoretical
Computer Science, 337(1):249–277, 2005.

36

[31] Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory of
Computing Systems, 41(4):691–729, 2007.

[32] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+ε, β)-spanners in the
distributed and streaming models. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing (PODC), pages 160–168, 2004.

[33] Paul Erdős. Extremal problems in graph theory. In Theory Of Graphs And Its Applications,
Proceedings of Symposium Smolenice, pages 29–36. Publ. House Cszechoslovak Acad. Sci.,
Prague, 1964.

[34] Orr Fischer, Tzlil Gonen, and Rotem Oshman. Distributed property testing for subgraph-
freeness revisited. CoRR, abs/1705.04033, 2017.

[35] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms (SODA), pages 1150–1162, 2012.

[36] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

[37] Mohsen Ghaffari. Near-optimal distributed approximation of minimum-weight connected
dominating set. In Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming (ICALP), pages 483–494, 2014.

[38] Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. arXiv preprint arXiv:1711.02194, 2017.

[39] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 784–797. ACM, 2017.

[40] Ofer Grossman and Merav Parter. Improved deterministic distributed construction of spanners.
In 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, pages 24:1–24:16, 2017.

[41] David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆+1)-coloring in subloga-
rithmic rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 465–478, 2016.

[42] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In Proceedings of the 2012 ACM symposium on Principles of distributed computing
(PODC), pages 355–364. ACM, 2012.

[43] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–205, 2002.

[44] David S Johnson. Approximation algorithms for combinatorial problems. Journal of computer
and system sciences, 9(3):256–278, 1974.

[45] Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450, 2001.

[46] Guy Kortsarz and David Peleg. Generating sparse 2-spanners. Journal of Algorithms, 17(2):222–
236, 1994.

37

[47] Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM Journal on Computing,
27(5):1438–1456, 1998.

[48] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of the ACM (JACM), 63(2):17, 2016.

[49] Fabian Kuhn and Rogert Wattenhofer. Constant-time distributed dominating set approximation.
In Proceedings of the twenty-second annual symposium on Principles of distributed computing
(PODC), pages 25–32, 2003.

[50] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

[51] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

[52] Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–
454, 1993.

[53] László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

[54] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[55] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–1442,
2000.

[56] David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, 13(1):99–116,
1989.

[57] David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. SIAM Journal
on computing, 18(4):740–747, 1989.

[58] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal
of the ACM (JACM), 36(3):510–530, 1989.

[59] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distributed
Computing, 22(3):147–166, 2010.

[60] Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual rnc approximation algorithms for set
cover and covering integer programs. SIAM Journal on Computing, 28(2):525–540, 1998.

[61] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992.

[62] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 261–272, 2005.

[63] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

38

[64] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures (SPAA), pages 1–10, 2001.

[65] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

39

	1 Introduction
	1.1 Our contributions
	1.1.1 Hardness of approximation
	1.1.2 Distributed approximation algorithms

	1.2 Technical overview
	1.2.1 Hardness of approximation
	1.2.2 Distributed approximation of minimum 2-spanners

	1.3 Discussion
	1.4 Additional related work
	1.5 Preliminaries

	2 Hardness of approximation in the CONGEST model
	2.1 Randomized directed k-spanner
	2.2 Deterministic directed k-spanner
	2.3 Weighted k-spanner

	3 Hardness of approximation of weighted 2-spanner
	4 Distributed approximation for 2-spanner problems
	4.1 Choosing the star Sv
	4.2 Analysis
	4.2.1 Approximation ratio
	4.2.2 Time complexity

	4.3 Additional 2-spanner approximations
	4.3.1 Directed 2-spanner approximation
	4.3.2 Weighted 2-spanner approximation
	4.3.3 Client-server 2-spanner approximation

	5 Distributed approximation for MDS
	6 Distributed (1+)-approximation for spanner problems

