On Mappings for Modular Arithmetic, \mathbb{H}

 updatesT. R. N. RAo*
Bell Telephone Laboratories, Inc., Holmdel, New Jersey

AND
N. Zierler \dagger

The MITRE Corp., Bedford, Massachusetts

Abstract

Standard computing machine arithmetic performs the operations of addition, multiplication and division on the integers modulo $m=2^{i}$ represented as binary j-tuples. A rather well-known alternative is to represent the integers modulo m as n-tuples a_{1}, \cdots, a_{n} where each a_{i} is treated modulo an integer m_{i}. An additional operation that must be provided assigns an integer modulo m to each such n-tuple and it is convenient to require that this assignment be additive and onto.

In this note the family of all such mappings is characterized in a simple, explicit way, ond it is shown that the number of mappings φ which preserve the multiplicutive identity (that is such that $\varphi(1,1, \cdots, 1)=1$) is g.c.d. $\left(m, m_{1}\right) \cdots$ g.c.d. $\left(m, m_{n}\right) / m$ if m divides l.c.m. $\left\{m_{1}, \cdots, m_{n}\right\}$ and is zero otherwise.

Standard computing machines perform the arithmetic operations on the integers modulo $m=2^{j}$ represented as binary j-tuples. An alternative known as modular or residue class arithmetic is to represent integers modulo m as n-tuples a_{1}, \cdots, a_{n} where each a_{i} is treated modulo an integer m_{i}. The properties and advantages of modular arithmetic are illustrated in earlier work of Garner [1], Svoboda [2] and others [3]. The numbers $m_{1}, m_{2}, \cdots, m_{n}$ are generally called the bases or moduli and m the range of the system.
In this paper, representation of integers modulo m are considered using moduli $m_{1}, m_{2}, \cdots, m_{n}$ which may not be pairwise relatively prime. An additional operation that must be provided is one that assigns an integer modulo m to each such \imath-tuple and it is convenient and natural to require that this assignment be additive, snto and preserve multiplicative identity.
We characterize the family of all such mappings in a simple, explicit way and leduce a formula for their number. The reader who is not familiar with the elenentary notions of number theory involved may refer to [4].
Let Z_{k} denote the ring of residue classes of the integers modulo k.
Let n, m_{1}, \cdots, m_{n} and m all be positive integers, $\operatorname{let}^{1} N=Z_{m_{1}} x \cdots x Z_{m_{n}}$, and et φ be a function defined on all of N with values in Z_{m}.
φ is additive if

$$
\begin{equation*}
\varphi(x+y)=\varphi(x)+\varphi(y) \text { for all } x, y \text { in } N \tag{1}
\end{equation*}
$$

* The work of this author was performed while he was with the Information Systems Labratory, the University of Michigan, Ann Arbor, Michigan, and was supported by Contract เF33(657)-7811.
\dagger The work of this author was sponsored by the Air Force Electronic Command, under Jontract AF19(628)-2290. The author's present address is the Institute for Defense Analysis, 'rinceton, N. J.
${ }^{1}$ That is, the set of all n-tuples x_{1}, \cdots, x_{n} with $x_{i} \in Z_{m_{i}} \quad(i=1, \cdots, n)$.
φ is homogeneous if

$$
\begin{equation*}
\varphi(c x)=c \varphi(x) \text { for all } c \in Z, x \in N \tag{2}
\end{equation*}
$$

where $c x-c\left(x_{1}, \cdots, x_{n}\right)=\left(c x_{1}, \cdots, c x_{n}\right)$ with $c x_{i} \in Z_{m_{i}}$ and $c \varphi(x) \in Z_{m}$.
For $i=1, \cdots, n$ let e_{i} denote the element of N with (the residue class of) 1 as the i th component, and (residue classes) 0 elsewhere; and let $r_{i}=\varphi\left(e_{i}\right)$.

