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apgrasct. Theoretioal methods, bassd on a priorl pointwise bounds, for approximating solu-
weng of many elliptic and parabolic initial and/or boundary value problems, have been de-
veloped in meent years., These methods, however, are relatively uoknown to potential users
singe appiieations of the methods have not appeared in the literature. In this paper their useful-
ness is illustirated by employing some of the author's theoretical results ag a basis for the con-
airuetion of & digital program to compute an approximate solution of an initisl boundary value
problem for the heat equation.

Voo Padroduction

I & recent paper (8] the auther develops a procedure, based on 2 priori pointwise
bowunds, for approximating she solution of the first initial boundary value problem
for & rather genernl second order parabolic equation. In this paper we examine the
value of this procedure 65 o basis on which to develop a practical computationa]
program for the numerieal approximation of solutions of the above initial boundary
valtie problen,

To svoid complicating the presentation with excessive detail, we foeus our atten-
tion on a specific problem, viz., the first initial boundary value prablem for the one-
dirensionsl hest equation. We emphasize, however, that the general method of 4
prioel bounds is applieable to a much wider ¢lass of problems which ineludes the
Dirichlet, Neumann, and Bobin boundary value problems for second order elliptie
suations {1, 2, 3], the second initisl boundary value problem for parabolic equa-
tions [7] and elliptie (5] and porabolic [6) integro-differential equations, as well as
the initial boundary value problem treated horein. Furthermore, the method of a
priod bounds, as developed iv the above references, i valid in any finite number of
dimensions and for regions of quite general shape.

2. A Deseription of the Method

In this section we give u detailed statement of the problem to be considered and illus-
brata how the 2 priod inegualities are ueed to yield the approximate solution and
error bounds. The & priod inequalities sre derived in Section 3.

fl'lm problem is defined {n a rectangular region R, of the x, t-plane defined by
i ol oz <4 0 <t < 7, where 7 is an arbitrary (finite} positive constant, with
the houndary of R, consisting of the four lines B, B., 8, ., and §,,, defined as

follows:
b —l <z <l t =0,
B.: i<zl t=r
Beir 0 £t <y, 2= -1,
Seqir 0 St <r, 2=1
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Solutions of the Heat Equation 733

The notation S, = S, + 8, is frequently used. Then the first initial boundary
value problem for the nonhomogeneous heat equation in B, is

_Pu oy k4B (1a)
gzt g NS .

u = flz), on B, (1b)

u = f3(1), on S, . (le)

(The notation 4 = f3(t) on &8, is used as a shorthand notation for the more precise
statement

w=fy (t) onNS,_,
w=/F) onS. .,

where £, and f;” may be preseribed independently.)

Our approximating procedure i3 based on the following two inequalities which
are valid for an arbitrary function %, piecewise C* with respect to z, and piecewise
C" with respect to ¢ in R, :

lu(P) < Ky(P) fR fﬁ dx dt + K.(P) f; f (Lw)* dx dt, (2)

and

J

where the point P = (£, 7) is on B,, Ki(P), K:(P) are explicit constants for
each fixed P, and the oy , =, a; are explicit constants. The first bound is a pointwise
bound; that is, it gives a bound for the value of the function  at the point P. The
second, which is a bound on the integral over B, of the square of the function, is a
norm bound. Combining (2) and (3), we obtain the computable pointwise bound

fuzdxdzgalj;uzdx+agj; uzdl+a3Lf(Lu)2dxdt, (3)

T

| (P < Cu(P) fR [ (Lwydz @t + cu(P) fﬂ W'dz 4 Ca(P) fs i (4)

So far % has been arbitrary except for certain differentiability conditions which
must be imposed to derive inequalities (1) and (2). Now suppose that 4 = ¥ — ¢,
where » is the solution of the boundary value problem and ¢ is any sufficiently dif-
ferentiable approximating funection. Substitution. of this expresgion for « in (4)
yields a pointwise bound for v—g:

o) = o) < ) [ [ Ch— L) dodi + CalP)
’ - (5)
S - o et o) [ (= o)
A S,
Denoting the right-hand side of (5) by E, we obtain upper and lower bounds for
o(P), '
' ¢(P) — B S o(P) < ¢(P) + B (6)

or, looked at another way, we obtain an approximation ¢(P) to »(P) with an error
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754 V. G. SIGILLITG

bound on the approximation of £ Tt follows from the nature of inequality (5)
shat if » approximates the data of v sufficiently well, In a2 mean square sense, then
el Py will be » close spprosimation of 2{F).

