
Duvel: Enabling Context-driven, Multi-profile Apps on Android
through Storage Sandboxing

Sharath Chandrashekhara, Taeyeon Ki, Karthik Dantu, and Steven Y. Ko
Department of Computer Science and Engineering

University at Buffalo, The State University of New York
{sc296,tki,kdantu,stevko}@buffalo.edu

ABSTRACT
We present a novel technique to achieve a dynamic, context-driven,
multiple-profile manager for individual apps on stock Android. Our
system allows users to use a single app with any number of accounts,
allows incognito modes for every app, and allows a context-driven
dynamic switching between the profiles (e.g., based on geoloca-
tion). Our technique achieves this by creating a sandboxed storage
environment within each app through byte-code instrumentation.
This allows for a clean separation of profile specific data and allows
users to run personal and business accounts on the same phone,
or sandbox an app in incognito mode without sharing any data
between them. We present many more use cases where our solution
can be used to improve user experience on mobile systems.
In contrast to many of the existing solutions, our solution eliminates
any modifications to the platform, does not require any special SDK
to develop apps, and can use a context-driven policy to dynamically
switch between profiles. We realize a storage sandbox environment
called Duvel on Android, based on our previous work BlueMoun-
tain, and show how Duvel can enable using multiple accounts and
incognito mode in popular apps.

KEYWORDS
Mobile systems; Data management; Bytecode instrumentation;
BYOD; Enterprise Mobility Management

1 INTRODUCTION
Mobile devices have become an essential part of people’s lives and
are being used in increasingly complex scenarios. Part of the com-
plexity is driven by the various virtual roles we take using online
accounts on our mobile devices. Applications of such complexity
include: (1) Using an office suite for creating presentations, (2) Shar-
ing a mobile phone with family members, especially children, (3)
Publishing photos online on platforms such as Instagram or Google
Photos, (4) Social media accounts such as Twitter and Facebook.
These situations require systems which can dynamically adapt to a
given context.

Each of the above scenarios can be used by the multiple virtual
roles assumed by a single person. For example, one person can use
an office suite to make presentations for her job (role = professional)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EdgeSys’18, June 10–15, 2018, Munich, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5837-8/18/06. . .$15.00
https://doi.org/10.1145/3213344.3213350

Original app Original App: Storage
Sandboxed

Bytecode
transformation

Data for Personal
Profile

Data for Business
Profile

Multiple Profile Data
Runtime Profile Switching

Figure 1: Overview

or for the local residential community meeting (role = personal).
Similarly, a person can maintain a social media account for herself
and multiple others for business/personal interests. Until recently,
it was common practice for business people to keep two separate
devices to provide a clear separation between personal and business
activity.

In addition, mobile devices have become very personalized and
users have developed strong preferences for them. This demand
has led to companies allowing users to use a device of their choice
even to access business apps and documents. This program is popu-
larly called ‘Bring Your Own Device’ and allows users to use the
same device they use their personal apps on for business apps as
well. In order to keep the business data secure, the business apps
are sandboxed within the personal phone so the business data is
not accessible to personal phones. This is done through special-
ized software called ‘Enterprise Mobile Management’ (EMM) (e.g.,
VMware AirWatch [18] and Android Enterprise [10]) which sets up
a separate configuration for individual apps for business as well as
personal use. Using some mechanism (automated or manual), the
EMM software then enables the correct configuration during use
time. However, in order to use apps inside such sandboxed environ-
ments, apps need to be customized. Therefore, if a user wants to
use her favorite note taking app to record business meetings notes
and personal notes, it cannot be supported using EMM software.
Rather, they have to manually switch between the two accounts
depending on their need.

