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1. Introduction

A major problem in the theory of artificial lnnguages s thet of finding efficlent
sigorithme for syolactic analysie. 11 np suiometon processes o tew lopul symbol
st each time unil, and desides memberhiy in the langusge immediately after
seanning the lagt input gymbol, then, W seme sonee, the autornaton wecognizes the
fanguage in mioimal tme, Automata which cperste i this pienner s sald to
sporate in rend Hme, and the class of lanpuages dofined by such avtomats nre called
real-time definable langunges, ’iz shis paper we stady the propertiss of a class of
sutomate which opernse b real tiene and of the chas of langunges defined by such

automata.
We begin in Section 2 with a definition sed degsoription of the model undor In-
vegtigation,

in Hection A the positive closure proporties of the elasy B of realtime definable
lsngonges are given, In partionlar i Js shown that B v s Boolean algebrs, and that
¥ is closed under minbmizsation, under the inverse of o resltime tr ansiluser mapping
and under suffixing with a regular set. Using the elosure of B under union, we exhibit
an inherenily simbiguous real-time definable context-free langunge.

In Section 4 the negative results about R ace given, {4 s proved that R is not
vhozed under concatenation, sven with regulnr sefs, nov under the Kleeone closure
operator’ or reversal. Beveral less Inporiant opevations are also considored, namely,
mapping by sequentisl machine, Yho operations of taking derivatives and quotients,
and the operation of maximization. As o corollary of these results, wo exhibit a
language which is definable in “twice real time” but which s not in B. Finally we
ghow that there is b deterministio context-free language (Giosburg snd Greibach [20)
which iz not in B, establighing the position of B in the ii:s-sfuim:%ﬁ hiet‘zwhyﬂ The
proofs of our negative results ai&*p&md only on the amount of information our
sutomats con acoess o8 & function of time. We exploit this faet to show that our
results are valid for o rather broad class of machines which includes most of the
machines which have been used in the Hterabure to study maltime computation.
This ohservation settles some open guestions concerning these other classes of
futomata.

"HAdis s ;t;rxguag,e then A% denotes the E-fuld conestenstion of 4 with jtesif, A* being the
language conalating of the pull word. The sloswre of 4 I then 4% = Uy smpt®, :
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646 ARNOLD L. ROSENBERG

In Sectlon 5 we mention o number of problems related o real-time definability
which are recursively unsolvable. In partienlar, we indicate that the problem of
deciding whether or not a langusage is real-time delinable 13 unsolvable.

2. The Modsl Btudied

2.1 We azsume faroflizrity with the soncepts of alphabet, tape, and set of tapes,
us wetl 58 with the various operations on tepes and sets of tapes.

We denote by L6 the length of tape L For finite sets A, we denole by #{4)
the cardinality of 4. Letting 4 X B dencte the cross-product of zets 4 and B,
AT is defined recursively by:

A = 4
A1 = 4 X (4]

2.2 The model we gtudy here i3 the online multitape Turing machine of Hart-
panis and Brearns (5] and Babin (8]

An n-tape online Turing machine {n-TM) comprises a finite-state control and
7 two-way infinite tapes on each of which Is positioned a mad-write seanning device.

At the oatset of a computation, the n-TM iz in o degignated initial state, and its
read-write heuds are positioned on arbitrary squares of the initially blank seratch
tapes {we denote the blank aymbel by #). The state set of the n-TM is partitioned
into “polling” states and “autonomous” stales.

If the - TM is in a polling state, then it receives » single input symbol, On the
basig of the cwrent state, the input symbol, and the symbols scanned on the
serateh tapes, the n'TH changes state, and esch read-write head writes at most
one syrabol from the working alphabet of the n/TM and moves independently at
most one sgquare to the left or vight on its serateh tape. The initial state must be a
polling state.

If the nTM is in an autonomous stete, then it does not receive any input sym-
bol; but it goes through one primitive astion as deseribed above solely on the basis
of the current state and the symbols being seanned on the scrateh tapes.

The polling states are partitioned into aceepting and rejecting states. An inpul
sequence is aceeptod (vesp. rejected) by an nTM if, when started in its initial
state with blank serateh tapes, snd with the input sequence available at its input
termingl, the #-TM  goes through a sequence of the primitive actions deseribed
above and ends up in an accepting state {resp. does not end up in an accepting
state),

An n-TM operates in real time if all states of the n-TM are polling states. It is
well-known that this “real time” restrietion severely restriets the computing power
of au #w-TM.

More formally,

Definition 1. An n-tape (n 2 0) online Turing machine, n-TM, is an 8-tuple
(K., K 2, WM, 8, s, FY where

(1) K, and K, are disjoint finite sets {the polling and qutonomous states,
respectively };
{2) 2 is an alphabet {of input symbols), and W is an alphabet (of working
symbols, containing By
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Real-Time Definable Languages 617

(3) M is the state-transition funetion which maps (K, X £ X (W) U
(Ks X (W) into K, UK, ;
(4) 8 is the action function which maps (K, X T X [W]"Y U (K, x [W]")
into {R, L, N}T" X {W]";
(3) & (the initial state) is & member of K, ;
(8) F (the accepting states) is a subset of K,,.
When Z and W are clear [rom context, we often denote an a-TM us (K, , K,,
M8 8, ).

A configuration of an n-TM (K, , K., Z, W, M, §, 8, F) iz an (n + 2)-tuple
C = (g ¢, zymyr, - -, ®my,) where g is a state, tis in =% the 2; and y; are nonnull
members of W™, and m is a special marker (not in W )} indicating the positions of
the read-write heads of the n-TM. If ¢ is a member of K, , and ¢” a member of K, ,
then

(g, at, zaamings, -, Taamtnya) — (¢, & oimy’, o, lmy)
or
(q", & Taumins, -, Clalilale) — tg, t, wmyd, -, :c,,'myﬂ’)

forain Z, £in 2%, the u; and v;in W, the @, y:in W*, and the 2/ and s .nLomlull
members of W*, under the following conditions:

(1) '1’ = M(g, @, 01, -, ) (resp, q’ = M(q”: Vi, o, t));

(2) if 8(g, @, 01, -+, ) (resp., S(g", 2v, -+, v.)) is equal to
(Dy, -+, Du,un, <o+, ), each D;in {R, L, N}, each w; in W, then for ¢ = 1,
e, 2 my) s equal to Zawamy. o Tamuavy; or Lavavany; according as Dy = N
orLorR?

