Digital One-Third Octave Spectral Analysis

C. D. Negron
Aerospace Corporation, El Segundo, California

Abstract. An economical approach is described for estimating power spectra from sampled data through the application of Z-transform theory. The method consists of computing a weighting sequence whose frequency characteristics approximate a one-third octave bandwidth filter, and applying these coefficients recursively to the digitized data record. Filtering is followed by a variance calculation and a division by the appropriate filter bandwidth. A specific example of power spectra computed in the usual manner (Fourier transformation of the autocorrelation function) and power spectra computed by the method in this paper demonstrates the practicability of the technique. The most significant advantage is the economical aspect. It is shown that owing to the variable bandwidth and the small number of filtering coefficients, the savings that may be realized by the employment of this technique, in lieu of the autocorrelation transformation approach, may be quite considerable, depending on the record length and the number of lag products.

1. Motivation

The statistical theory of spectral analysis for stationary random data considers questions of estimating frequency distributions for functions which theoretically endure for an infinite amount of time, but for which only a finite record length is available. While the theory plays a tremendously important role in providing "good" estimators for the most demanding theoretical studies, there are many physical situations in which only a rough, inexpensive frequency decomposition is desirable; in particular, for purposes of pre-emphasis, assessing vibration specification levels and providing a variable bandwidth amplitude smoothing effect (avoidance of unnecessary gibberish at the high frequencies and wide resolution at the low frequencies). These considerations led to the development of the following tech nique

2. Conventional Analog Spectral Analysis

One basic method employed by an analog frequency spectrometer in computing power spectra stems directly from the definition. Each power spectral density value is estimated by passing the data through a narrow band filter centered at a selected frequency, evaluating the mean square value and dividing by the appropriate bandwidth. By selecting different center frequencies for each filter, one may analyze the frequency range of interest. In this paper, the concept of the analog one-third octave analysis for continuous data is extended to digital data utilizing more flexible numerical recursive filters with almost linear phase shift and fairly flat gain characteristics.

3. Numerical Filter Design

The numerical filter is composed of two resonant second-order systems spaced at a selected amount in frequency to produce a filter bandwidth of one-third of an octave at the 3 db point. The maximum steepness is of the order of 80 db per octave, and the scanning frequency range may cover from f_{0} to $f_{s} / 2$, where f_{0} is the center

The work reported here was developed while the author was associated with the Douglas Space Systems Center, Huntington Beach, California.
frequency of the first filter and f_{z} is the sampling rate. The form of the fiter equation in the S-domain is

$$
\begin{equation*}
G(S)=\frac{\cos _{2}^{2} S^{2}}{\left(S^{2}+2 \zeta \omega_{1} S+\cos _{2}^{2}\right)\left(S+2 \zeta \cos ^{2} S+\omega_{2}^{2}\right)} \tag{1}
\end{equation*}
$$

where $w_{1}=2 \pi f_{s}(1-\Delta f)$

$$
\begin{aligned}
\omega_{2} & =2 \pi f_{0}(1+\Delta f) \\
5 & =0.05 \\
\Delta f & =0.085
\end{aligned}
$$

The values of ζ and Δf were derived empirically, As function of ω, the gain of (1) may be written as

$$
Q_{3}(\omega)=\frac{\omega_{2}^{2} \omega^{3}}{\left.\left\|\left(\omega_{1}^{2}-\omega^{3}\right)^{2}+\left(2 \omega_{2} \omega_{1}\right)^{2}\right\|\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 p \omega_{n} \omega^{2}\right] 1\right]} .
$$

A relative minimum occurs at $\omega \sim \sqrt{ }\left(\omega_{1} \omega_{2}\right)$, which is

$$
\begin{align*}
& G_{1}\left(\sqrt{\omega_{1} \omega_{2}}\right)=\frac{\omega_{1}^{2}}{\left(\omega_{1}-\omega_{2}\right)^{2}+45^{2} \omega_{2} \omega_{1}}, \\
& G_{1}\left(\sqrt{\left.\omega_{1} \omega_{2}\right)}=\frac{0.25(1+\Delta f)^{2}}{\left.\Delta f^{2}+\right\}^{2}(1-\Delta f)}\right. \tag{2}
\end{align*}
$$

