On Context-Free Languages

Rohit J. Parikh
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. In this report, certain properties of context-free (CF or type 2) grammars are investigated, like that of Chomsky. In particular, questions regarding structure, possible ambiguity and relationship to finite automata are considered. The following results are presented:
(a) The language generated by a context-free grammar is linear in a sense that is defined precisely.
(b) The requirement of unambiguity-that every sentence has a unique phrase structureweakens the grammar in the sense that there exists a CF language that cannot be generated unambiguously by a CF grammar.
(c) The result that not every CF language is a finite automaton (FA) language is improved in the following way. There exists a CF language L such that for any $L^{\prime} \subseteq L$, if L^{\prime} is FA, an $L^{\prime \prime} \subseteq L$ can be found such that $L^{\prime \prime}$ is also $F A, L^{\prime} \subseteq L^{\prime \prime}$ and $L^{\prime \prime}$ contains infinitely many sentences not in L^{\prime}.
(d) A type of grammar is defined that is intermediate between type 1 and type 2 grammars. It is shown that this type of grammar is essentially stronger than type 2 grammars and has the advantage over type 1 grammars that the phrase structure of a grammatical sentence is unique, once the derivation is given.

1. Preliminaries

Definition 1. By a phrase-structure grammar \mathbf{G} is meant a set V of symbols and a set R of rules R_{i} of the form $R_{i}: \omega_{i} \rightarrow \eta_{i}$, where ω_{i} and η_{i} are strings (possibly null) composed of members of V.

Definition 2. The grammar \mathbf{G} will be said to be of type 1 (a context grammar) if all the rules are of the type: $R_{i}=\varphi_{i} A_{i} \psi_{i} \rightarrow \varphi_{i} \omega_{i} \psi_{i}$, where A_{i} are individual symbols of $V ; \varphi_{i}, \omega_{i}, \psi_{i}$ are some strings on V; and ω_{2} are not null. It will also be assumed that $S=A_{i}$ for at least one i.

Definition 3. A type 1 grammar \mathbf{G} will be said to be of type 2 or context free (CF) if all the φ_{i}, ψ_{i} as given in the foregoing are null.
Definition 4. If \mathbf{G} is a type 1 grammar, then by V_{N} is meant the subset $\left\{A_{i}\right\}$ of V. By V_{T} is meant $V-V_{N}$ (T means terminal; N means nonterminal).

Convention 1. Hereafter, when talking about type 1 grammars we will use the following convention. Capital letters denote strings on V_{N}, lower-case letters denote strings on V_{T} and Greek letters denote strings on V. Early letters of the alphabet denote individual symbols; late letters denote arbitrary (possibly empty) strings. The boundary symbol * will always belong to $V_{\boldsymbol{T}}$ (although it does not

[^0]belong to the aphabet. In discussions of type 2 grammms, this symbol will of ten be omitied.

Several results from papers by Chonsky and othors $[2-1]$ will be used. While this report does not presuppose nequaintance with those papers, thoy form the contex of this paper.

Definition 5. By the set of φ generable strings of a phrasestructure graman \mathbf{G} is meant the smallest set A, such that
(a) $\varphi \in A_{b}$.

If a string ψ belongs to this sot we will call it φ-generable, and write $\psi \Rightarrow \psi$. The set of genemable stringe will be the set of $\$ *$-generabla strings A member of this set will be called generable.

Definition 6. The hagtage L generated by G will be the set of those strings on V_{t} that are generable. Such strings will be referrod to as sentences of G or L. Thus asentence is a generable string which contains no nonternital symbols. A language will be said to be of type \mathbb{X} it it can be genersted by a grammar of type X.

Note. Hereafter, all grammars will be type 1 grummars unless otherwise specifed. For example, the A, ω_{0} of Defintion 7 refer to Definition 2.

Definition 7. ($\left.R_{i}, j\right)$ will be said to be a
 said to be descendents of $A_{\text {, }}$ (here A_{3} refers not only to the particular member of V but also to the particular occurrence of it in φ) with respect to $\left(R_{i}, j\right)$. The members of $m_{1}, \psi_{4}, \psi_{i}, \eta_{4}$ in ψ will bes sad to be descendeats of their counterparts of φ with reapect to $\left(R_{i}, j\right)$.

Defintion 8. $D=\left(R_{i_{1}}, j_{1}\right)_{2},\left(R_{m}, j_{n}\right)$ will be said to be a p-derivation of ψ if there exists a sequence $\phi=\varphi_{a}, \varphi_{2}, \cdots, \varphi_{n}=\psi$ such that $\left(R_{i_{4}}, j\right)$ is ${ }^{\circ}$ φ_{k-1} derivation of q_{n}. β in ψ will be sad to be a desendent of a in φ with respect to D if there exist $\alpha=\alpha_{k}, \cdots, \alpha_{0}=\beta$ suht hat α_{i} is a descendent of α_{b-m} with respect to $\left(R_{1}, j_{l}\right)$.

Definiton 0. Let φ be a generable string and let φ_{1} be a substring of φ. Then φ_{1} will be gaid to be phase of of type A whth respect to D, where $D=$
 $\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}=\varphi$ and m occurrence A_{1} of A in some φ_{0} such that φ_{n} is the set of all descondants in φ of this A_{i} in φ_{k} with respect to the derivation $D^{\prime}=\left(R_{i_{k+1},}\right.$, $\left.j_{k+1}\right), \cdots,\left(R_{t_{n}}, j_{n}\right)$. We will say " ρ_{n} is a phrase of φ of bype A " if there exiss a D as in the foregoing.

