Check for
Updates

Two Complete Axiom Systems for the Algebra of
Regular Events

ARTO SALOMAA

University of Turku, Turku, Finland

Abstract. 'The theory of finite automata is closely linked with the theory of Kleene’s regul sy
expressions. In this paper, two formal systems for the algebraic transformation of regulgy
expressions are developed. Both systems are consistent and complete; i.e., the set of equations
derivable within the system equals the set of equations between two regular expressions de.
noting the same event. One of the systems is based upon the uniqueness of the solution of
certain regular expression equations, whereas some facts concerning the representation theory
of regular events are used in connection with the other.

1. Introduction

The problem concerning the axiomatization of the algebra of regular events hag
been proposed by many authors [3, 7, 8]. A negative solution has been obtained by
V. N. Redko [10]. He has shown that if substitution is the only rule of inference,
then no finite set of axioms is sufficient to yield a complete axiomatization of the
algebra of events over the alphabet {z}. It follows that such an axiomatization is
not possible for the algebra of events in general. However, this leaves one with the
problem of constructing axiom systems with rules of inference stronger than the
substitution rule.

In this paper, two such axiom systems are proposed. The feature characteristic
for the system Fy is that regular expression equations of the form ¢ = o8 4 vy are
solvable by a rule of inference. In the system F,, one is allowed to introduce itera-
tions to regular expressions satisfying certain conditions. Both of the systems F; and
Fy are shown to be consistent and complete. Because the rules of inference are in 2
stronger than in Fy, the completeness proof of F; is more complicated than that of
Fo . Original versions of the systems F and Fy were given in [11] without the corxy-
pleteness proof of F; . This exposition is self-contained in Sections 2—4, whereas some
results from [7] and [11] are needed in Section 5.

2. Definitions

Let X = {1, ---, ] be a finite nonempty set, called the (input) alphabet.
The elements of X are referred to as letters. Let X* be the free semi-group with
identity generated by X, where one may write the operation multiplicatively and
denote it by juxtaposition. The elements of X™ are called words (over the alphabet
X) and the subsets of X*, events (over X). The symbol ¢ denotes the empty event.
The identity of X*, called the empty word, is denoted by ¢*.

Consider finite strings consisting of the elements of X, the symbol ¢, the so-called
regular operators, namely, sum (+), product (+) and star (*), and parentheses-
The notion of a regular expression (over the alphabet X) is defined recursively as
follows:

(1) A string consisting of a single letter of the alphabet or a single ¢ is a regular
expression.
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(ii) If « and B are regular expressions, then so are (o + 8), (a+8) and «*.
(iii) Nothing else is a regular expression unless its being so follows from a finite
number of applications of (i) and (ii).

In practice, the dot (+) is omitted. For convenience, parentheses are sometimes
omitted, and the order of strength of the various operator signs is specified in the
usual fashion: product is perf01 med before disjunction and star before both product
and disjunction. Thus, & + By has to be read o« + ([3(7 ).

Every regular expression « denotes a subset | & | of X* according to the following
conventions:

(i) The regular expression z:, (i=1,---,r), denotes the unit set of z;.
The regular expression ¢ denotes the empty set of words.

(ii) Let the sets denoted by the regular expressions « and § be | @ | and | 8 |. Then
the regular expression (« -+ 8) denotes the union | a | U |8 |. The regular expression
(aB) denotes the set {ab|a € |a], b € | B]}. The regular expression o* denotes the
smallest set | & | of words, which contalns the empty word and contains, for any
€ lalandb € | o |, the word ab. o* is called the iteration of a.

The notation « = 8 used here means that the regular expressions « and 8 are
identical, i.e., contain the same symbols in the same order. Moreover, the equation
a = B between two regular expressions « and g is valid if the sets |« | and | B | are
identical. Thus, although (2, + ) = (21 + x)* is a valid equation, one does
not have (21 + 2.)* = (2 + 22)™.

It may be stated that a regular expression a possesses the empty word property
(e.w.p.) if and only if one of the following conditions is satisfied:

(i) a = g%, for some regular expression g.

(ii) «is a sum of regular expressions, one of which possesses e.w.p.

(iii) e is a product of regular expressions, each of which possesses e.w.p.

It is obvious that a regular expression « possesses e.w.p. if and only if the set
| a | contains the empty word.

