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a[~s-raacr. Fhe c!o~ure progssrdes of she el~s:ss <>f 14mgu~sges defb~ed b:y re,~l..tlme, eaih:~e~ muld~ 
~ape Turing machiaes are proved. The res~al~s eb~;:d~ed are, for the m<~st part, neg.~dve a~d, 
r~ one would ex~×:,c~, asymmetric  h is shows ghgt ¢'~e re~--"~d~8 remain v~lid f:,r ~ brewed chess of 
r,ead-dme devices. Finally, ~he p<>sid,n~ of the e a ~  ~)f rvaLdme det.i>.able 1~uguag~:,8 1,~ the 
%tg~ssisal" linguistic hierarchy is establk~bed~ 

L h~frodudfon 

A major problem in the theory of ar%iflcial languages is that of fiadi~g ef~bbut 
algorithms for syutactic aaalysis. If a~ automaton p ~ o e ~  a uew input symbol 
~t each time urfit, a~~d deeides membership [a the hmg:uage i.mmediateiy after 
scmmh~g ~he last l~put symb:J, the~, i:a ~ome sense,~ the autom~tou recogaizes the 
taaguage in minimal dme~ Aut.oma~ which opera, re h~ this m~m~mr are ~aid to 
vpemte in real ~fme, ~md the class of t:mguages de[aed by such at~tom.ata are called 
real-time definable ta~guages, ta this paper tee ~tudy em propertie~ of a elias of 
automata which old, rate in ~a[ time aad of the class of h, vngua@~ defm~d by such 
mJ.tomgta° 

We begin iu Sectio~ 2 with a defhdtior~ and des~riptioa of the model under in.- 
vestigatiom 

In Section 3 the posRive clostwe prot~¢ties of the clasps R of real.°time defi~mble 
bmguages are given. In particular it is 8how~ that R is a Boobaa algebra, and that 
R ia ct<~.~d under minimizat, io~L u~der the iawi~r~e of a real°time tra~'~sdueer mapping 
~md trader suffixh~g with a regular set. Usiag the closure of R u~<ler ~.mhm, we exhibR 
aa inherently ambiguous real-throe defimJ:)b eoa tex td~  language. 

In Section 4 the negative results about R are glve~, tt  is woved that R is t:~ot 
ek~st~ under concatenation, eveu with regular set~, aor m~der the Kleene closure 
operator er rever:~al. ~w~ral tes:~ importm~t operation,s are also eonsidered, msmely, 
ma;ppb~g by s~queatial machiae, the operations of taklag derivatives aad quotients, 
sad the operation of ma:dmi~atiom As a eov:A!ary of these res~flt~, we exhibit a 
language which is definable h~, "twice real time" but which is sot ia [tL ,Fim,~lty we 
show that [here is a determiais~ie eontex>fr~e language (G¢~sbarg and Gmibaeh [2]) 
which is not in R, establishing the i:×)sRioa of R in the liaguistie hierarchy, The 
proofs of our negative results depead only on the amount of iMo~:maticm our 
automata eaa access ~xs a function of time. We exploit tNs faet to ~how that our 
~esults are valid for a rather broad cla:ss of maehin<~s which iaeNde:s most of the 
machines which have been used ia the literature to study real-time computation. 
Tings observation settles some opea ~mstiens eofmemiag therse or;her classes of 
amomata. 

tf A is a la~guage, rhea A ~ denote~s the kdold ce~maten~ioa of A with h.~elf, A ~ beiag the 
language co~is t ing  of the mill ~'ord. The doa~re of A is the~ A* ~ U~a~A e 
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6 4 6  ARNOLD L. IROSENBERG 

In Section 5 we mention a number of problems related to real-time definability 
which are reeursively unsolvable. In particular, we indicate that the problem of 
deciding whether or not a Iangnage is real4ime definable is unsolvable. 

2, The Modal Sludied 

2.1 We assume familiarity with the concepts of alphabet, tape, and set of tapes, 
as well as with the various operations on tapes and sets of tapes. 

We de~ote by L(t)  the length of tape t. For finite sets A, we denote by # (A) 
the eardinality of A. Letting A X B denote the cross-product of sets A and B, 
[AI k is defined reeursively by: 

[A ]I = A 

[A] ~÷~ = A × [A] ~. 

2.2 The mode} we study here is the online multitape Taring machine of Hart- 
manis and Stear~s [5] and Rabin [8]. 

An n4ape orfline Turing macbffne (n..TM) comprises a finite-state control and 
n two-way infi~fite tapes on each of which is positioned a read-write scanning device. 

At the outset of a computation, the n : r M  is in a designated initial state, and its 
read-write heads are positioned on arbRrary squares of the initially blank scratch 
tapes (we denote the bbmk symbol by B)~ The state set of the n-TM is partitioned 
into "polling" states and "autonomous" states. 

If the n~TM is in a polling state, then it receives a single input symbol. On the 
b~l~ds of the current state, the input symbol, and the symbols scanned on the 
scratch tapes, the n~TM changes state, and each read-write head writes at most 
one symbol from the working alphabet of the n-TM and moves independently at 
most one square to the left or right on its scratch tape, The initial state must be a 
poltit~g state. 

If the n.-TM is in an autonomous state, then it does not receive any input sym- 
bol; but, it goes through (me primitive action as described above solely on the basis 
of the current state and the symbols being scanned on the scratch, tapes. 

The polling states are partitioned into accepting and rejecting states. An input 
sequence is accepted (resp. reieeted) by an n-TM if, when started in its initial 
state with blank scratch tapes, and with the input sequence avai}able at its input 
termi~al, the ',~-TM goes through a sequence of the primitive actions described 
above a~d ends up in an accepting state (reap. does not end up in an accepting 
state). 

A~ n-TM operates in real time if all states of the n-TM are polling states. It is 
wetLknown that, this "real time" restriction severely restricts the computing power 
of an n-TM. 

More formally, 
Definition 1. An n~.tape (n > 0) online Turing machine, n-TM, is an 8-tuple 

(K~, K++, E, W, M, S, s~, F) where 
(1) Kv and K~ are disjoint finite sets (the polling and autonomous states, 

respectively) ; 
(2) E is an Mphabet (of input symbols), and W is an alphabet (of working 

symbols, containing B);  
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Real-Time Def inable  L a n g u a g e s  647 

(3) M is the state-transition function which maps (K~ X ~ X [W] ~) U 
(K~ X [W] ~) into K~ U K~ ; 

(4) S is the action function which maps (Kp X 23 X [W] n) U (K~ X [W] '~) 
into [{R,  L ,  N}] ~ × [W]~; 

(5) So (the initial state) is a member of K~ ; 
(6) F (the accepting states) is a subset of K~. 

When 2 and W are clear from context, we often denote an n-TM as ( K , ,  K~, 
ilf, S, so, F ) . 

