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Abstract. Maehly's second method is a general algorithm for finding the best Chebyshev 
approximation to a continuous function on a finite intervM. This paper examines the conver- 
gence properties of Maehly's second method, a modification, and the more commonly used 
algorithm of Remez, using both analytical and numerical results. 

Introduction 

This paper cannot be followed in detail if the reader is unfamiliar with the results 
and notation of the preceding note [1]. I t  is therefore best that the introductory 
section of [1], containing a statement of the approximation problem, a characteriza. 
tion of best approximations, and a description of iYiaehly's second method, serve 
also as an introduction to this note. I t  is assumed henceforth that the reader is 
familiar with the notation developed in that section. 

Of fundamental interest in [1] and this paper are correction procedures for 
Maehly's second method, to be precise, procedures for calculating corrections 
az~ k) to the inte120olating points z~ k) in order to obtain new interpolating points 
z~ k+l). If the corrections are obtained by solving a system of equations the system is 
called a corrector system, and similarly if a formula is used it is called a correct0r 
formula. There are two good reasons for studying correction procedures. 

First, two correction procedures may always yield the same results when an in- 
finite number of figures are carried and so are equivalent in theory; however, they 
can differ considerably in the amount of calculation required and in numerical 
stability. For example, in the second section of [1] it is shown that the correet0r 
formula (5) can be obtained by inverting the matrix of the eorrector system (9) 
used by M:aehly; the evaluation of the formula and the solution of the system are 
thus equivalent correction procedures, but the number of arithmetic operations re- 
quired is shown to be quite different. Further, the stability of the formula (5) de- 
pends strongly on the nonzero constant ~ used. Given a correction procedure, it is 
therefore desirable to find a correction procedure equivalent to it which requires a 
minimum of calculation and is numerically stable. A further reason for studying 
equivalent correction procedures is that it may be necessary to study several 
equivalent correction procedures to determine completely the behavior of NIaehly's 
second method when any of them is used as a correction procedure. For example, 
Theorem 1 of this paper is obtained from formula (5) and Theorem 2 is obtained 
from system (9). The development of these particular results is quite i~ltrieate; it 
may be helpful to examine the development in [1] of similar results for the case of 
approximation by a constant in order to see the basic argument. 

A second reason for studying correction procedures is that it may be desirable to 
modify Maehly's second method by using a correction procedure which is not 
equivalent to those used by 1Viaehly. In this note, attention is placed on the correc- 
tion procedure which Uses the system (12) and which gives quadratic convergence 
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a the po]ynomial case, In the last section of [1] it is proved that this correction pro- 
~edure does not give global convergence. In the next section of this paper several 
malytical results concerning the convergence of Maehly's second method are de- 
,-eloped. Unless stated ot~herwise, these apply to the method developed by iV[aehly 
,ather than to any modified method. A discussion of numerical results follows. 

4nalytical Results 

It will be convenient to consider the set of interpolating points {z~ ] i = 0, • .- , n} 
~s an element of an ( n +  1)-dimensionM normed linear space and to denote this set by 
!. Once 2 is given it determines in turn {f(z~) l i = 0, . . . ,  n}, the interpolant 
~(5, x), the error curve e(x), its extreme points xl and extreme values e~ ~- E(x~), 
: = 0, . ."  n + l ,  and finally, by means of a correction procedure, the corrections 
~z~ ] i = 0, • • • , nl to the interpolating points. All these are, therefore, functions of 
!, and it is henceforth assumed that  there exists ~ > 0 such that  if g is any one of 
~hese functions of 2, then 

= g(~ ) + E ag I ~* g(2) "* (z~ - z / )  + o(11 ~ - II ~) as ~ -~ 2* (1) 
k~O ~Zk * 

f [I ~ -- ~* I] < % where the subscript • will denote evaluation of an expression with 
i* substituted for 2. 