Remark. If two occurrences and β of symbols in astring φ belong to the sume phrase, then so do all the occurrences between these two.

Defintion 10. A grammar \mathbf{C} will be gaid to have unambiguous phrase structure if, given two derivations D, D^{\prime} from $\# \$$ of a member x of L, and a substring x^{\prime} of x, x^{\prime} is a phrase of x of type A with respect to D^{\prime} if and only if x^{\prime} is a phrase of x of type A with respect to D.

Definition 11. A grammar has unique phrase structure if, given any two phrases in a sentence, either they are dispint or one is a part of the other.

Treorem 1. If a grommar has unambiguous phrase structure, it has unique phrase structure.

Proor. Let x_{1} and x_{2} be two subphrases of a sentence (that is, a generable string on V_{r}) x, and say x_{1}, x_{2} are of types A_{1} and A_{2} with respect to derivations
D, D^{\prime} of x. Now by unambiguity it may be assumed that $D=D^{\prime}$. If x_{1}, x_{2} are disjoint there is nothing to prove. So pick a in both x_{1} and x_{2}. (Caution: a refers not only to a member of V_{T} but to a particular occurrence of this member.) Now a is descended from an occurrence α of A_{1}, and a is descended from an occurrence β of A_{2}. It is easy to see now that either β is descended from α, or α is descended from β, or $\alpha=\beta$. Hence either $x_{1} \subseteq x_{2}$, or $x_{2} \subseteq x_{1}$, or $x_{1}=x_{2}$. Q.E.D.

Remark. Later an example will be given of a CF language that has no CF grammar with unique phrase structure. It follows that in that case ambiguity is unavoidable.

2. Principal Results

Lemma 1. Every CF-language L has a CF grammar G such that if $A \in V_{n}$ and $A \neq S$ then there exist terminal strings x, y and z, x not null, and at most one of y and z null, such that $A \rightarrow x$ and $A \rightarrow y A z$ are rules of \mathbf{G}. Moreover, if L has a CF grammar with unique phrase structure, then \mathbf{G} can be assumed to have unique phrase structure.

Proof. If for some nonterminal A there is a terminal x such that $A \Rightarrow x$, then one adds the rule $A \rightarrow x$. If there is no such x, one eliminates A and every rule in which A occurs. This does not reduce the generable V_{T} strings because if any rule with A on the right-hand side is used, then the result cannot lead to a V_{T} string. However, some nonterminal symbols may become terminal. Then one eliminates these also. This process must have an end because each time one eliminates at least one symbol. Finally, for every $A \in V_{N}$ except S one has a rule $A \rightarrow x$, with x terminal. Now if there exists an A for which there is no rule $A \rightarrow \varphi_{1} A \varphi_{2}$ with at least one of φ_{1}, φ_{2} not null, then one eliminates A and for every rule of the form $B \rightarrow \varphi_{1} A \varphi_{2}$ and for every rule $A \rightarrow \psi$ one replaces these two by the rule $B \rightarrow \varphi_{1} \psi_{\varphi_{2}}$ (φ_{1}, φ_{2} may also contain A, in which case one repeats this process with $B \rightarrow \varphi_{1} \psi \varphi_{2}$), and finally one only has symbols A such that there exist $x, \varphi_{1}, \varphi_{2}$ with $A \rightarrow x$ and $A \rightarrow \varphi_{1} A \varphi_{2}$ as rules and at least one of φ_{1}, φ_{2} not null. But then one must also have terminal y, z so that $\varphi_{1} \Rightarrow y, \varphi_{2} \Rightarrow z$ and not both y and z are null. So one adds the rule $A \rightarrow y A z$. This does not change the membership of L. In this entire process, a rule was never added that was not equivalent to a derivation. Hence, no new phrases were created and the new grammar must have unique phrase structure if the old one did. (If x_{1}, x_{2} are phrases by the new grammar, then also by the old grammar they are phrases and then they must be disjoint or one is a part of the other.) Q.E.D.

Lemma 2. If a language L has a CF grammar, then it has a CF grammar in which $A \Rightarrow B$ is never true for A, B in V_{N}.

Proof. Let us define $A \equiv B$ if $A \Rightarrow B$ and $B \Rightarrow A$. Replacing all the congruence classes by one element each, one gets a grammar \mathbf{G}^{\prime} in which $A \Rightarrow B$ is a partial ordering of V_{N}. Now, for every minimal B in this ordering and every rule $A \rightarrow B$, one eliminates the rule $A \rightarrow B$ and replaces it by the rules $A \rightarrow \omega$ whenever $B \rightarrow \omega$ is a rule. This would not create any more rules of the form $A \rightarrow C$, since by minimality of $B, B \Rightarrow C$ (and hence $B \rightarrow C$) is impossible. Now one has reduced the number of rules of the form $C \rightarrow D$ without changing L. One continues until all such rules are eliminated. Now, every rule that does not increase length will replace a nonterminal symbol by a terminal one and $A \Rightarrow B$ is impossible. Q.E.D.

Remark. The constructions of Lemmas 1 and 2 can be applied successively to obtain a grammar satisfying all the conditions stated in these lemmas.