We write O = (g, t, pmp, -+, Taaga) = O = (¢, (, z'myy, -+, 2. my.)
if either € = €’ or if there is a sequence Cy, «+ +, O of configurations with ¢; = C,
¢, = €', and C; — €y for each 1.

The computation of a tape ¢ in =* by an »-TM is a sequence of configurations,
(s2, 4, BmB, -+, BmB) = &, 1, -+, C;, -+- where 0; — (4 for all . The
computation is proper if, for some k, Oy = (g, \, xymin, -+« , Tays) (M being the
null tape) and ¢ is in K, . (One readily verifies that a computation is proper iff
the n-TM halts, and that the attained state g is unique if it exists.) The #-TM
aceepls the tape ¢ if there is a proper computation of ¢ ending in an accepting state;
Le, if (s, ¢, BmB, -~ , BmB) = (g, \, xomy, -+, Lainys) for g in F. The n-TM
rejects £f it does not accept £.

Definition 2. Let 3 be a computable monotone inereasing function from the
natural numbers into the natural numbers. An n-TM operates in time 3(p) if, for
every tape £ of length p, there is » proper computation of ¢ by the n-TM of length
not exceeding 3(p) + 1.

Our main interest is in a subclass of the class of n-TM’s, namely, those which
operate in time 3(p) = p.

Definition 3, A real-time n-tape (n > 0) online Turing machine, #-RTTM,
BannTM (K,, ¢, M, 8, ss, F). For brevity, we often denote an n-RTTM by
(K, M, 8, s, F),

Our notion of acceptance and rejection by an n-RTTM can be strengthened:

i

*If either z; or i is null, we replace it by B to conform to our definition of configuration.
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648 ARNOLD L. ROSENBERG

Atapet = o - & (m > 0) In =* is accepted {resp., rejected) by an 7-RTTM
T if the computation of ¢t by T is a sequence Cy, - -+, C,., and the state of T in
configuration C,, is a member of I (resp., £ — F).

We denote by A{T) the set of tapes (the language) defined ( altemativeiy
accepted) by the n-TM T. The class of lunguages accepted by multitape onliué
RTTM’s is denoted R, and it is called the class of real-time definable languages
(RTD1 g},

Remark. The number of squares of work tape that an n-RTTM ecan scan whilp
computing input sequence ¢ is clearly no greater than nl(t). It follows that any
language in R is definable by a deterministic linear bounded automaton { Kurods
[6]), whenee R is a subelass of the context-sensitive languages.

In Seetion 4.8, we show that R is a proper subelass.

3. Positive Closure Properttes
In this section we demonstrate the closure of R under a number of operations.

3.1 BooLeaN OPERATIONS

Terorem 1. The class of real-time definable languages is closed under comple.
mentation, mtersection, and union. It 9s thus a Boolean algebra.

Proor. Let X and ¥ be languages defined by the n-RTTM T'x = (Ky, My,
Sx, 84, Fx) and the m-RTTM Ty = (Ky, My, Sy, b, Fv), respectively.

(a) X, the complement of X, is defined by the n-RTTM Ty = (Kx, My,
8x, 80, Kx — Fx).

In effeet, Ty simulates the eomputation by Tx, merely “switching answers”
at each step.

Clearly A(Ty) = A(Tx) = X.

(b) Assuming that Tx and Ty are defined over the same input alphabet, the
intersection of X and Y is defined by the (m 4 #)-RTTM Ty = (Kv, My,
Sv, v, Fyv) where

(1) KV = Kx x Kr.

(2) Forés, in Kx X Ky, ws, -+, w, in Wy, and wy', +++, w, in Wy,
My({s, ), o, w1y -, Wa, 'wll) R wml) = {Mx(s 0,1, "+, wa )i X
(Mo(t, o, w’, -, wa )}

(3) If
Sx(s,o-’wl, ...’wn) = ([)1’ "';Dn;BL, ...“3ﬂ)
and
SY(tﬁ Ty w'l’: e wm’) = (Dl,s T Dm’; i, ", 6m>
then

Su(ls, O, 0, W0, ++r ) W, Wiy o+ W) = (D, <+, Du, D, -y Das
Biy, oy Bay b, v, 5'M>-

(4) Vg = (So, tu).

(5) Fy = Fx X Fy.

T, simulates Ty on tapes 1, - - -, n; and it simulates Ty on tapes (n + 1), * >
(n 4+ m). Ty accepts an input tape when, and only when, both Tx and Ty aceept
it; therefore, A(Ty) = A(Tx) N A(Ty) = X N Y. ,

(¢) The closure of R under union follows from parts (a) and (b) and De Morgan 8
law. Q.E.D.
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Real-Tiwe Definable Languages 649

Tt is obvious that the sets A = {aBe4, 7 > 1) and B = {oB714, 5 > 1] are
both real-time definable. 8ince A N B iz not context-free, and since A U Ris
inherently ambiguous {see Ginsburg and Ullian {4]), Theorem 1 yislds the following
two corollaries,

Cororvary 1.1, There are real-time definable languages which are mot contevt-
free,

Cororrary 1.2, There are inherenily ambiguous real-time definable contexi-free
languages.

Rabin {8] has proved that, if Ty is a LL-RTTM and Ts is o 1-RTTM, then it may
be the case that A{Ty) U A(T.) {and, hence, A('Ty) 1 A(T2)) is definable by a
2.RTTM, but by no 1-RTTM. Thus, the construction of Theorem 1(b) may be
the best possible with respect to the number of seratch tapes.