Consider a case in which a formula of the form 

~z~ = ~ c~s(zi* - zj) 
i=0 

~olds for a correction procedure CP 
mp,-0....,~ II (c,0 , . - .  , c~)][,  I equal 

+ o ( 1 1 2 - 2 " i l  ~) as ~ 2 "  (2) 

and all vectors ~. Let C = (c~i), II C lira = 
the unit matrix, and L = II C - I ]1~. The 

icmma below follows clearly from the identity 

z~ m+" - z ,*  = ~z~ m) + z~ '~) - z T .  (3) 

LEMMA 1. When using correction procedure CP, Maehly's second method con- 
~erges quadratically i f  and only if L = O. I f  L < 1 there exists "r > 0 such that for all 
~(o) in the neighborhood f[ 2(0) - -  z* ]] < % ]] ~ )  - -  2" II converges to zero at least as 
~'apidly as L ~, whereas if L > 1 no such neighborhood can exist and Maehly's second 
~ethod may diverge. 

In the remainder of this section analytical results are obtained for approximation 
by polynomials. In this case, the approximation is given by the Lagrange formula, 
~s a function of the interpolating points zk : 

F(5, x) = lk(x)f(zk), lk(x) = Z ( x ) / ( x  -- z~)Z (zk), 
k=o (4) 

Z ( z )  = II ( z  - z~) .  
k=O 

In [1], an explicit corrector formula was obtained for Maehly's second method, 
namely, 

1 
~z~ - Z ' ( z d  j~o z~ - x j  \ X ~ j ) 1 ~  , (5) 
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where X ( x )  = ~,~+1,.~=o (x - xk) and ~ can be any const~ant. By the remarks before the 
formula (1), the right-hand side of (5) is clearly a function of ~ and so (1) can be 
applied to~zl. Since the logarithms all vanishwhen I E0 ] = I ~ I . . . . .  l e,,+~ I = ~, 
one obtains with rearrangement 

 (zl)tF L, , 
az~ - Z'(z~) ~=o LJ~0 z~ -- xs X'(xj)  az~ , 

For the case of polynomial approximation one can obtain, using (4), 

Oln l e j ]  _ ~ ! __ --lk(xj)e'(zk)], 
az~ ~J .a* ( - 1 ) % *  

and (6) becomes an explicit formula of form (2), 

~z~ = - Z'(z~---~ ~=o u~=o z~ ± x, " X'(x~)  * % ~ - . ~ *  (7 )  
Z$: - -  Z k * )  

+ o(ll ~ - ~* li~). 

Applying Lemma 1 one obtains 
THEOREM[ 1. Maehly's second method has qua&atic convergence if and only if 

sii = 0 ( i ~ j ;  i =  0 , . . . , n ; j  = 0 , . . . , n ) ,  (8a) 

, _ ~ Z'(zJ) 7 
e (zs)]* X(zi)sjj J* (85) 

where in the polynomial ease 

j=0 (z~ - x~)(zj - x~) X (xk)Z ( z i ) J *  

I t  will be shown later how (8c) can be modified for nonpolynomial approximationm 
If for a n y j  = 0, . • • , n one has e'(zi) more than twice the value specified by condi- 
tion (8b), then 5~aehly's second method can diverge. Condition (8a) is a constr~i:r~t 
on the zeros and extrema of the best error curve. 

Since condition (Sa, 8b) is rarely satisfied, ~[aehly's second method does 11o~ 
have qHadratic convergence. However, following Maehly, if G(x) is defined for 
given ~ by 

~(x)  = a ( x ) Z ( x ) ,  

then it can easily be shown that a system used by Maehly to obtain corrections, 

k=O X i  - -  Z~ 

gives Maehly's second method quadratic convergence if 

oG(x,) 1 ~:~ ] ,  = o ( i  = o ,  . . . ,  n + l ;  t~ = 0 ,  . . - ,  n ) .  

THEOREM 2. I f  an (n-~-l )-st degree polynomial is approximated by a polynomial 
of degree n, Maehly's second method converges quadratically. 
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PaOOF. In this case G(x) is the leading coefficient of the ( n + l ) - s t  degree 
polynomial. 