Ordered pairs (e, 8) of regular expressions are also considered. Then by the sum
(e, 8) + (v, 8) is meant the ordered pair (« + v, 8 + 8), and by the product
{«, B)v is meant the ordered pair (ay, Bv).

3. The axiom system F

A purely formal characterization of valid equations between regular expressions
will now be given; i.e., no reference will be made to the sets denoted by regular
expressions. IFor this purpose, the axiom system Fy is introduced.

There are 11 axioms in the system F; :

A o+ B+7)=(a+B8)+ A; ¢*a = a,

4, a(By) = (aB)7, As da = ¢,

4y at+p=F+a, 4, até=agq

4, a(B+7v) =af tov, Ay o* = ¢* + o',
45 (@ + B)y = v + B, Ay ot = (¢F 4+ o).
4s o+a=a |
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In A=A, «, B and y are arbitrary regular expressions. (In fact, the axioms gy
infinite axiom schemata.) There are two rules of inference.

R1 (Substitution). Assume that 7" is the result of replacing an occurrence of a
by 8 in v. Then from the equations « = 8 and v = & one may infer the equatioy
v = & and the equation v =

R2 (Solution of equations). Assume that 8 does not possess e.w.p. Then frop
the equation & = af + v one may infer the equation o = y8".

A proof in the axiom system F) is a finite sequence of equations where each
equation either is an axiom or follows by a rule of inference from the earlier equations
in the sequence. An equation a = § is derivable within the system F, in symbols
b1 = B, if there is a proof ending with the equation a = 8. The axiom system F,
is said to be consistent if all derivable equations are valid. It is said to be complet
if all valid equations are derivable. First the following Theorem 1 must be estab
lished. ‘

TreEOREM 1. The axiom system I'y is consistent.

Proor. It is obvious that all of the axioms A;~A4y are valid and that the rule
R1 preserves validity. It is also easy to see (cf. {2] or [11]) that if a regular expression
8 does not possess e.w.p. then the equation a = a8 + v has only one solution,
namely, o = v8*. Therefore, the rule R2 preserves validity and thus Theorem 1
follows.

In the sequel, the substitution rule R1 and the results mentioned in the following
lemma will be used without being explicitly referred to.

Lemma 1. Let «, B, v and & be arbitrary regular expressions. Then 1o = a. If
tia=0then Fif=a. I[fFia=Band 1B =v,then Fia=v. If F1a =8
and b1y =6, then 1o +v = 8+ 6, iay = B8 and - o = g%

The proof of Lemma 1 is straightforward, by R1 and 4. (In fact, the rule Rl
can be omitted if the sign of equality is regarded as belonging to the syntax lan-
guage.)

In view of Ay and 4, , we shall write sums and products of more than two regular
expressions associatively, and use the customary product and » -notations. The
notation

b1 (Ot, /3) = ('Y: 6)
is used here to mean that both ;¢ = vy and 18 = 4.

4. Completeness proof of Fi

The subsequent proof of the completeness of the axiom system F is based on two
facts. Firstly, because of the rule R2, certain systems of equations possess a solution
which is unique up to derivability within ¥, . This is shown in Lemma 2. Secondly,
if the equation « = 8 is valid, then such a system of equations can be constructed
for the pair (a, 8). This is a consequence of Lemma 4.

TFirst let us derive two equations, obtained from A; and 4s by changing the order
of the factors on the left sides. By As,

19 = ¢
and hence, by 4,,

1 add = o, Fiap = (ad)d + 4.
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This implies, by R2, that

F1ag = ¢o".
Therefore, by 4s, we have

Fiod = ¢. (1)
Consequently,

Fia=a+¢ = at+ap=ap+ a

Hence, by R2,

iag® = a. (2)

Lenvma 2. Assume that n is a natural number and
1 <ai ) Bi) = Zl (a:f ) B])VU + (’Yi 3 71) (1’ = l> Tt 9n) (3)
s

where none of the regular expressions wvyi possesses eaw.p. Then ‘ia; = B;,
fort =1, -+ ,m.

Proor. The proof is by induction on the number n. If n = 1 then (3) has the
formn :

o = a1‘/;1 + 71, 161 = Bryn +m.
Hence, by R2,
Fiar = vi(yu)* = Br.