In arder 1o obtaln a » which will closely approximate the data of v we set

“
@ = E: Citfi {7)
e
the ¢; being o set of n linearly ndependent sufliciently smooth trial functions, and
use the Navleigh-Bits procedurs to determine the optimal /s, Hopefully, by a judi-
eious choloe of the ¢, , the right-hand side of (5) can be made small. This, of eourse,
i not gusranteed unless we use a set of trial functions which is complete in the
data norm, and auch frizl funetions are not always essily found. Although it is
desirable from o theorebical poind of view to use trial functions from a complete set,
from & purcly practical point of view it makes little difference whether we do or do
nub use elements of 4 complete 5o, In either case the computational problem is the
SO,

3. Derieation of the Inequalities
In this section the » prior norm and pointwise bounds of Beotion 2 are derived, We
musat first derive an lmportant suxilisry Inequality.

14 iz well known {4] that for all piecewise C* funetions u which vanish at {—1, 0)
and (I, 03, the boundsry of B,

f u ds < ! (f«m) d,
E] MY Wz

where A is the first eigenvalue for the fxed string problem defined on B, e,

d'y

Sl =0, —l<az<l

dx?

p{ =1 = v(l) = 0.

Thua for functions w = wlz, ¢} which are zero on 8, we have

. 1 fawy

w s W f wome | el < f o<
fﬂs . }’-1 By ((jit?) ' 0 - n

and integrating both sides with vespeet to ¢ over the interval 0 < ¢ < 7 we obtain

7 3
f[w"’ de dt L ff(ﬂf) dx di. {(8)
e }\1 # dz

{Here, and in the remainder of this section, the r subseripts on & and B do not
appear. )

A. The Norm Bound. In the following we assume that « is an arbitravy fune-
tion, plecewise C° with respect to r, plecewise O with respect to £, Now introduce the
funetion w which satisfies

Sw | dw .
L¥w = 20 L O
w p 5 = in R,

w{m, ) =0, ~l<r<l; wl-L=wl=0 0<t<57
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Solutions of the Heat E’quation 735

Then

ffu de dt = ff (M )d.cdt

and this can be written as

ffudwdt ff (gx‘;— )d at+ [u - wad:v,

using Green’s second identity and the divergence theorem. The Schwarz inequality
for vectors then gives

fﬂfuzda:dt s{fsufdtfs(%’)zdt}i
+{f w2d$+)\1ffw2 dxdt}%{f uzda:+~l—ff(Lu)2d:cdt}i.

The object now is to obtain bounds on [ w’ dz + N[ [ o de &, and
{s (ow/an)* dt, in terms of fRfu dzx di.

The bound on the first expression is easily found as follows. By the divergence
theorem

_szdx:sznzdx=Lfa(;§2)dm dt=2wa(L*w—wg%’)dxdt,

which becomes

szdx+2Lf(Z—;”)2dmdt=~2waL*wdxdt (10)

upon using Green's first identity. We now write

j;wzdw+R1wa2dmdt=szdw.-}—%lj;fwz.dmdt*Mj;fwzdxdt
Sszd:u-i-ZLf(%uQdﬂcdt-—hj;fwzd:cdt

—2waL*wdwdt—hj;fw”dxdt

s%}fRf(L*w)zdxdt - :Tlfnfu“’dxdt,

where the second line follows upon using (8), the third by using (10), and the fourth
upon using the weighted arithmetic-geometric mean inequality with weight X .
Furthermore, from (10},

fR f (%;3)2 drdi < — fR f wl*w & di,

and an application of the Schwarz inequality along with (8) yields

Lf(g%))zdxdts)%j;f (L*w)adwdt=%;qu2dm&, (12)

an inequality which will be useful shortly.

