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Abstract. An economical approach is described for estimating power spectra from sampled
data through the application of Z-transform theory. The method consists of computing a
weighting sequence whose frequency characteristics approximate a one-third octave band-
width filter, and applying these coefficients recursively to the digitized data record. Filtering
is followed by a variance caleulation and a division by the appropriate filter bandwidth. A
specific example of power spectra computed in the usual manner (Fourier transformation of
the autocorrelation funetion) and power spectra computed by the method in this paper demon-
strates the practicability of the technique. The most significant advantage is the economical
aspect. It is shown that owing to the variable bandwidth and the small number of filtering
coefficients, the savings that may be realized by the employment of this technique, in lieu of
the autocorrelation transformation approach, may be quite considerable, depending on the
record length and the number of lag products.

1. Motwwation

The statistical theory of spectral analysis for stationary random data considers
questions of estimating frequency distributions for functions which theoretically
endure for an infinite amount of time, but for which only a finite record length is
available. While the theory plays a tremendously important role in providing “good”
estimators for the most demanding theoretical studies, there are many physical
situations in which only a rough, inexpensive frequency decomposition is desirable;
in particular, for purposes of pre-emphasis, assessing vibration specification levels
and providing a variable bandwidth amplitude smoothing effect (avoidance of un-
necessary gibberish at the high frequencies and wide resolution at the low fre-
quencies). These considerations led to the development of the following tech nique

2. Conventional Analog Spectral Analysis

One basic method employed by an analog frequency spectrometer in computing
power spectra stems directly from the definition. Each power spectral density value
is estimated by passing the data through a narrow band filter centered at a selected
frequency, evaluating the mean square value and dividing by the appropriate
bandwidth. By selecting different center frequencies for each filter, one may analyze
the frequency range of interest. In this paper, the concept of the analog one-third
octave analysis for continuous data is extended to digital data utilizing more
flexible numerical recursive filters with almost linear phase shift and fairly flat
gain characteristics.

3. Numerical Filier Design

The numerical filter is composed of two resonant second-order systems spaced
at a selected amount in frequency to produce a filter bandwidth of one-third of an
octave at the 3db point. The maximum steepness is of the order of 80db per octave,
and the scanning frequency range may cover from fy to fo/2, where f; is the center

The work reported here was developed while the author was associated with the Douglas
Space Systems Center, Huntington Beach, California.
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frequency of the first filler and f, is the sampling rate. The form of the filter equa-
tion in the S-domain je

e
(8 = ey

(8 4 20w 8+ w)(F + 20w 5+ wf)’
where wy == 22 f. {1 ~ Af)
w = 2xf(1 + 4f)
¢ o= 0.05
Af = 0085,

The values of ¢ and &f were devived empirieally, As a function of w, the gain of (1)
may be writlen as
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() 18 normalized to unity by dividing by the geometric mean of (2) and (3),

or by Py o= [N @) -(h{ w)]!, which gives the reqguired transfer charscter-
intics,

The Z-transform of eq. (1) may be derived by expanding into partial fractions
and evalunting the Z-transform for each term of the expansion:
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To simplify further caleulations, let Ly = 20wy, Ls = ', K, = 20w, and K.
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= w’. To solve for the coefficients 4, B, € and D, equate like powers in (4) and

obtain )
(Ly Ky ~ Ly Ki)e'Py Cy = (Iy Ky — Ly Ki)wy P
3 a2 ) r

A; = A A
B o (K = I Ky)a'P, b = I = In Kyar'Ps
By = 5 ) Ly A :
where .
B m= (I}}_ — f{;)(Ll !{-2 - L*2 I<1> + (1(2 - L2)d1
Py = %— = the normalization factor,
"1

T = sampling interval,

B 0.125(1 + Af)"

TR 4 21— AP)I6AS? + 470 — A

The Z-transform for each of the two terms of (4) is computed by residues.

—— ST A(p)
) = it iy 05000 O s iy

where
B(p) = B(8) |smp .

After many algebraic manipulations, the Z-transform of (4) results in

Ay 2P — Ay Ze” T cos (BT~ @) sec ®,
7% — 2Ze="iT pps By P 4 g2l

s/ oy g T 7] ; (5)
+ C)J + (/1 4‘3 # cO8 (621’ bl (I)a) sec (I’a
L4 270 cog By T - e300 ?
where
®; = arc tan 22N )
By
®, = arc tan 22— %2
%
Combining (5) into a rational polynomial ratio in Z, one obtains
z) = $4) _ BZ™" + CZ7' 4 Dz ©)

CHZ) 1+ EZ7R ¥ FZ i G7- F Hi
which is the pulse transfer function where

A = Ky + M, = 0, E = ~L; — N,
(omitted in eq. (6)) F = LiNi+ Ly 4+ N,
B = ~K; ~ N\K; — My — LiM, G = —IL;N; 4+ LN,
C = NiKy + NoKy + Moy + LMy H = L,N,
D = —~N.K, + LM, Ky = A,
K, = A, sec ®yle™" cos (8T — &,)]
My = C,

ﬁ/[g = Cl sec @2 [8“021' COSs (ﬁgT - @z)].
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6. Averaging Time

With the averaging time Tyv specified as that time which is required to produce
a certain number of degrees-of-freedom for the variance estimates, the BT product
gives
&

B Tr = BTsv = const,,

where
B; = % Q = 4.332855, fi = fo2°,
and f; is equal to the center frequency of the first filter.
TAV:——'rLiT:?l’——B—EQ; nizBLTRQ__BLTRQ

fi fi T f207

This is the number of points required for each variance estimate which yields a
particular confidence interval. For simplicity, let B, TzQ/foT = K;; then =n; =
K27 Let i = 0; then K; = np = total number of points needed in the variance
calculation for the smallest bandwidth By .