Assuming that » > 2 and having established the lemma for the numbers
L, -+ ,n—1, the equation resulting from (3) for 7 = n can now be separated into
two equations:

n—=1

F1on = Zlaﬂ’nj + % Ynn + Yn
=
and
n—1
16, = Zlﬁf)’nj + BaYnn + Ya .
7=

By applying R2 (and 4;), the following results are obtained:

n-1
F1on = (; & Ynj + 'Yn) ('Ynn)* (47)
and
n~1
180 = (55 817+ ) (). (5)

Now eliminate the pair (e , 82) from (3) according to (4) and (5), and apply the
commutative and distributive laws A—4; :

n—1

1 (OL,’, Bi) = ; (e, ﬁi)('yii + 'Yni('Ynﬂ)*'Yin) + (e, &) (7’ =1, ;n""]-))
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where ¢; = v; + o (Yun) vin . Obviously, none of the coefficients vi; + ":’ni(‘Ym)*'y;,,
possesses e.w.p. Therefore, by our inductive assumption,

100 = Bi (=1, -, n—=1),

Hence, by (4) and (5), F1a, = B.. This completes the induction and also the
proof of Lemma 2.

It may be stated that a regular expression « is equationally characterized if there
is a finite number of regular expressions oq, * - - , @, such that « = and

I—-1a,~ = Z;ai,{tj + 5(0[,;) (’L = 1, T ,’ﬂ), (6)
=

where 8(a;) = ¢ or §(a;) = ¢* and, for each 7 and j, thereis a k, 1 < k < m, such
that Ay = Ay . )

Tt is obvious that in (6), 8(e:) = ¢ if and only if a; possesses e.w.p. Frurthermore,
for each i, the sets | aiz; |, (j = 1, --- ,7), are disjoint. This implies, by Theorem
1, the following:

LemMa 3. Assume thal the equation a = B is valid and

1 () = Z (as, )25 + (5(a), 5(8)),

where §(a) = ¢ or §(a) = ¢*, and §(B) = or §(8) = ¢*. Then 6(a) == 8(B) and
the equations o; = B;, (§j = 1, -+, r), are valid.

The next lemma is the most important tool in the completeness proof.

Lemma 4. Every regular expression is equationally characterized.

Proor. We follow the recursive definition of regular expressions presented in
Section 2. Using axioms AgA, , the following relations are obtained:

Fi¢ = ;¢x:’ + ¢,
Figi=gm+ -+ o'zt o Fonte ((= 1, 1)
Fi¢* = gqsxj + ¢,
Thus, it may be concluded that the regular expressions ¢ and 2;, (4 = 1, ---,7),
are equationally characterized. (For ¢ the corresponding set consists of ¢ alone,

and for x; it consists of x; , ¢ and )
Assume that the regular expressions o and B are equationally characterized.

This implies that there are regular expressions ay , « + + , @, Where a; = ¢ such that
(6) holds. Furthermore, there are regular expressions Bi, ---,Bn where g =
such that

1B = ];Buxj + 6(B:) (t=1,--+  m), (1)

where 8(8;) = ¢ or 8(8;) = ¢  and, for each 7 and j, there is a k, (1 <k < m),
such that 8;; = 8; . To complete the proof of Lemma 4, it suffices to show that the
regular expressions « + 8, of and «" are equationally characterized.

We denote

Hu,) =au+B, (wu=1,---,n; v= 17---,m)-
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Pecause we have
o+ =0 Fie+e =¢"to=09", o' +e"=06"

we obtain, using (6) and (7) (and the commutative and distributive laws),
T
Fa £, 0) = 2 (aus + Bej)zy + 8(u, ),
=1

where §(u, v) = ¢ or 8(u,v) = 6" and all of the regular expressions a,; + B,; are
among the regular expressions £ Since £(1,1) = o -+ 8, this implies that o + 8
is ecquationally characterized.

Next let us consider regular expressions

77(2«/;, Py, "= ,Ub,) &= aﬁ:a"i"aa‘! + o +a”hv (8)
where 1< u<m, A20 and 1<y < < - <p <n {Obviously, the
pumber of the regular expressions (8) equals ms2%) Assume first that §(8.) = ¢.