It is therefore desirable to design a general system that allows
regular apps to access multiple profiles with separate storage and al-
low for easy transition between these profiles. Further, we envision
a system wherein apps will be able to use the rich context infor-
mation such as geolocation, network connectivity, user identity

31

https://doi.org/10.1145/3213344.3213350
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3213344.3213350&domain=pdf&date_stamp=2018-06-10

Email and Office
Suite

Business
Profile

Personal
Profile

Games
Regular
Profile

Incognito
Mode

Social Media App
Personal

Profile

Public Page

Photos App
Friends
Profile

Family
Profile

Access business emails and documents

Access personal emails and documents

Load the game in regular profile mode

Load the game in incognito mode

Manage personal page

Manage public pages

Switch to friends profile with custom
sharing and privacy control

Switch to family profile with parental control

Figure 2: Use Cases of Multiple-Profiles

etc., and use this context to automatically switch to the appropri-
ate sandboxed storage environment. For instance, when a user is
connected to her office wireless network, the email client should
operate with the user’s work account. It is also desirable to contain
such functionality completely in the app so platform modifications
are not required for deployment. Finally, to support legacy apps, it
would help to provide an automatic way of instrumenting previ-
ously developed apps while also providing a library to apps being
developed currently to allow for easy use of such functionality in
legacy as well as new apps.

In this paper, we present our prototype system Duvel, which
achieves the aforementioned goals by creating a general, context-
based profile management framework. It is built on top of the
BlueMountain [6], a framework for flexible data management in
mobile devices.

The remainder of this paper is organized as follows. In Section 2
we discuss more use cases and scenarios where using apps with
multiple profiles will be beneficial, in Section 3 we will discuss the
general design space for creating such a system, in Section 4 we
provide the implementation details of our prototype, in Section 5
we discuss the related work, and end with discussing the future
work and conclusion in Section 6.

2 MOTIVATION
As mentioned in section 1, our key insight is to enable multi-profiles
on mobile apps through storage sandboxing. In this section, we will
motivate its benefits through four specific use cases where storage
sandboxing would greatly benefit the users. The summary of these
use cases is shown in Figure 2.

Scenario 1, Personal/Business Apps: Alice is a business profes-
sional who uses her phone for both business and personal work. To
keep her personal data separate from her business data, Alice uses
two different accounts with many apps, such as email client and
office suite. When Alice has signed-in with her business account,
but wants to send a personal email, or access a document from her
personal office suite, she has to sign-out of the app, and sign-in
with her personal account. If Alice has to switch back-and-forth
between the accounts often, it becomes an annoying process. This
would perhaps not be a problem if the app she uses allows multiple
accounts (e.g., GMail app), but most apps do not have such a feature.
Alice can greatly benefit from a system like Duvel, where she can
switch between profiles easily and instantly. To make the process
even easier, Duvel can automatically switch between Alice’s ac-
counts using a certain policy. For instance, the system can switch
to Alice’s business account whenever she is connected to her office
Wi-Fi, or switch to her personal account when she is connected to
her home Wi-Fi.
Scenario 2, Incognito/Guest Mode: Bob is a mobile user who
is very conscious of his privacy and tries to minimize his online
footprint. On his desktop, Bob typically browses in incognito mode.
But on his mobile device, Bob has to sign out of every app after he
uses it and sign in again the next time he wants to use it. Given the
number of apps on his mobile device, he sometimes forgets to sign
out of apps and many apps continue to track him, which makes Bob
unhappy. Bob can take advantage of a system like Duvel, where
Bob can set a policy to always switch to guest-mode or incognito
mode at a particular time of the day, or when on international travel.
In incognito mode, the app uses a temporary sandboxed storage
environment which will not be persisted. It can also be used for
guest mode. E.g., when Bob’s friend wants to borrow Bob’s device
to quickly check their social media account. This features works
like Android’s guest mode, but for individual apps rather the whole
system.
Scenario 3, Social Media: Carol is a food blogger who exten-
sively uses Instagram to publicly post pictures about her culinary
creations. She also uses Instagram to share her personal photos
with her close friends and family. To ensure her private photos are
separate from her public postings, she has two accounts—one for
the food blog and another for her personal photos. Whenever Carol
wants to post a picture, she has to manually sign out of one account
and sign in with the other. Every fresh login takes significantly long
because Instagram has to cache the data from the servers, which are
discarded when the user signs out. When Carols uses Duvel, data for
both the accounts are present in their respective storage sandboxes,
and switching is much faster. The app can even make an informed
guess about which account Carol is likely to use. For instance, when
Carol is away from home, she will be likely to use her personal
account for her photos, while she is in her home, she may be likely
to post to her food blog. Games are another category of apps where
users tend to use multiple accounts. In particular, players of several
war strategy games have multiple ‘farm’ accounts that are used to
accumulate resources and supply to a ‘main’ account that is used
for fighting.

