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ssTRACT. It is shown in this paper that the stable feedback shift registers, when classified
according to Hamming weight (the number of fundamental product terms in expanded sum

of produets form), are binomially distributed, i.e., there are (Zn _u:L - 1) stable feedback

shift registers of order n with Hamming weight equal to w. Using this relationship, a recursive
glgorithm is established which will generate all stable feedback shift registers of order n.
Formulas are also given for determining the number of stable feedback shift registers which
have j + 1 starting states and j - 1 branch states, 0 £ j < 2#1 — 1.

Introduction

In a previous paper [1] the author has shown that the number of stable feedback
shift registers of order n is exactly 2", In the same paper, the author also showed
that the number of stable feedback shift registers of order » is the same as the number
of stable maximum transient feedback shift registers of order n + 1. In this paper
it is shown that the feedback shift registers of order n are distributed binomially
according to Hamming weight. From this relationship a recursive algorithm is
established for generating all stable feedback shift registers of order n.

Basic Definitions and Properties

The general form of the autonomous binary feedback shift register, denoted by FSR,
is shown in Figure 1.

The order n of an FSR is equal to the number of unit delay stages. The n-tuple
$= (841, Sus, -, 8, S) is the state of the FSR, where each s; is the output of
one of the unit delay stages. The feedback function f(s) can be any of the 27" distinet
Boolean functions of the binary variables s;, 7 =0, --+,n — 1. If s is the present
state of an FSR, then the next state is denoted by 0s = (f(s), $ac1, -+, 82, 81)-
fis called the next state operator. The state after j shifts is denoted by 6’s.

For notational convenience, if

$ = (Sn_1,8n_2,"',81,80),
then
S(O) = (8n—1, 82, ", 8, %D 1)7
Su'} = (sﬂ—l y Sn—2, ", 8t ©® 1: 30);
s = (Su-1, 800, 0, 8 @ L, S0, 0, %),
Sln_” = (Sﬂ—l D182, 380)7

rl?he work reported here is part of the author’s Ph.D. dissertation, submitted to the Univer-
Sity of Notre Dame, Notre Dame, Indiana, January 1966. This work was supported by the Na-
Yonal Science Foundation under Grant No. GP-2547.
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Fre. 1. Autonomous binary feedback shift register

where @ denotes module 2 addition, i.e., s'* is the state whose components agres
with the components of state s in all positions except the ith.

The state diagram of an FSR of order » is a directed linear graph consisting of
2" nodes, one for each state on the FSR, and 2" directed branches, one leaving each
node (state), such that the branch leaving node « terminates on node 8 if and only

if s, = sg.
The node on a state diagram corresponding to a state s = (8u_1, Sn—z, -+, 81, 8)
may be denoted by either the binary integer s,—18.—2 - -+ 818 or the decimal integer

S = > .2t 52" Since the correspondence between S and s is unique, in this report
state referred by S is understood to be the states which corresponds to the binary

representation of the decimal integer S.
A state s such that 8s = s will be called a persistent state [2] or an equilibrium state

[3]. The states 0 = (0,0, ---,0) and 1 = (1,1, -+ , 1) are the only possible
equilibrium states on an FSR. A sequence of T distinct states (7' > 1)sy, 82, -+ ,8;
such that sy = s;and 6s; = s;.n, j =1, -, T — 1, will be called a closed cycle

of period T [4].In this report the term cycle is used only when the discussion pertains
to both closed cycles and equilibrium states.

A sequence of L distinct states s*, 68, - - - 6" 's™ none of which lie on a eyele will
be called a transient of length L if and only if 6“s™ lies on a cycle. The state s* wil
be called the starting state for the transient.

Although every state on an FSR has a unique successor state, a state may haveno
predecessor, a single predecessor state or at most two distinet predecessor states, The
two possible predecessors of a states = (Sa_1, 8w, -+, S, So) are the states
(Sn2, " ,8,8,1)and (Spa, -, 8,8 ,0). A state s which has two predecessors
will be called a branch state, and a state s which has no predecessors will be called
starting state.

