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aBSTRACT. I t  is shown in this paper that  the stable feedback shift registers, when classified 
according to Hamming weight (the number of fundamental product terms in expanded sum 

of products form), are binomially distr ibuted,  i.e., there are ( 2'~ -wn - 1)  stable feedback 
l x 

shift registers of order n with Hamming weight equal to w. Using this relationship, a recursive 
algorithm is established which will generate all stable feedback shift registers of order n. 
Formul~s are also given for determining the number of stable feedback shift registers which 
h~vcj + 1 start ing states a n d j  d- 1 branch states,  0 L~ j _< 2 "-~ - 1. 

Introduction 

In a previous pape r  [1] the  au thor  has shown t h a t  the  n u m b e r  of s table  feedback 
shift registers of order  n is exac t ly  2 2~-'-~. I n  the same paper ,  the au thor  also showed 
that the n u m b e r  of s table feedback  shift  registers of order  n is the same as the n u m b e r  
of stable m a x i m u m  t rans ien t  feedback shif t  registers of order  n -t- 1. I n  this pape r  
it is shown t h a t  the  feedback  shift  registers of order n are d is t r ibuted  binomial ly  
according to H a m m i n g  weight.  F r o m  this  re la t ionship a recursive a lgor i thm is 
established for genera t ing  all s table  feedback  shif t  registers of order  n. 

Basic Definitions and Properties 

The general fo rm of the  a u t o n o m o u s  b ina ry  feedback shift  register, denoted by  FSR,  
is shown in Figure  1. 

The order n of an  F S R  is equal  to the  n u m b e r  of uni t  delay stages. T h e  n- tuple  
s = (s~_~, s~_2, . .  • , s~, So) is the  state of the  FSR,  where  each sj. is the  ou tpu t  of 
one of the uni t  delay stages. The  .feedback function f(s)  can be any  of the  2 ~ dist inct  
Boolean functions of the  b ina ry  var iables  s i ,  j = 0, • • • , n - 1. I f  s is the  present  
state of an FSR,  then  the  next  s ta te  is denoted  by  0s = ( f ( s ) ,  Sn_l, - . -  , s2, sl). 
0 is called the  next  s ta te  opera tor .  T h e  s t a t e  af ter  j shif ts  is denoted b y  0~s. 

For nota t ional  convenience,  if 

then 
S = ( S ~ - l , S n - 2 ,  " ' "  , S l , 80 ) ,  

S{ o} 

S{ i} 

S{ ~} 
S{n-1} 

= ( s n - ~ ,  s n - 2 ,  . "  , S l ,  So ® 1 ) ,  

= (Sn--1 , Sn--2, " ' "  , Sl ~) 1, So), 
= ( s ~ - I ,  s n _ ~ ,  . "  , s~ e 1 ,  s ~ + l ,  " '"  , So) ,  

= ( s n - 1  @ 1,  s n _ ~ ,  . . .  , So) ,  
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FIG. 1. Autonomous b inary  feedback shif t  register  

where @ denotes module 2 addition, i.e., s/~l is the s ta te  whose components  agree 
with the  components  of s tate  s in all positions except the ith. 

The  state diagram of an F S R  of order n is a directed linear graph  consistiilg of 
2 n nodes, one for each state on the FSR,  and 2" directed branches,  one leaving each 
node (s ta te ) ,  such t h a t  the  b ranch  leaving node a terminates  on node ¢~ if and only 
if 0s~ = s~. 

The  node on a s tate  diagram corresponding to a s tate  s = (sn_l,  s~-2, • • • , Sl, so) 
may  be denoted by either the b inary  integer s,~_is,~_2 .. • StSo or the decimal integer 
S = Lk=oX-" ~-~ sk2 k. Since the correspondence between S and s is unique, in this report 
state referred by  S is unders tood to be the state s which corresponds to  the binary 
representat ion of the  decimal integer S. 

A state s such tha t  0s = s will be called a persistent state [2] or an equilibrium state 
[3]. The  s t a t e s 0  = ( 0 , 0 , . . . , 0 )  and 1 = (1, 1, - . .  , 1) are the  only possible 
equilibrium states on an FSR.  A sequence of T dist inct  states ( T > 1)s~, s2, • . . ,  s r 
such tha t  0st  = st and 0s~ = sj+t, j = 1, . • • , T - 1, will be called a closed cycle 
of period T [4]. I n  this report  the te rm cycle is used only when the  discussion pertains 
to bo th  closed cycles and equil ibrium states. 

A sequence of L distinct states s*, 0s*, • • • , 0L-'s * none of which lie on a cycle will 
be called a t ransient  of length L if and only if 0Ls * lies on a cycle. The  state s* will 
be called the s tar t ing state for the transient .  