A relative maximum occurs at w, ω_{4}, which is

$$
\begin{align*}
& Q_{1}\left(\omega_{1}\right)=\frac{\omega_{0}^{2}}{\left.2 \zeta\left[\left(\omega_{2}^{2}-\omega_{1}^{2}\right)^{2}+4 \zeta^{2} \omega_{2}^{2} \omega_{1}^{2}\right]\right]^{2}} \\
& G_{1}\left(\omega_{1}\right)=\frac{(1+\Delta)^{2}}{2 \zeta\left[(4 \Delta)^{2}+45^{2}\left(1-\Delta^{\prime}\right)^{2}\right]^{2}} \tag{3}
\end{align*}
$$

$Q_{3}(\omega)$ is nomalized to unity by dividing by the geometric mean of (2) and (3), or by $P_{3}=\left[G_{1}\left(\sqrt{\omega_{1} \omega_{2}}\right) \cdot G_{1}\left(\omega_{1}\right)\right]$, which gives the required tansfer characteristics.

The 2 -transform of eq. (1) may be derived by expanding into partial fractions and evaluating the Z transform for each term of the expansion:
$\frac{\omega_{2}^{2} S^{2}}{\left(S^{2}+2 \zeta \omega_{1} S+\omega_{k}^{2}\right)\left(S^{2}+2 \zeta \omega_{2} S+\omega_{2}^{2}\right)}$

$$
\begin{gather*}
=\frac{A_{1} B+B_{1}}{\left(S^{2}+2 \zeta \omega_{1} S+\omega_{n}^{2}\right)}+\frac{C_{1} S+D_{1}}{\left(S^{2}+2\left(\omega_{2} S+\omega_{3}^{2}\right)\right.}, \tag{4}\\
\frac{\omega_{2}^{2} S^{2}}{\left(S^{2}+2 \zeta \omega_{1} S+\omega_{1}^{2}\right)\left(S^{3}+2 \zeta \omega_{2} S+\omega_{3}^{2}\right)}=\frac{A_{1}\left(S+\alpha_{1}\right)}{\left(S+\alpha_{1}\right)^{2}+\beta_{1}^{2}}+\frac{C_{1}\left(S+\alpha_{4}\right)}{\left(S+\alpha_{4}\right)^{2}+\beta_{2}^{2}},
\end{gather*}
$$

where

$$
a_{1}=\frac{B_{1}}{A_{1}}, \quad \alpha_{1}=\gamma \omega_{1}, \quad \beta_{1}=\omega_{1} \sqrt{ }\left(1-\xi^{2}\right)
$$

and

$$
a_{2}=\frac{D_{1}}{C_{1}}, \quad \alpha_{2}=j \omega_{2}, \quad \beta_{2}=\omega_{2} \sqrt{ }\left(1-r^{3}\right) .
$$

To simplify further calculations, let $L_{1}=25 \omega_{2}, L_{2}=s_{2}{ }^{2}, K_{3}=26 \omega_{1}$ and K_{1}
$=w_{2}^{2}$. To solve for the coefficients A, B, C and D, equate like powers in (4) and obtain

$$
\begin{array}{ll}
A_{1}=\frac{\left(L_{1} K_{2}-L_{2} K_{1}\right) \omega_{2}^{2} P_{2}}{\Delta}, & C_{1}=\frac{-\left(L_{1} K_{2}-L_{2} K_{1}\right) \omega_{2}^{2} P_{2}}{\Delta}, \\
B_{1}=\frac{\left(K_{2}^{2}-L_{2} K_{2}\right) \omega_{2}^{2} P_{2}}{\Delta}, & D_{1}=\frac{\left(L_{2}{ }^{2}-L_{2} K_{2}^{2}\right) \omega_{2}^{2} P_{2}}{\Delta},
\end{array}
$$

where

$$
\begin{aligned}
\Delta & =\left(L_{1}-K_{1}\right)\left(L_{1} K_{2}-L_{2} K_{1}\right)+\left(K_{2}-L_{2}\right)^{2} \\
P_{3} & =\frac{T}{P_{1}}=\text { the normalization factor, } \\
T & =\text { sampling interval, } \\
P_{1}^{2} & =\frac{0.125(1+\Delta f)^{4}}{\left[\Delta f^{2}+\zeta^{2}\left(1-\Delta f^{2}\right)\right]\left[\left[16 \Delta f^{2}+4 \zeta^{2}\left(1-\Delta f^{2}\right)^{2}\right]^{2}\right.}
\end{aligned}
$$