A conf igurat ion of an n -TM ( K v ,  K ~ ,  ~ ,  W ,  M ,  S ,  so, F )  is an (n + 2)-tuple 
C = (q, t, x ~ m y l ,  • • • , x,~myn) where q is a state, t is in E*, the xi and y~ are nonnull 
members of W*, and m is a special marker (not in W) indicating the positions of 
the read-write heads of the n-TM. If q is a member of K~, and q" a member of K~, 
then 

(q, at, x l u i m v l y l ,  . . . ,  x~u~mv~y~) --~ (q',  t, x l 'my l ' ,  . . . ,  x,~'my,~') 

or 

(q",  t, x l u l m v l y l ,  . . . ,  xnu~mv~y~) --~ (q', t, x i 'my i ' ,  . . . ,  x , ' m y ~ ' )  

for a in Z, t in Z*, the ui arid v~ in W, the xl,  yl in W*, and the xi' and y~' nomml 1 
members of W*, under the following conditions: 

(1) q' = M ( q ,  a, v l ,  . . .  , v~) (resp., q' = M ( q " ,  v i ,  . . .  , v~)); 
(2) if S ( q ,  a, v l ,  • . .  , v~) (resp., S ( q " ,  v~, . . .  , v,~)) is equal to 

(D1, . . .  , D~, w~, . . .  , w,~), each D~ in {R, L, N}, each wi in W, then for i = 1, 
• . . ,  n, x ( m y (  is equal to x~u~nw~y~ or x~'mu~z.~y~ or x ~ i w ~ m y ~  according as D~ = N 
or L or R. ~ 

We write C = (q, t, x l m y l ,  • . .  , x~my~)  - ~  C'  = (q' ,  t', x i 'my i ' ,  • • • , x ~ ' m y , / )  

if either C = C' or if there is a sequence C1, •. • , Ck of configurations with C~ = C, 
Ck = C', and Ci --~ Ci+i for each i. 

The compu ta t i on  of a tape t in Z* by an n-TM is a sequence of configurations, 
(so, t, B m B ,  . . . , B m B )  = Co, C i ,  . . . ,  C j ,  . . .  whereCi--~Ci+i  for a l l i .  The 
computation is proper  if, for some k, Ck = (q, X, x f m y ~ ,  . . .  , x~my~)  (X being the 
null tape) and q is in Kp.  (One readily verifies that a computation is proper iff 
the n-TM halts, and tha t  the attained state q is unique if it exists.) The n-TM 
accepts the tape t if there is a proper computation of t ending in an accepting state; 
i.e., if (So, t, B m B ,  . . .  , B m B )  ~ (q, X, x ~ m y l ,  . . .  , x ~ m y , J  for q in F. The n-TM 
~'ejects t if it does not accept t. 

Definit ion 2. Let 5 be a computable monotone increasing function from the 
natural numbers into the natural numbers. An n-TFI operates in  t ime 3@) if, for 
every tape t of length p, there is a proper computation of t by the n-TS~I of length 
not exceeding 5(p) + 1. 

Our main interest is in a subclass of the class of n-TM's, namely, those which 
operate in time 5(p) = p. 

Definition 3. A real - t ime n-tape (n > 0) online Turing machine, n-RTTM, 
is an n-TM (Kp,  ~, M, S, so, F) .  For brevity, we often denote an n -RTTi~  by 
(K, M, S, So, F). 

Our notion of acceptance and rejection by an n -RTTM can be strengthened: 

2 If either x~ or y~ is null,  we replace i t  by B to conform to our definition of configurat ion.  
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648  ARNOLD L. ROSENBERG 

A tape t = a, . . -  am (m >_ 0) in 2;* is accepted (resp., rejected) by an n-RTTi~4 
T if the computation of t by T is a sequence Co, • •. , C,~, and the state of T in 
configuration Cm is a member of F (resp., K - F).  

We denote by A(T)  the set of tapes (the language) defined (alternatively, 
accepted) by the n-TM T. The class of languages accepted by mult i tape online 
RTTM's  is denoted R, and it is called the class of real-time definable languages 

(RTDL's) .  
Remark .  The number of squares of work tape that  an n-RTTN[ can scan while 

computing input sequence t is clearly no greater than n L ( t ) .  It  follows that any 
language in R is definable by a deterministic linear bounded automaton (Kuroda 
[6]), whence R is a subclass of the context-sensitive languages. 

In Section 4.8, we show that  R is a proper subclass. 

3. Positive Closure Properties 

In this section we demonstrate the closure of R under a number of operations. 

3.1 BOOLEAN OPERATIONS 
THEOREM 1. The class of real-time definable languages is  closed under comple- 

mentation,  intersection, and union.  I t  is thus a Boolean algebra. 

PROOF. Let X and Y be languages defined by the n-RTTM Tx = ( K x ,  M x ,  

S x ,  So, F x )  and the m-RTTM T r  = ( K r ,  M r ,  S t ,  to, Fy),  respectively. 
(a) .X, the complement of X, is defined by the n-RTTM T x  = ( K x ,  M x ,  

S x ,  so, K x  - F x ) .  
In effect, Tx simulates the computation by Tx ,  merely "switching answers" 

at each step. 
Clearly A (Tx) = A (Tx) = X. 
(b) Assuming that  Tx and Tr  are defined over the same input alphabet, the 

intersection of X and Y is defined by the (m + n ) -RTTM Tv = (Kv ,  My, 
S v , Vo , F v ) where 

(1) K v  = K x  × K r .  
(2) For (s, t} in K x  X K r ,  w l ,  " "  , w~ in W x ,  and wl t, . . . ,  w~' in Wr, 

t 
M v ( ( s ,  t), o', w l ,  " "  , w,~, w l ,  " "  , w~' )  = { M x ( s ,  o, w l ,  " "  , w.)}  X 

' • w j ) }  {Mr(t ,~,  wl, "" , 
(3) If 

S x (  s ,  z ,  w~ , . . .  , w , )  = ( D ~  , . . .  , D ,  , ~ , . . . ,  ~3,) 

and 
' . .  w m  t )  = ( D 1  t ,  • D , ~ ' ,  ~1 " "  ~,~) Sy (  t, z ,  wl , • "" , , , 

then 
S v (  (S, t), ~, w t ,  . ' .  , win, w t ,  • , , D , ,  Di' ,  , D~ r, 
~ 1 ,  " '"  , ~ ,  , ~1 ,  " '"  , ~,~). 

( 4 )  vo = ( s o ,  to). 
(5) F v  = F x  × F t .  

Tv simulates T x  on tapes 1, . . .  , n; and it simulates T r  on tapes (n + 1), " " ,  
(n + m). Tv accepts an input tape when, and only when, both Tx and Ty accept 
it; therefore, A(Tv)  = A(Tx)  N A(Tr )  = X N Y. 

