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am~a~tac'r. Theore~Aeal methods, based o,~ a priori poir~twise bounds, for approximating solu- 
ti(me of ma~y elliptic a*~.d parabolic ir~itial art, d /or  boundary value problems, have been de- 
vetoped i~ ~ e e ~ t  years. These methods, however, are relat.ively re,known to potent ia l  users 
air, re ~pl:~tieatior~s of the methods have ~og appeared in the l i terature.  In this paper their  useful- 
r~esa ia iItustr~ted by employing some of the author ' s  theoretical results as a basis for the con- 
s~rue!,ion of a digitM program to eompu~e a,~. approximate soIution of an initial boundary value 
problem ~or the heat  equation. 

1~ 7ntrodue~icm 

In a rece~tg paper [8] the author develops a procedure, based on a priori pointwise 
bom'~.ds, for approximatittg the solution, of the first initial boutldary value problem 
%r a rather general second erder par~bolie equation. In this paper we examine the 
value of this procedure as a basis (m which to develop a practical computational 
prmgram %r the numerical appreximation of solutions of the above initial boundary 
'w~tue pmblem~ 

To a;void complicating the preser~.gation with excessive detail, we focus our atten- 
tion on a specific problem, viz., the first initial boundary value problem for the one- 
dime~sio~aI heat equation, We emphgsize, however, that the general method of a 
pfi~r~ bout~ds is applicable to a much wider class of problems which includes the 
DMehlet, Neum~mn, and Robin boundary value problems for second order elliptic 
equat io~ [1, 2, 3], the second initial bound~rv value problem for palm, belie equa- 
tior~s [7] a~ad ellipt, ic [5] and parabolic [6] inte'gro~differential equations, as well as 
the i~itiM boundary value problem treated herein. Furthermore, the method of a 
priori bounds, as developed in the above references, is valid in any finite number of 
dimension.s anH for regions of quite general shape. 

2. A De~:ripti(m 4 the Method 

I~ t, his section we give a detailed statement of the problem to be considered and illus- 
t~rs~te how the a priori inequalities are used to yield the approximate solution and 
e r~r  bounds. The a priori inequMities are derived in Section 3. 

The problem is defined in a rectangular region R, of the x, t-plane defined by 
~ < x < l, 0 < t < r, where r is an arbitrary (finite) positive constant, with 
the boundary of R~ co~tsisting of the four lines B, B, S, _~, and S~,t defined as 
fdlows: ' ' 

B: - 1  < x < l, t = 0, 

B~ :  - l <  x < l, t = r, 

S._~  : 0 _< t < r, x = - l ,  

S~,+~ : 0 NN t < r, x =  l. 
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Solutions of the Heat Equation 733 

The notation S~ = S~._~ + S,.t is frequently used. Then the first initial boundary 
value problem for the nor0aomogencous heat equation in R~ is 

02u Ou 
Lu = Ox 2 Ot = .~(x, t), 

u = f ~ ( x ) ,  

u = £ ( t ) ,  

in R, + By, ( la)  

on B, ( lb) 

on S , .  ( lc) 

(The notation u = f3(t) on S, is used as a shorthand notation for the more precise 
statement 

u = f ,~ - ( t )  o n  &_,, 

u = fl+(t) on S~.+,, 

where fa- and fa + may be prescribed independently.) 
Our approximating procedure is based on the following two inequalities which 

are valid for an arbitra W function u, pieeewise C 2 with respect to x, and piecewise 
C 1 with respect to t in R~ : 

In(P),2_< K~(P) ,~ / e dx dt q- K2(P) ,~ / (Lu) ~ dx dr, (2) 

and 

f ,  r f  u2 dx dt < al f U2 dx + oe~ fs u2 dt + aa fa f (Lu)2 dx dt, (3) 

where the point P = (}, r) is on B~, KI(P), Ks(P) are explicit constants for 
each fixed P, and the a l ,  a2, a3 are explicit constants. The first bound is a pointwise 
bound; that  is, it gives a bound for the value of the function u at the point P. The 
second, which is a bound on the integral over R~ of the square of the function, is a 
norm bound. Combining (2) and (3), we obtain the computable pointwise bound 