The Hamming weight of a binary n-tuple [3] is equal to the number of its nonzero
components. The Hamming weight of a state s is denoted by W(s).

Definition 1. All states s on an nth order FSR such that f(s) = 0 will be called
zero feedback states (ZFS), and all states s such that f(s) = 1 will be called unit
feedback states (UFS).

Since every state on an nth order FSR is either a zero feedback state or a unit
feedback state, the following definition is appropriate.

Using integer notation, for each state 8, F(S) = f(s) if S is the decimal integer
which corresponds to the binary representation of the state s.

Definition 2. The 2"-tuple F = (F(0), F(1), F(2), ---, F(2" — 1)) will be
called the canonic representation of the FSR.

Definition 3. The Hamming weight of an FSR of order n is equal to the number of
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the nonzero components in its canonic representation and will be denoted by
W),

Froperty 1, The number of branch states on an FER of order » is always cqual
to the number of starting states.

Property 2. (This is due to Magleby [5].) 11 state sg 18 a possible suceessor of
stale v, on an nth order FER, then state =g is also a possible sueccssor of state
ot and state 52 s the other possible successor for states s, and s&'.

Defimition 4. (This is due to Massey and Liu [3].) Av F8R is stable if and only if
there exists au inleger N such that for all statess, 8"s = 0;1.c., 0is the only equilib-
rium state and there are no closed cycles, ‘

Property 3. On every stable FSR of order n, 61 = 1™ and 80" = 0; ie,,
f(1y = 0und J0") = 0.

The ISR of order 3, defined by f{s) = so(s @ $2 @ s18), is unstable, An example
of astable TBR of order3is f(s) = &5 & 1).

Defindtion 5. An ISR of order n will be called a stable meximum fransient
FSR, if it is stable and has a single starting state,

Property 4. The state s = 0" == (1,0, -+, 0) is the only starting state for
all stable maximum transient FSR’s of order # and is a starting state on every stable
FSR.

Distribution of Siable FSR's by Hammaing Weight

In [1, 6] it iz shown that there are exactly 27 ™ distinet stable feedback shift
registers of order n. The canonic representation of the single stable FSR of order
1is F = (0, 0). The Hamming weight of this FSR is W(F) = 0. The canonic repre-
sentations of the two stable FSR's of order 2are F = (0,0,0,0) and F = (0,0,1,0),
with Hamming weights 0 and 1, respectively. The eanonic representations of the
16 stable FSR’s of order 3 are given in Table 1 along with their respective Hamming
weights.

TABLE 1. Caxonie REPRESENTATIONS OF STADLE FSR's
oF ORDER 3

¥ W(F) F W (F)
©0,0,0,0,0,0,0,0) 0 {©,0,0,01,1,0, 0 2
©,0,0,1,0,0 00 1 {0,0,0,0,1,0,1,0) 2
©0,0,0,0,1,0, 0,0 1 {©,0,0,0,0,1,1,0) 2
0,0,0,0,0,1,0,0 1 ©,0,1,0,1,1,0,0) 3
©,0,0,0,0,0,1,0) 1 ©,0,1,0,0,1,1,0) 3
0,0,1,0,0,1,0,0 2 ©,0,0,1,1,0,1,0) 3
0,0,0,1,0,0,1,0 2 0,0,0,0,1,1,1,0) 3
,0,0,1,1,0,0, 0 2 ©0,1,0,1,1, 1,0 4

An inspection of Table 1 reveals that the Hamming weights of the stable FSR’s
of order 3 are distributed binomially; i.e., the number of stable FSR’s of order 3

with Hamming weight W(F) = w is given by (i) The Hamming weight distribu-
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LB

sy {0} Sy 5,3{0} ga{o}

Frg. 2. Siate disgram of a stable maximum trarsient FSR of order 3

tion for the stable FSR's of orders 1 and 2 are clearly Ci) and (i) Using 2
UNIVAC 1107 digital computer,’ it was determined that the Hamming weights of
the stable FSIVs of order 4 are also distributed binomially aceording to (L})

1o this paper it is shown generally that the Hamming weights of the stable I'SRs

—n —1 .
), A recursive al-
w

o . . . 2
of order n are distributed binomially according to (
gorithrm is algo given which generates the eanonic representations of all stable feed-
back shift registers.

