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ABSTRACt. Two general methods of matrix inversion, Gauss's algorithm and the method of 
bordering, are analyzed from the viewpoint of their adaptability for parallel computation. The 
analysis is not based on any specific type of parallel processor; its purpose is rather to see if 
parallel capabilities could be used effectively in matrix inversion. 

It  is shown that both methods are indeed able to make effective use of parallel capability. 
With reasonable assumptions on the parallelism that is available, the speeds of the two methods 
are roughly comparable. The two methods, however, make use of different kinds of parallelism. 

To implement Gauss's algorithm we would like to have (a) parallel transfer capability for r~ 
numbers, if the matrix is n X n, (b) the capability for parallel multiplication of the accessed 
numbers by a common multiplier, and (c) parallel additive read-in capability. For the method 
of bordering, we need, primarily, the capability of forming the Euclidean inner product of two 
n-dimensional real vectors. The latter seems somewhat harder to implement, but, because it is 
an operation that is fundamental to linear algebra in general, it is one that might be made 
available for other purposes. If so, then the method of bordering becomes of interest. 

1. Introduction 

It is our purpose here to consider two methods for the inversion of nonsingular real 
square matrices [1, 2], and to discuss their applicability for parallel computation. 

Previous studies of matrix inversion by  machine computation have largely been 
confined to methods suitable for sequential operation. This has been a reasonable 
restriction, since existing computers all operate in an essentially sequential manner.  
Recently, however, there has been considerable interest in the development of com- 
puters and subunits of computers that  have been adapted to parallel operation. 
The feasibility of devices of this sort has been demonstrated and some--such as 
associative, or content-addressed memories- -are  either in production or close to it. 
It  seems evident tha t  in the near future parallel processors will become increasingly 
available. I t  is becoming important,  therefore, to consider how such capability can 
be exploited in the various classes of computational problems commonly encoun- 
tered. 

The  problem of inverting matrices is one that  occurs in many  problems of prac- 
tical importance. Also, it is a problem that  can easily grow out of bounds as large 
matrices are considered. I t  is a problem for which there is great advantage in im- 
proving computational speed. I t  has seemed useful to consider, in general terms, 
how parallel operation could be exploited in the inversion of matrices. 

Some work has been done in this direction by other workers. For example, Crane 
and Githens [3] have considered the programming of a content-addressed memory  
for various problems, including, as one example, matrix inversion. However, these 
studies usually have been concerned with particular types of parallel processing, 
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whereas our concern is with the problem itself and with parallel processing in gen- 
eral. 

A related, but not identical, problem is that  of solving a set of linear equations, 
i.e., solving the vector equation 1 

Ax = y (1) 

for x, given y. 

We chose to study the inversion problem, rather than that  of solving eq. (1), 
since we felt that,  by so doing, we would be able to reach a better understanding 
of what could be accomplished, and how, with parallel techniques. However, the 
reader should keep in mind that  the two problems are not identical, so that state- 
meats regarding the relative merits of inversion procedures may not carry over into 
the solution of eq. (1). 

We consider two general methods of matrix inversion. The first, using Gauss's 
algorithm, is important since most methods in current use are of this type. 

The second is the method of bordering. It  is discussed to some extent by Faddeeva 
[4], but has not generally been used, since it is not, in general, as efficient as Gauss's 
algorithm in serial processes. 

2. Gauss's Algorithm 

The basis of most of the methods that  are currently used is Gauss's algorithm. 
This is usually stated as a procedure for solving eq. (1). However, it can be readily 
adapted to obtaining the inverse of A, providing one exists. 

We observe, first, that  any row operation on A can be described as a sequence of 
premultiplications of A by the following nonsingular matrices, taken as elementary: 

i. £~(X), which multiplies row i by a scalar X ~ 0. C~(X) is diagonal with 
l ' s  on the main diagonal except in the ith column, where there is X. 

ii. Ci j ,  which interchanges row i and row j, has coefficients Cr, as follows: 

cry = 1 if r ~ i o r j ;  c~j = c j~= 1; cr, = 0 otherwise. 

iii. D~(X), which adds X times row j to row i, has coefficients dra as follows: 

drr = 1 for al l r ;  d~j -- X; dr, -- 0 otherwise. 