32

Scenario 4, Multi-User: Dave is a typical mobile user and stores a
lot of personal photos on his phone. Dave loves to show his friends
and family the photos he captures. But when Dave’s friends are
viewing his photo gallery, he wants to hide all of his family pictures.
Duvel enables this separation by allowing Dave to split his data into
two profiles. Even though the photo app does not have multiple
online accounts like the previous cases, Duvel would allow Dave
to virtually partition his data into sandboxes. Duvel can later use
context information, or a manual input from Dave to decide which
of the many profiles in an app should be activated.

3 DESIGN SPACE
This section overviews the design space of multi-profile manage-
ment systems. First, we will discuss some of the existing systems for
managing multiple profiles, and then, we will discuss our envisioned
system. Next, we enumerate the desired features in a multi-profile
management system and compare our design with existing sys-
tems. And lastly, we will discuss some of the challenges involved
in building our system.

3.1 System Design
As we discussed in Section 1, various EMM systems, allow users to
access two different versions of a custom app. Google’s ‘Android
Enterprise’ brings support for multiple profiles for the Google suite
of apps. We will compare the features of both these systems in
Section 3.2.

One way to enable multi-profile for general apps is to allow a
system-wide multiple accounts setting. This is the approach An-
droid takes. A user can switch between their accounts, including
the guest account, by signing off the system and signing back again
with a different account. This would affect all the apps in the system
e.g., when a user switches to a new account, they might want to
do it only for the email app and use a common account for a to-do
app. Another approach is to let the apps manage the profiles. Some
apps, such as GMail App, allows a user to sign in with multiple
accounts at the same time, but they work as a merged account
rather than two separate accounts (e.g., when sending an email, the
user has to choose which account to use). The third approach to
enable multiple app profiles is to allow multiple versions of the app
to run side by side in a virtualized environment. Popular apps like
Parallel Space [16] take this approach. Because the entire app is
running in a virtual environment, it results in higher overhead in
terms of energy consumption, CPU usage, and memory footprint.
Because of this, the number of instances of an app one can run
inside the environment such as Parallel Space is limited to two.

While all of these approaches solves part of the problem of
running multiple apps, each one of them has certain limitations.
And none of them can offer a dynamic and policy-driven account
switching, based on a context of usage (e.g., geolocation, network
connectivity, user identification etc.), customizable by the user. In
Section 3.1.1 we discuss the design of Duvel which handles these
shortcomings.

3.1.1 Duvel Design. To create a context-driven multi-profile
manager, Duvel takes the approach of sandboxing only the storage
layer of an Android app. Android apps, store all the user files, login
information, access-keys, and everything required to identify a

App

Original App

Storage
Virtualization* Duvel

Profile-A Profile-B

Storage APIs

Profile data storage
independently

Multi-Profile Manager

Profile-X

*Using BlueMountain

Figure 3: Architecture of Duvel

user in the private storage area as files or in a database. Our system
exploits this design by letting apps to create multiple virtual storage
spaces, within their private storage and to use them one at a time
via storage redirection. Duvel intercepts all storage calls, and when
the app tries to access say file.txt, Duvel redirects the read to
version-1/file.txt or version-2/file.txt. This gives the
app an illusion of having multiple versions of any given file.

To intercept the storage calls and create a storage sandbox within
an app, Duvel uses BlueMountain [6], which in turn uses bytecode
instrumentation to correctly intercept all the storage calls within
the app1. Next, to handle the switching of profiles, Duvel has an
app to work as BlueMountain’s data-management app. This app
has two components—(1) the storage class implementations (as
required by BlueMountain) which get loaded into the instrumented
app at use time, and (2) an interface through which a user can
initiate switching profiles. The app can also implement automatic
switch-over based on context information like such as geolocation,
network connectivity, and others. To initiate a profile-switch, the
data-management app sends an intent to the instrumented app,
which changes storage sandbox which it is using. This architecture
is shown in Figure 3. In the next section, we compare the features
of our design with the existing systems.