2.1 Commutative Images of CF Languages

Definition 12. Let J denote the nonnegative integers. Let J^{n} denote the direct product of J taken n times. Then J^{n} is a commutative associative semigroup with identity, under componentwise addition. (For example, in $J^{2}:(2,3)+(5,0)=$ (7,3), etc.)

A subset Q of J^{n} will be said to be linear if there exist members $\alpha, \beta_{1}, \cdots, \beta_{m}$ of J^{n} such that

$$
Q=\left\{x \mid x=\alpha+n_{1} \beta_{1}+\cdots+n_{m} \beta_{m}, n_{i} \in J\right\} .
$$

Q will be said to be semilinear if Q is the union of a finite number of linear sets.
Definition 13. Let L be any CF language on the terminal symbols $a_{1} \cdots a_{n}$, . Define Φ from L into J^{n} as follows:

$$
\begin{aligned}
& \Phi\left(a_{1}\right)=(1, \cdots 0,0,0) \\
& \Phi\left(a_{2}\right)=(0,1,0, \cdots 0) \\
& \cdots \cdots \cdots \cdots \cdots, \cdots) \\
& \Phi\left(a_{n}\right)=(0 \cdots 0, \cdots 1) \\
& \Phi(*)=(0 \cdots 0, \cdots 0) \\
& \Phi(x y)=\Phi(x)+\Phi(y) .
\end{aligned}
$$

Then $\Phi(x)$ is called the commutative image of x and $\Phi(L)$ the commutative map of L. (Note that Φ depends on the order of the a_{i}; however, this fact will be ignored.)

Theorem 2. Let \mathbb{G} be a CF grammar generating the language L. Let $\Phi(L)$ be the commutative map of L. Then $\Phi(L)$ is a semilinear subset Q of J^{n} for the proper n. Moreover, a canonical description of Q in the form

$$
Q=Q_{1} \cup Q_{2} \cup \ldots \cup Q_{m}
$$

where

$$
Q_{j}=\left\{x \mid x=\alpha_{j}+n_{1} \beta_{j 1}+n_{2} \beta_{j 2}+\cdots+n_{k_{j}} \beta_{j k_{j}}, n_{i} \in J\right\}
$$

can be found effectively from \mathbf{G}.
Proof. Let V^{\prime} be a subset of V. Consider the set L^{\prime} of all members x of L such that in some derivation D of x, the members of V^{\prime} are precisely the symbols that are used. It is enough to find a canonical description for L^{\prime}, since L is a finite union of such L^{\prime}. Obviously, L^{\prime} is empty unless V^{\prime} contains S. Since no rule involving some symbol outside V^{\prime} can be used in such a D, it can be assumed without loss of generality that V^{\prime} is V.

At this point, the notion of a tree is introduced by means of an illustration. Suppose one has the rules $S \rightarrow A B C, A \rightarrow a A, A \rightarrow a a, B \rightarrow b a, C \rightarrow A B A$. Then one could have the derivation $S \rightarrow A B C \rightarrow a a B C \rightarrow a a b a C \rightarrow a a b a A B A \rightarrow a a b a a a B A \rightarrow$ $a a b a \alpha a b a A \rightarrow a a b a a a b a a A$. This could be written diagrammatically as follows:

(The different occurrences of a, b, c, etc., are numbered for convenience.) The
order in which the rules are applied is not preserved but nothing essential is lost. (At is possible to define a tree as an equivalence class of derivations, but in that case intuitively obvious facts would have to be proved. Here, it is enough io see that such a formal and more rigorous approach is possible.) Some notions are ilumetred here.
$B A_{1} a_{1}, S B_{1}$ are chains; $S A_{1} b_{1}$ is not; a_{1} is descended from A, and S but not from $B_{1} ; A_{4}$ is descended from A, hence A is descended from itsel;

is a subtree and so is

but

is not. The string ambanbanA is the product of the kree.
Now, for every a in V_{s} we define two meta R_{s} and T_{s}, ϕ is said to be in R_{s} if (a) φ contains α and α is the only nonterminal symbol in ψ; and (b) there is a tree with α at the vertex such that φ is the produet of the tree and no symbol occurs more than n times in any chain of the tree, where n is the number of clements in V.
T is defined analogously except that condition (a) is replaced by the condition that φ be terminal. It is also required that every symbol of V appear in the tree of condition (b).

We claim that there is only a finte number of trees satisfying condition (b), since in any such tree the length of any chain cannot be greater than the square of the number of symbols in V. Hence R_{a} and T_{g} are finte and can be found effectively from G.

For each α, let $v_{1}{ }^{\prime \prime}, v_{3}{ }^{\prime \prime}, \ldots, v_{p}{ }^{*}$ be the vectore obtained by removing as from a member φ of R_{α} and then taking the image under ${ }^{6}$. (See Definition 13.) Let u_{1}, \cdots, w_{k} be the mages under $\$$ of the members of T. Set

$$
\begin{aligned}
& n_{n}, n^{\prime}, \cdots \in J_{,} \quad \propto, \beta, \cdots \in V_{s l} .
\end{aligned}
$$

Then $\Phi\left(L^{\prime}\right)=Q_{1} \cup Q_{2} \cup \ldots \cup Q_{k}$.
For, certainly, if some string y is in L^{\prime} and $a \in v_{N}$, then a must ocour somewhere in a tree for y. Then in the place where a occurs one could imbed (for any $w_{i}{ }^{\circ}$ that one pleases) a tree with a product string $\varphi, \varphi \in R_{\alpha}$ and $\$(\varphi-\alpha)=v_{i}{ }^{\text {a }}$. Hence $\Phi(y)+v_{i}^{*}$ is also in $\Phi\left(\boldsymbol{L}^{\prime}\right)$.

