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Abstract. Standard  comput ing machine ar i thmet ic  performs the operat ions of additio~, 
mult ipl icat ion and division on the integers modulo m = 25 represented as bi t lary j-tuptes. A 
ra ther  well-known a l te rna t ive  is to represent  the integers modulo m as n- tuples  a l ,  . . .  , a, 
where each a~ is t reated modulo an integer m~ . An addi t ional  operat ion t ha t  must  be provided 
assigns an  integer modulo m to each such n- tuple  and it  is convet~ient to require tha t  this 
assignment  be addi t ive  and  onto. 

In this note the family of all such mappings is character ized in a simple, explicit  way, arid 
it is shown tha t  the number  of mappings ~ which preserve the  mult ipl icat ive iden t i ty  (that is, 
such t ha t  q,(1, 1, . . .  , 1) = 1) is g.c.d. (m, mQ . . .  g.c.d. (m, m,~)/m if m divides 1.c.m. 
{ml , . . .  , m~} and is zero otherwise. 

Standard computing machines perform the arithmetic operations on the integers 
modulo m = 2 j represented as binary j-tuples. An alternative known as modular 
or residue class arithmetic is to represent integers modulo m as n-tuples a~, • • • ,  a~ 
where each a~ is treated modulo an integer m~. The properties and advantages of 
modular arithmetic are illustrated in earlier work of Garner [1], Svoboda [2] and 
3thers [3]. The numbers ml , m2, . . .  , m~ are generally called the bases or moduli 
~nd m the range of the system. 

In this paper, representation of integers modulo m are considered using moduli 
,n~, m2, .. • , m~ which may n o t  be pairwise relatively prime. An additional opera- 
:~ion that  must be provided is one that  assigns an integer modulo m to each such 
~-tuple and it is convenient and natural to require that  this assignment be additive, 
)nto and preserve multiplicative identity. 

We characterize the family of all such mappings in a simple, explicit way and 
teduce a formula for their number. The reader who is not familiar with the ele- 
nentary notions of number theory involved may  refer to [4]. 

Let Z~ denote the ring of residue classes of the integers modulo k. 
Let n, m~, • • • , m~ and m all be positive integers, let ~ N = Z m ,  X • • " x Z ~ , ,  and 

et q, be a function defined on all of N with values in Z ~ .  
is a d d i t i v e  if 

¢ ( x A - y )  = ~ ( x )  - [ -~(y)  for all x, y i n N .  (1) 
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1 T h a t i s ,  t h e s e t o f a l l n . t u p l e s x ~ , . . . , x n w i t h x i E  Z~i (i = 1 , . . .  , n ) .  
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is homogeneous if 

( cx )  = c~ , (x )  for all eC  Z , x  C N (2) 

~-here cx = c ( z l ,  . . .  , z,~) = ( c x i ,  . . .  , ez,~) with ex~ C Z,~i and c ~ ( x )  ~ Z .... 
For i = 1, . . .  , n let e~ deno t e  the element of N with (the residue class of) 1 as 

~Jne ith component ,  and (residue classes) 0 elsewhere; and let r~ = ~(ei) .  
LEMMA 1. I f  ~ i8 additive, t hen  it "is homogeneous and ~ (0 )  = O. 
PROOF. For any ir~teger c, 

~ ( c x )  = ,p((e -- 1)x -t:- x) = g , ( (c  -- 1)x) + e(x)  

= ~,((c - 2 ) x  + ~ )  + ~ ( x )  = ~,((c - 2 ) x )  + 2~,(x) . . . . .  c a ( z ) .  

I n  particular, ¢(0)  = ~,(0x) ( fo r  every x ~ N)  = 0~,(x) = 0. 
LEMMA 2. 'Z is additive "if a n d  only i f  both of the following hold: 

rn,~'i = 0 (mod m )  ( i  = 1, . . .  , n )  (3) 
n 

~ ( x )  = ~ x ~ r i  for  all x ~ N (4) 
i = l  

where  the equali ty in  (3)  as well  a s  (4)  m e a n s  equality in  Z E .  (Note  tha t  the Equa-  
t.ion (4) does not  define a func t ion  ~, if each x~ is an arbitrary member of an equiva- 
lence class modulo m~ unless (3)  holds.) 

PI~OOF. Suppose ~ is addi t ive .  Then,  by  Lemma 1, 

m,~ri =- m ~ ( e i )  = q~(mlel) = ~ ( 0 )  = O, 

which proves (3).  To prove (4 ) ,  observe t h a t  

~ ( x )  = ~ ( ( ~ ,  . . .  , ~ ) : )  = ~ ( ~ 2  x,e,)  = ~ 2  x ,~(e , )  = ~ 2  ~,r~.  

Conversely, if (3) holds, so t h a t  (4) makes sense when each x~ is an  arbi t rary  
~ e m b e r  of a residue class m o d u l o  m/ ,  and if (4) holds too, then e ( x  + y) = 

(x~ + yl)r4 by definition of add i t ion  (x.i + y~ is any  member of the appropriate  
equivalence class) = ~ x~r~ + ~ y ~  = ~(x) "4- ~(y) ,  and g, is additive.  