3.2 Feature Comparison
Table 1 shows a comparison of BlueMountain with other systems
that offer multiple profiles. The features are explained below:

(1) Profile isolation: This feature isolates one profile from the
other and is supported by all systems.

(2) Third party apps: This feature allows a third party to de-
velop apps that work with the given system. Three of the
four systems allow this, but ‘Android Enterprise’ works only
with Google suite and does not support third party apps.

(3) Simultaneous profiles: This feature enables multiple pro-
files to be active at the same time. Currently, we are not

1When an app is instrumented with BlueMountain, the code to intercept all the storage
calls (files, databases, and key-value store) is injected into the app. The injected code
can also dynamically load the classes to handle storage calls from a special app, known
as the data-management app. The user chooses which data-management app has to be
loaded by a given app.

33

Solution Profile
Isolation

Third Party
Apps

Simultaneous
Profile

Unmodified
Apps

Automatic
Conversion

Dynamic
Switching

Android Enterprise ✓ ✗ ✓ N/A N/A ✗

AirWatch ✓ ✓ ✓ ✗ ✗ ✗

Parallel Space ✓ ✓ ✓ ✓ N/A ✗

Duvel ✓ ✓ ✗ ✗ ✓ ✓

Table 1: Feature Comparison Table

able to support this feature with Duvel, but we are exploring
ways of enabling this.

(4) Unmodified apps: This feature allows unmodified apps (in
terms of source and binary) to directly work with the system.
While Duvel requires apps to be modified, this is not a major
concern (see next feature).

(5) Automatic conversion: Although unmodified apps cannot
work directly on Duvel, we provide automated tools (based
on BlueMountain) to modify the app (through byte-code
instrumentation) to support Duvel.

(6) Dynamic Switching: This feature allows profiles to be swit-
ched automatically, based on a dynamic context. Only Duvel
can support this feature.

3.3 Discussion
Context and Policy: To make the most of Duvel’s design, we
should be able to use the context information to approximately
predict which profile a user is likely to use. Second, the user should
have enough flexibility to tweak the policies depending on their
needs. We are studying some of the context-aware solutions that
have been proposed in the past for our final design. Currently, we
can enable simple context-switching such as ones based on the
wireless AP the user is connected to.
Dynamic Switching:When the instrumented app is notified of the
profile change over requests, it has to flush all the data to persistent
storage, and restart using a different storage sandbox. When we try
to automatically invoke the changeover, we will have to address
data consistency issues that may arise if part of the data is not
committed to storage at the time of switch-over.
Hardware based tracking:Google recommends developers to use
software based GUID for tracking users instead of hardware based
identifiers. When GUIDs are used, multiple sandboxed storages
appear as different users. However, if an app uses hardware based
identifier (IMEI, MAC, etc.), apps might be able to detect the use of
virtualized storage and refuse to function. This would be a limitation
of Duvel.
User Experience: One of the important challenges of adding func-
tionality to apps through byte-code instrumentation is to maintain
a consistent user experience. For instance, when we use automatic
profile switch-over, users should be aware of the currently active
profile. We are exploring different techniques like UI overlay, using
notification bar, etc., to create a seamless experience.

Security: When Duvel instruments an app to enable multiple pro-
files, we need to ensure that the security of the app is not com-
promised. In particular, when using multiple profiles, we need to
ensure that data is not leaked between profiles—as analyzed by App-
Fork [14], many apps leak data through the using shared storage.
One way Duvel can deal with this problem is by keeping track of
the data created in shared storage and making them accessible only
when the profile that created the data is active. Another challenge
is to provide enough flexibility for the apps and the users to create
their own security policies (e.g., wipe data on a particular profile
on multiple wrong pins). This would allow users to use apps that
need high security like business apps.