On the other hand, if a string has a tree with more than $n \alpha$'s in a chain then, for some β, one can find $n+1 \beta^{\prime} \mathrm{s}$ in a descending sequence $\beta_{1}, \cdots, \beta_{n+1}$ such that all of them occur in a chain which, moreover, has the property that there is no
thain antirely below fis which contains more than 7 oceurwaces af my zymbol Now suppoce that we replace the tree following $\beta_{\text {; }}$ by the tree following $\theta_{\text {? }}$. Then we have rediued the product of the cative tree by exacty a menber of hat , The new twe may not conthat an the symbols from V. Howover, since there are only
 the new tree contains all the members of I if the old ove did. This process is conthoued unti one has a tree in whet any chan has, at most, moccurrences of any one symbol, aud ita product must be a nember of T, Q. E.D.

The converse of Theorem 2 is onsy to verfly. Assuming Q and Q, have the shated form, let $y_{j}, y_{n}, \cdots, V_{n, s}$ be strings whosa imuges under ${ }^{\text {b }}$ ano a_{j}, β_{k}, \ldots, An为, The males

$$
\left.S \rightarrow A_{i}, \quad A_{j} \rightarrow w_{i}, A_{j} \rightarrow A_{j k} \| \leq j \leq m, 1 \leq i \leq r_{j}\right)
$$

 state (type 3) grammar, in the sense defined in what followe Thus one has:
 permuations.

 (nod n ') for some t.

Paoor. It is casy to sea that $\theta(L)$ will be semilnear subued of the integors. Let $A_{1}, \cdots, A_{r}, A_{r+8}, \cdots, A_{\text {, }}$ be the linar sats whowe mion it is Hero we as.

 be bigger than all the olements of the finito sota A_{1}, \cdots, A, and the frot olenents
 residue modulo $n^{\prime \prime}$ of the aloments appering grovig $A_{+\infty}, \cdots, A_{n}$.
2.2 Intumex Aumovrrx
 andeut phase struchure.

In order to prove Theorem 3 , wo how, firt, that the hanguage
is CF. 粦or, consider the rules:

$$
\begin{aligned}
& B-A D \quad A \rightarrow a A a_{3} \quad A \rightarrow a B n_{5} \quad B \rightarrow b, \quad B \rightarrow b D_{2} \\
& S \rightarrow C D \quad C \rightarrow b C b, \quad C \rightarrow b D b, \quad D \rightarrow a, D \rightarrow a D .
\end{aligned}
$$

The terminal descendants of B have the form $b^{\circ}, n>0$. The termimal descendants of D have the form $a^{m}, n>0$. Henee the kerminal descendants of A must be $a^{m} b^{n} a^{m}$; the terminal descerdnats of C must be b"a"\%. It is ensy to see that these rules generate L.

Suppose that L has a grammar with wnique phraze struchre. By Lemma 1 it may be assumed that for every A in V_{m} thers axist rules $A \rightarrow B, A \rightarrow M A$ with x, y, z teminal, x not empty and, at most, one of y and z not amply, It may also be assumed that every A in V_{b} is descended from S because tho others cannot contribute to L.

The intuitue idea behnd the proof is as follows L contains precisely the stringe of the form $a^{4} b^{4} t^{4} b^{t}$ with either $t=k$ or $j=l$, or both. Now the strings $a^{4} b^{h} a^{4} b$ will
have subphrases of the form $a^{i} b^{j} a^{i}$, while the strings $a^{i} b^{j} a^{k} b^{j}$ will have subphrases of the form $b^{j} a^{k} b^{j}$. Hence the strings $a^{i} b^{j} a^{i} b^{j}$ must contain both and will therefore have overlapping phrases. This is the essence of the proof. The details follow.

We claim that there are only eight types of nonterminal symbols A which can occur in V :

1a. There exist x and y such that $A \rightarrow x A y$ is a rule and $x=a^{m}, y=a^{m^{\prime}}$, and no b 's are ever descended from A.
lb. Same as $1 a$ except that there are b's descended from A and $m \neq m^{\prime}$ in at least one pair x, y. However, there is an integer l_{A} such that in any string descended from A there are less than $l_{A} b$'s.

2a. Same as la with a and b interchanged.
2 b . Same as 1 b with a and b interchanged.
3a. Whenever $A \rightarrow x A y$ is a rule, $x=y=a^{m}$ for some m. There are b 's descended from A, but the number of b 's in a string from A is bounded by l_{A}.

3 b . Whenever $A \rightarrow x A y$ is a rule $x=y=a^{m}$ for some m. There are integers $l_{A}, g_{A}=g, f_{A}=f$ such that $A \rightarrow a^{v} A a^{g}$ is a rule; some string descended from A has $l_{A} b$'s; and if $x b y$ is a terminal string descended from A with at least $l_{A} b$'s, then $x b b^{\prime} y$ is also descended from A.