In order to establish the Hamming weight enumeration formula, the following
preliminary algorittuns and lemmas are necessary.

Associaicd FSR's.

Definition 6. Let f.(s) be the defining funetion of an ath order stable maximum
transient SR, Let 4 be an arbitrary set of states on the FSR. Then the A de-
lermined FSE is the FSR whose feedback function f(s) is given by the following
construction:

f(Sﬂ) = fm(sﬂ)y Sy {E AI
f(sa) = fna(sa) &1, 8, & A,

On any particular stable maximum transient FSR, each pair of states s, and
sk’ can be ordered as suecessors of the single starting state 0™ such that s, =
607 and 1 = 00", 0 <4« j < 2" — I Thus the states lubeled s, and
sa’ will be the 4th and jth successors of the starting state. (See Figure 2.)

Livma L Lef so = 00" and s = 90", 0 <4 < j < 2% — 1, be the
i-th and j-th successors of the starting state 0" on a particular stable maximwm
transient FSR. Let sg = 670" be the successor of s, and si*™ = 770" be the
suceessor of s . Let the set A consist of the single arbitrary stale s* .

1. Ifs™ = 0" or 1s some state 82 then the resulting 2" -+ 1 possible distinct A

deternitned FSKH’s are unstable.

1 All digital eomputer computation was performed on the UNIVAC 1107 at the University of
Notre Dame Computing Center.
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9. If ™ 5% 0 or is some stale s, , then the vesulting 2" — 1 possible distinct A
Jeermined FSI’s are stable.

Proor. Casel. Let A = {0}, by Property 3 f.(0"") = 0. Thus f(0") =
¢ (0”) @ 1 = Lonthe A determined F'SR. Hence 60 = 0" and the A determined
TSR is unstable.

Case 2. Let A4 = {0}. Then 0 is some state st and fuw(0) = 0. Thus f(0) =
£,(0) @ 1 = 1on the 4 determined FSR. Hence 80 = 0" and the A determined
FSR is unstable.

Case 3. Let A consist of the single state st = 000" for0 < i< j<2" -3
where s, = 00”7, On the stable maximum transient FSR of order n, disjoint
sequences @y and @ exist where

Q= {0 000 g0 e sy, e, TOTY, st
and
0y = {sén—”, S L N LN
Both of these sequences will also exist on the 4 determined FSR. Since psl) = s

on the A determined FSR, the sequence @; of distinet states
{Sﬁ ’ Bsﬂ) Tty 01'—-1'—253’ Sflo}}
will form a closed cyele of period 7' =7 — ¢if T > lorif T = 1, thesequence @3
will degenerate to the equilibrium state 1. There are 2" — 1 distinct states s’
which satisfy the conditions of this case all of which yield unstable A determined
FSR’s. _
Cose 4. Let A consist of the single state s, = 60" 0 < ¢ < j < 2" — 3 where
s = 90", (Note s, cannot be equal to 0'”.) On the stable maximum transient
FSR of order n, disjoint sequence @, and @ exist where

Q4 — {0{7:,-—1]’ 00(”—1” e 91“—'10(7&*‘1)’ Sa}
and

—3—2 (0} {n—1} 2n—4—3 {n—1} {0}
er—{s;;,ﬁs,s,-v',ﬁ“s,g,sa » 88 ,"',9 Sg :0 aO}

Both of these sequences will exist on the A determined F'SR. Since s, = s on the

A determined FSR, the sequence
Qe = (077 00™ s, s 67T s, 0, 0)

will also exist. Therefore, there exists an integer N such that 6¥s = 0 for all states
on the A determined FSR and hence it is stable. There are 2"~ — 1 distinct states
s. which satisfy the conditions of this case, all of which yield stable A determined
FSR’s.