Then, by 4;-4s , dvand (1), the following result may be obtained:

by ”!](’LL, Ty vty Uh) = 2:1 (aﬁuj “+ Cyyj R wv“).’lﬁj 4 6(7}), (9)
5
where A
s(n) =¢ or ¥n) =¢" (10)
11 5(8.) = ¢", then we obtain, by A4, Ao and (2), the result:

r

B, v, oo o) = 2 (B + oy F awyy + o0 oan)as -+ 8(n), (1)

J=i

where (10) is satisfied. Using axioms 4, and A, the coefficients of 2; on the right
sides of (9) and (11) may be replaced by some regular expressions (8). Because
21} = off, it is concluded that «f is equationally characterized.

We denote, finally,

E(U) = a*3 Z(ul y 0t 3uh) = a*(aux + Lo + auh); (12)
where A 2 1 and 1 <y <up < -+ < 1wy < 1. (Obviously, the number of the
regular expressions (12) equals 2".) By (6),

by = Zl()q]‘fbj + 5((!)
o

Hence, by 44 0r Ay,

r *
#
by m(@“u-’”ﬁ) .
-

From this relation we obtain, by Ay,
T ” "
F18(0) = 2 danm; + 8% (13)
=1

Assume that the regular expression ., -+ -+« -+ oy, does not possess e.w.p. Then
we obtain the relation:

r

Frb(un, o yu) = 2 & (auy + o F @)z + @ (14)

7=1
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If the regular expression au, 4 -+ - @, possesses e.w.p., then the following
relation 1s derived:

»

1 E(ul y T uh) = _1; a*(ali + 2P + -+ au};i)‘xj + d)* (15)
Again, using axioms 4; and Ae, the coefficients of z; on the right sides of (13), (14)
and (15) may be replaced by some regular expressions (12). Hence, by (12-15),
it is concluded that o* is equationally characterized. This proves Lemma 4.

Remark 1. Lemma 4 comprises two facts; namely, that the number of dissimilar
derivatives of regular expressions is finite (cf. Theorem 5.2 in [4]) and that the
corresponding characteristic equations are derivable within Fy. The definition of
similarity presented in [4] has to be modified to include operations with ¢ and ¢*.
Otherwise, {4, Theorem 5.2] does not hold true.

A suitable position has now been reached to begin the proof of the completeness
Of F 1.

TaeorEM 2. The axiom system Fy is complete.

Proor. Let o = 8 be an arbitrary valid equation. By Lemma 4, both « and 3
are equationally characterized, Let the corresponding regular expressions be
ar, - - ,apand B, -, Bm, where o = ay, 8 = B1 and the conditions (6) and (7)
are satisfied. By Lemma 3, we obtain

Fi(e, B) = (a,B) = ZX (e, Bri)x; + (8(ar), 8(a)),
=
where the pairs (ay;, f1;) are among the pairs (op, 8:). By Lemma 3, we obtain
similarly
b1 (e, Bry) = ; (e, B19)7s + (8(0uy), 8(0n;)) (=1, ,1),

where the pairs (eq;,81;) are among the pairs (ay , Be). The procedure is carried
on until no new pairs appear. Thus, we can construct a set of pairs
(@®,8), (a®,8%), .-+, (a™, ) (16)

with 4 < mn and

1 (a(i)) 6(i)) = 21 (a;j)7 J('i))xf + (’Yi;"/i) (Z = ly T ’u')7 (17)
o=
where all of the pairs (a”, 8§”) are among the pairs (16). By (1), we may write
(17) in the form

k1 (a(i), ﬁ(i)> = PZI (a(j): lg(j))'yﬁ + ('Y'i y'Yi) (7/ = 17 T, ’LL),

where for each ¢ and j either vi; = ¢ or yij = 2;, + -+ + z;, for some v > 1 and
1 €45 <+ <Jj» £r. Thus, none of the regular expressions v;; possesses e.w.p.
This implies, by Lemma 2, that

b o = @ (E=1,---,u).

In particular, we have I-; &« = 8. Thus, Theorem 2 follows.
Remark 2. The completeness proof is constructive in the sense that, for any
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valid equation « = B, it gives a method to construct a proof of it. One may even
compute an upper bound, depending on the number of the regular operators in-
cluded in a and B, for the length of the shortest proof of « = 8. However, the general
method is in most cases not economical., For simple derivations within Fy of some
of the most common regular expression equations, the reader is referred to [11].