Al though every state  on an F S R  has a unique successor state, a s ta te  m a y  have no 
predecessor, a single predecessor s tate  or at  most  two dist inct  predecessor states. The 
two possible predecessors of a s t a t e s  = (s~_~, s~_~, . . .  , Sl, So) are the states 
(s~_2, • • • , 61, So, 1 ) and (Sn_~, " " " , 61, SO, 0). A state s which has two predecessors 
will be called a branch state, and a state s which has no predecessors will be called a 
starting state. 

The  Hamming weight of a binary n-tuple [3] is equal to the  n u m b e r  of its nonzero 
components .  The  H a m m i n g  weight of a s ta te  s is denoted by  W ( s ) .  

Definition 1. All states s on an n t h  order  F S R  such t h a t  f ( s )  = 0 will be called 
zero feedbac/c states (ZFS),  and all states s such t h a t  f ( s )  = 1 will be called unit 
feedback states ( U F S ) .  

Since every state on an n t h  order F S R  is either, a zero feedback state or a unit 
feedback state, the following definition is appropriate.  

Using integer notat ion,  for each state  S, F ( S )  ~ f ( s )  if S is the  decimal integer 
which corresponds to  the b inary  representat ion of the  s tate  s. 

Definition 2. The  2"-tuple F = ( F ( 0 ) ,  F ( 1 ) ,  F ( 2 ) ,  . . . ,  F ( 2  ~ - 1)) will be 
called the canonic representation of the FSR.  

Definition 3. The  Hamming weight of an FSR  of order n is equal to  the  number of 
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the  nonzero components in its canonic representation and will be denoted by 
W(F). 

Property 1. The number of branch states on an FSR of order n is always equal 
to the number  of starting states. 

Property 2. (This is due to Magleby [5].) If  state s~ is a possible successor of 
s ta te  s ,  on an nth order FSR, then state s¢ is also a possible successor of state 

{ o t SAn-1 } s,~ and state is the other possible successor for states s~ and /01 
Definition 4. (This is due to Massey and Liu [3].) Ai~ FSR is .stable if and only if 

there  exists an integer N such tha t  for all states s, 0Ns = O; i.e., 0 is the only equilib- 
r ium state and there are ~o closed cycles. 

Property 3. On every stable FSR of order n, 01 = l In-l} and 00 (°/ = 0; i.e., 

f ( 1 )  = 0 a n d  f (0  I°l) = 0. 
The FSR of order 3, defined by f ( s )  = So(St ® s2 ® sis2), is unstable. M1 example 

of a stable F S ~  of order 3 i s f ( s )  = s2(st ® 1). 
Definition 5. An FSR of order n will be called a stable maximum transient 

FSR, if it is stable and has a single starting state. 
Property 4. The state s = O In-tl = (1, 0, . • • , 0) is the only starting state for 

all stable maximum transient FSR ' s  of order n and is a starting state on every stable 
FSR.  

Distribution of Stable FSR's by Hamming Weight 

In  [1, 6] it is shown tha t  there are exactly 22~-'-t distinct stable feedback shift 
registers of order n. The canonic representation of the single stable FSR of order 
1 is F = (0, 0). The Hamming weight of this FSR is W(F)  = 0. The  canonic repre- 
sentations of tile two stable FSR's  of order 2 are F = (0, 0, 0, 0) and F = (0, 0, 1, 0), 
wi th  Hamming  weights 0 and 1, respectively. The canonic representations of the 
16 stable FSR's  of order 3 are given in Table 1 along with their respective Hamming  
weights. 

TABLE 1. CANONIC REPRESENTATIONS OF STABLE FSR's 
OF ORDER 3 

F W(F)  F W(F)  

( o , o , o , o , o , o , o , o )  o (o,o,o,o,  1,1, o,o) 2 
(o, 0, 0, 1, 0, o, o, o) 1 (0, 0, 0, 0, 1, o, 1, 0) 2 
( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 )  1 ( 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 )  2 
(0, o, o, o, o, 1, o, o) 1 ( 0 , 0 , 1 , 0 , 1 , 1 , 0 , 0 )  3 
(o, 0, o, 0, 0, 0, 1, 0) 1 (0, 0, 1, 0, o, 1, 1, o) 3 
(0, O, 1, O, O, 1, O, O) 2 (0, O, O, 1, 1, O, 1, O) 3 
(0, 0, 0, 1, 0, 0, 1, 0) 2 (0, 0, 0, 0, 1, 1, 1, 0) 3 
(0, o, o, 1, 1, o, o, o) 2 (0, o, 1, o, 1, 1, 1, o) 4 

An inspection of Table 1 reveals tha t  the Hamming  weights of the stable FSR's  
of order 3 are distributed binomially; i.e., the number  of stable FSR's  of order 3 

1 - - \  

with  Hamming  weight W ( F ) =  w is given by (~,) .  The Hamming  weight distribu- 
k W l  
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Fro. 2. State diagram of a stable maximum transient FSR of order 3 

ti°n f°r t h e s t a b l e t i ' S R ' s ° f  °rders 1 a n d 2  aree lear ly  ( 0 ) ~ m d  ( 1 )  " w  w Usinga  

UNIVAC 1107 digital computer, ~ it was determined that the Hamming weights of 

the stable FSR's of order 4 are also distributed binomially according to ( ~ ) .  