(9)

(11)

]
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796 V. G, BIGILLITO

The bound on fﬁ (dw/on)" di is a little moove involved. We first introdnee a con-
tinuously differentiable vector field whose components arve (f., f:). Then the follow-
ing expression is an identity in &:

9 a0 2
cow L auNfPw aw\ 8 [ fow\ | awdwl _ af (:@)
(fff oz TV ‘a‘z)(m * "‘52) =5 (a;) 5] o
_ O owdw 14 I (‘2&)2
de 9z ot 26x " \ox

taf, fouNY | 1/[3f. af,) («'m)“’ ( aw ?_qﬁ) duw
“‘Ez%{f'(ﬂ)}'*”ﬁ(a}"*”sz w) T\ Em Tt e

Integrating this identity over £ and using the divergence thegrem gives

([, 0w duN e j dw . dw\ow
‘,ﬁj (f%g}””}“fl’(}?‘)ff !JJI.ZJ:Liﬁ*— S(fr. ar '+'f! gt and!’
af. fowN | af. aw aw
-[J {}1 (5;) ‘i ra's} de dt
1 f dwdw, 1 dw\*
— PPy 7 N Bl .
2 sj; ax 6‘nd 2 Jypn, e ft (ax) o

Lo 51(9}9)
+§ 2 8€+38 dzr de dt

dw dwy dw ,
4- j;‘f (fz ‘55 + je *dz)"é? di dt.

This expression can be simplified as {ollows: (i) The derivatives dw/a¢ on 8, and
dw/dx on B, | are derivatives of w in tangential directions and since w is constant
on S4B, , these derivatives are zero there, Thus the term in the first integral con-
bainiug dw/dt drops out, as does the integral over B,. (il) Since w = 0 on &,
dun/dx = medw/dn there, and using this in the first and third integrals on the right
allows us to combine ther into the single expression

I f awy’

w | feng | =1 di,

2 ,s:fx *\an
This is just the expression which we wish to bound except for the appearance of
Jme - Now ehoose £, such that the minimum of Fatie 011 S 13 positive. One such choiee
18 fp = z and for definiteness we use this definition of J= throughout the remainder

of this paper. As for f, , we need only that f; be positive, so we take f, = 1. Using
all of the wbove we can write

L{fae\ , 1 auw\ ? f dw . AN
Ef du\: ( dw . dw\ dw
+2J(ax) dr dt fﬁf m5£+5—f)—5§-dccdt.

An application of the arithmetic-geometric mean inequality yields

© duarnal of the Assoriation for Go:c_nputing Machinery, Vol. 14, No. 4, October 1967



Solutions of the Heat Equalion 737

()0 L) e oo
AL @) e s
+%Lf (g%u)zdxdt-i-—;fnfxz (g%” gz (13)
+%Lf(%l:)2dxd¢ - L[(%E;)zdxdt

= %fxf(wzx“') (g—;f)gdmw fﬁf(lzf“w)2 dx di.

Now the left-hand side of (13) is decreased if the positive term {5 (dw/ox)® dx
is dropped so that the bound becomes

j;(g_;u)adtﬁ 2{%(1 +2l2) ./;f (gu%))adw it + j;f (L*w)zdxdt}
< 2{%%1_%2_) + 1} fRf (L*w)' dz dt = }\1(1 +252+2}~1)qu2“ &,

using (12) and the fact that max.c 2% < . This inequality along with (11) in
(9) yields the norm bound