The Z-transform for each of the two terms of (4) is computed by residues.

$$
E^{*}(Z)=\sum_{\text {Roots of }} \text { R(p)} \text { Residue of } \frac{A(p)}{B(p)\left(1-e^{r(p-s)}\right)}
$$

where

$$
B(p)=\left.B(\mathbb{B})\right|_{\text {map }} .
$$

After many algebraic manipulations, the Z-transform of (4) results in
$\frac{A_{1} Z^{2}-A_{1} Z e^{-\alpha_{1} T} \cos \left(\beta_{1} T-\Phi_{1}\right) \sec \Phi_{1}}{Z^{2}-2 Z e^{-\alpha_{1} T} \cos \beta_{1} T+e^{-2 \alpha_{1} T}}$

$$
\begin{equation*}
+\frac{C_{1} Z^{2}+C_{1} Z e^{-\alpha_{2} T} \cos \left(\beta_{2} T-\Phi_{2}\right) \sec \Phi_{3}}{Z^{2}-2 Z e^{-\alpha_{2} T} \cos \beta_{2} T+e^{-2 \alpha_{2} T}}, \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Phi_{1}=\arctan \frac{\alpha_{1}-a_{1}}{\beta_{1}} \\
& \Phi_{2}=\arctan \frac{\alpha_{2}-\alpha_{2}}{\beta_{2}}
\end{aligned}
$$

Combining (5) into a rational polynomial ratio in Z, one obtains

$$
\begin{equation*}
E^{*}(Z)=\frac{\phi(Z)}{I(Z)}=\frac{B Z^{-1}+C Z^{-2}+D Z^{-2}}{1+E Z^{-1}+F Z^{-2}+G Z^{-3}+H Z^{-4}}, \tag{6}
\end{equation*}
$$

which is the pulse transfer function where

$$
\begin{array}{rlrl}
A= & K_{1}+M_{1}=0, & E=-L_{1}-N_{1} \\
& \text { (omitted in eq. (6)) } & F=L_{1} N_{1}+L_{2}+N_{2} \\
B= & -K_{2}-N_{1} K_{1}-M_{2}-L_{1} M_{1} & G=-L_{2} N_{1}+L_{1} N_{2} \\
C= & N_{1} K_{2}+N_{2} K_{1}+M_{2} L_{1}+L_{2} M_{1} & H=L_{2} N_{2} \\
D= & -N_{2} K_{2}+L_{2} M_{2} & K_{1}=A_{1} \\
& K_{2}=A_{1} \sec \Phi_{1}\left[e^{-\alpha_{1} T} \cos \left(\beta_{1} T-\Phi_{1}\right)\right] \\
& M_{1}=C_{1} & \\
& M_{2}=C_{2} \sec \Phi_{2}\left[e^{-\alpha_{2} T} \cos \left(\beta_{2} T-\Phi_{2}\right)\right] .
\end{array}
$$

The normalized pulbe travifer funtion (computed by replacing 2 with ${ }^{s t}$ in (6)
 sible the adopted widh of one-third octave whe winctly a convetuen standard.

4. Digital Schewn

Reverting (6) to the time domain givet the recurave fiter to be applited to the sumpled data as
where ha relerw to the present output value and / F Fefers be the presen input value. Notice that the Arcodficient has been dropped out, minec it is identien the wero.

6. Uncerawily

The ancertanty expression cmployed in the averaging process 鏗 based upon the number of indeperdent statistical oventa present over the bandwidt B_{5} for hame intervil T_{1}. The smallost bandwidth, B_{5}, and the total record lengh, T_{5}, determine the wonfdence baxds or the power speetral donsity cstimates. The degrees-ot-
 fitter bandwidh, B_{i}, $/ / Q$, where $/$ is the th center frequency mad Q is a constamt. In other words, as the bundwidth beoomes bronder at ench new frequency, the record length decreases, but the degrees-of-mpedom romain constant. Corresponding confidence level for a certan muber of degrees of ifredom may be obtained from any standard chiscquare distributon table.