4 DUVEL PROTOTYPE
In this section, we will briefly discuss the implementation details
of our prototype. We will then discuss the performance overhead
of our system.

4.1 Implementation Considerations
The development of our system is divided into two parts: (1) We
customized BlueMountain framework by adding functionality for
profile switching. One of the implementation challenges at this
step was during the app initialization—our system has to be fully
initialized before any files are accessed by the app. While this was
not a problem in simple apps, in complex apps having multiple
threads, occasionally, we saw file access even before our system
was initialized. We solve this by caching the I/O at start-up, until
Duvel is ready to handle them. Another extension we wrote was to
handle the files created by Webview based apps. These files are not
created using standard storage APIs and BlueMountain could not
handle them. (2) We developed the profile switchover functionality
as a data-management app. Using the BlueMountain SDK, we could
develop Duvel’s data-management app in less than 1000 lines of
code.

4.2 Evaluation
To evaluate the working of our system, we developed a simple
photo app, which can capture images, store them in the private
app space, and display them in a gallery. We instrumented this app
with BlueMountain and used it with Duvel data-management app.
We could divide the photo app into multiple profiles and switch
between them, both manually as well as based on the WiFi network
to which the phone is connected. To demonstrate even complex

34

(a) Instrumented SkyDrive (b) Duvel App to switch profiles

Figure 4: SkyDrive working with Duvel

Photo App Boot Time (ms)
Regular 149

With Duvel 278
After Switch 292

Table 2: Boot time in Milli-Seconds

Photo App Write (ms) Read (ms)
Regular 45 20

With Duvel 60 35

Table 3: I/O performance, 4MB Photo

apps can be handled by our system, we picked Microsoft OneDrive
app and instrumented it using BlueMountain and tested it with
Duvel.

4.2.1 Usage experience. With our current system, every time
the profile is switched, we had to kill the app and restart it to
reflect the changes. But while using the apps, both the photo app
we developed and Microsoft OneDrive, we did not notice any lags
within the app. The boot times of apps increased marginally when
the app is instrumented with Duvel code. The boot time goes up
even more when we restart after changing the profile. However, in
our experience, this was not very perceivable to the user. The boot
times are shown in Table 2.

4.2.2 Microbenchmarks. To measure the I/O overhead, we mea-
sure the read and write times for a 4MB photo from the custom
photo app, both after instrumenting with Duvel and without instru-
mentation. These numbers are based on an average of 10 runs and
are shown in Table 3. We can see that the performance overhead is
modest. We intend to understand the source of the overhead, and
reduce it in our future Duvel implementations.

5 RELATEDWORK
Our current system is based on our previous work BlueMountain [6],
a system that separates the data management logic from the app
logic and uses BlueMountain transformer, a byte-code instrumen-
tation tool based on Reptor [13].

Amongst the many existing works in the area of mobile data
management, a system that shares many similarities and goals with
Duvel is AppFork [14]. AppFork explores the area of BYOD both
from a functional as well as a security standpoint and proposes
many extensions to Android’s framework to support the per-app
user profiles. However, one of the goals of Duvel is to restrict all
modifications to app-space in order to keep the system practical.
Therefore while AppFork requires modifications to the underlying
platform, Duvel’s approach enables easy deployment without dis-
rupting the current ecosystem. However, Duvel can use some the
ideas discussed in AppFork (e.g., preventing data leaks) and achieve
this functionality in the app-space.

Additionally, Duvel also explores the idea of using context-aware-
ness to create an adaptable storage, improving privacy, and adding
flexibility on mobile systems. In this section, we discuss some of
the prior work has explored these ideas.
Context-Aware systems: Many previous works have tackled con-
text-awareness to provide a suitable service to the user depending
on the context. On the mobile side, many context-aware storage
systems have been build which can use context to cache data to
location systems or use location based pre-fetching of data [11,
12, 17]. Other systems such as Encore [1] improve the privacy on
mobile systems based on the context of the interacting devices. A
general description of building a context-aware system has also
been discussed here [4]. While all of these systems discuss novel
ideas on gathering context, Duvel’s contribution is in using the
gathered context to create an illusion of multiple versions of the
same app running on a mobile phone.
App Sandboxing and Virtualization: Both commercial and re-
search systems have explored creating virtualized environments
on Android to increase security and add flexibility. Recent ver-
sions of Android allows multiple system-wide accounts on mobile
phones. While this is equivalent to system wide sandboxing, Duvel
allows multiple profiles at a finer granularity making the switching
between app profiles much faster.