Part 1 of this lemma follows from Cases 1, 2, and 3. Part 2 follows directly from
Case 4. Q.E.D.

Potentially Stable and Unstable States

The set of 2" — 1 distinct states on a particular stable maximum transient FSR
which yield stable A determined FSR’s in Lemma 1 will be called the set of potentially
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stable states for that particular stable maximum transient FER, and will be denoted
by Z.
The set of 2" 4 1 distinet states on a particular stable maximum transient
FSR which yield unstable A determined F3R’s in Lemma 1 will be called the set of
potentially unstable states for that particular stable maximum transient ISR, and
will be dencted by U.
For every FSR. of order n, & deBruijn [7] or Good [8] diagram can be constructed.
A deBruijn diagram differs from the ordinary state diagram in that there are two
branches leaving each state (node), one for each of the two possible values of the
feedback function f(s) and two branches ferminating on each node, since each
state is a possible successor of two distinet states. The 2" nodes may be numbered
with the binary n-tuple corresponding to the 2" states or with the decimal integers
corresponding to these states. 'The two branches leaving node ¢ terminate on nodes
7 and k respeetively, if the first n—1 binary digits of the n-tuple denoting node 4
correspond to the last n — 1 binary digits in the n-tuples denoting nodes j and k.*
The directed branches are nunbered with the binary (n + 1)-tuple whose first
binary digit is equal to the first binary digit in the binary n-tuple at the head of
the directed branch and whose last n binary digits correspond to the binary n-tuple
at the tail of the directed branch.
On a deBruijn diagram of order n, if one stars the 2" branches, one leaving each
node, which are not on the state diagram of the stable FSR, leaving the 2" branches,
one leaving each nade, which are on the state diagram of the stable FSR unstarred,
the resulting diagram will be called an assoctuded deBruijn diagram. The following
algorithm generates a stable maximum transient FSR of order n + 1 by making a
complete circutt of the associated deBruijn diagram of a stable FSR of order n. The
validity of the algorithm has been established in previous papers [1, 7, 9).
Algorithm 1
1. Seti =1,
Let « be node 0.

3. If the starred branch leaving node e has not been used, leave node w by the starred branch.
Otherwise leave by the unstarred branch.

4. Set s; equal to the (n 4 1)-tuple corresponding to the branch traversed.

5. Let @ be Lhe node reached in step 3. If both branches leaving node « have been used, go
to step 6. Otherwise set £ = ¢ + 1 and go to step 3.

6. Construct a stable maximum transient FSR of order » 1 1 such thatfs; = ss 1, ¢ = 1,
veey 20 1 oand Bsgnt1 = gt

Figures 3, 4, and 6 (see pages 536, 537) show the state diagram of a stable
third order FSR, the associated deBruijn diagram for this FSR, and the resulting
stable maximum transient FSR of order 4, respectively.

Tt is also possible to determine which states in the sets U7 and Z are unit feedback
states and which states are zero feedback states from the associated deDBruijn
diagram. Consider the following algorithm for acecomplishing this objective.

2 Using decimal notation, the two branches leaving node J terminate on nodes J and K if J =
' I .

‘,é_l and K = I_EJ + 2%, The directed branch connecting node 7 to node J is denoted by

THl>Jandbyf +200 T <]
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Algorithm 2
1. Construct the associated deBruijn diagram of order » corresponding to a given stable FSR

of order n.

5 Tor a given stable FSR, place a check mark next o each node on the asscciated deBruijn
diagram which corresponds to a unit feedback state.

3. Construct a node entry table for the associated deBruijn diagram of the following form:

Node O] 1 ]2 |eee |2™2 |2"

Ist time entered
by branch

2nd time entered
by branch

a. Place a check mark next to each node which corresponds to a unit feedback state.

b. Using Algorithm 1, make a complete circuit of the associated deBruijn diagram noting
which branches were used to enter each node the first time and whieh branches were
used to enter each node the second time.