So far u has been arbitrary except for certain differentiability conditions which 
must be imposed to derive inequalities (1) and (2). Now suppose that  u = v - ~o, 
where v is the solution of the boundary value problem and ~o is any sufficiently dif- 
ferentiable approximating function. Substitution of this expression for u in (4) 
yields a pointwise bound for v-~o: 

- -  ~ ( P ) ] S  < C,(P) f_ f (f~-- i~,) s dxdt + Iv(P) Ca(P) 
f 

( 5 )  

u 

Denoting the right-hand side of (5) by E, we obtain upper and lower bounds for 
v(P), 

q~(P) - E ~ < v(P) < ¢,(P) + E ~, (6) 

or, looked at  another way, we obtain an approximation ~o(P) to v(P) with an error 
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734 V. G, SIGIDLITO 

bound on the approximation of ~ E  ~. t t  follows from the nature of inequality (5) 
that if p approximates the data of v sufficiently welt, i~ a mean square sense, then 
~(P)  wilt be a close approximation of v(P) .  

Ir~ order to obtain a ~ which will elosety approximate the data of v we set 

= ~ c ~ ,  (7) 

the ~ being a set of n linearly independent sufficiently smooth trial functions, and 
use the Rayleigh-Ritz procedure to determine the optimM c/s. Hopefully, by a iudi- 
eious choice of the ~0~, the fight-hand side of (5) can be made small. This, of course, 
is net guara~teed unless we use a set of trial functions which is com.plete in the 
data norm, and such trial frorations are not Mways easily found. Although it is 
desirable from a theoretical poi~t of view to use trial functions from a complete set, 
from a purely practical point of view ig makes little difference whether we do or do 
rmt u~e elements of a complete set.. In either case the computational problem is the 
s a m e ,  

3~ Derivation of the Inequalities 

Ir~ tiffs section the a priori norm and peintwise bounds of Section 2 are derived. We 
must first, derive an important auxiliary inequality. 

I t  is well Mmwn [4] that for all pieeewise C ~ functions u which vanish at ( - 1 ,  0) 
a,M (l, 0), the boundary of B, 

1 
\ o ? I  dz, 

where X~ is the first eigenvalue for the fixed string problem defined on B, i.e., 

d~v 
dx~- ~ + xv = O, -- 1 < x < I, 

v ( - l )  = v(l) = O. 

Ihus for hmctions w = w(x, t) which are zero on S, we have 

'w ~dx < .  o~, 0 < t < r, 

a~:~d integrating both sides with respect go t over the interval 0 < t < r we obtakt 

N (s) 

(I[ere, and in tile remainder of tkds section, the r subscripts on S and R do not 
appear, ) 

A. The Norm Bound. In the following we assume that u is an arbitrary func- 
tion, pieeewise C "~ with respect to x, pieeewise C ~ with respect to t. Now introduce the 
ffmction w which satisfies 

O~w Ow 
L*.w = ~ + b-7 = u, in R, 

w(x,r) = 0 ,  " l  < ~ < Z; w ( - Z , t )  = w ( l , t )  = 0 ,  O < t _< r, 
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Solutions of the Heat Equation 735 

Then 

and this can be written as 

£f J.rr/ \t°'~ . '  d. dt = w ,  

u \ 0 ~  + ~ dx dr, 

Ou) f 0o f. ~[ dx dt + U ~n dt -- uw dx, 

using Green's second identity and the divergence theorem. The Schwarz inequality 
for vectors then gives 

(~VZ' 
(9) 

1 f,f  (Lu)' dx dr}'. 
The object now is to obtain bounds on f .  w' ax + Xl;. f ~0' ax at, and 
fs  (Ow/On) ~ dt, in terms of fR f U 2 dx dr. 

The bound on the first expression is easily found as follows. By the divergence 
theorem 

-fw'dx=£~'n, dx=fJ dxdt=2f.f~ L'w-- Ox,/dxdt, 
which becomes 

£w=d~+2£f(eYa, a~= - 2 £ f w ¢ ~ e , a ,  (10) \Ox]  

upon using Green's first identity. We now write 

f w'dx+X,f, fw'dxdt=f~'dx+2x,£f~'dxdt-Xlf, fw'dxdt 
£ £f(ow), £f < w ~ d x + 2  ~ d x d t - M  w . d x d t  

(Ii) 

= - 2 L f w L * w d x d t - - x ~ £ f ~ ' d x g t  
' R 

' f.J'(L*w)' d.d, = I f.f -< X-~ Xl u ~ dx dr, 

where the second line follows upon using (8), the third by using (10), and the fourth 
upon using the weighted arithmetic-geometric mean inequality with weight Xl. 