Lfmma 1. If φ is addtitive, then it is homogeneous and $\varphi(0)=0$.
Proof. For any integer c,

$$
\begin{aligned}
& \varphi(c x)=\varphi((c-1) x+x)=\varphi((c-1) x)+\varphi(x) \\
&=\varphi((c-2) x+x)+\varphi(x)=\varphi((c-2) x)+2 \varphi(x)=\cdots=c \varphi(x) .
\end{aligned}
$$

In particular, $\varphi(0)=\varphi(0 x)$ (for every $x \in N)=0 \varphi(x)=0$.
Lemma 2. φ is additive if and only if both of the following hold:

$$
\begin{array}{ll}
m_{i} r_{i}=0(\bmod m) \quad(i=1, \cdots, n) \\
\varphi(x)=\sum_{i=1}^{n} x_{i} r_{i} \text { for all } x \in N & \tag{4}
\end{array}
$$

where the equality in (3) as well as (4) means equality in Z_{m}. (Note that the Equation (4) does not define a function φ if each x_{i} is an arbitrary member of an equivalence class modulo m_{i} unless (3) holds.)

Proof. Suppose φ is additive. Then, by Lemma 1 ,

$$
m_{i} r_{i}=m_{i} \varphi\left(e_{i}\right)=\varphi\left(m_{i} e_{i}\right)=\varphi(0)=0
$$

which proves (3). To prove (4), observe that

$$
\varphi(x)=\varphi\left(\left(x_{1}, \cdots, x_{n}\right)\right)=\varphi\left(\sum x_{i} e_{i}\right)=\sum x_{i} \varphi\left(e_{i}\right)=\sum x_{i} r_{i} .
$$

Conversely, if (3) holds, so that (4) makes sense when each x_{i} is an arbitrary member of a residue class modulo m_{i}, and if (4) holds too, then $\varphi(x+y)=$ $\sum\left(x_{i}+y_{i}\right) r_{i}$ by definition of addition $\left(x_{i}+y_{i}\right.$ is any member of the appropriate equivalence class $)=\sum x_{i} r_{i}+\sum y_{i} r_{i}=\varphi(x)+\varphi(y)$, and φ is additive.

Leuma 3. Suppose φ is additive. Then φ maps N onto Z_{m} if and only if $\left(r_{1}, \cdots, r_{n}, m\right)=1 .{ }^{2}$

Proof. If φ is onto, there exists x in N with $\varphi(x)=1$. Hence, for some rational integer a we can write the following equation in rational integers: $\sum x_{i} r_{i}=1+a m$. It follows that any common divisor of r_{1}, \cdots, r_{n} and m divides 1 ; i.e., $\left(r_{1}, \cdots, r_{n}, m\right)=1$.

Conversely, if $\left(r_{1}, \cdots, r_{n}, m\right)=1$, the Euclidean algorithm assures us that there exist integers x_{0}, \cdots, x_{n} such that $x_{0} m+\sum x_{i} r_{i}=1$. Then by Lemma $2, \varphi(x)=$ $\varphi\left(\left(x_{1}, \cdots, x_{n}\right)\right)=\sum x_{i} r_{i}=1-x_{0} m=1$ in Z_{m}. It follows now that for every integer $c, \varphi(c x)=c \varphi(x)=c 1=c$ in Z_{m}, so φ is onto, as was to be proved.

Let $u=$ l.c.m. $\left\{m_{1}, \cdots, m_{n}\right\}$.
Leman 4. Suppose φ is an additive mapping of N on Z_{m}. Then $m \mid u$.
Proof. There exist integers y_{i} such that $m_{i} r_{i}=y_{i} m \quad(i=1, \cdots, n)$ by Lemma 2 and integers x_{0}, \cdots, x_{n} such that $1=x_{0} m+\sum x_{i} r_{i}$ by Lemma 3. Then $u=x_{0} m u+\sum x_{i} u r_{i}=x_{0} m u+\sum x_{i} y_{i} m u / m_{i}=m\left(x_{0} u+\sum x_{i} y_{i} u / m_{i}\right)$ and, since u / m_{i} is an integer, $m \mid u$.
${ }^{2}\left(y_{1}, y_{2}, \cdots\right)$ denotes greatest common divisor of the integers y_{1}, y_{2}, \cdots throughout this рарег.

Let 1 denote the element $(1, \cdots, 1)$ of N.
Theorem. ${ }^{3}$ Suppose $m \mid u$. Then the number of additive mappings φ of N on Z_{m} such that $\varphi(1)=1$ is $\left(m, m_{1}\right) \cdots\left(m, m_{n}\right) / m$.