(c) The closure of R under union follows from parts (a) and (b) and De Morgan's 
law. Q.E.D. 
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Real-Time Definable Language.s 649 

It  is obvious that the sets A = {a~b~d':i, j ~ 1} and B = {a~bie~:i, j > 1} are 
both real-time definable. Since A n B is not context-free, and since A U B is 
inherently ambiguous (see Ginsburg and Ulliai~ [4] ), Theorem 1 yields the following 
two corollaries. 

COROLLARY 1.1. There are 'reai4ime definable languages which are not context- 
free. 

COROLLARY 1.2. There are inherently ambigueus real-time &finabte con.text-free 
languages. 

Rabin [8] has proved that, if T~ is a 1-RTTSI and T2 is a 1-RTTS[, then it may 
be the case that  A ( T 0  U A(T2) (and, hence, A ( T 0  13 A(T~)) is definable by a 
2-RTTM, but by no 1-RTTM. Thus, the construction of Theorem l (b )  may be 
the best possible with respect to the number of scratch tapes. 

3.2 SUFFIXING WITH A REGULAR SET. In this section we prove that,  whenever 
a set A is real-time definable, then for every regular set B, AB is real-time definable. 
In Section 4.1, we shall show that BA need not be real-time definable, thus obtaia- 
ing the first asymmetric result about R. 

Definition 4. A finite automaton (FA) with input alphabet Z is a 4-tuple 
T = (K, M, so, F)  where 

(1) K is a finite set of states; 
(2) M is the state-transition flmction which maps K × ~ i~:tto K; 
(3) so E K, the initial state; 
(4) F c K, the accepting states. 

An FA is, thus, a 0-RTTM. 
An FA-definable language is called a regular set. Thus, every regular set is real- 

time definable. 
THEOREM 2. [f A is a real4ime definable language, and .if R is a 'regular set, then 

the language AR is real-time definable. 
PRoof. Let A be defined by the n-RTTM, 

T ,  = ( K , ,  M ~ ,  S ~ ,  So, FA), 

and let R be defined by the FA, 

The n-RTTM, 

TR = (K~, MR, to, Fa). 

TAR = (KAR, MaR, SA~, uo, FAR), 

defined as follows, recognizes the set AR. 
(1) K~R = KA X 2 ~r* where 2 u is the set of all subsets of the set K. 

Let u = (s, X} where s E KA and X c KR. For z in 21 and wl, . . .  
in W, 

(2) i ~ R ( u ,  c~ w l ,  . . . ,  w~) = 
(i) { M ~ ( s ,  or, w~, " ' ,  w~)} X ({to} U (J {M~( t ,  ~r)}) if 

tEX 

MA(s, a, wl,  " "  , w~) is in F~ ; 
(ii) {MA(s, ~, wl,  " "  , wn)} X ([.J {Ms(t, a)}) otherwise. 

rex  

(3) SAR(U, or, Wl,  "'" , W,) = SA(S, a, Wl,  "'" , W,) .  

Wn 
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650  ARNOLD L. ROSENBERG 

/@o, [to}> if so is in FA 
(4) uo = /~@o ' ~) otherwise. 
(5) FAn = {u ~ K ~ : u  = @, X} and X FI IFR ~ 0}. 

The proof that  A (Taz¢) = A (TA)A (Tn) = AR is straightforward and is omitted. 

Q.E.D. 

3.3 I>wEas~ OF A REAI,-TI~[': T~A~SDUC~ MAPeING. In this section we show 
that  the inverse image of a R T D L  under mapping by a real-time transducer is 
agalri real4ime definable. In Section 4 we shall show that  the direct image of a set 
in R under sequential machine mappi~g (a degenerate case of real-time transducer 
mapping) r~eed not be real-time definable. 

An n°tape real-time transducer, n -RTT,  is essentially an > R T T M  with outputs. 
More precisely, an n - R T T  is an 8-tuple U = ( Q, ~, V, k, N, S, P, qo) where 

(1) Q is the set of states of U; 
(2) £ is the input alphabet of U; 

V is the working alphabet of U; 
& is the output alphabet of U; 

(3) N is the state-transition function which maps Q X 7~ X [V] ~ into Q; 
(4) S is the action function which maps Q X ~ X [Vii" into [{R, L, N}] ~ X [V]~; 
(5) P is the output function which maps Q X ~ X IV] ~ into ~*; 
(6) q0 E Q is the initial state. 

An nd]~TT operates much ,%s does an n - R T T M  with two exceptions. First, an 
n -RTT has no distinguished "accepting" states. Second, and more basic, at every 
primitive action, the n : R T T  emits a (possibly null) output word over its output 
alphabet k~. 

Let U = (Q, ~, V, ~, N, S, P, q0) be an n-RTT.  The P-function is extended to 
tapes in the obvious way; if q is in Q; <r in .~; Wl, • • • , W,, in V, then for any tape ¢x 
over ~ P(q, o~x, w , , . . .  , w,~,) = P(q, er, wl ,  " "  , w , ) P ( t , x ,  u l , ' "  ,u , , )where 
t = N(q,  a, w~ , . . .  , w,,) and u l ,  . . .  , u~ are the symbols under scan on the work 
tape8 of U after the primitive actioti caused by state q, input symbol o-, and work 
syrnbols wl, . . .  , w~ . 

li'or any tape x over ~ we denote by U(x) the tape P(qo, x, B, . . .  , B)  over ,~. 
We further denote by Lu the integer 

L ,  = max {L(P(q, ~, wt, . . .  , w,))}. 

w i ~ v  

For any language A and n -RTT U, the inverse image of A under U is the set 

U-~(A) = {z :U(x)  is in A}. 

Our proof of the closure of R under inverse n - R T T  mapping depends on the fact 
that when an n~RTTM is presented with an input sequence of length k, it can alter 
at  most k squares on any scratch tape. 

Assuming familiarity with the so-called timing functions of Hartmanis  and 
Stearns [5], we proceed to our theorem by a series of intermediate results. (Cf. 
Definition 2.) 

THEORE.~I 3 (Hartmanis  and Stearns [5]). I f  the languwe A is d4nable in time 
L( t) + E( L( t) ), E(L(T) )  >_ O, then, for any k > O, A is definable in time L( t) + 
[kE( L(t))],~ 

If x is a real number ,  then  [x] denotes  the  least  in teger  k such  tha t  k, > x. 
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Real -T ime  Definable Languages 651 

In particular, 

COROLLARY 3.1. I r A  is definable in time cL( O for some c > 1, then A 'is definable 
in time (1 + [(e - 1 ) / k ] ) L ( t )  fo~ • any ~ > O. 