In this paper it is shown generally that the Hamming weights of the stable FSR's 

of order n are distributed binon'fially according to ( 2~ - n - l )  " A w  reeursive aI- 

gorithm is also given which generates the canonic representations of all stable feed- 
back shift registers. 

In order to est~Lblish the Hamming weight enumeration formula, the following 
preliminary algorithms and lemmas are necessary. 

Associated F S R '  s. 

Definition 6. IJetf.,(s) be the defining function of an n th  order stable maximum 
transient ti'SR. Let A be an arbitrary set of states on the FSR. Then the A de- 
termined F S R  is the FSR whose feedback function f(s) is given by the following 
construction: 

f ( s . )  = f , .(s.) ,  s.  C A, 

f(s,,) = f,,,(s.) @ 1) s.  C A. 

On any particular stable maximum transient FSR, e~eh pair of states s.  and 
s~ °l can be ordered as successors of the single starting state 0 ('~-~1 such that  s. = 
0~0 I'~~l and s ~  ~ = OiO ['-II, 0 < i < j < 2" - 1. Thus the states labeled s. and 
s~ °l will be the ith and jtll successors of the starting state. (See Figure 2.) 

LEMMA 1. Let s .  = 0~0 I'-I1 and s[. °/ = 0J0 I'-~l , 0 _< i < j _< ~')'~ - 1, be the 
i4h and j 4 h  successors of the starting state 0 I'~-~l on a particular stable maxSnu~n 
transient FSR .  Let s¢ = O~+~Ol'~-~l be the successor of s .  and s~ ~-1~ = Oi+~O I~-~l be the 
successor of s~ °~. Let the set A consist of the single arbitrary state s* . 

1. I f  s* = 0 t°l or is some state s~ °~ then the re~tlting 2 ~-~ + 1 possible distinct A 
determined F S R ' s  are unstable. 

All digital computer computation was performed on the UNIVAC 1107 at. the University of 
Notre Dame Computing Center. 
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'2, If  s* ~ 0 or is some state so, then the resulting 2 "  - 1 possible distinct A 
,~/~:,~ined FSti~'s are stable. 

-t' (fh {°1 FaOOF. Case 1. Let  A = {0~°/}, by  Proper ty  3 ~,~,~ ) = 0. Thus f (0  I°t) = 
f, (¢01) ® 1 = 1 on the  A determined FSR.  Hence 00 = 0 tn-~ and the A determined 

FSR is unstable. 
Case 2. Let A = {0/. Then 0 is some state s~ °l and j;,~(0) = 0. Thus  f (0)  = 

f,~(0) ® 1 = 1 on the A determined FSR.  Hence 00 = 0 t ~ " / a n d  the  A determined 

t:$R is unstable. 
Case 3. Let A consist of the single state s~ °l = 00~0 I " l  for 0 <_ i < j _< 2 ~ - 3 

0~0{~-i where s~ = . On the stable max imum transient FSR  of order n, disjoint 
sequences Q~ and Q2 exist where 

O~ = {0 I~'-~, 00 /~ -~ ,  . . . ,  0~-~0 I~-~l, s ,  , s~,  . . .  , 0J-~0 I'-~l, s~ °1} 

and 

Q2 = {S~ n- l} ,  0S~ n - l , ,  ' ' '  , 02n--J--3S~ n-l} 0[0l, 0}.  

Both of these sequences will also exist on the A determined FSR. Since 0s~ °l = so 
on the A determined FSR,  the sequence Qs of distinct states 

{s~,  os~,  . . .  , oJ-~-2s~, s~ °~1 

will form a closed cycle of period T = j - i if 7' > 1 or if T = 1, the sequence Q3 
will degenerate to the equilibrium state 1. There are 2 '~-~ - 1 distinct states s~ °/ 
which satisfy the conditions of this ease all of which yield unstable A determined 

FSR's. 
Case 4. Let A consist of the single state s ,  = 0~01"-~/0 _< i < j _< 2 ~ -- 3 where 

~01 0s0/~-~l. (No te  s ,  cannot  be equal to 01°l.) On the stable maximum transient  
FSR of order n, disjoint sequence Q4 and Q5 exist where 

Q4 = {0 {'~-1}, O0 {n-l}, "'" , oi--loln--1}, Sa} 

a~d 

Q5 = {s~, 0s~, . . .  , 0"-'-2so, st, °l, s~ " 1 ,  " ' "  , 02a--i--3S~ n-l}, 0 {0}, 0}. 