3.2 Suvrrrxine Wrrwn A Reaunag Ser,  In this section we prove that, whenever
aset A is real-tirae definable, then for every regular set B, AB iz real-time definable.
Tn Section 4.1, we shall show that BA need not be real-time definable, thus obtain-
ing the first asymmetric result about R.

Definition 4. A finite automaton (FA) with input alphabet £ is a 4-tuple
T = (K, M, s, F) where

{1) K is u Linite set of states;

(2) M is the state-transition function which maps K X ¥ into K;
(3) s € K, the imitial sfate;

{4) F C K, the accepting states.

An FA is, thus, 2 0-RTTM.

An TA-definable language is called o regular sef. Thus, every regular set is real-
time definable.

TreoreM 2. If A is a real-time definable language, and if B 45 a regular sef, then
the language AR 13 real-time definable.

Proor. Let 4 bhe defined by the n-RTTM,

T, = {(Ks, My, 84,5, F4),
and let R be defined by the FA,
Te = (Ku, Mg, b, Fr)-
The n-RTTM,
Tae = (Kur, Mg, Sig, us, Fir),

defined as follows, recognizes the set AR.
(1) K = K, X 2" where 2% is the set of all subsets of the set K.

Letu = {s, X) where s € K,and X & K. Forv in Z and wy, -+, ws
in W,
(2) Maelu, o, W, ~++, W) =
() (Moo, @, o w) X (e U U (M )} if
Mals,o,mw, ~+,wa) isin Fy;
(i) IMals, o, w, o+, wa)} X (EX{MRU, 7)}) otherwise.

(3} S_{E(u, T, Wy, ,'wn) = S,;(S, o, Wy, ywﬂ»)’
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650 ARNOLD L, ROSENBERG

(4) g = <f<.sg, fol) i s s in
(80, &) otherwise,
(53 Fap = {u & Kepiu = {3, X) and XNV Fr = ¢,

The proof that A (1.0} = ALT AR = AR is straightlorward and iz omified,
QED.

2.8 Twveess or o Rearn-Trvwe Travsovcrr Mareivg,  In this section we show
that the inverse image of  BRTDL under mapping by a real-time transducer is
again real-time definable. In Section 4 we shall show that the direct image of & set
in R under sequentinl machine mapping (a degenerate case of real-time transducer
mapping) need not be real-time definable.

An n-tape resl-time transducer, n-RTT, is essentially an n-RTTM with outputs,
Maore precisely, an n-RTT is an 8-tuple U = (Q,2,V,A, N, § P, qu) where

(17 @ I8 the set of states of U;
(2) £ 1s the nput alphabet of U;
¥ iz the working alphabet of 1;
A is the output alphabet of U;
(3} N is the state-transition function which maps @ X 2 X [V into Q;
(4) 8§ is the action function whieh maps @ X Z X [V[" into [{ B, L, N}J" X [V]";
(5) P is the output function which maps @ X £ X (V)" into 4™
(6 g & € is the initial state.

An #-RTT operates much as does an n-RTTM with two exceptions. First, an
n-RUT hag no distinguished “accepting” states. Seecond, and more basic, at every
primitive action, the n-RTT emits a (possibly null) output word over its output
alphabet: A,

Let U = (Q, %, V, A, N, 8, P, g) be an n-RTT. The P-function is extended to

tapes in the obvious way; if ¢ igin @i o in Z;un, -+, wa in V, then for any tape sz
over £ P(q, om, wy, -0, wa) = Plg o, wy, oo, wa)PG 5w, -0 0, wa) where
t= N(q, o1, W) and 4, -, %, are the symbols under scan on the work

tapes of U after the primitive action esused by state g, iuput symbol o, and work
sytobols wy , <+, W, .

For any tape @ over & we denote by U(z) the tape P{g, z, 8, -+, B) over A
We further denote by Ly the mteger

Ly #= woax {L{P{g, 2, w, -, w.]}].
ses
wyE ¥
For any language 4 and 2-RTT U, the inverse image of A under U is the set
UA) = {x:0(x) is in AL

Our proof of the closure of R under inverse n-RT'T mapping depends on the fact
that when an n-RTTM is presented with an input sequence of length k, it can alter
at most k squares on any scrateh tape.

Assuming familiarity with the so-called timing funetions of Hartmanis and
Stearns [3], we proceed to our theorem by a series of intermediate results. (CL
Definition 2.)

Tarorem 3 (Hartmanis and Stearns (3]).  If the language A is definable in time
L{O 4 BOLLO)Y, BCLATYY 2 0, then, for any k > 0, A 43 definable in time L(L) +
RE(L()H]S :

3 If 2 ia & real number, then {z] denotes the least integer k such that k 2 .
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In particular,

CoroLLArY 3.1, If A 4s definable in time el(1) for some e > 1, then A s definable
in time (1 + {(¢ — 1)/RDL(E) for any k > 0.

The import of Theorem 3 is that, given an n-TM, for any integer 7, one can
effectively find an n-TM which does in one serateh tape operation what the original
did in 7 seratch tape operations between polling input symbols,

Unfortunately, an #n-TM which recognizes a set A in time 2L(1) canuot, in general,
be replaced by any m-RTTM. In Section 4.5 we present a set A which is 2LLE)-
recognizable, but which is not in R. However, if the compression of » operations
into one suffices to speed up an n-TM to operate in real time, then the algorithm
of Hartmanis and Btearns [5, Theorem 2, p- 200! affords us & method for effecting
this speed-up. In particular, if an »-TM reads its inputs at a constant rate,
the algorithm will produce an equivalent n- RTTM. We now show thab the n-TM
which defines U™'(4) for 4 in R is of this special variety.