The import of Theorem 3 is that, given an n-TM, for any integer r, one c~ui 
effectively find an n-TM which does i~l one scratch tape operation what the origi~ia[ 
did in r scratch tape operations between polling input symbols. 

Unfortunately, an n-TM which recognizes a set A in time 2L(t) cannot, in general, 
be repIaced by any m-RTTM. In Section 4.3 we present a set A which is 2L(t)-  
recognizable, but which is not in R. However, if the compression of 7' operations 
into one suffices to speed up an n-TM to operate in real time, then the algorithm 
of Hartmanis and Stearns [5, Theorem 2, p. 290] affords us a method for effecting 
this speed-up. In particular, if an n-TM reads its inputs ~t ~ constant r~te, 
the algorithm will produce an equivalent n -RTTM.  We now show that the n-TM 
which defines U-I(A)  for A in R is of this special w~riety. 

THEOREM 4. If A is a R T D L  and i f  U is a real-time transduceG then U-~(A) is 
a R T D L .  

PROOF. Let the R T D L  A be defined by the n-RTT${ T = (K, a, W, M, S, 
s0, F), and let U = (Q, ~, V, A, N, R, P, q0) be t~n m-RTT. Note that a is the input 
alphabet of T and the output alphabet of U. 

The (m + n ) - T M  T'  = (Lv,  L~, ~, W U V, M', S', So', F ' )  defines U-~(A) in 
time (e + 1)L(t)  where c = L u .  

(1) Lv = K X Q X {k} wherek is the null word; 
(2) L,  is empty (i.e., T '  is an (m + n ) - R T T M )  if e = 0; otherwise, 

L~ = K X Q X U~<~A ~ where A ~ is the set of all words over a of length i. 
Let a be in G, w~, . . .  , w~ in W, and v~, . . .  , v,. in V. 

(3) For {s, q, X) in Lp,  

M'(<s,  q, X>, a, w~ , . . . ,  w ~ ,  v, , . . . ,  v,,~) 

= {s, N ( q ,  a, v l ,  . . .  , v,~), P ( q ,  a,  v i ,  . . .  , vm)) ,  

and 

S'( {s, q, X}, a, wl , . . .  , w ,  , vl , . . .  , vm) 

= ( N ,  . . .  , N ,  D 1 , . . .  , D m , w i , . . .  , w , , , u l ,  . . .  

n 

where R(q ,  a, vl, . . .  , Vm) = {D~, "'" , D,~, u~, " '" , u,,). 

(4) For {s, q, bl . ' .  br} in L~ (r  > 1 and bl in A), 

M'({s ,  q, bl . . "  br>, w l ,  . . .  , w ~ , v l ,  . . .  , v ~ )  = ( M ( s ,  bl ,  w i , . . .  , w ,~ ) ,q , x )  

where 

x = b~ . . .  b, if r >  1, and x = X if r = 1, 

and 

S'({s, q, bi "'" br), wi , "'" 

, urn) 

W n  ~ Y l  , " ' "  , Y m )  

= ( D 1 , ' " , D ~ , N ,  . . . , N ,  u l , " "  
m 
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652 ARNOLD L, ROSENBERG 

where 
S (  s ,  b l  , vJ~ , . . .  , ~u~) = < D 1 ,  " "  , D ~  , u l  , , . .  , u~>. 

(5)  so' = <so, qo, ×>. 
(6) F '  = F X Q  X {X}. 

Thus T '  alternately simulates T on tapes 1 , . . . ,  n a~d U on tapes 
n + 1, • • • , n + m. I t  is clear from the description of T '  that  A ( T ' )  = U - i ( A  (T)) 
= U- I (A) .  Now, T '  scans a new input symbol after no more than e scratch tape 
operations. Obviously, by  adding " d u m m y "  symbols, we could alter T '  so theft it 
read at the constant rate of c operations per input symbol. Thus, if we could com- 
press c scratch tape operations of T '  into one, we could dispose of the autonomous 
states L~, and, thereby speed T '  up from (c + 1)L(t)  to real time. However, the 
algorithm of Hartmanis  and Stearns does just this. Thus, using the above con- 
struction and their algorithm, we can effectively define an (m + n ) - R T T M  T"  such 
tha t  A ( T " )  = A ( T ' )  = U-~(A).  Q.E.D. 

A generalized sequential machine (gsm) is a 0-RTT. Theorem 4 thus yields 
COROLLARY 4.1. I f  A is  a R T D L ,  and i f  G is  a gsm, then G-~(A) is  a R T D L .  
COROLLARY 4.2. I f  some homomorphic  4 image of a language A is real-t ime de- 

finable, then A is real-t ime definable. 
In  Section 4.4 we shall prove that  the inverse image of a R T D L  under non- 

determinis t ic  sequential machine mapping need not be in R. 

3.4 MINIMIZATION. In  this section we demonstrate the closure of I t  under 

the operation of minimization. 
We say a tape x is a proper prefix of a tape y, denoted x < y, if there is a normal! 

tape z such that  y = xz.  Let A be a language. We define rain A = { y : y  C A ,  and 

i fx  < y ,x  ~ A}. 
THEOREM 5. The class of real-time definable languages is closed under  min imiza -  

tion. 
PROOF. Let the R T D L  A be defined by the n - R T T M  T = (K, M, S, So, F). 

Then min A is defined by the n - R T T M  T,nl, = (K' ,  M',  S', So, F) where 
(1) K '  = K U {d} where d is a symbol not in K;  

For ~ in .~, and wt, • - ' , w~ in W, 
' " "  W n ) = ( M ( s , ~ , w t , " "  , w , ~ ) i f s i s i n K - - F  

(2) M (s, a, w,,  ' \ d  if s is in F, 

M ' ( d ,  (r, wt , . . "  , w,,) = d; 
(3) S ' ( s ,  (r, wl , . . .  , w,~) = S ( s ,  (r, wl , " "  , w,~) for s in K, 

S ' (d ,  ~, wt,  . "  , w,) = [{N}]" × {(wl, . . .  , w,)}. 
T,,i,, simulates the action of T until T would accept some prefix of the input tape. 

Tmi, then enters a "dead"  state d. Clearly, A(Tmi,) = rain A ( T ) .  Q.E.D. 
One can define a max operator symmetrically to the definition of min. In  Section 

4, we shall prove that  R is not closed under max, thus obtaining yet another asym- 

metric result. 

3.5 TAPE CONSERVATION. Thus far w e h a v e  avoided explicit mention of the 
minimum number of tapes needed to recognize a particular RTDL.  hi  general, the 

4 A h o m o m o r p h i s m  of ~* into A* is a mapping h such that  h(k) = X, h(a)  is in A* for each a iI~ 
:~, and h(al  . . .  ak) = h(a t )  . . .  h(a~) for each sequence al . . .  a~ of elements of Z. For A 
~*, the image of A under the homomorphism h is the set h ( A )  = { h ( x ) : x  is in A}. 
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problem of whether or not an (n -b 1)-RTT~¢I is strictly more powerful than an 
n-RTTM is still open. Rabin [8] has showed that  a 2-RTTS~/is strictly more powerful 
than a 1-RTT~vl. We can, however, assert the following. 