Both of these sequences will exist on the A determined FSR. Since 0s, = s~ ~-~1 on the 
A determined FSR,  the sequence 

Q6 = {0 I " ~ ,  00 I~-1~, "'" , s , ,  s~ ~ -n ,  . . .  , 0 : L " s ~ ,  0 I°l, 0} 

will also exist. Therefore, there exists an integer N such tha t  0~s = 0 for all states 
on the A determined F S R  and hence it is stable. There  are 2 ~"  - 1 distinct states 
s~ which satisfy the conditions of this case, all of which yield stable A determined 
FSR's. 

Part 1 of this lemma follows from Cases 1, 2, and 3. Par t  2 follows directly f rom 
Case 4. Q.E.D. 

Potentially Stable and Unstable States 

The set of 2 "  - 1 distinct states on a particular stable maximum transient FSR  
which yield stable A determined F S R ' s  in Lemma i will be called the set of potentially 
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stable states for that  particular stable maximum transient FSR, and will be denoted 
by Z. 

The set of 2 n-1 + 1 distinct states on a particular stable maximum transient 
FSR which yield unstable A determined FSR's in Lemma 1 will be called the set of 
potentially unstable states for that particular stable maximum transient FSR, and 
will be denoted by U. 

For every FSR of order n, a deBruijn [7] or Good [8] diagram can be constructed. 
A deBruijn diagram differs from the ordinary state diagram in that  there are two 
branches leaving each state (node), one for each of the two possible values of the 
feedback function f (s )  and two branches terminating on each node, since each 
state is a possible successor of two distinct states. The 2 ~ nodes may be numbered 
with the binary n-tuple corresponding to the 2 n states or with the decimal integers 
corresponding to these states. The two branches leaving node i terminate on nodes 
j and k respectively, if the first n - 1  binary digits of the n-tuple denoting node i 
correspond to the last n - 1 binary digits in the n-tuples denoting nodes j and k. 2 

The directed branches are numbered with the binary (n + 1)-tuple whose first 
binary digit is equal to the first binary digit in the binary n-tuple at the head of 
the directed branch and whose last n binary digits correspond to the binary n-tuple 
at the tail of the directed branch. 

On a deBruijn diagram of order n, if one stars the 2 ~ branches, one leaving each 
node, which are not on the state diagram of the stable FSR, leaving the 2 ~ branches, 
one leaving each node, which are on the state diagram of the stable FSR unstarred, 
the resulting diagram will be called an associated deBruijn diagram. The following 
algorithm generates a stable maximum transient FSR of order n -+- 1 by making a 
complete circuit of the associated deBruijn diagram of a stable FSR of order n. The 
validity of the algorithm has been established in previous papers [1, 7, 9]. 

Algorithm 1 

1. Set  i = 1. 

2. Le t  a be  node 0. 

3. If  t he  s t a r r e d  b r a n c h  l eav ing  node ~ ha s  n o t  been  used ,  l eave  node  ~ by  t h e  s t a r r e d  branch .  

O the rwi se  leave  by  t he  u n s t a r r e d  b r a n c h .  

4. Set  s l  equa l  to the  (n + 1)- tuple  c o r r e s p o n d i n g  to t h e  b r a n c h  t r a v e r s e d .  

5. Le t  a be the  node reached  in s t ep  3. If  b o t h  b r a n c h e s  l e a v i n g  node  ~ h a v e  been  used ,  go 
to s t e p  6. O the rwise  s e t  i = i + 1 and  go to s t e p  3. 

6. C o n s t r u c t  a s t ab l e  m a x i m u m  t r a n s i e n t  F S R  of order  n + 1 s u c h  t h a t  0s  i = s l  + 1, i = 1, 
. . . ,  2 ~+i - -  1 and  0s2~+1 = s2~+1. 

Figures 3, 4, and 6 (see pages 536, 537) show the state diagram of a stable 
third order FSR, the associated deBruijn diagram for this FSR, and the resulting 
stable maximum transient FSR of order 4, respectively. 

I t  is also possible to determine which states in the sets U and Z are unit feedback 
states and which states are zero feedback states from the associated deBruijn 
diagram. Consider the following algorithm for accomplishing this objective. 

2 U s i n g  dec ima l  n o t a t i o n ,  t he  two b r a n c h e s  l eav ing  node  I t e r m i n a t e  on  nodes  J and  K if J = 

~ J  a n d  K = L~J+2~-~'Thedirectedbranchc°nnect ingn°del t°n°deJisden°tedby 
I i f I  > J a n d b y I + 2  n i f I  < J .  
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Algorithm 2 
1, Construct the associated deBruijn diagram of order n corresponding to a given stable FSR 

of order n. 
2. For a given stable FSR, place a check mark next to each node on the associated deBruijn 

diagram which corresponds to a unit feedback state. 