Furthermore, from (10), 

f.f(o°), f.f dx dt ~ - wL* w dx dt, 

and an application of the Schwarz inequality along with (8) yields 

f,f(e~'dxdt < 1£f if.it,: ~JkOx]  - Xx ( L ' w ) '  dx dt = ~ dx dt, (12) 

an inequMity which will be useful shortly. 

Journal of the A~mooiation for Computing MachinerY, V01. 14, No. 4. October 1967 



736 v .G .  SIGILLITO 

The bound on fs (Ow/an) ~ dt is a little more involved. We first introduce a con- 
tinuously differentiable vector field whose components are (f,,  ft). Then the follow- 
ing expression is an identity in R: 

OF + L  otl\oz~ + 5~1 = oz l  \aT/  + f' 07257 - Ux \ o z l  

ow o { (eV; 
dx Ox Ot 20x_  f" \Ox] J 

- z ot f' + + + + It \oz  ] ) ~ \ox a t / \ o x  / ~7 ~ g i  " 

Integrating this identity over R and using the divergence theorem gives 

~Ox" + f, -07] L wdx at = ~g + ft Og/ ~ dt 

k Ox \Ox ] + Ox Ox ~" dx dt 

1 L OWOW lfB ( e ~ '  
- - -  n , f ,  \ o x ]  dx 2 f ~ g g N ° e - ~  +~, 

if, joy, o/,(o~y 
+ [  0.~" + N \Ox] dxdt 

This expressio~l can be sirnplified as follows: (i) The derivatives Ow/Ot oa S, and 
Ow/Ox on B~, am derivatives of w in tangential directions and since w is constant 
on S+B~, those deriw~tives are zero there. Thus the term in the first integral con- 
tainting Ow]Ot drops out, as does the integral over B~. (ii) Since w = 0 on S, 
Ow/Ox ~= n,Ow/On there, artd using this in the first and third integrals on the right 
allows us to combine them into the single expression 

2 \On/ dr. 

This is just. the expression which we wish to bound except for the appearance of 
f~n,. Now choose f~ such that the minimum of f~'n~ on S is positive. One such choice 
is f ,  = x and for defi~dteness we use this definition of j ;  throughout the remainder 
of this paper. As for f~, we need only that  f~ be positive, so we take f,  = 1. Using 
all of the above we cart write 

' ' , ,  =  0.,j + £ 0., ee'  
\g~] a7 at / 

f, f goq, oq + ai-] $ / &  de. 

An application of the arithmetic-geometric mean inequality yields 

i{ 

i!i 
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Solutions of the Heat Equation 737 

1 dt + f, \Ox] dx<_ ~ f f  \Ox/ dx dt 

i fR f (Ow~ ~ dx dt + f a f  (L*w)~ dx dt + ~ \Ot l  

+ ~ f~f (o,o'~, dx dt +1 f i e  (ow,~, d= de (13) \ax/ ~ \ax/ 

+ ~ _  \ a t /  \ a t /  
dt 

: , r :  (o,Oy x t+ I f  (L'w) 2 dx dt. 
2 JR: \Ox/ J R J  

Now the left-hand side of (13) is decreased if the positive term f ,  (Ow/Ox) ~ dx 
is dropped so that the bound becomes 

( Ow~ ~ ( Ow y d,} £ \ ~ ,  d,<~_ {~-(1 + 2:) f j  \o~,, d~ dt ÷ f~f ( :w) = d~ 

{~ 1} f.f 1(1-.t-2l'--}-2x,)fRfu'dx dt, < 2 (1 +2/2) + (L'w) ~dxdt = 
- -  ~1 

using (12) and the fact that max~e~ x 2 < 12. This inequality along with (11) in 
(9) yields the norm bound 

(fRf u= dx dt)' < { + 2l= + 2Xl)}' (fzu2 

1 f , f  (Lu)'dxdt}' + 

which can be written as 

using the arithmetic-geometric mean inequality. 
B. The Pointwise Bound. Define two subregions R1 and R2 of R as follows: 

Ri: {(x,t) l ( x -~)  ~ + ( r-t)=<- rl ,  t < r}, 
(15) 