Remark. Let R(n)  denote the class of languages defined by n-RTTS/I's. Then, 
for all n, 

(a) R(n)  is 
(b) R(n)  is 
(c) R(n)is 
(d) R(n)  is 

closed under complementation; 
closed under union and intersection with regular sets; 
closed under suffixing with a regular set; 
closed under inverse gsm mapping; 

(e) R(n)  is closed under minimization. 
Remark. R(1) is not closed under union or intersection, nor under inverse real- 

time transducer mapping. 
A more detailed study of R(n)  will be the subject of further research. 

4. Negative Closure Properties 

We now exhibit several operations which do not preserve real-time definability. 

4.1 CONCATENATION. In this section we prove that R is not closed under con- 
catenation, even with regular sets. The proof depends on a series of definitions and 
lemmata. 

Definition 5. Let A be a set of tapes. The relation E~(mod A) is defined as 
follows for tapes x and y: xEky(mod A) if for all tapes z of length less than or equal 
to k, xz is in A when, and only when, yz is in A. 

Obviously, Ek(mod A ) is an equivalence relation. 
LEMMA 1 (Hartmanis and Stearns [5]). I f  T is an n-RTTM with d states and 

w working symbols (including B), then the number of equivalence classes of 
Ek( mod A (T)  ) cannot exceed d. w (2k+1)'. 

Let us now restrict our attention to alphabets ~ containing at least two elements. 
We may assume tha t  {0, 1} ~ 2~. 

We define the language 

P = {lltllOOxl3tr:x G ~*, t C ~* - 2~*11~*, ~ ~ ~}. 

LEMMA 2. The language P is real-time definable. 
In fact, P is definable by a real-time pushdown automaton (Ginsburg and 

Greibach [2]). 
Our goal is to show that  ~*P is not real-time definable. We accomplish this by 

examining the rate of growth of the index of Ek(mod :~*P). 
Definition 6. For all integers m, let Xm be the set of all tapes of length m over 

{0, 1} such that  no tape contains two consecutive l's. 
The Fibonacci numbers are defined thus: (1) a0 = al = 1; (2) for n > 1, 

an = a~-i -b a._~. I t  is well-known from the theory of finite difference equations 
that, for sufficiently large n, a~ > (1.6) ~. 

I-EMMA 3. For all m > O, the number of tapes in X~ , denoted ~ (m), is precisely 
the (m ~ 1)-th Fibonacci number. 

PROOF. The proof is by induction on m. 

Base: •(1) = 2 = a2, and ~ (2 )  = 3 = an, since X1 = {0, 1} and 
x~ = {0o, o: ,  :0}. 
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Hypothesis:  Assume that ,  f o r j  < r, ~ ( j )  = aj+,.  
r + 1: The members  of Xr+l are obtained from those of Xr as follows: 

(1) If  t is in X r ,  then 0t is in Xr+,. This contributes ~ (r) tapes 

to X~+l • 
(2) I f  t is in X~, then it  is in X~+~ if, and only if, the first symbol of 

t is a 0. By step (1),  this contributes precisely $ ( r  - 1) tapes 

to Xr+l • 
Obviously, X~+i is exhausted by  steps (1) and (2),  whence 

( r +  1) = ~ ( r )  + ~ ( r -  1) = a r + l + a ~  = ar+~. Q.E.D. 

Now, there are precisely 2 ~(m) subsets of Xm. We now show tha t  each nonempty 
subset determines a distinct equivalence class of E,~+~(mod Y,*P). 

Definition 7. For each tape t~ in Xm, we form the tape a~ = l l t~l l00 of length 

m + 6 .  
For  each nonempty subset Y~ = {t~, • • • , t,} of Xm (1 < i < 2 ~(m) - 1) we form 

the tape ~i~ = ala2 • • • a~ of length (m + 6)r. 
LEMMA 4. I f  the tape t is in Y~ ~ Xm , then 8il~t r is in Z*P. 
P~oov. Obvious from construction of &. 
Lett ing k = m + 1, we obtain 
LEMMA 5. Letting ~ and Y~ be as in Definition 7, a~Ek~i(mod ~*P) only if 

Y~ = Yy.  
PI~OOF. Assume tha t  Y~ ¢ Y~ • Then there is a tape t in either Y~ - Yi or 

Yj - Y~. We may  assume without loss of generality tha t  there is a tape t in Y~ - Yj. 
By Lemma 4, &fit T is in Z*P. We claim that  ~j~t r is not in 2;*P. 
Assume that  ~i~t r were in Z*P. This would, by definition of P, imply that  ~ has 

a subtape of the form l l x l l 0 0  such that  x contains no two consecutive l ' s  and 
x = t. However, by construction, ~j = l l t~l l00 • • • l l tA100 where Yj = {t~, • • • ,  t,}. 
Thus the only subtapes of ~ of the form l l x l l 0 0  where L(x)  = m and x contains 
no two consecutive l ' s  are precisely those of the form l l tA100 where t~ is in Y~. 
Thus, if ~ t  r is in Z ' P ,  then t is in Y~, contrary to assumption. 

We conclude tha t  ~ t  r is not in Z*P if t is not in Y~. Since L(t )  = m, we have 
shown tha t  &E~i~(mod Z ' P )  only if Y~ = Y~ • Q.E.D. 

Since each ~ ( 1  _< i < 2 ~'~) - 1) is thus in a different equivalence class of 

E~(mod Z ' P ) ,  we have proved: 
LEMMA 6. The number of equivalence classes of E~+l(mOd Y,*P) is no less than 

2 t~(~) -- 1. 
We are now in a position to show tha t  ~*P is not in R. 
THEOREM 6. The class of real-time definable languages is not closed under con- 

catenation. 
PROOF. Assume, for contradiction, that  the n - R T T M T  defines E*P. By 

Lemma 1, the number  of equivalence classes of E ~ ( m o d A ( T ) )  cannot exceed 
e~ = d .w ~ + ~ .  Now, for large k, ~ (k) = a~+~ > (1.6) ~+~. Therefore, the number 

of equivalence classes of EL(rood ~*P)  satisfies 

2 (1"~)~ < 2 ~(~-~) - 1 _~ index of E~(mod ~*P)  

for large k. Since 2 (~'~)~ > e~, for large k, T cannot define ~*P contrary to assump- 

tion. Thus Z*P is not in R. 
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We have thus found two RTDL's, ~* and P, whose concatenation is not a 
RTDL. Q.E.D. 