4a. Same as 3 a with a and b reversed.
4 b . Same as 3 b with a and b reversed.
Proof of Claim. First, it is easy to see that for every A either $A \Rightarrow x A y$ implies $x=a^{m}, y=a^{m \prime}$ for some $m, m^{\prime} \geq 0$; or $A \Rightarrow x A y$ implies $x=b^{m}, y=b^{m^{\prime}}$ for some $m, m^{\prime} \geq 0$.

Anything else would contradict one of two requirements:
(a) Every sentence has exactly two groups of a 's and two groups of b 's.
(b) Either the groups of a 's are identical, or else the groups of b 's are.

Now, if $A \rightarrow x A y$ with $x=a^{m}, y=a^{m^{\prime}}$ with $m \neq m^{\prime}$, then A can only occur in the derivation of a string $a^{i} b^{j} a^{k} b^{j}$. Now the number of b 's generated by A must be fixed. Otherwise one could not have matching of the groups of b 's. Hence A is of type 1a or lb. Now let us assume that $A \rightarrow x A y$ with x and y powers of a, and A is not of type $1 \mathrm{a}, 1 \mathrm{~b}$ or 3 a . It will be shown that it must belong to type 3 b . It is already known that if $A \rightarrow x A y$, then $x=y$ must be true. Also, all strings generated from A must have the form $a^{m} b^{k} a^{m^{\prime}}$ where $m-m^{\prime}$ is constant.

Consider a string u descended from A which has more b 's than the largest number occurring on the right-hand side of any rule. Then at the time in the derivation of u when the first b is generated, there must be a nonterminal symbol B left over. Now that string has the form $a^{l} \omega b \eta B \theta a^{l}$ or $a^{l} \omega B \eta b \theta a^{l}$. (The existence of the a^{l} at the two sides can be assumed because we could always have used the rule $A \rightarrow a^{l} A a^{l}$ before starting.) It is easy to see that if $B \rightarrow x B y$ is a rule, then x and y must be powers of b. Let $x y=b^{f_{B}}$. Let such an f_{B} be chosen for each B with a rule $B \rightarrow x B y$ attached to it and x and y powers of b. Now, in the string $a^{l} \omega b \eta B \theta a^{l}$ or $a^{l} \omega B \eta b \theta a^{l}$, no a 's could possibly come from η. Hence if u has the form $z b z^{\prime}$ one can also get the string $z b b^{f_{A}} z^{\prime}$ from A, where f_{A} is the product of all the f_{B} taken above. Hence A is of type 3 b .

Types 2, 4 are handled in a similar manner. The claim is proved.
Proof of Theorem 3. Let p be a positive number divisible by all the f_{A}, g_{A} described in types 3 b and 4 b . Let $n / 2$ be larger than all the l_{A} described in the foregoing. Consider the string $x_{0}=a^{n+p} b^{n} a^{n+p} b^{n+2 p}$.

Now no derivable string can contain more than three symbols of type 1 b or 2 b . The string x_{6} cannot have contained in its derivation any symbols of types $1 \mathrm{a}, 1 \mathrm{~b}$, 3 a or 4 b . On the other hand, not enough a 's could come from type 2 b or 4 a . Hence there must have been an occurrence of a symbol A of type 3 b , whose descendant is a phrase of the form $z b^{n} z^{\prime}$. If one applies the rule $A \rightarrow x A y$ enough extra times, one can get another string in which the phrase coming from A is of the form $a^{p} z b^{n} a^{\prime} a^{p}$. This can be changed, as before, to $a^{p} z b^{p} b^{2 p} z^{\prime} a^{p}$. Thus one gets the string $x_{1}=$ $a^{n+2 p} b^{n+2 p} a^{n+2 p} b^{n+2 p}$ with the A-phrase containing at least $a^{p} b^{n+2 p} a^{p}$, and bounded on both sides by a 's. Similarly, by duality between a and b, there is a phrase of x_{1} containing at least $b^{p} a^{n+2 p} b^{n}$, and bounded on both sides by b 's. But these phrases overlap, and yet one cannot include the other.

Hence G cannot have unique phrase structure. Q.E.D.
Corollary. L is a CF language for which there is no CF grammar with unambiguous phrase structure.

Proof. The proof follows immediately from Theorem 1.

2.3 Relation to FA Languages

Definition 14. A finite-state grammar G consists of a finite set \mathbf{S} (called the internal states of G), a finite set W (called the vocabulary of G), two distinguished elements S_{0} and S_{f} of \mathbf{S} and a subset \mathbf{R} of $\mathbf{S} \times \mathbf{S} \times W^{\prime}$ (called the rules of G), where $W^{\prime}=W \bigcup\{\Lambda\}$ and Λ is the empty string.

Remark. Here we depart somewhat from the 1959 Chomsky definition [4] in that we do not require a symbol to be emitted at every interstate transition. It is not difficult to show, however, that the difference is unimportant and that the same class of languages is generated.

Definition 15. Let G be a finite-state grammar. Then it will be said that the sentence x is generated by G if there exists a sequence (S_{0}, S_{1}, x_{0}), ($\left.S_{1}, S_{2}, x_{1}\right) \ldots$ (S_{n}, S_{f}, x_{n}) of members of \mathbf{R} such that $x=x_{0} x_{1} \cdots x_{n}$. The language generated by G is the set of all such sentences x.

