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Abstract. Standard computing machine arithmetic performs the operations of addition,
multiplication znd division on the integers modulo m = 27 represented as binary j-tuples. 4
rather well known alternative is Lo represent the integers modulo m as n-tuples a, , ...
where each ¢ is treated modulo an integer m; . An additional operation that must be provided
assigns an integer modulo m to each such n-tuple and it is convenient to require that this
assignment be additive and onto.

In this note the family of all such mappings is characterized in a simple, explicit way, aud
it is shown that the number of mappings ¢ which preserve the multiplicxtive identity (that is,
such that (1,1, -+, 1) = 1) is god. (m, m) -+ ged. (m, m)/m f m divides Lem.
fmy, --- , mp} and is zero otherwise.

Standard computing machines perform the arithmetic operations on the integers
modulo . = 2 represented as binary j-tuples. An alternative known as modular
or residue class arithmetic i8 to represent integers modulo m as w-tuples a;, -+, a,
where each e; is treated modulo an integer m; . The properties and advantages of
modular arithmetic are illustrated in earlier work of Garner [1], Svoboda [2] and
others [3]. The numbers ny , ma, -- - , m, are generally called the bases or moduli
and m the range of the system.

In this paper, representation of integers modulo m are considered using inoduli
My, s, * -, M, which may nol be pairwise relatively prime. An additional opera-
on that must be provided is one that assigns an integer modulo » to each such
2-tuple and it is convenient and natural to require that this assignment be additive,
mto and preserve multiplicative identity.

We characterize the fumily of all such mappings in a simple, explicit way aud
leduce a formula for their number. The reader who is not familiar with the ele-
nentary notions of number theory involved may refer to [4].

Let Z; denote the ring of residue classes of the integers modulo k.

Tetn, iy, ++ -, m, and m all be positive integers, let' N = Z,, z -+ 24m, , and
et ¢ be a function defined on all of ¥ with values in Z,, .

@ is additive if

el + ) = o(z) +¢(y) forall z,yinN, (1)
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1That is, the set of all n-tuples z;, -+« , 2y Wibh 2; € Zp; (@ =1, -+, m).
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» 15 homogeneous if

wlee) = cole) forall e Z xe N (2)
where cv — clay, -+ 1) = (aza, -, 02,) With er; € Z,.. and cg(z) € Zu.
Fori = 1, .-, nlet ¢; donote the element of N with (lhe residue class of) 1 as

ghe ith component, and (residue classes) 0 elsewhere; and let v; = ¢(e:).
Leaova 1. IS ¢ 45 additive, then +f s homogeneous and ¢{0) = 0,
Proor. For any integer ¢,
i) = ¢((c — Do + 2) = o({e — D)a) + o(z)
=p({(e = 2)c +x) +ola) = o({c - 2)x) + 2(z) = -+ = cp(x).

In particular, ¢(0) = (0z) (for every 2 € N) = Op(x) = 0.
LEMMA 2. ¢ is additive 7] and only if both of the following hold:

mae = @ (mod m) (i=1,---,n) (3)
elz) = 2 xpy forall x€N (4)
=1

where the equality in (3) as well as (4) means equalily in Z., . (Note that the Equa-
tion (4) does not define a function ¢ if each x; is an arbitrary member of 4n equiva-
lence class modulo m; unless (3) holds.)

Proor. Suppose ¢ is additive. Then, by Lemma 1,

may = mip(e;) = p(mie) = ¢(0) = 0,
which proves (3). To prove (4), observe that
elz) = el(m, ,2)) = (P ze) = 2awle) = 2.

Conversely, if (3) holds, so that (4) makes sense when each x; is an arbitrary
rmember of a residue class modulo m,, and if (4) holds too, then @z -+ y) =
z {x; 4 yors by definition of addition (z; + ¥ is any member of the appropriate
equivalence class) == Z Ei b Z yr: = olz) + ofy), and ¢ is additive.