4, Determine from the node entry table the states in the sets U and Z as follows:

a. The states on the stable maximum transient FSR of order n+-1 which correspond to the
branches which enter each checked node (unchecked node) for the second time on the
associated deBruijn diagram of order n are elements of the set U of potentially unstable
states and are unit feedback (zero feedback) states.

b. The state on the stable maximum transient FSR of order n-+1 which corresponds to
the branch which enters node 0 for the first time on the associated deBruijn diagram
of order n is a zero feedback state and an element of the set U of potential unstable
states.

¢. The states on the stable maximum transient FSR of order n+1 which eorrespond to the
branches which enter each check node (unchecked node) except node 0 for the first
time on the associated deBruijn diagram, are the elements of the set Z of potentially
stable states and are zero feedback (unit feedback) states.

Proor. It is clear that changing the successor of a state on a stable maximum
transient FSR of order n 4 1 corresponds to changing the successor of a branch on a
complete circuit of its associated deBruijn diagram of order n. In this sense, Al-
gorithm 2 is just a restatement of Lemma 1.

Example 1. Apply Algorithm 2 to the stable FSR of order 3 defined by f(s) =
s(s @ 1). The state diagram for the stable FSR is shown in Figure 3 and the
associated deBruijn diagram for this FSR is shown in Figure 4.

Since states 4 and 5 are unit feedback states on the stable third order FSR,
nodes 4 and 5 are check marked on the associated deBruijn diagram in Figure 4.
The node entry table for the associated deBruijn diagram is shown in Figure 5.
Applying step 4 of Algorithm 2, the set U of potentially unstable states consists
of the states {0, 1, 3, 5, 6, 9, 11, 13, 15}. The set Z of potentially stable states con-
sists of the states {2, 4, 7, 8, 10, 12, 14}. States 9 and 11 are the only unit feedback

states in the set U. States 8 and 10 are the only zero feedback states in Z.

The associated stable maximum transient FSR of order 4 for the stable FSR of
order 3 defined by f(s) = sx(s1 @ 1) is shown in Figure 6.

From Lemma 1, it is clear that changing the successor of a single state s, on a
stable maximum transient FSR of order n will yield a stable FSR of order n, if and
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Y

Fic, 3. State diagram for the FSR of order Fie. 4. Associated deBruijn disgram o
3 with f(s) = s ® 1) order 3 for the FAR with f(s) = suss @ 1

only if s, is an clement of the st Z of potentially stable states. Let us now consider
changing the suceessors of an arbitrary number of states from Z.

Definition 7} Letf.(s) be the defining function of an nth order stable maximum
transient TSR. Let Z* be some subset of the set Z of potentially stable states for this
stable maximum transient FSR. Then the Z* determined FSR is the TSIX whose feed-
back function f(s) is given by the following eonstruction:

*
f(8e) = fu(8a), 8.  Z7,
J(s) = fu(s) @1, s, CZW

Lemya 2. Let N be the smallest integer such that 6%s™ = 0 where 8™ is some state
on a stable mazimum transient FSE of order n. On the Z* determined FSR, if s* € 77,
then there exists an wnteger K < N such that s = 0,

Proor. Lets; = 00 ™™ denote the ith successor of 0" on a stable maximum
transient 'SR of order n, 0 < ¢ £ 2" — 1;then N, = 2" — { — 1 is the smallest
integer such that 6¥'s; = 0, 0 <7< 2" — L.