Since 2~* is a regular set, we have, in fact, proved 
Proposition 1. The class of real-time definable languages is not closed under con- 

catenation with regular sets. 

4.2 KLEENE CLOSURE OPERATOR. Using the results of Section 4.1, we show 
that II is not closed under the operation of closure. The proof will follow from the 
following general result. 

Let e be a class of languages. We say that e is admissible if 
(a) C is closed under union and intersection with regular sets; 
(b) there is a language L, over an alphabet ~, in C such that, if 8 is a symbol 

not in ~, thenL{6} is in a while "2"L{6} is not. 
THEOREM 7. If C is an admissible class of languages, then ~ is not closed under the 

operation of closure. 
PROOf. Let L be a member of e which satisfies part (b) of the definition of ad- 

missible; and let 6 be a symbol not in the alphabet ~ over which L is encoded. 
Since ~* is a regular set, it follows that  the language H = L{6} U 2~* is in C. We 

claim that  H* is not in C. 
Assume, for contradiction, that  H* were in C. Since ~*{6} is a regular set, it 

would follow that  J = H* n Y,*{ 6} were in C. However, one can easily see that 
J = ~*L{ 6} which is known not to be in C. We conclude that C is not closed under 
closure. Q.E.D. 

LEMMA 7. l~ is an admissible class of languages. 
PROOF. That  R is closed under union and intersection with regular sets is a 

corollary of Theorem 1. 
To verify part  (b) of the definition of admissible, consider the language P of 

Section 4.1. Since R is closed under suffixing with regular sets, it follows that P{ 6} 
is in R for any symbol 6. Moreover, the proof of Theorem 6 shows that ~*P{6} is 
Rot in R. (The terminal 6 does not affect the proof.) Q.E.D. 

Since R is admissible, we obtain 
THEOREM 8. The class of real-time definable languages is not closed under the 

operation of closure. 
Remark. The proofs of Theorems 6 and 8 serve to demonstrate that the class of 

languages defined by real-time pushdown automata is not closed under concatenation 
or closure. 

4.3 REVERSAL. In this section we prove that R is not closed under reversal. 
As a corollary to this proof, we show that  there are languages which are definable 
in time 2L(t) (and hence, by Corollary 3.1, in time (1 + e)L(t)) ,  but not in real 
time. 

The language Q defined as follows is a RTDL,  while its reversal is not. 
Q is the set of sequences of the form 

tf~OOllt~llOOllt211 " "  0011tkll 

where (1) t, tl ,  • • • , tk are in X~ for some m, and ~ $ {0, 1}, and (2) for at least one 
i ~ {1, • • • , k}, t~ = t r, the reversal of the initial segment t. 

LEMMZ~ 8. The language Q is a RTDL.  
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PROOF. We sketch the operation of a 2-P~TTM T which defines Q. The inter- 
ested reader can easily fill in the details. 

The operation of T proeeeds as follows: 
(1) While reading the initial segment t of the input, T copies t on each of its 

work tapes, verifying that  t contains no two consecutive l's. 
(2) As tl comes in, T cheeks, on tape 1, that  h = t r. If L(h)  ¢ L(t),  T enters a 

dead state; if h = t ~', T proceeds to step (4) ; if h rz t T, T proceeds to step (3). 
(3) As t2~ (resp., h~+~) comes in, T checks, on tape 2 (resp. tape 1), that 

hl (resp. h~+~) = t r, simultaneously restoring tape 1 (resp., tape 2) so that  the read- 
write head is on the rightmost square. If L(t2~) (resp., L(t2~+~)) ~ L(t) ,  T enters a 
dead state; if t2~ (resp., h~+l) = t r, T proceeds to step (4);  otherwise, T repeats 
step (3).  

(4) Having found a h = t T, T cheeks, on tape 1 that  all subsequent ti are of 
length L(t).  T enters an accepting state whenever it finishes scanning a segment 
t~11 where L(td  = L(t) .  

The tape situations of T are illustrated in Figure 1. I t  is clear that  T defines Q 
in real time. Q.E.D. 

THEOREM 9. The class of real-time definable languages is not closed under reversal. 
PROOF. Note that  Q r is a subset of 2*P  from Section 4.1. The proof of Theorem 6 

actually shows that  QT is not a RTDL.  The nonclosure of R under reversal thus 
follows from Lemma 8 and the proof of Theorem 6. Q.E.D. 

LEMMA 9. The language Q r is definable ire time 2L( t ). 
PROOF. A 3-TM defining Q r merely copies the input on one of its tapes, and then 

proceeds to simulate the 2-RTTM T of Lemma 8. The 3-TiVI rejects any tape 

l lh l lOOl l t21100 . . ,  lltkllOO~t 

TAPE I J 
HEAD I 

TAPE 2 [ 
HEAD 2 

t 

(a) 

t I TAPE I 1 
HEAD I 

TAPE 2 [ 
HEAD 2 

t 

(b) 

FIG. 1. 

TAPE I I t 
I HEAD I 

TAPE 2 / t 
HEAD 2 

(c} 

(a) Tile tapes of T after reading t, (b) the tapes of T after reading 
~-1, (c) the tapes of T after reading t~. 
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such that L(t)  ~ L(h)- - th is  is how it determines the end of the h/put tape. Once 
more, the details are left to the reader. Q.E.D. 

We thus obtain: 
Proposition 2. There is a language which is definable i~ time 2L(t), and herlce, 

in time (1 + ~)L(t) for any e > 0, which is not real-time definable. 

4.4 MAPPING DEVICES. The results of Section 4.1 afford us a~l easy proof of the 
nonclosure of R under mapping by various devices. 

A sequential machine is a 0-RTT (Q, yz, A, ]I, R, qo) such that  R (the output 
function) maps Q X ~ --~ A. 

Let us recall the language P of Section 4.1. P is a language over the alphabet 
= {0, i, ~}. Therefore, if we let A = {a, b} where a and b are not in ~ if, is obvious 

that A*P is a RTDL. 
Consider now the sequential machine U = ({qo}, 2~ U aX, 2:, .M, R, qo) where 

(1) f o r a i n ~ U A ,  M(qo,¢)  = qo, (2) R ( q o , a )  = R(qo,O) = 0, ~q~(qo, b) = 
R(qo, 1) = 1, R(qo, ¢~) = ft. 