Theorem. Every language generated by a finite-state grammar (FA language) is CF .

Proof. The proof has been given by Chomsky [4].
Theorem 4. There exists a CF language L such that given a grammar G^{\prime} for an $F A$ language L^{\prime} with $L^{\prime} \subseteq L$, one can effectively find a grammar $G^{\prime \prime}$ for an $F A$. language $L^{\prime \prime}$ such that $L^{\prime} \subseteq L^{\prime \prime} \subseteq L$ and $L^{\prime \prime}$ has infinitely many sentences not in L^{\prime}.

Before this theorem is proved, two definitions are given and a lemma is proved.
Definition 16. A finite translator T consists of two finite sets V, V^{\prime} (called the vocabularies of T), a set \mathbf{S} (called the internal states of T) and a certain subset \mathbf{R} (called the rules of T) of $\mathbf{S} \times V \times \mathbf{S} \times V^{\prime \prime} \times\{0,1\}$. Here $V^{\prime \prime}=V^{\prime} U\{\Lambda\}$ and Λ is the empty string. A member S_{0} of S is distinguished and called the initial state of T.

Definition 17. Given a finite translator $T=\left\{V, V^{\prime}, \mathbf{S}, \mathbf{R}\right\}$ and a sentence $x=$ $x_{1} \cdots x_{m}$ on V, sentence z will be said to be a translation of x by T, if there exists a sequence
$\left\langle S_{0}, y_{1}, S_{1}, z_{1}, i_{1}\right\rangle, \quad\left\langle S_{1}, y_{2}, S_{2}, z_{2}, i_{2}\right\rangle, \cdots,\left\langle S_{n}, y_{n+1}, S_{n+1}, z_{n+1}, i_{n+1}\right\rangle$ of members of \mathbf{R} such that $y_{1}=x_{1}$. If $y_{l}=x_{j}$ and $i_{l}=0$, then $y_{l+1}=x_{j}$; otherwise $y_{l+1}=x_{j+1}$. Furthermore, $y_{n+1}=x_{m}, i_{n+1}=1$ and $z=z_{1} \cdots z_{n+1}$ (where the z_{i} will, of course, be either Λ or members of V^{\prime}).

Lemma 3. Let L be an $F A$ language on a vocabulany V with grammar $G=(V$, $\mathbf{S}, \mathbf{N}\rangle$. Let $T=\left\langle V, V^{\prime}, \mathbf{S}_{1}, \mathrm{H}_{3}\right\rangle$ be a finite-state translator. Then the set of all translations of members of L by T is on $F A$ language $L^{\prime \prime}$ on V^{\prime} and a grammar $G^{\prime \prime}$ for $L^{\prime \prime}$ can be found effectively from G and T.

Proof. For the vocabulary of $G^{\prime \prime}$ take the set V^{\prime}. For $S^{\prime \prime}$ take a set of ordered triples $\langle a, b, c\rangle$, where $a \in S, b \in S_{1}$ and $c \in V$ or $c=A . R^{\prime \prime}$ is defined as follows:
(a) Whenever $\left\langle S_{1}, S_{2}, x\right\rangle$ is a rule of $G, x \in V$, and $\left\langle i_{1}, x, b_{2}, z, 0\right\rangle$ is a rule of T we introduce the rule $\left\langle\left\langle h_{1}, S_{1}, x\right\rangle,\left(h_{2}, S_{1}, x\right\rangle, z\right\rangle$ into $\mathbf{R}^{\prime \prime}$,
(b) Whenever $\left\langle S_{1}, S_{2}, x\right\rangle$ is a rule of $G, x \in V$, and $\left\langle h_{1}, x, h_{2}, 2,1\right\rangle$ is a rule of T we introduce the rules $\left.\left\langle t_{1}, S_{1}, x\right\rangle,\left\langle l_{2}, S_{2}, y\right\rangle, z\right\rangle$ into $\Lambda^{\prime \prime}$ for every $y \in V^{\prime}$ or $y=\Lambda$.
(c) If $\left\langle S_{1}, S_{2}, A\right\rangle$ is a rule of G, then for every h_{1} we introduce the rules $\left\langle\left(h_{1}\right.\right.$, $\left.\left.S_{1}, A\right\rangle,\left\langle t_{1}, S_{2}, y\right\rangle, A\right\rangle$ for every $y \in V^{\prime}$ or $y=\mathrm{A}$.

We also introduce two more states I and F to be the initial and final states of $G^{\prime \prime}$, and the rules $\left\langle 1,\left\langle t_{0}, S_{0}, y\right\rangle, A\right\rangle$, where $y \in V^{\prime}$ or $y=A$, and $\left.\left\langle t, S_{f}, A\right\rangle, F, A\right\rangle$, where S_{0}, S_{5} are the initial and final states of G, i is any state of T and to is the initinl state of T.