6. Averaging Time

With the averaging time $T_{\text {av }}$ specified as that time which is required to produce a certain number of degrees-of-freedom for the variance estimates, the $B T$ product gives

$$
B_{L} T_{R}=B_{i} T_{\mathrm{Av}}=\text { const. }
$$

where

$$
B_{i}=\frac{f_{i}}{Q}, \quad Q=4.332855, \quad f_{i}=f_{0} 2^{i / 3}
$$

and f_{0} is equal to the center frequency of the first filter.

$$
T_{\mathrm{AV}}=n_{i} T=\frac{B_{L} B_{R} Q}{f_{i}} ; \quad n_{i}=\frac{B_{L} T_{R} Q}{f_{i} T}=\frac{B_{L} T_{R} Q}{f_{0} 2^{i / 3} T}
$$

This is the number of points required for each variance estimate which yields a particular confidence interval. For simplicity, let $B_{L} T_{n} Q / f_{0} T=K_{1}$; then $n_{i}=$ $K_{1} 2^{-i / 3}$. Let $i=0$; then $K_{1}=n_{0}=$ total number of points needed in the variance calculation for the smallest bandwidth B_{L}.

7. Cost Considerations

Since the number of points needed in the averaging process is equal to $K_{1} 2^{-i / 3}$ per filter, the total number of points to filter for the entire frequency range is:

$$
S_{L}=\sum_{i=0}^{i=L} K_{1} 2^{-i / 3}
$$

where $i=0,1,2,3, \cdots, L$ and $L=$ number of filters minus 1 . This sum is in geometric progression and may be computed from

$$
\begin{aligned}
S_{L} & =\frac{K_{1}\left(R^{L}-1\right)}{(R-1)} \\
& =\frac{K_{1}\left(2^{-L / 3}-1\right)}{\left(2^{-1 / 3}-1\right)}
\end{aligned}
$$

where $R=2^{-1 / 3} \quad$ and $R^{L}=2^{-L / 3}$.
A rough estimate of the total IBM 7094 computer time may be obtained from

$$
\begin{aligned}
S_{L} \times 7 \cdot & {[2 \text { (machine time for a single-precision floating adD }} \\
& + \text { machine time for a single-precision floating MULTIPLY) }] .
\end{aligned}
$$

The factor of 2 is used to account fcr the double-precision instructions which are roughly twice the cycle time of a single-precision floating ADD and floating multirly.

Therefore, total computer time for the one-third octave spectral analysis is

$$
\begin{equation*}
\sim \frac{K_{1}\left(2^{-L / 3}-1\right) 14[]}{-0.2063} \tag{8}
\end{equation*}
$$

A similar equation may be derived for the amount of computing time required for the constant bandwidth autocorrelation technique (transformation of the autocorrelation function).

$\mathrm{N}=\mathrm{N} U M B E R$ OF DATA VALUES TO BE PROCESSED
Fig. 2. Cost analysis in terms of record length

$N=$ NUMBER OF DATA VALUES TO BE PROCESSED
Fig. 3. Percent cost reduction

Total computer time for autocorrelation approach is $\sim \frac{\left(2 n_{0}-k\right) k}{2} \cdot[$ machine time for a single-precision floating adD

$$
+ \text { machine time for a single-precision floating multrply], }
$$

where k equals number of lag products and varies depending on the accuracy and bandwidth of the analysis. It may be expressed as $k=P n_{0}$, where P is given in percent.

In (8), we assume an infinite number of filters ($L=\infty$), so that we may write:
Total computer time for one-third octave spectral analysis

$$
\begin{align*}
& \left.\sim \frac{14 K_{1}[}{0.2063}\right] \\
& \sim 67.8 n_{0}[\quad] \tag{10}
\end{align*}
$$

The ratio of the computer time of the autocorrelation approach to the one-third approach ((9) divided by (10)), with k replaced by $P n_{0}$, is

$$
\begin{align*}
R & =\frac{\left(\frac{2 n_{0}-P n_{0}}{2}\right) P n_{0}}{67.8 n_{0}} \\
R & \sim \frac{P n_{0}}{67.8} \tag{11}
\end{align*}
$$

This formula only takes into consideration the major portion of the operations and may vary slightly, depending on the cycle time of the computer and the efficiency of the subroutine. Savings of the one-third octave analysis over the correlation procedure increase linearly with an increase in data values. For example, with as few

Fig. 4. Digital power spectra by Fourier transformation of the autocovariance function
data values as 2260 and $0.03 n_{0}$ lag products, eq. (11) favors the correlation technique. It should be observed, however, that few data values for spectral analysis are of limited practical interest (see Figure 2), Note that a rapid rise in savings exists when P is large ($0.02,0.04,0.1$). Figure 3 shows the percentage savings for $0.03 n_{0}, 0.05 n_{0}, 0.1 n_{0}$ lag products.