3 It should be noted here that Definition 7 is just a restatement of Definilion 6 with the set A
of Definition 6 restricted to a subset of the set 2 of potentially stable states. However, since

this restriction applies in the remainder of this paper, it is convenient to designate this restrie-
tion with a separate definition.
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N
Node o) 12131418l s} 7
ist time antered | 2 B {oliziie
by brangh
2nd time entered|] O | 3 516|981l i13[15
by branch

F1a. 5. Node entry table for the associated deBruijn diagram of Figure 4

(3) GF g
© ©® O

@) 2 ®

Fi¢. 6. State diagram of the stable maximum transient PSR of order 4 agsociated with
the third order stable FBIL with fis) = su{s1 6 1)

If the set Z* is the empty set, there is nothing to prove. Lt the set Z* contains only
a single state, then the lemma follows directly from Lemma 1, Let Z * be an arbitrary
sot of m - 1 states from &, 2 < m < - 2, and assume that the lemma istrue
for this case. The lemama is now shown to be true for n states in 27,

Let s, = 670" 7 be a state in Z which is not in Z”. Let g be the successor of s, on
the stable maximum transient FSR. ¥, = 2" — o — 1 i the smallest integer such
that sy = 0 on the stable maxinoum transient FSR. Therefore the sequence
{8a,83, ", sa M s L 6 s, 0} will exist on the stable maximum tran-
slent FSR. Changing the successor of s, from sg to 837" on the Z* determined
TSR clearly eliminates the states sg, - -+, s, from this sequence. To assume other-
wige coniradicts the assumption that s, i2 a state in Z. There are two cases to he
tonsgidered.

Case 1. No state in the sequence {sﬁ"""”, fisg -+, 0} ig an element of Z2*.
Clearly for this case there exists an integer K. < N, such that #%eg. = ) on the Z*
determined 'SR,

C'ase 2. At least one state in the sequence {85 ggg' ™M L. ,0} is an element of
7. Let k be the smallest integer such that s, = #"s5" " is such a state. On the stable
maximum transient FSR 6%vs, = 0 and 8”5, = &,. By the induction hypothesis
thero oxists an integer K., < N, such that §'s, = 0 on the associated FSR. The
sequence {s., sg " ), 68", 7 ss ™ g1 exists on the Z* determined FSR

fn-1}
3
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since s, is the first state after 55" which is an element of Z* Thus there Cexigy
integers N < N, — N,and K. = N* + K, such that ""s, = s, and 8"s, = 0 o1 {}e
7" determined FSR. Since K, < N,, K. < N, — N, + N, < N, and thus the
lemma is true for m states in Z¥, 0 < m < 2" — 1, and since m was arbitrary it is -
true in general. Q.E.D.

Levua 3. Al Z™ determined FSR’s are stable.
Proor. TFollows directly from Lemma 2.

TurorEM 1. There are exactly 2° " distinet Z* determined stable FSR’s associated
with each stable mazimum transient FSR of order n.
Proor. From Lemma 3 all Z* determined FSR’s are stable. From Lemma 1

n—1
> distinct ways of

there are 2% — 1 distinct states in Z. Hence there are (

having 7 states from Z in Z*. Summing over j yields the required number.
2§~1 (2”?1—1) — 22n-—1—1.
§=0 J
Q.E.D.

LemMa 4. Given any two distinct stable maxvmum transient FSR’s of order n; there
15 at least one state s, common to the sets U of potential unstable states such that f(s,) =0
on one and f(s,) = 1 on the other.

Proor. Given any two distinet stable FSR’s of order n — 1, n > 2 there will
be at least one state s, which is a unit feedback state on one, f(s,) = 1, and a zero
feedback state on the other, f(s,) = 0. To assume otherwise would imply that the
two canonic representations are the same, contradicting the assumption that the
FSR’s were distinct.

Without loss of generality, if there is more than one such state, let s, be the first
such state encountered on a complete circuit where the value of the feedback func-
tions differ; if branch by is the first branch to enter this node on one associated
deBruijn diagram, it will also be the first branch to enter the corresponding node on
the other associated deBruijn diagram. By Algorithm 2, the state on the stable
maximum transient FSR’s associated with branch b,"”’ will be common to both sets U
of potentially unstable states, and this state will be a zero feedback state on one and a
unit feedback state on the other. Q.E.D.