As an illustration, let us now establish the derivability (within F;) of the equation
ay = Bi, where

a1 = (0+ 014+ 10)* and B = (10 + 0%01)*0".
We denote
a = a+al = (04 01 + 10)* + (0 4 01 + 10)*1
and
B = B+ (10 + 0*01)*1 = (10 + 0*01)™0* + (10 + 0*01)*1.
By 41, the following result is obtained:
Fran = ¢" 4+ a1(0 + 01 + 10) = ¢* + a0 + a,01.
Because we have
Frai=¢" + a0 + a0l + @110 = 6™ + @10 + 0 + a0l + 10 = a0 + o,
we may write
Fras = a1+ oal = ¢* + a0 + a0l + il
=¢" + a0 + (@10 + )l = ¢" + a0 + ail.
Using (2) and the relation ;0% = ¢* + 0¥0, we obtain
b1 8= (10 4 0%01)* + 8,0 = ¢* + (10 + 0*01)*(10 + 0%01) + 40
= ¢" + 8.0 + 6,01
and
F18: = 81+ (10 4+ 0*01)*1 = ¢* + 8,0 -+ 8,01 + (10 + 0¥01)*1
=¢* + B8:0 + (80 + (10 + 0*01)*)1 = ¢* + B0 + Bul.
Thus we have established the relations
b1 (e, B) = ¢" + (a2, 82)0 + (a1, 81)01
and
Fi(az, B) = 6" + (a2, B2)0 + (e, Bi)1L.
Two successive applications of R2 give, finally, the result
Fia = 81 = 0%(01 + 10*0)*.

The method used in this example is, in principle, the same as the one used in the
completeness proof of F; . However, the proof has been simplified by allowing the
word 01 to appear as a coefficient.

Remark 3. Note that intersection and complement are not included in our
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language of regular expressions (cf. [4] and [9]). Also note that it follows from the
completeness of Fy that all valid regular expression equations ean be derived using
Ghiron’s rules (cf. [6]), provided As and R1 are added to his rules. In addition,
some of Ghiron’s rules can be omitted (cf. [11, footnote on p. 19]).

Remark 4. Although it is easy to see that the “essential” axioms Ay and Ay,
as well as the rule R2 are independent, the problem of the independence of the
remaining axioms is open. A related problem is whether or not R2 can be weakened,
for instance, to the following form: If 8 does not possess e.w.p. and a = of + ¢
then a = % On the other hand, it is obvious that the axiom system Fy', obtained
from Fy by reversing the order of factors in products appearing in A7, As, 4y and
R2, is complete.

Remark 5. One may omit the symbol ¢ from the language of regular expressions,
Then the events denoted by regular expressions do not contain the empty word.
Therefore, | «* | is defined to be the union of the sets | o |, ¢ > 1. (This definition of
iteration is proposed in [5].) We mention without proof that a complete axiomatiza-
tion for this restricted language consists of the axioms 4,—4s and

’ * *
Ay a =aata

and of the rules R1 and R2": From the equation & = af + v one may infer the
equation o = 8" -+ 7.

5. The axiom system I,

The representation theory of finite automata gives various possibilities to con-
struct complete axiom systems for the algebra of regular events. Such a system is
presented in what follows. Its characteristic rule of inference is more difficult to
apply than the rule R2.

TFor a regular expression a, we define

Cla) = 29 + 2,

where s(a) is the number of letters occurring in «. (Each letter is counted as many
times as it occurs. )

We say that a regular expression « possesses ¢-property if and only if one of the
following conditions is satisfied: (i) a=¢, (i) « is a disjunction of regular
expressions, each of which possesses ¢-property, or (iii) « is a product of regular
expressions, one of which possesses ¢-property.

Clearly, o possesses ¢-property if and only if | « | is the empty set.

The axioms in the system Fs are A-Ai and the following two equations (which
correspond to (1) and (2)):

A12 Of¢ = ¢)
A13 a¢* = «,

The rules of inference are R1 and the following:

R3 (Introduction of iterations). For any regular expressions «, 8, v and § where
v does not possess ¢-property, the equation a + By*s = a may be inferred from the
C(a) + 1 equations:

a+ By =a (=01, -, C(a))
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Derivability, consisteney and completeness are defived as in Seetion 3. Deriva-
bility within F; is denofed by the symbol —o. The dterative degree of a regular
expression is defined as follows:

{1) The letiers of the alphabet and ¢ have iterative degree 0.