Various commercial Enterprise Mobility Management (EMM)
systems, dedicated to managing user-owned devices in business
environments have been developed in the recent past. Systems
like Airwatch [18], XenMobile [8], Android Enterprise [10], etc.,
provide a suite which includes device management, access control,
data management (e.g. Airwatch Content Locker), etc., enabling
personal devices to securely access corporate data. These platforms
typically require a custom enterprise app to take advantage of their
solutions.

Systems such as Boxify [3], Condroid [7], and NJAS [5], Cells [2]
create virtualization in app space where the entire app is working
in a sandboxed environment. While, Duvel uses a similar idea to
sandbox the storage system, unlike many of the virtualization en-
vironments, Duvel can dynamically switch between the different
sandboxed environments. Also, by sandboxing only the storage
layer, we suspect, Duvel might have a lower overhead compared to

35

the full virtualized environments [14]. We intend to evaluate this
and compare Duvel’s performance with other sandboxing systems
in the future.
Byte-code instrumentation: Bytecode rewriting and instrumen-
tation are popular techniques to modify an app’s behavior without
needing the source code. Many of the previous systems use these
techniques [9, 15] for achieving a specific purpose, while Reptor [13]
has built a general tool for byte-code instrumentation on Android.
Although Duvel’s contribution is not towards the advancement of
byte-code instrumentation techniques (we used previously devel-
oped systems BlueMountain and Reptor), like many systems based
on byte-code instrumentation, Duvel had to solve many nuanced
engineering challenges.

6 FUTUREWORK AND CONCLUSION
In this paper, we present a novel approach for sandboxing app data
with practical use cases in enterprise mobility management, privacy,
and multitasking. We have discussed the benefits of sandboxing
data, the design space in general along with many use cases.

In our preliminary work, we have extended BlueMountain to
achieve storage virtualization. While we have used a simple model
based on network connectivity for deducing the context, our design
opens up many possibilities of integrating intelligent context pre-
diction systems to provide a rich user experience. Our future work
is in the area of creating much more intelligent context prediction
systems based on user identification, geolocation, and environment
prediction.

7 ACKNOWLEDGMENTS
This work was supported in part by the generous funding from the
National Science Foundation, CNS-1350883 (CAREER) and CNS-
1618531. We would like to thank the anonymous reviewers for their
valuable feedback. We also want to thank everyone working in our
lab (Reliable Mobile Systems), for providing timely feedback.

REFERENCES
[1] Paarijaat Aditya, Viktor Erdélyi, Matthew Lentz, Elaine Shi, Bobby Bhattacharjee,

and Peter Druschel. 2014. EnCore: Private, Context-based Communication for
Mobile Social Apps. In Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’14). ACM, New York, NY,
USA, 135–148. https://doi.org/10.1145/2594368.2594374

[2] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. 2011. Cells: a virtual mobile smartphone architecture. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles. ACM, 173–187.
[3] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp Von

Styp-Rekowsky. 2015. Boxify: Full-fledged App Sandboxing for Stock Android.
In Proceedings of the 24th USENIX Conference on Security Symposium (SEC’15).
USENIX Association, Berkeley, CA, USA, 691–706. http://dl.acm.org/citation.
cfm?id=2831143.2831187

[4] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. 2007. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing
2, 4 (2007), 263–277.