Lemma 5. Given any two distinct stable maximum transient FSR’s of order n, the
o= L. o g . . .
sels of 27 distinet Z* determined stable FSR’s corresponding to each stable maximum
transtent FSR of order n are disjoint.

Proor. Follows directly from Lemma 4.
LemMma 6. Given o stable maximum transient FSR of order n which has j unit feed-

n—1

k~ 1) distinct Z* determined

stable FSR’s with Hamming weight W(F) = + %k, 0 <k < 2" — 1 can be obtained.
Proor. Since the successor of the states in U are not changed, the Hamming

weight of the Z* determined FSR’s will at least be j. Without loss of generality, let

there be 7 unit feedback states in the set Z. Let Z; denote the subset of Z containing

these 7 unit feedback states and let Z, denote the subset of Z containing the

back states in its set U of potentially unstable states; (
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9"t — 1 — { zero feedback states, A& slable PSR of order % with Hamming weight
W(F) = j - k can be obtained by deleting & states from Z,, 0 <k < 7and
adding ks states from Zy to Z, 0 < kb = 2°7 — 1 — 4 where &y + kb = k,
0 <k < 27 — 1. The total number of ways of obtaining a stable FSR with
Hamming weight W{F) = 7 -4 k is given by

o AN b e A N £ A
k;o (kl) b~k /- ( k )
Q.E.D.

With the aid of the above lemmas it is now possible to prove the result stated at
the beginning of this paper.

Enumeration of Stable FSR's by Hamming Weight

TuroreMm 2. There are cxactly (2 —:Lf B 1) distinct stable FSR’s of ovder n

which have Hamming weight W{F) = w, 0 < w < 2" —n — 1.

Proor. The theorem was shown to be true for n = 1, 2, and 3 at the beginning
of this paper. Assume the theorem is true for n = m. We now show it to be true for
n=m-+ L

It follows directly from Algorithm 2 that corresponding to each stable FSR of
order 7 with Hamming weight W(F) =4, 0 <7 < 2" — m — 1, thore is a stable
maximum transient FSR of order m -+ 1 which has 7 unit feedback states in its set
U of potentially unstable states.

Lemma 6 states that (2m ]: 1) distinet Z* determined stable FSR's with Hamming

weight W{F) = j -+ k can be associated with each stable maximum transient FSR.

Lemunia 5 states that the sets of 2° 7 distinet Z* determined stable FSR’s obtained
from different stable maximum transient ¥SR’s are disjoint. The number of stable
F8R’s of order m + 1 with W(F) = 0 is thus given by

2" —m— 1\ (2" -1 o1
0 0 o

The number of stable FSR’s of order m -+ 1 with W(F) = 1 is given by

2 —m— 1\ (2"~ 1 = — 1\ (2" = 1\ _ aa B
Ce ) ) e

and in general the number of F8R’s of order m + 1 with W(F) = w is given by

2‘”:(2’“ - m - 1)_(2”" - 1) _ (2’““ —m - 2)
§=0 J w = w '

Thus the theorem is true for m + 1 and since m is arbitrary, it is true in general.
Q.ED, ‘
Algorithm for Generating All Stable FSR’s of Order n

Having established the Hamming weight enumeration formula, it is now possible to
give g set of rules for generating all stable FSR’s of any order. Consider the following
recursive algorithm.
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Algorithm 3, Rules for generating all stable FSR's of order n, n > 1 are as
follows:

Stary with the single FSTIU of order 1 with F(8) = (0, 0).

Lo Set ko= 1.

3. Apply Algorithmse 1 and 2 to each stable FSR of order & obtaining the 2851 distinet stable
maximmum transient TSR of order B--1 along with their respective scts 4 and U of
potentisily stable and unstable states.