7. Cost Considerations

Since the number of points needed in the averaging process is equal to K2~ per

filter, the total number of points to filter for the entire frequency range is:
i=L _
SL - ZK{ZW@/S,
i=0

where7 = 0, 1,2, 3, ---, L and L = number of filters minus 1. This sum is in geo-
metric progression and may be computed from

S - Ki(R" — 1)
T TR =)
_ K1(2~LIK - 1)
T TR

where R = 27° and R" = 27°".

A rough estimate of the total IBM 7094 computer time may be obtained from

8. X 7 - [2 (machine time for a single-precision floating App
-+ machine time for a single-precision floating murTIPLY)].

The factor of 2 is used to account fci the double-precision instructions which are
roughly twice the cycle time of a single-precision floating App and floating MuLTIPLY.

Therefore, total computer time for the one-third octave spectral analysis is

K@ -nul ]
-—0.2063
A similar equation may be derived for the amount of computing time required

for the constant bandwidth autocorrelation technique (transformation of the auto-
correlation function).

(8)
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Total computer time for autocorrelation approach is

- (2no — k)k

5 - [machine time for a single-precision floating ApD

(9)

- machine time for a single-precision floating MmuLTIPLY],

where & equals number of lag products and varies depending on the accuracy and
bandwidth of the analysis. It may be expressed as k = Pnq, where P is given in
percent.

In (8), we assume an infinite number of filters (L = = ), so that we may write:

Total computer time for one-third octave spectral analysis

MKl ]
0.2063

~ 67.8n 1. (10)

The ratio of the computer time of the autocorrelation approach to the one-third
approach ((9) divided by (10)), with k replaced by Pno, is

6787’&0 ’

Pro (11)

E 67.8°
This formula only takes into consideration the major portion of the operation§ and
may vary slightly, depending on the cycle time of the computer and the ef.ﬁmency
of the subroutine. Savings of the one-third octave analysis over the correl.atxon pro-
cedure increase linearly with an increase in data values. For example, with as few
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Fig. 4. Digital power spectra by Fourier transformation of the autocovariance
funetion

data values as 2260 and 0.03n, lag products, eq. (11) favors the correlation tech-
nique. It should be observed, however, that few data values for spectral analysis
are of limited practical interest (see Figure 2). Note that a rapid rise in savings
exists when P is large (0.02, 0.04, 0.1). Figure 3 shows the percentage savings for
0.03n, 0.05n, , 0.1n0 lag products.

8. An Actual Test Case

Figures 4 and 5 are power spectral analyses resulting from the autocorrelation
approach and the one-third octave method presented in this paper. In order to
Pproduce consistent confidence levels for both analyses, the center frequency on the
one-third octave method was started at 86.65cps. This resulted in 40 degrees-of-
freedom in accordance with the correlation techniques.

9. Computer Implementation

The recursive eq. (7) defines the filtering process by which the spectral estimates
are to be computed. Figure 6 shows other parameters essential in the total analysis
and represents a general computer subroutine flowchart which evaluates the power
spectral estimates from the stored data record.

10. Advantages

1. If variable bandwidth spectral analysis is preferable, implementation of this
approach circumvents the need to purchase or rent special equipment for the
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Fie. 5. Digital one-third octave spectral analysis
{INPUT PARAMETERS:
fo = CENTER FREQUENCY OF FIRST FILTER Q= 4.332855
ne = TOTAL NUMBER OF INPUT POINTS fs = SAMPLING RATE
L = NUMBER OF BANDS
START: l
COMPUTE COMPUTE NUMBER
COMPUTE i. OF POINTS TO FILTER
T_:_ﬂ_o_ ¥ fi=fo 2" Ny = i
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SET COUNTER COMPUTE GO TO SUBROUTINE
_ = fs08, Tq 15i=0? WHICH PLOTS
i=L fo F; fi vs y;

I

L |

Fi1g. 6. Computer subroutine flowchart

L———«»END

frequency reduction of vibration data, provided a large-scale computer is avail-

able.

2. On many engineering applications, the digital one-third octave spectral

analysis affords a very economical procedure over other well-known methods.
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N Number of degrees-of-freedom in each spectral estimate
bn Present filtered output data value

P Percent

P, Normalization factor

Q Constant of proportionality

R Common ratio considered in a geometric progression
N Jw

Sz Total number of points to filter for the entire analysis
T The time interval, the reciprocal of f,

T Total record length in seconds

@ Radian frequency

Wy 21rf1

() 27rf2

¢ Damping ratio

Af Constant < 1
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