(jf W dr dz)i < {(1 + ﬁﬂﬂ}& (f ut dt)&
B - M 8
Ly 2 g0 1 2 :
+(X,) {j;-u, dx+}:j;f(Lu) da:dt},
which can be written as _ o . .
. (14 28+ 2 [ o 2{ e : }
fnfu de dt < 2"———”_&1 Lu db+{1 fBu da:-i—)“Lf(Lu) de dip, (14)

using the arithmetic-geometric mean inequality.
B. The Pointwise Bound. Define two subregions Ry and B. of K as follows:

Ri: {(z )] (a—8"+ (=0 Sn, t<7h

D (15)
R {(33, t) I (x"‘E) + (T'—t) < Ts, t < Tl:
where 7, < 7, and 7y Is such that B lies entirely in .
Now consider the fundamental solution T* of L*u = 0:
T*(x, 6 & 1) = - exp{— M}, T > 1 (16)
E Rt B 27‘_%(1_ — t)i ) 4(_‘_ o t‘) . A
The function T™* has the following properties:
G L*r*(z, ;£ 1) = 0, for each fixed (& 7), (17)
(i)  lim f *(x, ; £, 7)f(§) d¢ = f(=), (18)
i+t VB¢

for every continuous function f in By .
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738 V. @ 8IGLLLITO

Introduce a C* function 4 = 5{x, {) defined as follows:

1, (e, 1) & fiy,
nz, t) =30 < 5 £ 1, (1) € B — &y, 119y
{0, (2, 8) € R ~ R;

Then, for any funetion u = u(z, £ with continunus second derivatives with respect
to z and continuous firgt derivative with respect to f, we have, for any P =

(Sr T} E Rl ’
w(P) = u(f v} = ff ul*(qUs¥) dz dt — fj nT ™ Tau da di, {38)
E B

This equality is easily derived uzing {18) along with Green’s second identity and
. . « o
the divergence theorem. Now since L¥*I'" = 0 we have
” Ed
; - aTs" dn
EROTR*) = T Ly 4 2 220 50
(‘fi r) 3 7+ dr dx’
80 that, in By, L¥(9I'™) = 0, singe » is constant there. Notice that introduction
of the funetion 5 does two things: (1) in the first integral in (20) i removes from
consideration the singularity of T'*, and (2} in the derivation of (20) normal deriva-
tives of « on 8 are removed since n s zero outgide of By . The tniroduction of 5 does,
however, restrict the bownd to inderior poinds of B,
Setting L*(yT™) = H{z, t & ) we have

wlg, v} = L[uﬂ da el -~ Lf-n.[“&fju di

An application of the Schwars and arithmetic-geometrie mesn inequalities vhen
yields
[ulP)F = | ult, ) £ K (P fj W do di A K (P f [ LLa)® de e, (210
& av
where

Ku(P) =2 f [ H'dsdt and Ko(P) =2 | [ (7% dw dt
0 dyd
The singularity of I'* iz square integrable over B since

< cgngmfﬁj Y l.,.. <£W”tﬂ3:.2i
AR h 2(r — 1)

ot AL T B 7 o ey
constant, {(§ = 2)/{r ~ 1]] - expd & %ﬂ}

T L2

B e L2 -0)
constant [ hig - Hif}
e s XS el O0<p<i
G T W G '

where A is a positive constant.

4. Numerical Example

Here we give the results of applying our method to the caleulation of approxic ke
values, with error bounds, of the solution of the initial boundary value problom
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Solutions of the Heat Equation 739

u  du

dat 3¢

w=cosz, —wr<e<w t=0; wu=¢e¢' z=xm (>0,
using as trial functions the polynomials

n xﬂk*Ztﬂ‘k
n 1) = == Do
qp(ﬂ:, ) !%;(211:“2)1(%'_}{;);, n 1,2,

Tor this problem the exact solution can be found by inspeetion; it is

w(z, t) = ¢ cosz.