3. Construct a node entry table for the associated deBruijn diagram of the following form: 

Node 

~sl time entered 
by bronch 

2nd time entered 
by bronch 

0 I 2 .o~ 2n_2 

2 
a. Place a check mark next to each node which corresponds to a unit feedback state. 
b. Using Algorithm 1, make a complete circuit of the associated deBruijn diagram noting 

which branches were used to enter each node the first time and which branches were 
used to enter each node the second time. 

Determine from the node entry table the states in the sets U and Z as follows: 
a. The states on the stable maximum transient FSR of order n + l  which correspond to the 

branches which enter each checked node (unchecked node) for the second time on the 
associated deBruijn diagram of order n are elements of the set U of potentially unstable 
states and are unit feedback (zero feedback) states. 

b. The state on the stable maximum transient FSR of order n + l  which corresponds to 
the branch which enters node 0 for the first time on the associated deBruijn diagram 
of order n is a zero feedback state and an element of the set U of potential unstable 
states. 

c. The states on the stable maximum transient FSR of order n + l  which correspond to the 
branches which enter each check node (unchecked node) except node 0 for the first 
time on the associated deBruijn diagram, are the elements of the set Z of potentially 
stable states and are zero feedback (unit feedback) states. 

PROOF. I t  is c lear  t h a t  changing  the  successor of a s ta te  on a s table  m a x i m u m  
transient F S R  of o rde r  n + i co r responds  to changing  the successor of a b ranch  on a 
complete c i rcui t  of i t s  assoc ia ted  d e B r u i j n  d i a g r a m  of order  n. I n  this  sense, A1- 

g0rithm 2 is j u s t  a r e s t a t e m e n t  of L e m m a  1. 
Example 1. A p p l y  A l g o r i t h m  2 to  t he  s tab le  F S R  of order  3 defined b y  f ( s )  = 

82(sl @ 1). T h e  s t a t e  d i a g r a m  for t he  s tab le  F S R  is shown in F igure  3 and the  

associated deBru i jn  d i a g r a m  for th is  F S R  is shown in Figure  4. 
Since s ta tes  4 and  5 are  un i t  f eedback  s ta tes  on the  s table th i rd  order  F S R ,  

nodes 4 and 5 are check m a r k e d  on the  assoc ia ted  deBrui jn  d iagra lu  in F igure  4. 
The node e n t r y  t ab l e  for the  assoc ia ted  deBru i jn  d i ag ram is shown in Figure  5. 
Applying s tep  4 of A l g o r i t h m  2, the  set U of po t en t i a l l y  uns tab le  s ta tes  consists 

of the s ta tes  {0, 1, 3, 5, 6, 9, 11, 13, 15}. T h e  set Z of po ten t i a l ly  s table  s ta tes  con- 
sists of the  s t a t e s  {2, 4, 7, 8, 10, 12, 14}. S ta tes  9 and  11 are the  only  uni t  f eedback  

states in the  set  U. S ta t e s  8 and  10 are  the  only zero feedback s ta tes  in Z. 
The assoc ia ted  s t ab le  m a x i m u m  t r ans i en t  F S R  of order  4 for t he  s table  F S R  of 

order 3 defined b y f ( s )  = s2(sl • 1) is shown in F igure  6. 
From L e m m a  1, i t  is c lear  t h a t  changing  the  successor of a single s ta te  s ,  on a 

stable m a x i m u m  t r ans i en t  F S R  of o rder  n will  y ie ld  a s table  F S R  of order  n, if and  
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15 

) 

6 

12t I01 15 13 

9 ~ 

FIG. 3. State diagram for the FSR of order 
3 withf(s) = s2(sl @ 1) 

k . _ J o  

FiG. 4, Associated deBruijn diagram o 
order 3 for the FSR with f(s) = s~(s~ ® 1 

only  if s~ is an  element  of the set Z of po ten t ia l ly  stable states. Let us now consider 

changing the  successors of an a rb i t ra ry  n u m b e r  of states from Z. 
Definition 7. 3 Let f , , (s )  be the defining funct ion of an  n t h  order s table maximum 

t rans ien t  FSR.  Let Z* be some subset  of the set Z of potent ia l ly  stable states for this 
stable m a x i m u m  t rans ien t  FSR.  Then  the Z* determined F S R  is the F S R  whose feed- 
back funct ion  f ( s )  is given by the  following cons t ruc t ion:  

f ( s . )  = fm(S.), S~ ~ Z*, 

f ( s )  = fro(S) @ 1, S, ~ Z*. 