Lovva 3. Suppese o is additive. Then ¢ maps N onto Z. if and only &
Cry,ooe yTaym) =17

Proor., If ¢ is onto, there exists z in N with ¢(x) = 1. Hence, for some rational
inleger o we can write the following equation in rational integers: 2 zay = 1 + am.
It follows that any common divisor of ry, -, and m divides 1; ie,
(re, o g Ta,m) = L.

Conversely, if (n, -+ ,7,m) = 1, the Buclidean algorithm assures us that there
exist integers o, - - - , £« such that xgn + Z 2 = 1. Then by Lemma 2, o(z) =
@((Z, %)) = 2w =1 — 2gn = 1 in Zn. It follows now that for every
integer ¢, w(cx) = celx) = ¢l = c¢in Z,, 50 ¢ is onto, as was to be proved.

Let v = leam. {my, - -, mp}.

Lemva 4. Suppose ¢ 18 an additive mapping of N on Z... Then m | u.

Proor. There exist integers w; such that ma; = ym (£ = 1, -, %) by
Temma 2 and integers zo, « -+ , & such that 1 = zgm + Z ra5 by Lemma 3. Then

W o= My T Zz-ﬂt‘n = Topmu -+ Zx,fy;mu/m; = m{zeu 4+ wa,u/mi)
and, since u/m; is an integer, m | 2,

*(yh, y2, --+) denotes greatest common diviser of the integers i, ya, - -+ throughout this
paper.
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Let 1 denotc the element (1, -, 1) of N,

Tumorem,” Suppose m | u. Then the number of additive mappings ¢ of N on 7
such that p{1) = 118 (m my) < {m, my)/m.

Proor. If we seb oy = m/ (m i) property (3) holds, so the corresponding
mapping ¢ defined by (4) is additive by Lemma 2. If some prime p divides all the
ri, 1t divides m, and we let p” denote the largest power of p thut does. Then 7 lu
so for some ¢, p’ | wi; . But then p"| (m, we:) s0 p does not appear as a factor of 7,
and 7 = 0. ’lhuq (e, -oo,m) = 1 so,afortiord, (r, -+, re, m) = 1 and g s
onto Z, by Lemma 3. Let U denote ’rhe set of all v in N such that e:(v) = 1, It
v & U, clearly varami = Omod m for all ¢ and (v, -+ ,J‘,,,m) = 1 sinee
> pa; = 1 modulo m. Hence the mapping ¢, defined by ¢,(2) = 2 vaas is an
additive mapping of N on Z,, such that ¢,{1) = 1. (Jonveuply, if ¢ is any additive
mapping of N on Z, such that ¢(1) = 1, then by (3) there exist integers 2; such
that mape:) = zam . Let v, = z:0m, m;)/m;. Then

wile) = vare = vam/(m, my) = panfm: = (e,

S0 @ = ¢, . Since
@) = 2vr = 2 ele) =e(26) =¢(l) =1, vé U,

and we have shown that every addilive mapping of N on 7, assigning 1 to 1 is of
the form ¢, for v € U,

Fory,v € U,say y ~vif ¢, = ¢ . Clearly “~" ig an equivalence ralation in U,
and the number of distinet mappings ¢, , v € U is equal to the number of equiva-
lence classes into which U is partitioned by this relation. Now y ~ v if and only if
yas = v if and only if (y: — vo)m/(m, m;) = 0mod m if and only ¥ (m, ms) |
(i — ve) for 4 =1, .-+, n In other words, ¥ ~ # il and only if there exists w in
N with y = v + wand (m, m;) |w;for i = 1, -+ | n. The number of multiples of
(m, m:) in Zun; 18 my/(m, m:) 50 the number of such w is IT wy/ (m, m,), and this
is then the number of elements in each equivalence class of U, Similarly, if ¢,(v) =1,
then ¢1(y) = 1if and only if y = ¢ + w with ¢{w) = 0, s0 the number of mem-
bers of I7 is equal to the number of members of ¢, (0). Since this is the kernel of
an additive homorphism of N on Z,., the number of its elements is order N/order
Zw = 1L m;/m. Then the number of distinct mappings ¢, , v € U, is

(X my/m) (I my/ (m, m))™" = L(m, m;)/m

as was to be proved.
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