The exact solution is used to give a comparison of actual spproximation errors with
computed error bounds,

The results of the calculations are given in Table 1 to seven significant figures.
The following points bear mentioning:

(1} The approximate values are very close to the actual values; in many cases
approximate and actual values agree to seven significant figures. Agreement be-
tween approximate and actual values is always much better than the error bounds
indicate, Thus although the error bounds are generally good when looked at as a
percentage of the approximating value, they are pessimistic when eompared to
actual errors,

(2) As pointed out in the preceding section, the error bounds worsen as the
houndary is approached (K;(P) and K.(P) become unbounded as £ approaches
the boundary). This is noticeable at the larger values of & Notice, however, that
the approximations themselves are not so severely affected.

(3) For ¢ > 3.0 the error hounds, and to a much smaller degree the approxi-
mations, become progressively worse. This happens because as time increases more
trial functions are needed to construet the approximating function if a given error
is to he maintained. Our program was written with provision for only ten trial
funetions,

With the exception of the values obtained for ¢ = 0.2 and 0.4, all results in Table
1 were obtained using ten trial functions. At ¢ = 0.2, cight functions were employed
while nine were used for ¢ = 0.4. This was necessary beeause the system formed in
applying the Rayleigh-Ritz procedure tended to be slightly ill-eonditioned, espe-
cially for the smaller values of . Thus for the first two values of ¢, caleulations em-
ploying ten trial functions yielded worse results than caleulations employing fewer
functions. This tendeney toward ill-conditioned systems persisted throughout the
caleulations although it was not as pronounced at the larger ¢ values. Because of
this tendency, and also to avoid loss of significance due to the subtraction of two
nearly equal numbers when mean square errors on the boundary were copaputed,
all caleulations were done using double precision arithmetic. It is imperative bh_at
highly aceurate mothods are used to determine the ¢/’s given by the Rayleigh-Ritz
procedure since the error bounds, but not the approximations, are extremely sensi-
tive to errors in these constants, Computation time on an IBM 7094 for the results
given in the table was 1 minute, 30 seconds. _

One last obvious observation coneerns the selectivity of the method. That s,
an approximate value can be caleulated at a few points without the need to perforr_n
ealeulations at many additional points in which one has no interest. Thus if one is
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740 V. G. BIGILLITO