Tueorem 4. If A is a RTDL and if U 4s a real-time transducer, then U™ (A) 4s
a RTDL,

Proor. Let the RTDIL A be defined by the n-RTIM 1T = (K, A, W, M, 8,
so, ), and let U = (Q,2,V,A, N, R, P, ) be an m-RTT. Note that A is the input
alphabet of T and the output alphabet of U.

The (m + n)-TMT = (L,, L., 3, WUV, M, 8, s, ') defines U™ A) in
time (¢ -+ 1)L{¢) where ¢ = Ly .

(1) Ly = K X @ X {A\} where N is the null word;
(2) Lo is empty (Le., T is an (m + n)-RTTM) if ¢ = 0, otherwise,
Ly = K X @ X U.c, A" where A’ is the set of all words over A of length <4,

LetabeinZ,w, o+ ,w, 0o W, andzy, -+, vnin V.
(3) For(s, g, \)in L,
ﬂ[[,(<3: 4, h)) a, Wi, -+, w-n, Wy, y vm)

= (S, ‘V(QJ a4, Vg, 0, vm)} P(Qs & Upy o r”mD;

and
s
S Ny e, o Wa 0y, e, )
£<Nl".lN!Dly"'!Dmllu/‘ll". )wnjuli”'3u"’l>
&—-—.\/_.._J
n

where R(q, a, 1, - , %) = (D, <+, D, %, ", tmh
(4) For(s, ¢, b1 - byin Ly (r = L and b, in A),
M8, @ by Bt Wiy e Wy by Ue) = (M8, by, e, e, ), g, 2
where
t=by--- b U r>1, and = = if r=1,
and
S8, g by e by Wiy o, Wy By, e D)

=(D1:---’DH’N’ "';N’u!.)"‘;1‘“&,”1,"'7”171)
"\_‘_W.,.__._,,J

W
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where
S('grﬁl)w'l)"' :wnj == (-Di, JDﬂ-sulz ;un>‘

(5) s = (80, qo, N>
(6) F' = FF % Q@ X i\
Thus T alternately simulates T on tapes 1,---, n and U on tapes
n 41, - ,n 4 m. Itis clear from the deseription of T' that 4(T") = Uﬁl{zl("l‘j}
= U™ A). Now, T seans a new input symbol after no more than ¢ serateh tape
operations. Obviously, by adding “dummy” symbols, we could alter T 50 that it
read at the constant rate of ¢ operations per input symbol. Thus, if we eould com-
press ¢ scrateh tape operaticns of T into one, we could dispose of the autonemons
states La , and, thereby speed T  up from {¢ + 1)L(#) to real time. However, the
algorithm of Hartmanis and Stearns does just this. Thus, using the above con-
struction and their algorithm, we can effectively define an (m + n)}-RTTM T sueh
that 4(T") = A(T) = U (4). QED.
A generalized sequential machine {gem) is & 0-RTT. Theorem 4 thus yields
Corornary 4.1. If A is w RTDL, and if G 48 a gsm, then G (A)isa RTDL,
Cororrany 4.2. If some homomorphic' image of & language A s real-itme de-
finable, then A is real-time definable.
In Section 4.4 we shall prove that the inverse image of a RTDI. under aon-
deterministic sequential machine mapping need not be in K.

3.4 MinpuzATioN. In this section we demonstrate the closure of R under
the operation of minimization.

We say a tape 2 is a proper prefix of a tape y, denoted z < y, if there is a nonnull
tape z such that y = xz. Let 4 be a language. We define min 4 = jyiy € A, and
ifae <y xé Al

Tuporem 5. The class of real-time definable languages ¥s closed ynder minimiza-
tiomn.

Proor. Let the RTDL A be defined by the n-RTTM T = (K, M, 8, s, £}
Then min 4 is defined by the n-RTTM Ty = (K, M, &', s, F) where

(1) K" = K U {d} where d is a symbol not in K;

Forein Z, and wy, - -+ , 0, in W,

(2) M'(s,a,u0, -, Wa) = {iﬂs’ Ty ) fle]z 11?1 g} !
M'(dy o, wy, - wn) = d;

(3) 88,0, wy, -, wa) = 88,0, w, -, w,) forsin K,
Sd, o, wy, e, we) = NI X [y, o, wad

T\ simulates the action of T until T would accept sote prefix of the input tape.
Tois then enters a “dead’” state d, Clearly, A{Twmia) = min A(T). QEI.

One can define a max operator symmetrically to the definition of min. In Section
4, we shall prove that R is not closed under max, thug obtaining yet another asym-
metric result.

3.5 Tare CoxsgrvaTioN. Thus far we have avoided explicit mention of the
minimum number of tapes needed to recognize a particular RTDL. In general, the

A homomerphism of £* into A* is a mapping A such that k() = A, k{a) is in a* for each in
s, and h(m ... a) = klw) ... hag) for each sequence ar ... ar of elements of 2. For 4
==, the image of A under the homomorphism b is the met h(A) = {h{x)ixisin A}.
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problem of whether or not an (n 4+ 1)-RTTM is strictly more powerful than an
n-RTTM is still open. Rabin [8] has showed that a 2-RTTM is strictly more powerful
than a I-RTTM. We ean, however, assert the following.
Remark. Let R{n) denote the class of languages defined by n-RTTM’s. Then,
for all n,
(a) R(n) is closed under complementation;
(b) R(n) is closed under union and intersection with regular sets;
{e¢) R{n) is cloged under suffixing with a regular set;
{(d) R(n) is closed under inverse gsm mapping;
{e) R(n) is closed under minimization.
Remark. R(1) is not closed under union or intersection, nor under inverse real-
time transducer mapping.
A more detailed study of R(n) will be the subjeet of further research.

4, Negative Closure Properties
We now exhibit several operations which do not preserve real-time definability.

4.1 ConcaTeNATION. In this section we prove that R is not closed under con-
catenation, even with regular sets. The proof depends on a series of definttions and
lemmata.