R2: {(x,t) l (x-~)  =+ ( r-t)=-<r=' t <  r}, 

where rl < r~ and r~ is such that R2 lies entirely in R. 
Now consider the fundamental solution r* of L*u = 0: 

1 ( ~ _-- x~ \  r > t. (16) 
F*(x,t ;~,r)  = 2~a( r -  t5 iexp_"  4(r -- t ) J '  

The function P* has the following properties: 

(i) L*r*(x, t; ~, r) = 0, for each fixed (~, r),  (17) 

(ii) lti~ fB r*(x, t; ~, r)f(~) d~ = f(x), (18) 
t 

for every continuous function f in Bt. 
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738 v . G .  SmaLL,TO 

Int roduce  a C 2 function ~7 = , ( x ,  t) defined as follows: 

n ( x , t ) = { o s , 7 ~ l ,  (z,t)< R~-~,.,  (19) 
I0, (z, t) ~ R - R ~ .  

Then,  for any  function u = u(x, t) with continuous second der ivat ives  with respect 
to x and eontinuous first derivat ive with respect to t, we have, for any  P = 
(~, r )  E R , ,  

= £ f  .,,L (,r, )dxd~-  £ f  , r /  Lu~xd,. (zo) u(P)  = u(& r )  * ' * 

This  equal i ty is easily derived using (18) along wi.th Green 's  secoad ide,ltity aad 
r * I" * the divergence theorem. Now sir}re ,., ,, = 0 we have  

. ,  ~, , .  , , a r e * o ,  
L ('0[ ~ ) + 2 . . . . . . . . . .  = F r  L r~ Ox Ox' 

so that ,  in R~, L*(nF*)  = 0, since v is constant  there. Not ice  tha t  introduction 
of the function r~ does two things: (1) in the first integral in (20) it removes from 
consideration the singularity of P*, arid (2) in the der ivatkm of (20) normal deriva- 
tives of u on S are removed since rl is: zero outside of R:.  The in~reducti~m 4 r~ doe< 
however, restrict the bound to interior points of R. 

Setting L*(,P*) = H(x,  t, ~, r) we have  

u(~, T) = £ f  ~,H dx de- £f ,r*Ludxd,. 
Art application of the Schwarz and ari thmetic-geometric  mean inequalities then 
yields 

= _ £ f  £ f  ([su) ex < [ u ( P ) l '  t u(~, r}t = < I Q ( P )  u ~ dz dt + K s ( P )  ~ ' (2 i )  

where 

KdP) = 2 f,~f H= d, dt and K s ( P ) = 2 £ f ( v r * ) = d x d t .  

'Yhe singularity of P* is square integrable over  R since 

constant { 
P*~ ~ ~7~ Z" i j  , exp  2(r -- t)j 

= (r --  t) ~'~ (1~ -- x) =~ . e x p ,  2(r -- t ) )  

const~mt { h(~ - ~)"} 0 < ~ < ~  
<-- (~"T27"tj'i:z;g~Z-xi ~/; 'exp (r -- ' " '  

where h is a positive constant.  

4. Numerical Example 
Here we give the results of applying our met, hod to the calculation of approximate  
values, with error bounds, of the solution of the initial bouada ry  value problem 
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Solutions of the Heat Equation 739 

02u Ou 
Ox - - ~  - 0 7  = O, --Tr < x < ~r, t > O, 

u = cosx, --v < x < ~-, t = O; u = e -t ,  x = ::i=~r, t > O, 

using as trial functions the polynomials 

X2k_2tn_ k 
~ n ( x ,  t )  = n = 1 , 2 ,  . . .  

~ 1  ( 2 ~  - 2 ) !  ( n  - k ) ! '  

For this problem the exact solution can be found by inspection; it is 

u ( x ,  t )  = e -~ c o s  x .  

The exact solution is used to give a comparison of actual approximation errors with 
computed error bounds. 

The results of the calculations are given in Table 1 to seven significant figures. 
The following points bear mentioning: 

(1) The approximate values are very close to the actual values; in many cases 
approximate and actual values agree to seven significant figures. Agreement be- 
tween approximate and actual values is always much better than the error bounds 
indicate. Thus although the error bounds are generally good when looked at as a 
percentage of the approximating value, they are pessimistic when compared to 
actual errors. 