4. Tor cach stable maximum transient P8R of order B+1 find all the possible Z% determined
stable FER’s, thus obtaining the 227k e Gistinet stable TSR of order k-1,

5. Ik = n-1,stop. Otherwise increase b by one and go to step 3.

ho

Erumeration FPormulas for Stable FSR's by Stavling and Branch Slales

Having established the enumeration formula lor the stable ISR’ by Hamming
weight, we do not establish an enumeration formula for the stable FSR’s by starting
states and by branch states.

LemMa 7. The nunder of starting states on a Z¥ determined stable FSIE is equal o
the cardinalily of the set Z7 plus one.

Proor.  Follows from property 1 and the fact that the successor of each state in
* on the stable maximum transient FSE is o starting state on the 2™ determined
"SR.

Corartany L. The number of branch states on a 27 determined stable FSR of order
n i equal Lo the cardinality of the set Z° plus 1.
Proor. Follows immediately frorn Lemma 7 and Property 1. Q.IE.D.

o

-1
r P Y gl 271 - 1 y N -
Tagonem 3. There are eractly 2 ”( i ) stable FSR’s of order n which
fuve § -+ 1 stavting slales and j - 1 branch states.
et . . . j— .
Proor.  There are 2 distinet stable maximuom transient FSR's of order n
ayn=-1 . 1
[1]. TPor esch stable maximum transient TSR of order n, there are ( 7 ) difer
. . . e e O -
ent, ways of having 7 elements in 27, Thus it follows from Lemma 7 and Corollary 1
that the number of stable FSR's of order n with 7 -+ 1 starting states and 7 + 1

branch states 1s equal to
o r—rn(Q"""’ - 1)
J

ey o n—i —

L 1) . (Qw . kn) stable FSR’s of order n
which have Hamening weight WiF) = w, 0 < w <2 —n — Land k -+ 1 staiting
stades and k + 1 branch states where 0 < k< 2" — 1, L < w.

Q.I.D.

SorOLLARY 2. There are exactly

an-l
k

W{(F} = j -+ k can be associated with ench stable maximum transient 'SR of order

n which has 7 unit feedback states in its set {7 of potentially unstable states. From

=l
2

oy, ' - 1 . s T ¥ . . .
Proor. From Lemma 6, ( ) distinet stable I'SR’s with Hamming weight

Algorithm 2 and Theorem 1, it follows that there are ( - n) stable maximum

transient F'SR’s with j unit feedback states in their sets U of potentially unstable
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n=t au-l
states. Thus there are (210 /ﬂn> ' (‘ k 1) distinct stable FSR's of order n with
i

Hamming weight W(F) = wand k + 1 starting states and £ -+ 1 branch states.
Q.E.D.

Table 2 gives the breakdown of the stable FSR's of order 3 with Hamming weight
W(F) = wandj <4 | starting states and j 4 1 branch states.

It should he noted that summing across the rows of Table 2 yields the number of
stable TSTVs with Hamming w, and summing down the columns of Table 2 yields
the number of stable FSI’s with j 4+ 1 starting states and j 4 | branch states.

TABLE 2. Nusper or StaBiLkE FSR’s or OrpeEr 38 Wirm
Hammane WeiteHT W(F) = w avp J4+1 S1armine STaTes anND
741 Brancu STATES

w J =0 1 2 3 Row Sum

0 1 0 0 0 1

1 1 3 0 0 4

2 0 3 3 0 6

3 0 0 3 1 4

1 0 0 0 1 1
Column sum. .. 2 6 6 2

Results and Conclusions

In this paper it is shown that there are (2 m{:} h 1) distinet stable FSR’s of order

n which have Hamming weight W({F} = w. Using this result, an algorithm for ob-
taining all stable F8R's of order # is established. It is also shown that the number of
stable T8R’s of order n with 7 + 1 starting states and j + 1 branch states is equal to

1t lan 275—[ - . . . -
A ”( i 1). Tinally, it is shown that the number of stable I'SR’s of order =

which have Hamming weight W{(F) = w and also have 7 + 1 starting states and

n—1 n—1
J + 1 branch states is equal to (2 -n)(Z . 1).
w =17 7
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