Definition 5. Let A be a set of tapes. The relation Ey(mod A) is defined as
follows for tapes z and y:  zEwy{mod A) if for all tapes 2 of length less than or equal
to k, xz is in A when, and only when, ¥z is in A.

Obviously, Ex(mod A) is an equivalence relation.

Lemma 1 (Hartmanis and Stearns [5]). If T is an n-ETTM with d stales and
w working symbols (including B), then the number of equivalence classes of
Ei(mod A(T)) cannot exceed d-w™™*,

Let us now restrict our attention to alphabets £ containing at least two elements.
We may assume that {0, 1} C Z.

We define the language

P = {116110028t":2 € 2%, t € 2% — 2*112% 8 ¢ ).

Lemma 2. The language P is real-time definable.

In faet, P is definable by a real-time pushdown automaton (Ginsburg and
Greibaeh [2]).

Our goal is to show that Z*P is not real-time definable, We accomplish this by
examining the rate of growth of the index of Ex(mod 2*P),

Definition 6. TFor all integers m, let X, be the set of all tapes of length m. over
{0, 1} such that no tape contains two consecutive 1’s. :

The Fibonacei numbers are defined thus: (1) @ = a = 1; (2) fora > 1,
Ui = Qny + Gy . It i3 well-known from the theory of finite difference equations
that, for sufficiently large n, a, > (1.6)"

Lamya 8. For all m > 0, the number of tapes in X, , denoted # (m), 18 precisely
the (m 4 1)-th Fibonacci number.

Proor. The proof is by induction on m.

Base: ¥(1) = 2 = gz, and #(2) = 3 = a;, since X; = {0, 1} and
X, = {00, 01, 10}. :
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Hypothesis: Assume that, forj < », #(j) = .

r 4 1: The members of X, are obtained from those of X, as follows:
(1) If tis in X,, then Of is in X,4a. This contributes ¥ (r) tapes
t0 X,—.H .

(2) If ¢is in X, , then 1t is in X1 if, and only if, the first symbol of
tis a 0. By step (1), this contributes precisely # (v — 1) tapes

to Xr+1 .
Obviously, X, is exhausted by steps (1) and (2), whence
(lr4+1)= &)+ $(r — 1) = @1+ & = Orp2. Q.E.D.

Now, there are precisely 2*™ subsets of X, . We now show that each nonempty
subset determines a distinet equivalence class of Epa{mod z*P).

Definttion 7. For each tape ¢ in X,, , we form the tape o = 11¢,1100 o length
m 4 0. .

For each nonempty subset ¥ = {4, -+ , &} of Xp (1 £ < 2% _ 1) we form
the tape §; = awon - - - o of length (m + 6)r.

LemMa 4. [f the tape L 1s in ¥V & X, | then 8§87 1s in =*P.

Proor. Obvious from construction of &;.

Letting k = m + 1, we obtain

Lemva 5. Letting 6, and Y, be as in Definition 7, 8:F0,6,(mad 2*P) only if
Y.; = Yj .

Proor. Assume that ¥; # ¥;. Then there is a tape ¢ in either Yy — ¥; or
Y, — ¥,;. Wemay assume without loss of generality that there is a tapetin Y, —Y;.

By Lemma 4, :6t" is in Z*P. We claim that §;8t" is not in z*P.

Assume that 68" were in 5*P. This would, by definition of P, imply that §; has
a subtape of the form 1121100 such that 2 contains no two consecutive 1’s and
z = t. However, by construction, 8 = 1141100 - - - 1141100 where Y; = T, o, bl
Thus the only subtapes of 8; of the form 11x1100 where L(z) = m and z contains
no two consecutive 1’s are precisely those of the form 1141100 where 7, is in Y;.
Thus, if 5;8" is in Z*P, then { is in ¥;, contrary to assumption.

We conclude that 6,87 is not in Z*P if ¢ is not in ¥;. Sinee L(t) = m, we have
shown that 5.,6;(mod Z*P) only if Y5 = ¥;. Q.E.D.

Sinee each 5;(1 < ¢ < 2% — 1) is thus in a different equivalence class of
Fx{mod Z*P), we have proved.:

#(IJ:FMMA 6. The number of equivalence classes of Epa(mod 2*P) is no less than
2 — 1. :

We are now in a position to show that Z*P is not in R.

Tunorem 6. The class of real-time definable languages is not closed wnder con-
catenation.

Proor. Assume, for contradiction, that the n-RTTM T defines =*P. By
Lemma 1, the number of equivalence classes of Ei(mod A(T)) cannot exceed
en = d- w0 Now, for large k, #(k) = @ > (1.6)*". Therefore, the number
of equivalence classes of E.(mod =*P) satisfies

gU* < o¥k—T _ 1 < index of Ex(mod Z¥P)

for large k. Since 248" o for large k, T cannot define =*P contrary to assump-
tion. Thus 2*P is not in R.
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We have thus found two RTDL’s, 2* and P, whose concatenation is not a
nTDL. Q.E.D.

Since Z* is a regular set, we have, in fact, proved

Praposition 1. The class of real-time definable languages is not closed under con -
catenation with regular sets.

42 Kueeve Crosure OprraTor. [Jsing the results of Section 4.1, we show
that R is not closed under the operation of closure. The proof will follow from the
tollowing general result.

Let @ be a class of [anguages. We say that @ iz admissaible if

(a) @ is closed under union and intersection with regular sets;
{b) there is a language L, over an alphabet Z, in € such that, if § is a symbol
ot in %, then L{8} is in @ while =*L{8} is not.

TuroneMm 7. If @ is an admissible class of languages, then © is not closed under the
operation of closure.

Proor. Let L be a member of @ which satisfies part (b) of the definition of ad-
missible; and let 6 be a symbol not in the alphabet £ over which L is encoded.