Clearly U(A*P) = {0, 11 *P which we know not to be in R. 
We thus have shown, 
THEOREM 10. The image of a real-time definable language under seq~e~ntial ma.. 

chine mapping need not be real-time definable. 
COROLLARY 10.1. The image of a RTDL under ge~neraiized sequential ~nachine 

mapping need not be a RTDL.  
COROLLARY 10.2. The homomorphie image of a R T D L  need noi be a RTDL.  
PROOf. A homomorphism can be effeeted by a one-state gsm. 
COROLLARY 10.3. The image of a R T D L  under .real-time transductio~ tteed not be 

a RTDL.  
Finally, we prove that the inverse image of a RTDL under nc, detc,'ministic 

sequential machine mapping need not be reM-time definable. 
A nondeterministic sequential machine is a 6-tuple U = (Q, ~, A, M, R, Q0) 

where Q is a finite set of states, % is the input and h the output alphabet, M is a mup 
from Q × 2~ --~ 2 ~, R is a function from Q × z -~ h*, and Qo G Q is the set of initial 
states. U operates in the obvious way. The image, with R extended to Q × 2", 
U(x) = Uqea0 R(q, x) of a tape x urider U is now a set of tapes: precisely that set 
obtained by following all paths U describes (via the M-mapping) under input x. 

Consider now the nondeterministic sequential machine U defined as follows: 

= {0, 1, fl},a = {a, 0, 1, ~}, Qo = {q0, qd. 

M 0 1 fl R 0 I f~ 

qo {qo, ql} {qo, ql} {qa} qo a a 
q~ {qx, q2} {q~, q,~} {q,} q~ 0 t 

q2 {q~} {q2} {q3} q~ a a fl q~ {qd {q3} {q~} q~ 0 1 

Thelanguage L = {utv~ tr:t E {0, 1}*;u,v E {a}*;~ E {0, 1, a}} is aRTDL.  The 
inverse image of L under lJ is U-~(L) = {x:U(x) ~ L ~ ~} = {xtyflt T:z, t, 
y E {0, 1} *,/~ E {0, 1}}. The proof of Theorem 6 in Section 4.1 suffices to show that 

U-I(L) is not in R. 
Proposition 3. The inverse image of a RTDL under nondeterministie sequential 

machine mapping need not be real-time definable. 
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4 .5  DERIVATIVES AND QUOTIENTS. In this section we prove that neither the 
derivative 5 nor the quotient of a RTDL by a regular set need be real-time definable. 

Definition 8. Let A and B be languages. The derivative of A w.r.t. B, denoted 
DB(A), is the set 

DB(A) = {y:xy is in A for some x in B}. 

In the terminology of Ginsburg and Spanier [3], Do(A ) is the left quotient of A by 
B and is denoted B\A.  

Recalling the language Q of Section 4.3, we consider the set V of sequences of the 
form 

t~lltlllOOllt~llO0..,  lltkll00~t 

where (1) for some m, t, t l ,  . . -  , tk are in Xm, and/~ is not in/0,  1}, and (2) for at 
least one i C {1, . . .  , k}, t~ = t r. 

LEMMA 10. The language V is a RTDL. 
PnooF. A 2-RTTM which defines V operates almost identically to the 2-RTTM 

which defines Q (Lemma 8) except that upon encountering the second/3 it checks 
that the terminal string is identical to the initial string. A glance at Figure l(b) 
and (c) indicates that this is always possible. Q.E.D. 

THEOREM 11. The derivative of a RTDL with respect to a regular set need not be 
real-time definable. 

PROOF. By Lemma 10, V is a RTDL; the set A = {0, 1}*{~} is regular. How- 
ever DA(V) = Qr which we showed not to be real-time definable (Theorem 9). 
Q.E.D. 

Now, drawing on the results of Section 4.1, we show that the quotient of a set in 
R by a regular set need not be real-time definable. 

Definition 9. Let A and B be sets of tapes. The quotient of A by B, denoted A/B,  
is the set A / B  = {x:xy is in A for some y in B}. 

Ginsburg and Spanier [3] refer to A / B  as the right quotient of A by B. 
Recalling the sets P and ~*P of Section 4.1, we define R to be the set of all tapes 

of the form 

xlltll00yf~tr~aL(Y)+L<t)+6~aL<t)+~ 

where x, y are in ~*, t is in Z* -- ~'11~*, a is a member of ~, a k denotes a string of 
k a's, and f~, ~ are not in Z. 

LEMMA 11. The language R is definable by a 2-RTTM. 
PROOF. As in the previous lemma, we informally describe the operation of the 

2-RTTS/I T which defines R. 
(1) T copies the input symbols onto tape 1 until it encounters the symbol ~. 

I t  then stores the next input symbols on tape 2 until it encounters the first 6. At 
this point, the read-write head of tape 1 (resp. 2) is on the rightmost symbol of a 
copy of xllt1100y (resp. tr). 

(2) While receiving the string a L(~)+L(y)+6, T moves tapes 1 and 2 so that, by the 
time the second ~ is encountered, the read-write head of tape 2 is on the leftmost 
nonblank symbol of tape 2, and the read-write head of tape 1 is on some symbol of 

The t e rm "der iva t ive"  was, to the  author ' s  knowledge, in t roduced  by  Brzozowski, Derivat ives 
of regular  expressions, J. A C M  11 (1964), 481-494. 
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the segment xlltllOOy. Note, if the input tape is, indeed, in R, the read-write head 
of tape 1 will be on the leftmost symbol of the segment l l t l l00y .  

(3) While receiving the terminal sequence a L(t)+6, T checks that  tape 2 contains 
t r, where the initial segment of length L(t) + 6 to the right of the head on tape 1 is 
11t11C0. T enters an accepting state if this last condition is fulfilled. 

Clearly, A ( T )  = R. Q.E.D. 
As the reader can readily guess, we now consider the regular set A = 

{~}{a}*{ ~}{a}*. I t  is clear that  R/A  = ~*P which we showed (Theorem 6) not to 
be real-time definable. 

Since R is in R, and A is a regular set, while R / A  is not in R, we have proved 
THEOREM 12. The quotient of a real-time definable language by a regular set need 

not be real-time definable. 

• 4.6 MAXIMIZATION. The final operation we shall consider is maximization. 
Let L be a language; then, 

max L = {x:x E L, and if x < y, then y ~ L}. 

TUEOREM 13 (A. R. Meyer6). There is a RTDL L such that max L is not real- 
time definable. 

PRooF. We assume familiarity with the concepts of universal Turing machine 
and the arithmetization of Turing machines. 

Let us consider an arithmetization of Turing machines under which every natural 
number x corresponds to a Turing machine. We assume the integers are encoded in 
binary. 

We are given a universal TM T, and we define the language H as follows. H is 
the set of all sequences of the form x~z where 

(1) x is in {1}{0, 1}*, ~ is not in {0, 1}, z is in {0}*; 
(2) the universal TM T discovers in at most L(z) - L ( x )  steps that  the T M  

corresponding to x considered as a binary integer, halts when applied to input x. 
Symbolically, T verifies in no more than L(z)  - L(x)  steps the predicate 
(~tn)T(x, x, n) .  7 

The language L is now defined as 

L = {1}{0, 1}*{~} O H .  