TABLE 1*

E t Approwimate soluiton }f;;:ﬂz‘;fn’:ﬁa;ﬂ Erxact solultion n = ¢ cos 2

9 0.2 | BISTE07 .D00583 8187807

Jn 0.2 0825671 0000583 6623671

A 0.2 2530017 0000583 2550017

B 0.2 —.2330617 0000383 2680011

o 0.2 —~ GEZIETL 0000583 — 6623671

0 0a T eTa200 (000146 6703200

g 0.4 5423003 0000146 5423008

LA 0.4 2071403 0000146 3071408

S 0.4 - 2071403 0000146 — 2071403

B 0.4 —~ 5423003 000146 3423008

b 0.8 5488118 0000110 5488116

a 0.8 .4436080 0000110 4439980

A 2.8 1695021 0000110 1695921

S 0.8 ~ 1696321 . 0600110 —.1693921

b 0.4 -, 4430980 0009110 — . 4430980 o

) ' 0.5 3453250 0000055 1393200

e 0.3 3836148 0000065 .3036148

A 0.8 .1388503 0000053 . 1388508

o 0.8 — 1358503 0000065 ~, 1388508

8 0.8 —. 3835148 .0000008 —.3685148
Ty 1.0 (3678704 0000072 3078794

2 1.0 3476207 0000072 2076207

A 1.0 (1156810 0000672 .1136810

B 1.0 ~. 1136810 0000072 —., 1186810

g L — 3976207 L0003 —29TeT

o 1.25 2865048 .0000115 2865045

o 1.2 LA31TRT2 0000115 2317873

A 1,25 .B383485 X 107 0000115 8853485 X 107

b 1.45 e BRBBET X 101 L0000LEB — 8853485 X 107

B 1.25 ~. 2317672 0000302 —.78

0 1.5 2231302 0000123 .2231302

A 1.5 1508161 0000123 . 1805161

e 1.5 L0895101 % 10~ 0000123 .B805101 X 10m

B 1.5 - GRIBLOD X 102 0000154 —. 8895101 X 10~

.8 L5 — 1806150 0000407 - . 1805161

0 1.7 737739 0000013 1737739

2 1.75 .1405861 0600013 .1405861

A 1.15 5389910 X 101 0000013 .5389910 X 10

e 1,75 ~ 5368910 X% 161 0000020 — 5309810 X 107

B 1,75 ~ . 1403861 0000054 —. 1405881

¢ 2.0 1343353 0000127 .186835%

S 2.¢ 1094886 0000127 1004885

A 2.0 4182087 X 16~ 0000145 4182090 X 107

i 2.0 ~ 4182100 X101 . 0000228 . 4183000 X 107

B 2,6, ~. 1094886 0000620 -, 1004885

[ 2.4 L&208500 % 10-1 0000253 8208500 X 107

R 2.5 LHBH0812 3 10 0000253 6640816 X 10-1

A EX J2636550 % 107 0000874 .2530500 3 10T

Loy 2.5 - 2536571 X 10 0000550 2536566 X 10t
o Ew 2.5 = QW0818 3 107 - 0001556 = 0640816 X 10

¢ 3.0 LA978704 % 10 0000758 (487807 X 107

B 3.0 4027850 X 10~ 0000934 .4027850 3 1071

Ax 1.6 1538405 X 10 0001381 1538505 X 10!

ox 3.0 ~ 1538505 % 10— . 0002178 —~. 1538505 x 10t

by 4.0 ~ 4UBT603 X 10~ 0005743 ~ . 4027859 X 107!

0 4.0 1831575 X 10 0004035 L1831564 X 10

A 4.0 1581759 % 107 : 0004972 L 1481765 X 10

. 1.0 L3650724 % 102 0007455 5650844 X 1072

G 1.9 - 5650134 3¢ 1072 0011600 ~.505084¢ X 107

B 4.0 ~ 481637 X 10 0030588 ~. 1481766 X 107

* Approximate values for negative z are obiained by reflecting those given seross the t-axis

sinee it is evident from the initial and boundary dete that the selution is symmetyic with respect
to the f-axis.
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Solutions of the Heai Fquation T41

interested in having an approximation st the point {x;, &), the approximation ean
be computed Immediately without “building up” the solution through a succession
of calenlations fromf{ = 0tof = 4.

Remark, In applying our method with Rayleigh-Ritz improvement to the
problem (1a), (1b), (le), most of the computational effort is spent in solving n
simultaneous equations in the n unkuowns ¢, ¢, -+, ¢n . These equations have
the form

fjc;{Al K(P) f;wz(az, 0)eslz, 0) do + AER"&P)[S eilal, el t) dt

i=1

e Ay Ko P) f L L, dz dz}
e
= AL Ki(P) f Bz)elz, 0) dz + g Ki(P)

L flBei (&1, ) dt + A Ko(P) j;z fibesdedi  {j = 1,2, ,n),

where the 4; (1 = 1, 2, 3) are constants and P = (2, v) is the poin$ at which the
approximate value is being computed, Thus, although integrals aver B need be
evaluated only once for all P and the integrals over S, and /, need be evaluated only
once for each time value, the dependence of K and Ky on P, and hence on z, would
seem to force us to solve the above system at each point of the plane { = const.
as the z-coordinate varies from poict to point of the plane. This situation ean
easily be overcome by making Ki(P) = K,(P) for each value of ¢ independent of x,
sither by adjusting the function # by varying » and », (recall (18} and (19)), or,
if one “constant” is always larger than the other, setting them both equal to the
larger one. Either way the bound will be worsened slightly. However, what is lost
here can be made up by using more trial functions. The time guined by making the
Rayleigh-Ritz caleulations independent of x will more than offset the small increase
in computation time required because of the use of a few more trial functions,
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