Now it is easy to see that $G^{\prime \prime}$ produces exactly the translations of sentences produced by G. Consider the following cases:
(a) G is in state S_{1}, moves to state S_{2} and produces x. The transhator T in state t_{1} translates x as z and the rule used is $\left\langle t_{1}, x, t_{2}, z, 0\right\rangle$. Then, correspondingly, $G^{\prime \prime}$ in state $\left\langle t_{1}, S_{1}, x\right\rangle$ produces z and moves to state $\left\langle t_{2}, S_{1}, x\right\rangle$. This continues until case (b) is obtained.
(b) G is in state S_{1}, moves to state S_{0} and produces x. The translator T in state h_{1} translates x as z and the rule used is $\left\langle h_{1}, x, h_{2}, z, 1\right\rangle$. This means, then, that the translator is finished translating x. Then $G^{\prime \prime}$ in state $\left\langle i_{1}, S_{1}, x\right\rangle$ produces z and may move to $\left\langle t_{2}, S_{2}, y\right\rangle$ for any y. Thus it is ready to translate the next symbol that G may produce.
(c) G moves from S_{1} to S_{2} and produces nothing. Then $G^{\prime \prime}$ moves from $\left\langle h_{1}, S_{1}, A\right\rangle$ to $\left\langle t_{1}, S_{2}, y\right\rangle$ for any y. The translator is umaffected.
Thus the second and third parts of the states of $Q^{\prime \prime}$ trace out the states of G and symbols produced by G, while the first part traces out the reaction of T.

Proor of Theonem 4. The language $L^{\circ}=\left\{a^{n} b^{m} a^{n}|n, m \in D|\right.$ can be easily shown to be CF but not FA. (See Chomsky [4].) Consider the language $L=$ $\left\{A^{n} B^{m} A^{n}\right\}$, where each A has the form $c^{k} c$ for some $k>0$. Each B has the form $d f^{*} d$ for some $k>0$. Consider the translator T defined by $V=\{a, b\}, V^{\prime}=\{c, d$, $e, f\}, \mathbf{S}=\left(S_{6}, S_{1}, S_{2}, S_{3}, S_{4}\right), S_{4}=S_{1}$, and the rules
$\left(S_{0}, a, S_{1}, c, 0\right), \quad\left(S_{1}, a, S_{1}, c, 0\right), \quad\left(S_{1}, a, S_{2}, b, 0\right), \quad\left(S_{4}, a, S_{0}, c, 1\right)$.
$\left(S_{0}, b, S_{3}, d, 0\right), \quad\left(S_{3}, b, S_{3}, f, 0\right), \quad\left(S_{3}, b, S_{4}, f, 0\right),\left(S_{4}, b, S_{0}, d, 1\right)$.
The language L is the map of L° under T.
On the other hand, define T^{\prime} by $V^{\prime}=\{c, d, e, f\}, V^{\prime}=\{a, b\}, S=\left\{S_{0}, S_{1}, S_{2}\right\}$ and the rules

$$
\begin{array}{lll}
\left\langle S_{0}, c, S_{1}, a, 1\right\rangle, & \left\langle S_{1}, e, S_{1}, A, 1\right\rangle, & \left\langle S_{1}, c, S_{1}, A, 1\right\rangle \\
\left\langle S_{0}, d, S_{2}, b, 1\right\rangle, & \left\langle S_{1}, f, S_{1}, A, 1\right\rangle, & \left\langle S_{1}, d, S_{0}, A, 1\right\rangle .
\end{array}
$$

Then L° is the map of L under T^{\prime}.
Now consider any FA language $L^{\prime} \subseteq L$. Then $T\left(L^{\prime}\right) \subseteq T(L)=L^{0}$. But $T\left(L^{\prime}\right)$ is FA and L° is not. Hence L° must contain a string x not in $T\left(L^{\prime}\right)$. A grammar for
$T\left(L^{\prime}\right)$ can be found efectively by Lemma 3, and it is nasy to see how a grammar te for $T\left(L^{\prime}\right) \cup(x)$ can be hound effectively. (L ' obviously has a decision procedure for membership. So do FA languges, We thke the first $\%$ in $L^{p}-T\left(L^{*}\right)$ and wonstruet the grammar, usiug x and the grammat for $T\left(L^{\prime}\right)$.)

But if L° is the lnaguage generated by C°, then $L^{o^{*}} \supset T\left(L^{\prime}\right)$. Heace $T^{\prime}\left(L^{*}\right)$ $\supset T^{\prime} T\left(L^{\prime}\right) \supset L^{\prime}$ and, in fact, must contain the infinitely many sentences obtained from x which cenanot be in L^{\prime}. QED.D.
2.4. Spechat Typa 1 Languaes

Definition 18. A type 1 grammar G is satd to be of type in if there existe a function f from V into the nonnegative integers such that if $q x \psi \rightarrow \varphi^{\circ} \rightarrow$ is a rule with β in V, then $f(\beta)<f(\alpha)$.

Defintion 19. A type 1 grammar is said to be of type ls if there are no rules of the form $\varphi A \psi \rightarrow \varphi B \psi$ with $A, B \in V_{y}$.

Cororlaby. A bype 1 g grammar tof type 1 a.
Proor. Let $f(x)=1$ if $a \in V_{N}$,

$$
f(\alpha)=0 \text { if } \alpha \in V_{t} \quad \text { QED }
$$

 type A with respect to D and x_{1} is a phase of a of type B with reapect to D, then $A=B$. For if A, then we would have cuA $=a b \omega$ or $\alpha B \omega=$ ada for some α, , But this is impossible.

Remark. It is not difficult to show that there cxist a bpe 1 grammar G and strings $\varphi A B \psi, \varphi B A \psi$ such that $\psi A B \psi \Rightarrow B A \psi$. Such situations are obviously "unfortunate" from a grammaticut point of vew, and the following theorem shows this does not bappen in type 1 . grammary.