Since £* is a regular set, it follows that the language H = L{§} UZ" isin €. We
claim that H* is not in €, '

Assume, for contradiction, that H* were in @. Since {3} is a regular set, it
would follow that J = H* N =*(5} were in €. However, onc can easily sec that
J = 2*L{8} which iz known not to be in @, We eonelude that € is not elosed under
closure. Q.E.D.

LEmMma 7. R is an admissible class of languages.

Proor. That R is closed under union and intersection with regular sets is a
corollary of Theorem 1.

To verify part (b) of the definition of admissible, consider the language P of
Section 4.1. Sinee R is ¢loged under suffixing with regular sets, it follows that P{3}
is in R for any symbol 8. Mareover, the proof of Theorem 6 shows that Z*PLs) is
not in R. { The terminal 8 docs not affect the preof.) Q.E.D.

Since R is admissible, we obtain

TurorEM 8. The class of real-time definable languages is mot closed wnder the
operation of closure.

Remark. The proofs of Theorems 6 and 8§ serve to demonstrate that the elass of
languages defined by real-time pushdown automata is not closed under concatenation
or elosure.

43 Rnversan. In this section we prove that R is not closed under reversal.
As u corollary to this proof, we show that there are languages which are definable
in time 2L(¢) (and henee, by Corollary 3.1, in time (1 + €)L(¢)), but not in real
time,

The language @ defined as follows is a RTDL, while its reversal is not.

@ is the set of sequences of the form

{300114110011411 - - - 0011#11

1_'«‘here ()t b, -« , & are in X, for somem, and 8 € {0, 1}, and (2) for at least one
1L, - v, k), t; = t7, the reversal of the initial segment £
Lemuma 8. The longuage Q is a RTDL.
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Proor. We sketeh the operation of a 2-RTTM T which delines Q. The intep.
ested reader can easily ill in the details.

The operation of T proceeds as follows:

(1) While reading the initial segment / of the input, T coples ¢ on each of itg
work tapes, verifving that ¢ contains no two consecutive 1’s.

(2) As 4 comes in, T checks, on tape 1, that & = ", I (k) = L{1), T enters 5
dead state; if &y = ¢7, T proceeds to step (4); if & = 7, T proceeds to step (3),

(3} As fpy (resp., fpr) comes in, T cheeks, on tape 2 (resp. tape 1), that
L (resp. lasa) = {7, simultaneously restoring tape 1 {resp., tape 2) so that the read-
write head is on the rightmost square, If L{6:) (resp., Litaa)) 5 LU0, T enters a
dead state; if fu; (resp., fupa) = ¢, T proceeds to step (4); otherwise, T repeats
step (3).

(4) Having found a £ = ¢", T checks, on tape 1 that all subsequent # are of
length L{¢). T enters an accepting state whenever it finishes scanning a segraent
t11 where L{¢,) = L(t).

The tape situations of T are illustrated in Figure 1. It is clear that T defines
in real time. Q.E.D.

TurorREM 9.  The class of real-time definable longuages is not closed under reversal.

Proor. Note that Q" is a subset of Z¥P from Section 4.1. The proof of Theorem 6
actually shows that Q7 is not a RTDL. The nonelosure of R under reversal thus
follows from T.emma 8 and the proof of Theorem 6. Q.E.D,

Levua 9. The language Q7 is definable in time 2L.(t).

Proor. A 3-TM defining @7 merely eopies the input on one of ite tapes, and then
proceeds to simulate the 2-RTTM T of Lemma 8, The 3-T'M rejccts any tape

11411001141100 - - - 11£,31008¢

TAPE | [ 1
HEAD |
TAPE 2 i '
HEAD 2

{a)
TAPE | t
HEAD |
TAPE 2 1
HEAD 2

tb}
TAPE | 1
HEAD |
TAPE 2 \ J
HEAD 2

{¢}

Fic. 1. (a) The tapes of T after reading ¢, (b) the tapes of T alter reading
t2i-1, (¢) the tapes of T after reading & .
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o]
o5
=}

such that L) # L{#)—this is how it determines the end of the input tape. Once
more, the details are left to the reader. Q.E.D.

We thus obtain:

P_Topositian 2. There is a language which is definable in time 27(1), and hence,
in time (1 -+ ) L{1) for any ¢ > 0, which is not real-tirne definable.

4.4 Mapring Drvicrs.  The results of Section 4.1 afford us an easy proof of the
nenelosure of R under mapping by various devices.

A sequential machine is & 0-RTT (9, 2, 4, M, B, ¢) such that E {the output
function) maps ¢ X Z — A.

Let us recall the language P of Seetion 4.1, P is a language over the alphabet
¥ = {0, 1, 8]. Therefore, if we let A = {a, b} where o and b ure not in £, it is obvious
that A™P is » RTDL.

Consider now the sequential machine U = {{g}, 2UA, 2, M, &, q) where
(1) forein Z UA: M(Qu: ") = o, (2) Riqurﬂ) = R{‘Yu, 0y = g, R’:q€37 b) =
Rige, 1) = 1, Riq, B) = 8.

Clearly U(A*P) = {0, 1}*P which we know not to be in R,

We thus have shown,

TaroreM 10. The image of a rveal-time definable lunguage wnder sequential ma-
chine mapping need not be real-time definable.

Coronrary 10.1.  The image of ¢ RTDL unier gengralized sequentiol mochine
mapping need nol be o RTDL.

Comnornary 10.2.  The homemorphic image of o RTDL need not be 4 RTDL.

Proor. A homomorphism ean be effected by a one-state gmn.

CoroLLary 10.3. The smuge of a RTDL under real-time transduction need nol be
a RTDL,

Finally, we prove that the inverse image of & RTDL under nondeterministic
sequential machine mapping need not be real-time definable.

A nondeterministic sequential machine is a 6-tuple U = (@, 2,4, M, B, Qo)
where ( is a finite set of states, T is the input and A the output alphabet, M is & maap
from Q X £ — 2% R isa funetion from @ X Z A¥ and Qo © @ is the set of initial
states. U operates in the obvious way. The image, with B extended to @ X A
Ulz) = Ugea, Blg, z) of a tape x under U i now # set of tapes: precisely that set
obtained by following all paths U describes { via the M-mapping) under mput .