The importance of this result lies in the fact that many error curves are similar to 
the error curve of such a case and convergence is therefore almost quadratic. 

Applying (1) to e~, the i th extreme value, one obtains: 

* ~O~i  1 
~' = ~' + ~ 0 ~ A ,  (z~ - z~*) + o(11 ~ - ~* I1~). (m)  

From this may be obtained an explicit formula for the polynomial case, 

~ (--1)~0 * ~ l ' -- = - k ( X ~ ) ~  ( z ~ ) ( Z ~  Z~*)], + O(ll~ ~* ll~). ( 1 1 )  
k=0 

It is clear from identity (3) that the related system 

E, = ( - 1 ) ' X  + ~Ik(x,)e'(z~)~zk (i = 0, " -  , n + l )  (12) 
k=0 

will give quadratic convergence when used as a correction procedure for the case of 
polynomial approximation, provided the matrix is nonsingular when ~ = ~*, which 

! 
happens if e (zk)], # 0, (k -- 0, . . .  , n). In the next section, the convergence of 
this modified second method is compared with that of Maehly's second method and 
the Remez algorithm. 

Consider now the case when a nonpolynomial approximant F(5, x) is used. Let 
F(~, x)  be written as a function ¢(~, f, x) of the points (zk, fk), k = 0, . . .  , n 
which it interpolates. Consider the partial derivative 

0 
0(~ ,? ,  x)  - ~ ( ~ , ] ,  x )  

obtained by holding ~, x, and f~, i # k fixed and differentiating with respect to j'~. 
In the case of polynomial approximation it is clear from the Lagrange formula (4) 
that ~b~(2, f, x) = lk(.x). For cases of nonpolynomial approximation satisfying 
hypothesis (1), it can be shown that  lk(x) or an equivalent expression can be re- 
placed by ~($ ,  f, X) in formulas (7, Be, 11). Thus the replacement of lk(x) in the 
system (12) by ~b~(2, ], x) yields a correction system which gives Maehly's second 
method quadratic convergence in the case of a nonpolynomial approximant F(5, x) 
if the system is nonsingular when 2 = ~*. I t  would be interesting to have such cor- 
rection systems in explicit form and to know how useful they would be in practice. 

Numerical Results and Computational Implications 

In cases of practical interest it is not necessary to compute the best approxima- 
tion; i t  is sufficient to obtain an approximation whose error extrema { ~ I i -- 0, -.- , 
n +  1] agree to a given number of figures, usually 2 to 4. In this note, the statement 
that  the error extrema agree to k figures means precisely that sup~0,....n+~] ~1 
agrees with inh=Q,...,~+lt ~1 to k significant decimal digits. What is therefore 
wanted is an Mgorithm obtaining such results in a minimum of calculation. Both 
Maehly's  second method and the Remez algorithm are iterative schemes for ob- 
taining a best approximation; in each iteration an approximation is determined 
and the  extrema of its error curve are found. It  can be shown that  the amount of 
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calculation required for an iteration is usually comparable for both methods. I-Ienee, 
it is necessary only to choose the algorithm taking fewest iterations, provided the 
precision required for the algorithms is comparable. 

Best approximations by polynornia]s and rationals were computed for several 
cases using Maehly 's  second method, the modified second method using correction 
system (12), the starting points for these two being the zeroes of the (n+l ) - s t  
Chebyshev polynomial on [a, ill, and the Remez algorithm with starting points the 
extrema of the ( n + l ) - s t  Chebyshev polynomial. The number' of figures agreement 
of the error extrema {e{ k) [ i  = 0, " -  , n + l }  was tabulated against iteration num- 
ber k. In  Table I, the number of figures agreement is plotted against iteration 
number for the three algorithms. In  Table I I ,  the number  of iterations required to 
have a given agreement of error extrema are shown. As an example of how the 

T A B L E  I.  NUMBER OF SIGNIFICANT DECIMAL DIGITS AGREEMENT OF ERROR EXTREMA FOR 
MAEHLY'S SECOND METHOD (M), THE MODIFIED SECOND METHOD (Q) AND THE REMEZ 
ALGORITHM (R) FOR SELECTED CASES OF RATIONAL APPROXIMATION OF DEGREE l/m 