8. An Actual Test Case

Figures 4 and 5 are power spectral analyses resulting from the autocorrelation approach and the one-third octave method presented in this paper. In order to produce consistent confidence levels for both analyses, the center frequency on the one-third octave method was started at 86.65 cps . This resulted in 40 degrees-offreedom in accordance with the correlation techniques.

9. Computer Implementation

The recursive eq. (7) defines the filtering process by which the spectral estimates are to be computed. Figure 6 shows other parameters essential in the total analysis and represents a general computer subroutine flowchart which evaluates the power spectral estimates from the stored data record.

10. Advantages

1. If variable bandwidth spectral analysis is preferable, implementation of this approach circumvents the need to purchase or rent special equipment for the

Fig. 5. Digital one-third octave spectral analysis

INPUT PARAMETERS:

Fig. 6. Computer subroutine flowehart
frequency reduction of vibration data, provided a large-scale computer is available.
2. On many engineering applications, the digital one-third octave spectral analysis affords a very economical procedure over other well-known methods.
3. Dwing to the constant perventage bandwith flexibillyy of constructing the fiters, digital ono-hird spectral analysis enoble pone fo investighte low harmonic matent at a mey reasomable cost.

11. Dismikytayes

 dowherperiwim operatons. It was found that the to the small magritudes of the welghte for lugh sampling rates (irom 5000 to 10,000), the atewracy requited could
 operations way be used if the sample rates to not exeed bo00 samples per seond. If single procison inetructions are used for the cosa when the sampling tate is less
 fairly whe band spectral analysts cougbility, and this hector may ontwogh the eronmmisa

12. Prachical Obermationg

One may realize significan improvements in the nexracy and cost of these hlhers by sothox the followng:

1. The selectel one-thind octave bands were structy bancd on conwenience:
 acterivitu.
2. Midderange fiterixg may reduce the conputing time fonmidewbly. The
 hall the foding frequerey (thering from high to low (requmeter), the requed number of ntered wolues may be reduced by hall. The uncertamty nod the total

 staad of T.

13. List of Symbols

A, B, C, D, E, F, O, n	
${ }_{3}$	
㬉	Wmalteat baverydt entuidmed
E*(\%)	Fuwe traxtor (unctiow
f	As arbitary cendar fequency
$\mathrm{f}_{8},{ }_{8}$	
f	-themery frequensy
/s	Smanymag fath
(1) $)^{\text {a }}$	Comtnuoke mander funelisu
G, (w)	1085)
1.	
)	$\sqrt{-1}$, imatinaty mat
\%	tion
K	Conatant extul to the total munter of points in $T^{\prime \prime}$
4	Number of Altus - - 1
n	

N	Number of degrees-of-freedom in each spectral estimate
ϕ_{n}	Present filtered output data value
P	Percent
P_{1}	Normalization factor
Q	Constant of proportionality
R	Common ratio considered in a geometric progression
S	$j \omega$
S_{L}	Total number of points to filter for the entire analysis
T	The time interval, the reciprocal of f_{s}
T_{R}	Total record length in seconds
ω	Radian frequency
ω_{1}	$2 \pi f_{1}$
ω_{2}	$2 \pi f_{2}$
ζ	Damping ratio
Δf	Constant <1

Received November, 1965; revised Januart, 1966

REFERENCES

1. Blackman, R. B., and Tukex, J. W. The Measurement of Power Spectra. Dover Publications, New York, 1950.
2. Ragazzini, J. R., and Zadeh, L. A. Analysis of sampled-data systems. Trans. AIEE 71, II (1952), 225-234.
3. Bendat, J. S., Enochson, L. D., Klein, G. H., and Piersol, A. G. Advanced concepts of stochastic processes and statistics for flight vehicle vibration estimation and measurement. ASD TDR 62-973, Aeronautical Systems Div., AFSC, USAF, Wright-Patterson AFB, Ohio, Dec. 1962. AD 297031.