 φ and ψ are distincl. (See defintion IS .)

Proor. Extend the function f of Definition 18 to all stringe on V by taking $f(\omega \eta)=f(\eta \omega)=f(\omega)+f(\eta)$. Then f can be thought of as function on $t^{(}(L)$. But if φ and ψ have the same lexyth and $\varphi \rightarrow \psi$, then $f(\varphi)>f(\psi)$. Hence if φ and ψ have the same length, $\varphi \neq \psi$ and $\varphi=\psi$, then $f(\varphi)>f(\psi)$. Hence $\psi(\varphi) \neq \phi(\psi)$. Q.E.D.

Proor. Theorem 6 is proved by Lemma 2. QR.D.
Treonem 7. There are lanouages of type is thich are not of bype 8.
Proor: Consider the rules
(a) $S \rightarrow c \times d$
(b) $X \rightarrow C X X X X X D$

$$
\begin{aligned}
& 1\left\{\begin{array}{cc}
X D X X-X X X E X X & X X D X d \rightarrow X X X D X G \\
E X X-E X D X & E X d \rightarrow E X D U \\
X E X D-E X X X D
\end{array}\right.
\end{aligned}
$$

[^1]Now notice that X can turn terminal only if preceded by c or e; similarly, C and D can turn terminal only in a very limited way, when they have moved to the extreme left or right, respectively. Careful analysis shows that the rules of group 1 allow a D to move right over an X only by quintupling it. Similarly, a C can move left across X 's, quintupling them. But a D and C cannot cross; hence, given two applications of rule b, one of the applications must occur "within" the other, or else the C or D will get "stuck" and not lead to a terminal string. It follows that all terminal strings have the form

$$
*^{n+1} e^{5^{n}} d^{n+1} *, \quad n \geq 0 .
$$

Furthermore, all of these strings can be generated, if one begins with a derivation of * $c(C X X)^{n} X(X X D)^{n} d$ * and moves the C's and D 's to the ends.

This language is not CF, by Corollary 2 to Theorem 2. Q.E.D.

3. A Remark on the Reduction of CF Grammars to a Question Regarding Free Rings

Let G be a CF grammar with vocabulary V. Consider the free ring \boldsymbol{R} generated by V. Define an operator Θ over \mathbf{R} as follows:
(a) If a $\in V_{T}, \Theta(a)=a$.
(b) If $A \in V_{N}$ and $A \rightarrow \omega_{i}$ are the rules associated with A, then $\Theta(A)=\sum_{i} \omega_{i}$.
(c) $\Theta\left(\eta \eta^{\prime}\right)=\Theta(\eta) \Theta\left(\eta^{\prime}\right)$.
(d) $\Theta\left(\eta+\eta^{\prime}\right)=\Theta(\eta)+\Theta\left(\eta^{\prime}\right)$.

Then the generable strings are precisely the ones that appear as terms in some expression $\Theta^{n}(* S *)$ for some n.

For example, let $V=\{*, a, b, A, S\} ; S \rightarrow A S, A \rightarrow a b, A \rightarrow c d, S \rightarrow a A a$. Then

$$
\begin{aligned}
\Theta(S) & =A S+a A a \\
\Theta(A) & =a b+c d \\
\Theta(a) & =a, \Theta(b)=b, \Theta(*)=\#
\end{aligned}
$$

Now

$$
\begin{aligned}
\Theta(* S *) & =* A S *+* a A a *, \\
\Theta^{2}(* S *) & =* a b A S *+* c d A S *+* a b a A a *+* c d a A a * \\
& +* a a b a *+* a c d a *, \text { etc., }
\end{aligned}
$$

and every derivable string will eventually appear on the right-hand side. Every sentence will be always on the right-hand side after a certain point. (Note: Θ is a homomorphism of \mathbf{R} into itself. Moreover, any homomorphism that fixes V_{T} comes from a CF grammar.)

REFERENCES

1. Bar-Hillel, Y., Perles, M., and Shamir, E. On formal properties of simple phrase structure grammars. Z. Phonetik, Sprachwissen. Komm. 14 (1961), 143-172; in Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading, Mass., 1965, pp. 116-150.
2. Cromexy, N, Three models for the desoription of langage. ThE Trans, TY' 3 , 3 (1006), 113-124.

3. Scumaberg, S. On Boolean properties of phrase structuregrammars. Inform, and Contr. \$ (1960), $372-375$.
4. Schetzenberger, M. P. Some remarks on Chomsly's context-freolagguges MIT Quart. Progr. Rep. 63, Oct. 1901, p. 155nf.

[^0]: This work was supported in part by the National Science Foundation.
 Author's present address: Department of Mathematics, University of Bristol, Bristol, England.

 Ed. Note. A preliminary version of this paper appeared in the Quarterly Progress Report *60 (January 15, 1961), Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass., pp. 199-212. The theory of context-free languages has been extensively developed in the years since 1960, when this paper was written and when the first significant work on context-free languages was beginning; yet the results developed here (particularly Theorems 2 and 3) have remained among the most fundamental, yet subtly difficult to prove, in the theory. Since copies of the original paper are quite scarce, it is being reprinted here, with minor editorial revisions, at the suggestion of one of the editors.

[^1]: 1 There was an error in the original proot wheh was pointed out by sewerat yople.