LEMMA 2. Let N be the smallest integer such that 0Xs * = 0 where s* is some state 
on a stable maximum transient F S R  of order n. On the Z* determined FSR,  i f  s* C Z*, 
then there exists an integer K < N such that 0Ks * = 0. 

PROOf. Let  s~ = 0~0 I--~ denote the i t h  successor of 0 ~'-~1 on a s table  max imum 

t rans ien t  F S R  of order n, 0 < i < 2 '~ - 1; then  N~ = 2 "~ - i - 1 is the  smallest 
integer such thatON~s~= 0, 0 < i < 2  " -  1. 

3 It  should be noted here that Definition 7 is just a restatement of Definition 6 with the set A 
of Definition 6 restricted to a subset of the set Z of potentially stable states. However, since 
this restriction applies in the remainder of this paper, it is convenient to designate this restric- 
tion with a separate definition. 
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Fro. 5. 

, /  , /  

1st time entered II I I 2 I 4 l e l l o  12 t14  I 

2ndtime entered N 0 I 3 15 I 9 t li 13115 I 
by bronch II I I I l I ] 

Node etttry table for the associated deBr~djn diagram of Figure  ,t 

Fro. 6. 

) () 
i 

m <  

(,) 

r 

State diagram of the stable maximum transient FSII of order 4 associated with 
the third order stable FSR with f(s) = s~(s~ (~ 1) 

If  the set Z* is the e m p t y  set, there is nothing to prove. I f  the set Z* contains  only 
a. single s ta te ,  then the lemma follows direct ly  from I , emma 1. Let  Z* be an a r b i t r a r y  
set of m - 1 s ta tes  from Z, 2 < m < 2 "-~ - 2, and assmne tha t  the  l emma is t rue 
for this case. The  l emma is now shown to be true for m sta tes  in Z*. 

Let  s ,  = 0~0 ['~-~} be a s ta te  in Z which is not  in Z*. Le t  s~ be the successor of s~ on 
t.he s table  max imum t rans ient  FSR.  N~ = 2 '~ - a - 1 is the smal les t  in teger  such 
that s~ ~ = 0 on the s table  m a x i m u m  transient  FSR,  Therefore  the sequence 
{s, ,  s~, • • • , s ,  (°J, s~ ('~-~}, , . ,  , 0 2 . . . . .  ~s~, 0} will exist on the s table ma x imum tran-  
sient FSR.  Changing the  successor of s~ from s~ to s~ I'~-~l on the  Z* de te rmined  
FSR clearly e l iminates  the  s ta tes  s~, • • • , s ,  I°~ from this  sequence. To assume other-  
wise con t rad ic t s  the  assumpt ion  tha t  s ,  is a s ta te  in Z. There  are two eases to be 
considered. 

Case 1. No s ta te  in the  sequence {s~ I'-~}, Os~ I'~-~l, • . .  , 0} is an e lement  of Z*. 
Clearly for this ease there  exists an integer  K ,  < N ,  such tha t  0~s~ = 0 on the Z* 
determined FSR.  

Case 2. At  least  one s ta te  in the  sequence { s,~ l~-~}, 0s~ In-'j, . • • ,  0} is an e lement  of 
Z. Let  k be the smal les t  integer such t h a t  s~ = 0ks~ t~'-~ is such a s tate .  On the s table  
maximum t rans ient  F S R  0'%s~ = 0 and 0('~-s~)s~ = sT. By  the induct ion hypothes is  
there exists an integer K7 < N ,  such t ha t  07s~ = 0 on the associa ted FSR.  The  
sequence { s . ,  se In-s!, 0s~ I'-*t, • . .  , 0k-~s~ ('-*}, s~,} exists on the  Z* de te rmined  F S R  
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r * r ~  i . since s~ is the first state after s~ {~-~} which is ~.~n element of Z , ~;,~<ts there e:<~s< 
• 9, tqcy 
integers ~g -q N~ - N r and K~ = N* ÷ Kv such tha t  ~9'v*s~ = s: and 0 s~ = () oi:~ t~e 
Z * d e t e r m i n e d F S R .  SinceKu < Nv ,  K~ < N~ - iVT ÷ N:  < N~,and thusthe 
lemma is true for m states in Z*, 0 < m _< '2 "-* - 1, and since m was arbitrary it is ' 
true in general. Q.E.D. 

LEMMA 3. All Z* determined FSR's  m'e stable. 
PROOF. Follows directly from Lemma 2. 

THEOREM 1. There are exactly 22'~-~-~ distinct Z* determined stable FSR's  associated 
with each stable maximum transient FSR  of order n. 

PROOF. From Lemma 3 all Z* determined FSR's  are stable. From Lemma 1 

(%0 there are 2 ~-~ -- 1 distinct states in Z. Hence there are distinct ways of 

having j states from Z in Z*. Summing over j yields the required number.  