[5] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.
2015. NJAS: Sandboxing Unmodified Applications in Non-rooted Devices Run-
ning Stock Android. In Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM ’15). ACM, New
York, NY, USA, 27–38. https://doi.org/10.1145/2808117.2808122

[6] Sharath Chandrashekhara, Taeyeon Ki, Kyungho Jeon, Karthik Dantu, and
Steven Y. Ko. 2017. BlueMountain: An Architecture for Customized Data Man-
agement on Mobile Systems. In Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking (MobiCom ’17). ACM, New York,
NY, USA, 396–408. https://doi.org/10.1145/3117811.3117822

[7] Wenzhi Chen, Lei Xu, Guoxi Li, and Yang Xiang. 2015. A lightweight virtualization
solution for Android devices. IEEE Trans. Comput. 64, 10 (2015), 2741–2751.

[8] Citrix. 2017. XenMobile. (Jan 2017). Retrieved July 10, 2017 from https://www.
citrix.com/products/xenmobile/

[9] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. 2012. I-
ARM-Droid: A Rewriting Framework for In-App Reference Monitors for Android
Applications. In Proceedings of the IEEE Mobile Security Technologies (MoST ’12).

[10] Google. 2017. Android for Work. (Jan 2017). Retrieved July 10, 2017 from
https://www.android.com/work

[11] Christopher K Hess and Roy H Campbell. 2003. A context-aware data manage-
ment system for ubiquitous computing applications. In Distributed Computing
Systems, 2003. Proceedings. 23rd International Conference on. IEEE, 294–301.

[12] Sharat Khungar and Jukka Riekki. 2004. A context based storage for ubiquitous
computing applications. In Proceedings of the 2nd European Union symposium on
Ambient intelligence. ACM, 55–58.

[13] Taeyeon Ki, Alexander Simeonov, Bhavika Pravin Jain, Chang Min Park, Ke-
shav Sharma, Karthik Dantu, Steven Y. Ko, and Lukasz Ziarek. 2017. Rep-
tor: Enabling API Virtualization on Android for Platform Openness. In Pro-
ceedings of the 15th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys ’17). ACM, New York, NY, USA, 399–412.
https://doi.org/10.1145/3081333.3081341

[14] Temitope Oluwafemi, Earlence Fernandes, Oriana Riva, Franziska Roes-
ner, Suman Nath, and Tadayoshi Kohno. 2014. Per-App Profiles with
AppFork: The Security of Two Phones with the Convenience of One. Tech-
nical Report. https://www.microsoft.com/en-us/research/publication/
per-app-profiles-appfork-security-two-phones-convenience-one/

[15] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris Riederer. 2014.
Procrastinator: Pacing mobile apps’ usage of the network. In Proc. ACM MobiSys.

[16] Parallel Space. 2017. Parallel App: Run Multiple Social and Game Accounts
in Your Phone Simultaneously. (Jan 2017). Retrieved April 6, 2018 from http:
//parallel-app.com/

[17] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. 2010. Wherestore: Location-
based data storage for mobile devices interacting with the cloud. In Proceedings
of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks
and Beyond. ACM, 1.

[18] VmWare. 2017. Air-Watch Enterprise mobility platform. (Jan 2017). Retrieved
July 10, 2017 from https://www.air-watch.com/

36

https://doi.org/10.1145/2594368.2594374
http://dl.acm.org/citation.cfm?id=2831143.2831187
http://dl.acm.org/citation.cfm?id=2831143.2831187
https://doi.org/10.1145/2808117.2808122
https://doi.org/10.1145/3117811.3117822
https://www.citrix.com/products/xenmobile/
https://www.citrix.com/products/xenmobile/
https://www.android.com/work
https://doi.org/10.1145/3081333.3081341
https://www.microsoft.com/en-us/research/publication/per-app-profiles-appfork-security-two-phones-convenience-one/
https://www.microsoft.com/en-us/research/publication/per-app-profiles-appfork-security-two-phones-convenience-one/
http://parallel-app.com/
http://parallel-app.com/
https://www.air-watch.com/

	Abstract
	1 Introduction
	2 Motivation
	3 Design Space
	3.1 System Design
	3.2 Feature Comparison
	3.3 Discussion

	4 Duvel Prototype
	4.1 Implementation Considerations
	4.2 Evaluation

	5 Related Work
	6 Future Work and Conclusion
	7 Acknowledgments
	References