(2) As pointed out in the preceding section, the error bounds worsen as the 
boundary is approached (K1(P)  and K2(P)  become unbounded as P approaches 
the boundary). This is noticeable at the larger values of t. Notice, however, that  
the approximations themselves are not so severely affected. 

(3) For t _> 3.0 the error bounds, and to a much smaller degree the approxi- 
mations, become progressively worse. This happens because as time increases more 
trial functions are needed to construct the approximating function if a given error 
is to be maintained. Our program was written with provision for only ten trial 
functions. 

With the exception of the values obtained for t = 0.2 and 0.4, all results in Table 
1 were obtained using ten trial functions. At t = 0.2, eight functions were employed 
while nine were used for t = 0.4. This was necessary because the system formed in 
applying the Rayleigh-Ritz procedure tended to be slightly ill-conditioned, espe- 
cially for the smaller values of t. Thus for the first two values of t, calculations em- 
ploying ten trial functions yielded worse results than calculations employing fewer 
functions. This tendency toward ill-conditioned systems persisted throughout the 
calculations although it was not as pronounced at the larger t values. Because of 
this tendency, and also to avoid loss of significance due to the subtraction of two 
nearly equal numbers when mean square errors on the boundary were computed, 
all calculations were done using double precision arithmetic. I t  is imperative that  
highly accurate methods are used to determine the c~'s given by the Rayleigh-Ritz 
procedure since the error bounds, but not the approximations, are extremely sensi- 
tive to errors in these constants. Computation time on an IBM 7094 for the results 
given in the table was 1 minute, 30 seconds. 

One last obvious observation concerns the selectivity of the method. That  is, 
an approximate value can be calculated at a few points without the need to perform 
calculations at  many additional points in which one has no interest. Thus if one is 
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740 V. G.  S I G I L L I T O  

TABLE 1" 

Error bounds  an Exact  solut ion u = e -~ cos x x t Approx ima te  solut ion approx imat ion  

0 0.2 .8187307 .0000583 .8187307 
• 2~ 0.2 ,0~23671 .0000583 .6623671 
• 4~ 0,2 ,2530017 .0000583 ,2530017 
• 6~ 0.2 --,2530017 .0000583 --.2530017 
,8~ 9.2 --,6623671 .0000583 --,6623671 

6 0.4 .6703200 .0000146 .6703200 
• 2~ 0, 4 .5423093 .0000146 .5423003 
.4~" 0.4 .20771403 .0000146 .2071403 
• 6~  0 ,4  --.2071403 .0000146 -- .  2071403 
• 8r  0, 4 - .  542300.3 .0009146 -- .  5423003 

O 0.6 .5488116 .0000110 .5488116 
, 2 r  0.6 .4439980 .0000110 .4439980 i 
,4v 0,6 .1695921 .0000110 .1695921 
.6~ 0.6 --,1695921 .0000110 --.1695921 i 
.8~ 0,6 --,4439980 .000Oll0 --.4439980 :i 

0 0,8 .4493290 .0000065 .4493290 
.2~ 0.8 .3635148 .0000065 .3635148 
.4~ 0.8 .1388503 .0000065 .1388503 
,6~ 0.8 --.1388503 .0000065 --.1388503 
.8~ 0.8 --.3635148 .0000098 --.3635148 

! 

0 1,0 ,3678794 .0000072 .3678794 
,2~ 1,0 •2976207 .0000072 ,2976207 
.4~ 1.0 .1136810 .0000072 .1136810 
,6~ 1.0 -.1136810 .0000072 -- 1136810 
~8~ 1.0 -.2976207 ,0000142 --.2976207 

0 1,25 ,2865048 .0000115 ,2865048 
, 2 r  1,25 ,2317872 .0000115 .2317873 
.4~ 1.25 .8853485 X 10-1 .0000115 .8853485 X 10 -1 
.6v 1,25 -.8853,i87 X 10-1 .0000115 - , 8853486X 10 -t 
.8~ 1,25 -,2317872 .0000302 --,2317873 

0 1,5 .2231302 .0000123 .2231302 
.2~r 1.5 .1805161 .0000123 .1805161 
.4~ 1~5 6895101 X 10-1 .0000123 .6895101 X 10 -1 
.6~ 1,5 --,6895100 X 10-"~ ,0000154 --.6895101 X 10 -'t 
.g~ 1.5 --. 1805160 .0000107 -- .  1805161 