LEMMA. 3. Suppose  ~, is addit ive.  T h e n  9 maps  N onto Zm i f  and only i f  
( r ~ , . , . , r , , m )  = 1. ~ 

Pnoo~. If  ~ is onto, there exists  x in N with ~(x) = 1. Hence, for some rat ional  
ittteger a we can write the fol lowing equat ion in rational integers: ~ x¢'~ = 1 -t- am. 
I t  follows tha t  any c o m m o n  divisor of r ~ , . . .  ,r , ,  and m divides 1; i.e., 
( r ~ , . . . , r , , , m )  = 1. 

Conversely, if @1, ' • • , r~ ,  m)  = 1, the  Euclidean algorithm assures us t ha t  there 
exist  integers x0, • • • , x,, such t h a t  xom + ~ xlr~ = 1. Then by L e m m a  2, ~(x)  = 
g , ( ( x~ ,  . . .  , x~) ) = ~ xirs = 1 - -  xom = I in Z~ .  I t  follows now t h a t  for every 
integer c, ~ ( e x )  = ~ ( x )  = c l  = c in Z ~ ,  so ~ is onto, as was to be proved. 

Let u = 1.c.m. {m~, - . .  ,m~}. 
LEMM~ 4. Suppose  ~ is  a n  addi t ive  m a p p i n g  of N on Z ~ .  Then m I u .  
PROOF. There  exist integers  y~ such tha t  m~¢~ = y ,m  ( i  = 1 , . . . , n )  by  

L e m m a  2 and integers x0, .. • , x~ such t h a t  1 = xom + ~ x,¢~ by L e m m a  3. Then  

u = xomu + ~ x,ur, = xomu + ~2 x,v,~ulm, = m(xou + ~ x,v,~lm,) 

and,  since u/m~ is an integer, m ] u.  

• (y~, y , ,  . . .)  denotes greatest common divisor of the integers y~, y, ,  . . .  throughout this 
Daper. 
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Let 1 denote the element (1, . - .  , 1) of N.  
THEOREM. 3 Suppose m ] u. Then the number of additive mappings ~ of N on Zm 

such that q~(1) = 1 is (m, ml) . . .  (m, m~)/m. 
PROOF. If we set r~ = m / (m ,  m~) proper ty  (3) holds, so the corresponding 

mapping ~ defined by  (4) is addit ive by L e m m a  2. I f  some prime p divides all the 
r~, it divides m, and we let p" denote  the largest power of p float does. Then p~ I u, 
so for some i, pr ] m~. But  then p~ I (m, m~) so p does not appear  as a factor of ~.~ 
~mdr  = 0. Thus,  ( r l ,  . . . , r , )  = 1 s o , ~ f o r t i o r i ,  ( r l , . . .  , r ~ , m )  = 1 and~xis 
onto Zm by Lemma 3. Let U denote  the set of all v in N such tha t  ~ ( v )  = 1. If 
v C U, clearly viriml ~ O m o d m  for all i and ( v l rL , . . .  ,v , ,r~,m) = 1 since 

v ~  ~ 1 modulo m. Hence the mapping  ~ defined by ~,~(x) = ~ vgr~c~ is an 
additive mapping of N on Z~ such tha t  9 , (1 )  = 1. Conversely,  if ~ is any additive 
mapping of N on Zm such tha t  ¢ (1 )  = 1, then by  (3) there exist integers z~ such 
tha t  m~9(e~) = z,m. Let  vi = z~(m, ml) /m~.  Then  

~ ( e , )  = v~r~ = v~. ,~/(m,  ~ , )  = z ~ / m ~  = ~(e~) ,  

so ~ = ~ , .  Since 

#l(v) = ~ w r ,  = ~ # ( e l )  = # ( ~ e , )  = ~(1)  = 1, v C U, 

and we have shown tha t  every addit ive mapp ing  of N on Z,,~ assigning 1 to 1 is of 
the form ~ for v E U. 

For y, v E U, say y ~-~ v if ~y = #~. Clearly " N "  is an equivalence relation in U, 
~md the number  of distinct mappings  # , ,  v C U is equal to the number  of equiw~- 
lence classes into which U is part i t ioned by  this relation. Now y N v if and only if 
y,~'i = viri if and only if (yi - v~)m/(m, mi) --- 0 rood m if and only ff (m, m~) t 
(yi - v~) for i = 1, • • • , n. I n  o ther  words, y ~-~ v if and only if there exists w in 
N with y = v + w and (m, m~) ] wl for i = 1, • . .  , n. The number  of multiples of 
(m, m~) ia Z ~  is m J ( m ,  m~) so the number  of such w is H m J ( m ,  m~), arid this 
is then the number  of elements in each equivalence class of U. Similarly, if ~ ( v )  = 1, 
then #~(y) = 1 if and only if y = v + w wi th  ~l(w) = 0, so the number  of mem- 
bers of U is equal to the number  of members  of #~-~(0). Since this is the kernel of 
an addit ive homorphism of N on Zm, the number  of its elements is order N/order 
Zm = II m~/m. Then  the number  of dist inct  mappings  # , ,  v E U, is 

(II m,/ 'm)(II  m J ( m ,  m,))-~  = H(m,  m i ) /m  

as was to be proved. 
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