Proof. If we set, $r_{i}=m /\left(m, m_{i}\right)$ property (3) holds, so the corresponding mapping φ_{1} defined by (4) is additive by Lemma, 2. If some prime p divides all the r_{i}, it divides m, and we let p^{r} denote the largest power of p that does. Then $p^{r} \mid u$, so for some $i, p^{r} \mid m_{i}$. But then $p^{r} \mid\left(m, m_{i}\right)$ so p does not appear as a factor of r_{i} and $r=0$. Thus, $\left(r_{1}, \cdots, r_{n}\right)=1$ so, a fortiori, $\left(r_{1}, \cdots, r_{n}, m\right)=1$ and φ_{1} is onto Z_{m} by Lemma 3. Let U denote the set of all v in N such that $\varphi_{1}(v)=1$. If $v \in U$, clearly $v_{i} r_{i} m_{i} \equiv 0 \bmod m$ for all i and $\left(v_{1} r_{1}, \cdots, v_{n} r_{n}, m\right)=1$ since $\sum v_{i} r_{i} \equiv 1$ modulo m. Hence the mapping φ_{v} defined by $\varphi_{n}(x)=\sum v_{i} r_{i} x_{i}$ is an additive mapping of N on Z_{m} such that $\varphi_{v}(1)=1$. Conversely, if φ is any additive mapping of N on Z_{m} such that $\varphi(1)=1$, then by (3) there exist integers z_{i} such that $m_{i} \varphi\left(e_{i}\right)=z_{i} m$. Let $v_{i}=z_{i}\left(m, m_{i}\right) / m_{i}$. Then

$$
\varphi_{v}\left(e_{i}\right)=v_{i} r_{i}=v_{i} m /\left(m, m_{i}\right)=z_{i} m / m_{i}-\varphi\left(e_{i}\right),
$$

so $\varphi=\varphi_{n}$. Since

$$
\varphi_{1}(v)=\sum v_{i} r_{i}=\sum \varphi\left(e_{i}\right)=\varphi\left(\sum e_{i}\right)=\varphi(1)=1, \quad v \in U
$$

and we have shown that every additive mapping of N on Z_{m} assigning 1 to 1 is of the form φ_{v} for $v \in U$.

For $y, v \in U$, say $y \sim v$ if $\varphi_{y}=\varphi_{v}$. Clearly " \sim " is an equivalence relation in U, and the number of distinct mappings $\varphi_{v}, v \in U$ is equal to the number of equivalence classes into which U is partitioned by this relation. Now $y \sim v$ if and only if $y_{i} r_{i}=v_{i} r_{i}$ if and only if $\left(y_{i}-v_{i}\right) m /\left(m, m_{i}\right) \equiv 0 \bmod m$ if and only if $\left(m, m_{i}\right) \mid$ $\left(y_{i}-v_{i}\right)$ for $i=1, \cdots, n$. In other words, $y \sim v$ if and only if there exists w in N with $y=v+w$ and $\left(m, m_{i}\right) \mid w_{i}$ for $i=1, \cdots, n$. The number of multiples of (m, m_{i}) in $Z_{m_{i}}$ is $m_{i} /\left(m, m_{i}\right)$ so the number of such w is $\Pi m_{i} /\left(m, m_{i}\right)$, and this is then the number of elements in each equivalence class of U. Similarly, if $\varphi_{1}(v)=1$, then $\varphi_{1}(y)=1$ if and only if $y=v+w$ with $\varphi_{1}(w)=0$, so the number of members of U is equal to the number of members of $\varphi_{1}^{-1}(0)$. Since this is the kernel of an additive homorphism of N on Z_{m}, the number of its elements is order $N /$ order $Z_{m}=\mathrm{II} m_{i} / \mathrm{m}$. Then the number of distinct mappings $\varphi_{v}, v \in U$, is

$$
\left(\Pi m_{i} / m\right)\left(\Pi m_{i} /\left(m, m_{i}\right)\right)^{-1}=\Pi\left(m, m_{i}\right) / m
$$

as was to be proved.
Received April, 1963; revised April, 1965

REFERENCES

1. Garner, H. L. The residue number system. IRE Trans. EC-8, 2 (June 1959).
2. Svoboda, A. The numerical system of residual classes in mathematical machines. Information Processing (Proc. UNESCO Conf., Paris, June 1959), pp. 419-422; 1960.
3. Lockheed Missiles and Space Company. Modular arithmetic techniques. ASD-TDR,-62-686, Sunnyvale, Calif., Aug. 1962.
4. LeVeque, W. J. Topics in Number Theory, Vol. I, pp. 1-47. Addison Wesley, 19556.
${ }^{3}$ The authors thank the referee for catching an error in the original form of the theorem.