Now H is, by definition, definable by a 1 -RTTM} A 1-RTTM copies the input 
string on its work tape until it encounters the symbol ~. I t  then backspaces on its 
work tape, one square for each incoming 0 until it reaches the leftmost end of x. 
From this point on, it simulates one step of the universal TM T for each incoming 0. 
The 1-RTTM enters an accepting state when it finds that T would hMt with a YES 
answer on input x, remaining in this accepting state as long as it receives 0 inputs. 

Since H is a RTDL,  it follows from Theorem 1 that  L is a RTDL.  However, one 
readily verifies that  

m a x L  = {x/3:xE {1}{0,1}*,f l~ {0,1} and (Vn)  ~ T ( x , x , n ) } ,  

6 Private communica t ion  
7 The predicate T(x, y, n) means t h a t  T M  x, applied to input  y, ha l t s  in  n steps. 
s By considering the language H/{B} {0} *, one obtMns an  a l ternat ive  proof of Theorem 12. In 
fact, one obta ins  the s t rengthened resul t  t ha t  the quot ien t  of a set  in R(1) by  a regular se t  
need not  be in R. 
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which is obviously not a reeursive set. Since every RTDL is context-sensitive and, 
therefore, recursive, we conclude that max L is not real-time definable. Q.E.D. 

4:.7 INVARIANCE OF TIIE RESULTS.  In this section we note that the negative 
results obtained in the previous sections are valid for a large class of machines, 
including almost all the models which have been used to study real-time eompu. 
tation. As a corollary of this observation, we obtain a proof that, for all n, the class 
of languages defined by n-dimensional iterative arrays of finite automata (Cole [1]) 
is not closed under the Kleene closure operator. 

We recall the definition of the relation Ek(mod A) (Definition 5). 
Definition 10. A class gg of machines is of polynomial-limited accessibility if, for 

any machine M in ~ ,  there exist constants c and n such that, for k > 1, the index of 
Ek(mod A(M))  does not exceed eQ 

We mention several examples of polynomial-limited access classes of machines: 
(1) the class of real-time multitape Turing machines; 
(2) for any n, the class of real-time multihead TM's with n-dimensional tapes. 
(3) for any n, the class of real-time n-dimensional iterative arrays of finite 

automata. 
A perusal of the proofs in Section 4 suffices to show: 
THEOREM 14. Let NZ be any class of polynomial-limited accessibility machines. 
(a) I f  the class of languages, L( ~ ), defined by ~]Z-maehines includes the class of 

languages defined by real-time PDA 's, then L( NZ ) is not closed under concatenation, 
even with regular sets, under closure, not under sequential machine mapping. 

(b) I f  the class of languages defined by N-machines includes the class defined by 
2-RTTM's (which, perforce, subsumes case (a) ), then L ( ~ )  is not closed under re. 
versal, nor under the operations of taking derivatives and quotients. 

One may note that the languages defined by arty of the classes of machines 
mentioned above are all recursive. They are, thus, not closed under maximization, 
by Section 4.6. 

4 . 8  POSITION OF 1~ IN THE LINGUISTIC HIERARCt lY .  In Section 2 we noted that 
R is a subclass of the context-sensitive languages. The results of Sections 3 and 4 
indicate that R is incomparable to the CFL's; that is, there are CFL's (such as 
2*P of Section 4.1) which are not real-time definable, and there are RTDL's (such 
as {a'bncn:n > 1}) which are not context-free. In this section we exhibit a deter, 
ministic CFL which is not in R. This will verify Figure 2 which indicates the po- 
sition of R in the classical linguistic hierarchy. 

Let L be the set of all sequences 

Okl lOk~l  . . . Ok~- l lOk~ @ ~  O k , - ~ + l  

where (1) @ is not 0 or l;  
(2) r > 1, a n d k ~ >  1(,1 < i _ <  r); 
(3) l < s < r .  

One can easily verify that L is a deterministic CFL. We show L not to be in II by 
considering the index of E~(mod L) as p grows. 

NOTE. Cole [1] and the author [10] have independently found another example 
of a deterministic CFL which is not in 11. We consider L because of its simplicity 
and intrhlsic interest. 
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//Z/~,~T E X T - S E NLS~TIV E LANGUAGES 

CONTEXT- F R E E /  
LANGUAGES ~ ~  

] "~. REAL-TI~E DEFINABLE 
O £TERMIN]STtC //'~, LANGUAGES 
CONTEXT-FREE ~ / *  LANGUAGES " ~  /~T//. 

REGULAR SETS 
FIG. 2. The position of R in the linguistic hierarchy 

'F~t?;oR:~;5.~ 15. Tkere 'is a deh*rm:inishTc CFL wkick is not real-time &ijinable. 
PROOF. Assume that the language L were defined by an n J t ' I  I~:[ T with d 

internal states and w working symbols. 
Consider those subsets L~, L~, . . .  of L such that, for each iateger m, L,,, is the 

set of all sequences 

l n L w i t h / c i  5~ m ( 1  < i ~ r). 
For given r, one readily verifies that the number of eq<liwdenee etasses of 

E,,+~(mod L) is no less than m ~. For, e(msider distinct initial sequences 

h = 0a~10~l . "  0 a~, 1 ~ hi , . . .  , h~ 5~ m ,  
arid 

l~ = 0<10~q . "  0 k~, 1 ~< kl , '~" , k,. < m .  

r ~ e • ==: I h ~re clearly is a sequence u @~ 0 ~, with a ÷ b .< m + r, such that h~ is in L, , ,  
and hence in L, wh:ile t.~u is not in L, , ,  and hence m)t in L by definition of L .... 

Now, by Lemma 1, we know that the rmmber of equivalence classes of 
d n 2n(m+r) E,,.~(mod A ( T ) )  cammt exceed ~a.w .w . However, it is easy to verify that,  

for sufIieiently large r and rn, m ~ > e '~'+" for any e(mstant c. 
I t  follows that T cannot define L, contradicting our assumption. Q.L.D, 

5. Decisicm Problems 

We briefly mention several problems eo:neemi~g real-time definability which are re- 
eursively unsolvable. The proofs follow readily from tile uasolvabitity of Post 's  
Correspondence Problem [7]. 

THEOaEM 16. (a)  The p'roblem of decMing whether or not an arbitrary language 
is a R T D L  is recur~qvely unsolvable. 

(b) The jbllowing problems a're reeursively unsolvable far RTDL's  X and Y: 

( i )  Is X equal to ¢? 

( i i )  Is X equal to ~*? 
• 

( i i i )  Is X cantext-Jree~ 

(iv) Is  X regular? 

(v)  Are X and Y disjoint? 

( v i )  Is X G Y? 

(vii) Is  X equal to Y? 
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