Z = 2 2n-1-I. 

f=0 

Q.E.D. 
LEMMA 4. Given any two distinct stable maximum transient FSR's  of order n; there 

is at least one state s ,  common to the sets U of potential unstable states such that f(s~) = 0 
on one and f(  s . )  = 1 on the other. 

PROOF. Given any two distinct stable FSR's  of order n - 1, n > 2 there will 
be at  least one state s .  which is a unit feedback state on one, f ( s , )  = 1, and a zero 
feedback state on the other, f ( s , )  = 0. To assume otherwise would imply that the 
two canonic representations are the same, contradicting the assumption that  the 
FSR's  were distinct. 

Without  loss of generality, if there is more than one such state, let s.  be the first 
such state encountered on a complete circuit where the value of the feedback func- 
tions differ; if branch b~ is the first branch to enter this node on one associated 
deBruijn diagram, it will also be the first branch to enter the corresponding node on 
the other associated deBruijn diagram. By Algorithm 2, the state on the stable 
maximum transient FSR's  associated with branch b~ I°l will be common to both sets U 
of potentially unstable states, and this state will be a zero feedback state on one and a 
unit feedback state on the other. Q.E.D. 

LEMMA 5. Given any two distinct stable maximum transient FSR ' s  of order n, the 
sets of 2 2~-L1 distinct Z* determined stable FSR ' s  corresponding to each stable maximum 
transient F S R  of order n are disjoint. 

PROOF. Follows directly from Lemma  4. 

LEMMA 6. Given a stable maximum transient F S R  of order n which has j unit feed- 

back states in its set U of potentially unstable states," - (2~-* k 1)  " distinct Z* determined 
\ I 

stable FSR's  with Hamming weight W(F) = j -t- k, 0 < k < 2 "-* - 1 can be obtained. 
PROOF. Since the successor of the states in U are not changed, the Hamming 

weight of the Z* determined FSR's  will at  least be j. Without  loss of generality, let 
there be i unit feedback states in the set Z. Let  Z, denote the subset of Z containing 
these i unit feedback states and let Z2 denote the subset of Z containing the 
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2 ~-I -- 1 -- i zero feedback states. A stable FSR of order n with Hamming weight 
W(F) = j -~- /c can be obtained by deleting /clstates fromZ1, 0 < /ci < iand 
adding k2 states from Z2 to Z, 0 ~ k2 < 2 ~-~ -- 1 - i where kl "t- k2 = k, 
0 <_ k _< 2 ~-~ - 1. The total number of ways of obtaining a stable FSR with 
Hamming weight W(F)  = j + tc is given by 

k~=0 kl ( 2~ lk " 

Q.E.D. 

With the aid of the above lemmas it is now possible to prove the result stated at 
the beginning of this paper. 

Enumeration of Stable FSR's by Hamming Weight 

TI~IEOREI~I 2" There are exactly ( 2~ - n - l )  stable FSR's of order n 

which have Hamming weightW(F) = w, 0 < w < 2 ' ~ -  n -  1. 
Pl~oOF. The theorem was shown to be true for n = 1, 2, and 3 at the beginning 

of this paper. Assume the theorem is true for n = m. We now show it to be true for 
n = m ~ l .  

It follows directly from Algorithm 2 that corresponding to each stable FSR of 
order m with Hamming weight W(F)  = j, 0 < j < 2 m - m - 1, there is a stable 
maximum transient FSR of order m -t- 1 which has j unit feedback states in its set 
U of potentiMly unstable states. 

Lemma 6 states that  (2~ - 1)  distinct Z* determined stable FSR's with H a m m i n g / c  

weight W(F)  = j + / c  can be associated with each stable maximum transient FSR. 
Lemma 5 states that  the sets of 2 2''-~ distinct Z* determined stable FSR's obtained 

from different stable maximum transient FSR's  are disjoint. The number of stable 
FSR's of order m -t- 1 with W(F)  = 0 is thus given by 

(2m 0 ( 2 ~ 0  1" 
- m -  1).  - 1 ) =  

The number of stable FSR's  of order m -t- 1 with W ( F )  = 1 is given by 

( 2 m - - m - -  1) ( 2 ~ 1  - + (2m 0 1)  ( 2 m - - m - -  1) - - 1 )  = 2 ~ + ~ _ m _ 2  ' 
0 1 

and in generM the number of FSR's  of order m -t- I with W(F)  = w is given by 

. , 

yffio 3 w 

Thus the theorem is true for m + 1 and since m is arbitrary, it is true in general. 
Q.E.D. 