(i) If & and 8 have Herative degrees ¢ and j then af and a+3 have iterative
degree max (7, j).

(ili) Tf o has iterative degree ¢ then o has iterative degree i41.

Three lermmas are presented first,

Lavva . Asswme thal, for each © where 0 < 1 < C(a), we have

IBvsiclal, (18)

where v does not possess ¢-property, Thea also | 3v78 | C |a .

Proow. 1t suffices to show that the inelusion (18) holds for all values of 7 > 0.
By the assumption, (I8) holds for ¢ < ((«). We make the following inductive
hypothesis: (18) holds {or ¢ £ C{a) + k. To complete the induction, it must be
proved that ‘
lﬁyé’(aJch—H& I c l,a | (19)

Assurne the contrary: There i 2 word P such that
Pe g™ P gl (20)
Obviously, P is of the form
P = pOpY L pl L PO PP e g, PO ¢ v, PP ¢ s,

According to [7, Theorem 16), | & | can be reprezented in an automaton with Cla) — 1
states. This implies that the states

& Tyir) @By (7)
soP IJIT, :SOP P Pc(a)-+~k,
whore 8 is the initial state, cannot all be distinet. Hence, for some % and v,

s POPIY o pl o PP P PO, (IS u<u oy < Cla) o+ kD,

Consequently,
5P = &P, (21)
where :
P = POPY - PP Pl PO E 878 (22)
for some 7 < C{a) 4 k. By (20} and (21), we obtain
P ilel (23)

Beeause {22) and (23) contradict our inductive assumption, we may conclude that
{19} holds. This proves Lemma. 5. '

Lemma 6. Assume that k> 1 and &, il i £k+ 1) and v, (1 << £ k)
ure regular expressions such that none of the v.'s possesses -property and

Faa + Byt 'Be - - By Ben = @
whenever 0 < n; < Cla),i =1, -+, k. Then also
Foa + BB - Pk Ben = o
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The proof is by induction on k. The reader is referred to the proof of [11, Theorem
11} where a similar argument is carried out.

Liemma 7. Assume thal v is a regular expression with iterative degree 0 and
[vIClal Then Foa + v = a.

The proof is performed by induction on the numbu of the regular operators in q,
T'or the details, the reader is referved to the proofs of [11, Theorems 4, 51. In fact,
the equation « + v = o can be derived in F; without an application of R3.

TureoreEM 3.  The axiom system Fy is both consistent and complete.

Proor. The consistency is due to the fact that, by Lemma 5, rule R3 preserves
validity. To prove the completeness, we show by an induction on the iterative
degrée of B that the inclusion | 8 | C | « | implies the relation

e+ 8 = a. (24)

By Lemma 7, (24) follows if the iterative degree of 8 equals 0. The inductive step
is completed using Lemma 6 (and axioms 4; and Ay to take care of possible oceur-
rences of ¢*). The details can be found in the proof of {11, Theorem 12].

Let now « = 8 be an arbitrary valid equation. Then we have both |« | < | 8 | and
|8] < |aland, hence, 28 + @ = B and 2 ¢ + 8 = a. Therefore, we obtain the
relation -5 & = B which proves the completeness of the system F. . Thus, Theorem
3 has been established.

Remark 6. Another complete axiom system F; can be constructed by using the
fact that a regular event is completely characterized by a sufficiently large finite
part of it. More specifically, define

Cla, ) = 277 + 11

where s(e, 8) is the number of letters occurring in the regular expressions « and 8.
(Kach letter is counted as many times as it occurs.) Furthermore, let U(k) be the
set of all words over X™ with length less than or equal to k. Then « = 8 is valid if
and only if

[a|NUC(a,8)) = |B8]NU(C(a,B)).

Acknowledgments. Independently of [11], S. Aanderaa [1] has presented an
axiom system almost identical to F1 and independently presented a completeness
proof for his system. Some parts of our completeness proof of F; (Lemma 2, Lemma
3 and the final argument of the proof) were essentially simplified by Aanderaa’s
proof. On the other hand, Aanderaa uses a result of Brzozowski [4], which is not
quite correct (ef. remark 1 above). The argument given in the proof of Lemma 4
malkes the usage of this result unnecessary. The author wishes to thank Professor
P. C. Fischer for information concerning Aanderaa’s work and Professor R. Me-
Naughton for pointing out the possibility to obtain a finitary system Fy .
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