Consider now the nondeterministic sequential machine U defined as follows:
= {Os 1,B8,A = {II, 0,1, 6}! Qe = "20 ’ ql}-

M| 0 1 4 B |0 1 8
i) i, q) g, {q:l ‘ o ! a P A
@ o, gt el {gs} @ ¢ 1 a
¢ {90} {2 {ga} 1 s a a i
0 [l {qs} {gs} g 0 3 #

S

The language L = {utpt™ it € {0, 1} w0 € [at* 8 € 10,1, a}} isa RTDL. The
inverse image of L under U is UL = {@:U(x) NL # gf = [afydt:z, ¢

y € {0, 1% 8 ¢ {0, 1}}. The proof of Theorem 6 in Section 4.1 suffices to show that

U™ L) is not in R. r .
Proposition 3. The inverse image of & RTDL under nondeterministie sequential

machine mapping need not be real-time definable.
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4.5 DrrrvaTives Axp Quotients. In thig section we prove that neither the
derivative® nor the quotient of a RTDT. by a regular sct need be real-time definable.

Definition 8. Let A and B be languages. The derivative of 4 wr.t. B, denoted
Dgp{A), is the set

Dp(A) = {yiwy isin A for some 2 in B}.

In the terminology of Ginsburg and Spanier [3], Ds(A) is the left guotient of A by
B and is denoted B\A.

Reecalling the language @ of Section 4.3, we consider the sct V of sequences of the
form

131141100114,1100 - - - 11£,11008¢

where (1) for somem, &, 4, -+, lrare in X, , and 8 is not in {0, 1}, and (2) for at
least one ¢ € {1, --- , k}, & = ¢

Lemma 10, The language V 4s o RTDL.

Proor. A 2-RTTM which defines V operates almost identically to the 2-RTTM
which defines @ ( Lemmma §) except that upon encountering the second g it cheeks
that the terminal string is identical to the initial string, A glance at Figure 1(b)
and (¢) indieates that this is always possible. Q.E.T),

TuEOREM 11. The dervative of & RT DL with respect to a regular sel need not be
real-time definable,

Proor. By Lemma 10, V is a RTDL; the set A = [0, 1} ™8} is regular. How-
ever D4(V) = Q7 which we showed not to be real-time definable ("Fheorem §).
Q.E.D,

Now, drawing on the results of Section 4.1, we show that the quotient of a set in
R by a regular set need not be real-time definable.

Definition 9. Let A and B be gets of tapes. The quotient of A by B, denoted A/B,
ig the set A/B = {z:zy isin A for some y in B}.

Ginsburg and Spanier [3] refer to A/B as the right guotient of 4 by B.

Recalling the sets P and TP of Section 4.1, we define R to be the set of all tapes
of the form

2118 looyﬁtTaaL(y)~E<L(z)+ﬁaaL(:)+s

where z, y are in £%, tisin =% — Z*IIE*, @ iz a member of Z, a* denotes a string of
k u’s, and 8, 8 are not in Z.

Lemma 11, The longuage R is definable by a 2-RTTM.

Proor. As in the previous lemma, we informally describe the operation of the
2-RTTM T which defines R.

(1) T copies the mput symbols onto tape I until it encounters the symbol 8.
It then stores the next input symbols on tape 2 until it encounters the first 8. Ab
this point, the read-write head of tape 1 (resp. 2) is on the rightmost symbol of a
copy of 1141100y (resp. t*).

(2) While receiving the string a“” "% T moves tapes 1 and 2 so that, by the
time the second § is envountered, the read-write head of tape 2 is on the leftmost
nonblank symbol of tape 2, and the read-write head of tape 1 is on some symbol of

& The term ““derivative” was, to the author’s knowledge, introduced by Brzozowski, Derivatives
of regular expressions, J. ACM 11 (1964), 481494,
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the segment x11£1100y. Note, il the input tape is, indeed, in &, the read-write head
of tape 1 will be on the leftmost symbol of the segment 11£1100y.

(3) While receiving the terminal sequence a" "™ T checks that tape 2 contains
{7, where the initial segment of length L{{) -+ 6 to the right of the head on tape 1 is
11£11C0. T enters an accepting state if this last condition is fulfilled.

Clearly, A(T) = E. Q.E.D.

As the reader can readily guess, we now consider the regular set A =
(8}{a} *18}{a} ™ 1t is clear that R/A = =*P which we showed (Theorem 6) not to
he real-time definable.

Since B is in R, and A is a regular sel, while £/4 is not in R, we have proved

Turorem 12, The quotient of a real-time definable language by o regular set need
not be real-time definable,

4.6 Maxmzarion. The final operation we shall consider is maximization.
Let I. be a language; then,

max I, = {z:x € L and if x < y, then y ¢ L}.

Tazorem 13 (A. R. Meyer®), There is @ RTDL L such that max L is not real
time definable.

Proor. We assume familiarity with the concepts of universal Turing machine
and the arithmetization of Turing machines.

Let us consider an arithmetization of Turing machines under which every natural
number 2z eorresponds to a Turing machine. We assume the integers are encoded in
binary.

We are given a universal TM T, and we define the language H as follows., H is
the set of all sequences of the form 82 where

(1) zisin {1}{0, 1}* 8 is not in {0, 1}, 2 is in {0}%;

(2) the universal TM T discovers in at most L{z) — L(z) steps that the TM
corresponding to z considered as a binary integer, halts when applied to input =.
Symbolically, T wverifies in no more than L(z) — L{z) steps the predicate
(FAn)T(x, z, n).]

The language L is now defined as

L = {1}{0, 1}*{g} VH.