O 1.75 • 1737739 .0000013 .1737739 
• 2~r 1.75 .1405861 ,0000013 ,1405861 
.4~ 1.75 .6366910 X 10-t 0000013 .5369910 X 10- t 
.6~ 1~75 --.5369910 × 10-~ .0000020 --.5369910 X 10- t 
• 8~ I. 75 -- ,  1405861 .00fl0054 -- .  1405861 

! 
o 2 . 0  .1363353 .0000127 .1353353 

• 2 ~  2 .0  ,1094885 .0000127 .1094885 
.4~ 2.0 .4182087 X 10-1 .0000145 .4182090 X 10 -1 
,6~r 2.0 --.4182100 X 10-1 .0000228 --.4182090 X 10-1 
• 8~ 2.0 ~ .  [094986 .0000620 ~ .  1094865 

0 2.5 .8208600 X I0-t .00th0253 .8208500 X 10 -1 
.2~ 2.5 .6640812 X 10-1 .0000253 ,6640816 X 10 -1 
,4~ 2,5 .2536559 X 10-1 .0000374 .2536566 X 10 -I 
.6~ 2,5 --.2536571 X 10-~ .0000590 --.2536566 X i0 -I 
.8~r 2.5 -- .~040818 X 10-~ .0001556 -.6640816 X 10-1 

0 3.0 .4976704 X 10-t .0000758 .4978707 X 10- l 
.2v 3,0 .4027856 X 10"-1 .0000934 .4027859 X lO-I 
• ~ 3.0 .1538495 X 10-1 ,0001381 .1538505 X 10 -t  
,6~c 3.0 ~,1538505 X lff-t .0002178 -•1538505 X 10-~ 
.8~r 3.0 --.40~7803 X 10-1 ,0005743 - .4027859 X 10-1 

O 4,0 ,1831575 X 10-t .0004035 •1831564 X 10-I 
,2.~ 4 ,0  .1461769 X 10-1 .0004972 .1481766 X 10 -t 
,4~ 4.0 .5659724 X 10-: .0007365 .5659844 X 10-2 
.6~ 4.0 --,5659134 X 10"2 .0011600 --.6659844 X 10-: 
,8~ 4.0 -- .  1481637 X 10- l .0030588 ~ .  1481766 X 10- ~ 

! ill 

* Approximate values for negative x are obtained by reflecting those given across the  t-axis 
since it is evident  from the initial and boundary data t ha t  the solution is symmetric  with  respect 
to tile t-axis. 
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Solutions of the Heat Equation 741 

interested in having an approximation at the point (x~, h),  the approximation can 
be computed immediately without  "building up"  the solution through a succession 
of calculations from t = 0 to t = h • 

RemarL In  applying our method with Rayleigh-Ritz improvement  to the 
problem ( l a ) ,  ( l b ) ,  ( lc ) ,  most  of the computational effort is spent in solving n 
simultaneous equations in the n u n k n o ~ s  c~, c~, - . .  , e~. These equations have  
the form 

= A, K,(P) £ £(x)~(x, O) dx + A~ K~(P) 

• f s f s ( t ) ~ j ( ~ l , t )  dt + A3K~(P)  J~, f~ L~i dx dt ( j  = 1, 2, . . . ,  n ) ,  

where the A~ (i  = 1, 2, 3) are constants and P = (x, ~') is the point at which the  
approximate value is being computed. Thus,  Mthough integrals over B need be 
evaluated only once for all P and the intcgrMs over ,% and R~ need be ewduated only 
once for each time value, the dependence of K~ and K~ on P,  and hence on x. would 
seem to force us to solve the above system a~ each point of the plane t = coast.  
~s the x-coordinate varies from point to point of the plane. This situation can 
easily be overcome by making K~(P) = Ks(P)  for each value of t independent of x, 
either by  adjusting the function ~ by varying rt and r2 (recall ( i 5 )  and (19)) ,  or, 
if one "cons tan t"  is always larger than the other, setting them both equal to the 
larger one. Ei ther  way  the bound will be worsened slightly, However,  what  is lost 
here can be made up by using more trial functions. The  time gabled by making the 
Rayleigh-Ritz calculations independent of x will more than offset the small increase 
in computa t ion time required because of the use of a few more trial functions. 
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