Function ! ¢v 

Interval [-1, 1] . [l/t6, 1] 

Degree 810 4/1 5/0 

Algorithm M Q R M Q R M Q R 

Iteration 
Number 

0 
1 
2 
3 
4 
5 
6 

0 0 2 
2 2 5 
6 5 8+ 
8+ 8+ 

0 0 1 
1 0 3 
4 2 7 
7 4 8+ 
8+ 5 

7 

0 0 1 
1 0 2 
2 I 5 
3 2 8+ 
5 4 
7 8+ 
8+ 

In x I ~/a 

_ _  [1/4, 1_______~] 

4/2 

[1115, I] [1/2, i] 

S/O 2/1 

M Q R M Q R 

0 0 
1 0 
2 1 
4 3 
6 5 
7 8+ 
8-{- 

1 
2 
5 
8+ 

0 0 
2 1 
,l 3 
6 4 
8+ 6 

7 
8+ 

0 0 
0 0 
1 2 
3 5 
4 8+ 
6 
8+ 

I 
4 
8+ 

T A B L E  I I .  NUMBER OF ITERATIONS REQUIRED FOR AGREEMENT TO 2 AND 4 SIGNIFICANT 
DECIMAL DIGITS FOR MAEHLY~S SECOND METHOD AND THE l~EMEZ ALGORITHM 

Rational ApprOximation of ~ on [-1, 1] of degree 
Number of Figures 

and Algorithm 
l/0 3/0 $/0 2/1 4/1 1]2 3/2 2/3 

2M 
2R 
4M 
4R 

2M 
2R 
4M 
4R 

2 i i 2 2 2 2 
1 1 0 I 1 I 1 
3 ~: 2 2 3 2 3 3 
1 1 1 2 2 2 2 

2 
2 
3 
2 

: Rational Appmximatlon of in x on [1/4, 1] of degree 

11 t 211 a/, 41t I/2 212 a12 412 

2 2 3 3 
2 1 2 2 
3 3 4 4 
2 2 3 3 

2 1 
4 3 
2 2 

3 
2 ~:!i ¸ 

3 ~ 



CONVERGENCE PROI~LEMS IN MAEHLY'S SECOND METHOD: PART II 1.13 

tables may be used, in tile approximation of e ~ oll [ -1 ,  1] by a polynomial of degree 
5 using 5~[aehly's second method, the error extrema agreed to 0 figures for the initial 
approximation (iteration 0) and to 2 figures for iteration 1 ; one iteration, therefore, 
being required to have 2 figures agreement. 

By hypothesis (1), quadratic convergence in ~ implies quadratic convergence in 
i]E 1], and thus the numerical results may be examined for convergence rates. These 
results confirm the ~malytical results, namely that the modified second method has 
quadratic convergence in the polynomial ease and Maehly's second method has a 
convergence rate less than quadratic. I t  has been shown that the Remez algorithm 
collverges quadratically ill II e Ii for the polynomial ease and unpublished proofs 
generalize this result. The numerical results suggest, however, that algorithms with 
quadratic convergence may have no advantage in practice over algorithms without 
this property. In particular, in the polynomial ease the modified second method is 
superior to Maehly's second method only for very low degrees or a high number of 
figures agreement, and is inferior for most eases of practical interest. The modified 
second method was also tried in the rational ease and it gave slow eonveNenee. 

To conclude, for the polynomial ease the Remez Mgorithm is undoubtedly supe- 
rior, as it is superior in three respects to Maehly's second method; namely, its 
initial approximation is usually better, its convergence is quadratic and it never fails 
to converge. In the rational ease, theory and numerical examples seem to favor the 
Remez algorithm. There are, however, theoretical and practical difficulties con- 
nected with the nonlinear system used by the Remez algorithm to obtain rational 
approximations and until these are better understood, the question of whether the 
Remez algorithm is superior will not be solved completely. 
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