Now H is, by definition, definable by a 1-RTTM.' A 1-RTTM copies the input
string on its work tape until it encounters the symbol 8. It then backspaces on its
work tape, one square for each incoming 0 until it reaches the leftmost end of z.
From this point on, it simulates one step of the universal TM T for each incoming 0.
The 1-RTTM enters an accepting state when it finds that T would halt with a YES
answer on input x, remaining in this accepting state as long as it receives 0 inputs.

Since H is o RTDL, it follows from Theorein 1 that L is a RTDL. However, one
readily verifies that

max L = {zg:x € {1}{0, 1), 8 ¢ {0, 1} and (¥n) -~ T(z, 2 n}},

¥ Private communication

? The predicate T'(z, y, n) means that TM z, applied to input ¥, halts in # steps.

* By considering the language H/{8}]0} *, one obtains an alternative proof of Theorem 12. In
fact, one obtains the strengthened result that the quotient of a set in R(1) by a regular set
veed not be in R,

Journal of the Association for Computing Machinery, Vol 14, No. 4, October 1967



660 ARNOLD L. ROSENRERg

which is obviously not a roeursive set. Since every RTDU is eontext-sensitive and,
therefore, recursive, we conclude that max L is not real-time definable. QE.D,

4.7 Txvartance or tE Restors. In this section we note that the negative
results obtained in the previous sections are valid for u large class of machines,
including almost all the models which have been used to study real-time compuy.
tation. As a corollary of this observation, we obtain a proof that, for all #, the clags
of languages defined by n-dimensional iterative arrays of finite antomata (Cole [1))
is not closed under the Kleene clogure operator.

We recall the definition of the relation Fy{mod 4} { Delinition 3).

Definition 10. A class 9 of machines is of polynomial-limiled accessibility if, for
any machine M in 9%, there exist constants ¢ and »n such that, for £ > 1, the index of
E.(mod A(M)) does not exceed ¢,

We mention several examples of polynomial-limited access classes of machines:

(1) the class of real-time multitape Turing machines;

(2) for any n, the class of real-time multihead TM’s with n-dimensional tapes.

(3) for any n, the class of real-time n-dimensional iterative arrays of finite
automata.

A perusal of the proofs in Section 4 suffices to show:

TugoreM 14. Let I be any class of polynomial-limited accessibility machines.

(a} If the cluss of languages, L{M), defined by M-machines includes the class of
languages defined by real-time PDA’s, then L{9) ¥s not closed under concolenalion,
even with reqular sets, wnder closure, not under sequeniial machine mapping.

(by  If the class of langunges defined by dM-machines includes the class defined by
2-RTTM’s (which, perforce, subsumes case (a)), then L(IN) ¥s not closed wunder re-
versal, nor under the operalions of taking derivatives and quolients.

One may note that the languages defined by any of the classes of machines
mentioned above are all recursive. They are, thus, not closed under maximization,
by Section 4.6.

4.8 Posrrioy oF R v tee Livevistic Hierarcrry.  In Section 2 we noted that
R is a subelass of the context-sensitive languages. The results of Sections 3 and 4
indicate that R is incomparable to the CFL’s; that is, there are CFIL’s {such as
T*P of Section 4.1) which are not real-time definable, and there are RTDL's (such
as [a"b"¢":n > 1}) which are not context-free. In this section we exhibit a deler-
ministic CTL which is not in R. This will verify Figure 2 which indicates the po-
gition of R in the classical linguistic hierarchy.

Let L be the set of all sequences

0*110%1 - - - 0*-110% @ 0F e

where (1) @ isnot0orl; ,
(2 r>landk =101 <4< r);
B3)1<ssr

One can easily verily that L is a deterministic CFL, We show L not to be in R by
considering the index of Ep(mod L) as p grows.

Nore. Cole [1] and the author [10] have independently found another example
of & deterministic OFL which is not in R. We consider L because of its simplicity
and intrinsic interest.
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/im‘?& AT - SENSTTIVE LANGUAGES
-

e
CONTEXT-FREE ™
LARNGUAGES
RESL-TIME DEFIABLE

o ' LANGUAGES
DETERMINISTIC ¢ -~
CONTEXT-FREE /J

Car

BHGUAGES \\
™~ /

FESULAR SETS

Fi1o. 2. The position of I in the linguistic hivrarchy

Tuvorem 15, Theve 4z o delerminestic CF L awldch 1s not real-time definable.
Pgroor.  Assume thut the language L were defined by an n-RTTM T with d
internal staies and w working syrobols.
Consider those subsets Ly, Ly, -+ of L such that, for each integer m, L., 18 the
set of all sequences
gm0t - oF ol @0 o
'n Lwithhk; <m (1 <i<or).
For given », one readily wverifies that the number of enquivalence classes of
Eo{mod L) s no less than »'. For, consider distinet initial sequences
o= oMt 0, LS A, e S omy
and
o= 0F0%1 - 0f, LKk, ke S om.
There clearly is a sequence v = &° 0", with o - b < a1 4 7, such that fu is in Lo,
and henee in L, while & is not in Ln , and hence not in I by definition of L. .
Now, by Lemma 1, we know that the nnmber of equivalence classes of
Eoplmod ACTY) eannot exeeed d-w"-w™ " However, it iz easy to verify that,
for sufficiently large + and o, m” > ¢ for any eonstant ¢
Tt follows that T cannot define L, contradicting our agsumption. Q.E.D,

5. Decigion Prolblems
We briefly mention several problems concerning real-time definability which are re-
cursively unsolvable. The proofs follow readily from the unsolvability of Post’s
Correspondence Problem (7).
Tusorem 16, {a) The problem of deciding whether or not on arbitrary language
is o RT DL 75 recursively unsolvable,
(b} The following problems are vecursively unsclvable for RTUDEL s X and Vi
(1) Is X equalio ¢?
(ity Is X equal fo 2*?
(i) Is X context-fres?
{iv) Is X vegular?
(v) dre X and Y digjoint?
{vi) IsX CY?
{vii) Ts X equal o Y7
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