Algorithm for Generating All Stable FSR's of Order n 

Having established the Hamming weight enumeration formula, it is now possible to 
give a set of rules for generating all stable FSR's of any order. Consider the following 
recursive algorithm. 
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Algori&m 3. Rules for generating all stable t?S1R's of order u, n > 1 ar t  as 
follows: 

1. Start  with the single FSR of order l with F(S) = ( 0 , 0 ) ,  

2. Set k = 1. 
3. Apply Algorilhms I arid 2 to each stable FSR of order k obtaining *tie 2 2~-k-~ distinct stable 

maximum transient FSWs of order kq-1 along with their respective sets Z and U of 
potenlially stable and uastable states. 

4. For each slable maximum transient FSR of order k ÷ l  find all the possible Z* determined 
stable FSI{'s, lhus obtai~fing the 2 :k+~-~: = distinct stable FSR's  of order k ÷ l .  

5. If k = n - l ,  stop. Otherwise increase k by one and go to step 3. 

Enumer'ation Formulas for Stable FSR's  by Starting and Branch States 

Having est:~blished the emlmeration formula for the stable FSR's  t)y Hamming 
weight, we do uot establish an e~mmeration formula for the stable FSR's  by starting 
states and by branch states. 

I,EMMA 7. 7 he numbe~ of starting states on a Z* determined stable F S R  is equal to 
the cardinality of the set Z* plus one. 

lhmoF. Follows from property 1 and the fact that the successor of each state in 
Z* on the stable maximum transient FSR is a starting state on the Z* determined 
FSR. 

on a Z determined stable F S R  of order CO~tOLLARY 1. The number of branch states * " ' 
n is equal to the eardir~.ality of the set Z plus 1. 

PnooF. Follows immediately from Lemma 7 and Property 1. Q.L.D. 

(%-) Tm,:(mEM 3. There arc exactl:q 2 v~q-~' 1 stable FSR ' s  of order n whi& 

have j + 1 starting ,states and j + 1 bran& states. 
PnOOF. There are 2 ~'~-~-~' distinct stable maximum transient ti'SR's of order n (%1) 

[1]. For each stable maximum transient FSR of order n, there are differ- 

cut ways of havingj  elements in Z*. Thus it follows from Lemma 7 and Corollary 1 
that the number of stable FSR's of order n with j + 1 starting states and j + 1 
branch states is equal to 

Q.E.D. 

COROLLARY 2. Th(:~'e are exactly \ lc / " \  w -- /c ] stable F S R ' s  of order n 

which have Ha,mt~b~.gweig/dW(F) = w, 0_< w < 2 n - - n -  l a n d k  q- lstarting 
states andk q- l branch states where O < k ~ 2 " - 1 -  1, k _< w. 

PnOoF. li'rom Lemma 6, \ k distinct stable FSR's  with Hamming weight 

W(F)  = j + k can be associated with each stable maximum transient FSR of order 
n which has j unit feedback st:~tes in its set U of potentially unstable states. From 

Algorithm 2 and Theorem 1, it follows that  there are stable maximum 

transient FSR's  with j unit feedback states in their sets U of potentially unstable 
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states. Thus  there are \ w -- k / '  distinct stable F S R ' s  of order n wi th  

Hamming  weight  W ( F )  = w and lc + 1 s tar t ing states and k + 1 branch states. 
Q.E.D. 

Table  2 gives the breakdown of the stable FSR ' s  of order 3 with H a m m i n g  weight  
W ( F )  = w a n d j  ~ 1 s tar t ing states a n d j  + 1 branch states. 

I t  should be noted tha t  summing across the rows of Table  2 yields the number  of 
stable FSR ' s  with H a m m i n g  w, and summing down the columns of Table 2 yields 
the number  of stable FSR ' s  with j + 1 start ing states and j ÷ 1 branch states. 

TABLE 2. NUMBER OF STABLE FSR's OF OaDER 3 WITH 
HAMMING WEIGHT W(F) = w AND j + l  STARTING ST~kTES AND 

j ~ l  BRANCH STATES 

w Y = O 1 2 3 Row Sum 

0 1 0 0 0 1 
1 1 3 0 0 4 
2 0 3 3 O 6 
3 O 0 3 1 4 
4 0 0 0 1 1 

Column sum.. .  2 6 6 2 

Results and Conclusions 

In this paper it is shown tha t  there are distinct stable F S R ' s  of order  
w 

n which have H a m m i n g  weight W ( F )  = w. Using this result, an a lgor i thm for ob- 
taining all stable F S R ' s  of order n is established. I t  is also shown t h a t  the number  of 
stable F S R ' s  of order n with j + i s tar t ing states and j 't- 1 branch states is equal to 

/nn--i ) 
2 2 ~ - , - ~  j - -  1 . Finally, it is shown tha t  tile number  of stable F S R ' s  of order n 

which have H a m m i n g  weight  W ( F )  = w and also have j --t- 1 s tar t ing states and 
( 2  ~-I - n ~ ( 2  ~ - 1 -  1) 

j + 1 branch states is equal to \ w - j / \  j " 
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