For the solution of eq. (1), Gauss's algorithm may be described as a procedure 
for finding a matrix C which, when premultiplying A, reduces it to either upper or 
lower triangular form. The matrix C is developed as a product of the elementary 
matrices given above. Applying C to eq. (1), we obtain 

(CA)x = Cy. (2) 

Since (CA) is triangular, eq. (2) is easily solved. 
We can handle inversion in a similar fashion. Conceptually, we set up the super- 

matrix B = (A I).  (We say "conceptually" since procedures can be devised which 
avoid the necessity of actually setting up the supermatrix, and which therefore use 
memory more efficiently than indicated here. See below.) We first develop a C 

1 We use boldface capitals  to indicate matr ices  and boldface lower-case le t te rs  to indicate 

vectors .  
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that triangularizes A, told apply it to B. We then coati,me 'the process to obtain a 
D that reduces (CA) first to diagonM, and then to the unit matrix. That  is, we find a 
D such that 

D C ( A I )  = ( D C A D C )  = ( I D C ) ~  

SinceDCA = I, ( D C )  = A -~. 

The basic process for de~er,nJnbg C first makes certsin that, a~ # 0, t f  a~,i = 0, 
we first, permute rows by a sui~dtJe C~ to brb~g a nonzero element iat, o this posi- 
tion, (There must be at least (me nm~zero entry i~ ~he first column, Mace A :is non- 
singular.) We then use 'n--I etementaw matrices D~ (k) to reduce :the rest of this 
column to zero by addirg to ea& row the appropria~;e mult ipb of  the first; ~x)w. 

Next, we mM~e certain that the new a~:~ ss O~ tf  a~ = 0, we I×?rmute row 2 with 
some row for which i > 1, to bring a ~mnsero element, into [his p~>sition, (There 
must be at least (me a,~ ¢ 0, i > 1, since otherwise column 2 wouM be a muldple 
of cohm'm 1 and A would be singular.) We use severM D~,:(X) to :reduce the rest 
of eohmm 2 to zero. 

We continue until A is triangular. The process c~mnot terminate prematurely 
if A is nonsingutar. 

To find D, we now repeat the process, gfing baek~u'd and upwar& We use 
a~, to eliminate all other elements from the ngh eohm~. Then we use a,o_~,,~_~ to 
eliminate all elements above it from the (n--l),.sg column, and so om until A :is 
diagonal. Finally, using CdX), we divide each row by a , ,  and so, obtain the identity. 

Having moditied, by row nmnipulatio~ls, (A I)  to obtain the idendty on the left, 
we read A -1 on the right. 

This process is theoretically valid bug may fail because of aumericN i:nstabitity 
in the computations. To avdd such Mstabiligy, [~zvo~it~g is used. By this we mean 
that, in preparation %r the eru nim~km, c4the  s~bd elements im each new 
column, we permute ~he remaining rows, or Nws a~d eolumms; so as go Naee a more 
appropriate element--perhaps the laqgesg one (in absolute vNue), Nghough other 
criteria are sometimes used--on the diagonM positiom q~ds c~ffiehmt N theo the 
one that  is used to eliminaee the o~hers in that  column, in the ease of "hill pivoting," 
in which the largest available element of the mmMni:ag meAN× is moved i.ata) the 
pivot position, instability has never bee~ observed. See [5}.. 

There are severM variations of the basic pivot~ing procedure that  are used, in- 
volving something less than full pivoting Fee example, we may restrict ourselves 
to mw permut, ations, or look for a coefficient gbat i8 not :necessarily the largest 
available but is, instead, simNy greater than some preset iimit~ 

There are also other variations whi& mh~mize the amount of addif, ional memory 
required. 

I t  is beyond the scope of thb  paper ~e em~sider these varia:gloas of pivoting. The 
interested reader can find ~hem Nseussed ira considerable detait in [5], qThe pre~mnt 
concern is for the extent by which ~he proeess itself can be parMlelized, assuming 
pivoting either is not needed or is taken care d along the way, 

Considering, now, how parallel capabili~¢ can be utilized in a procedure using 
Gauss's Mgofithm, several applications are evident: 

A. The manipulations described by the C or D matrices do the same thing to 
all elements of a row (or eolm'm~). Ail t/he elements of ~he Nvog row, for example, 
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are multiplied by the appropriate  number  and subtracted from the row being 
affected. There  is evidently great advantage in being able to do all of these opera- 
tions in parMlel. 

B. in  terms of the basic algorithm using serial processing, we can either (a) 
diagonalize on a single pass through the matrix, or (b) first triangularize and then 
diagonalize. For  matrix inversion, there is no clear choice. ( In  solving a set of linear 
equatiofts (1),  it is necessary only to triangularize. ) Including the operations on I 
in the  supermatrix,  both processes require, asymptotically,  n a operations, where an 
operation is defined as the replacement of a~ by  a~i - akja~k/a~k, where akk is the 
pivot element. (The  computat ion of 1/akk need be done only once per pivot  element, 
and tha t  of a~k/a~k, only once per row, so tha t  our operation is essentially one 
multiplication and one subtraction.)  

With  parallel processing, the total  number  of operations is not  significant. What  
matters  is the number  of sets of operations, where each set involves those being 
done in parallel. 

The  count  of such sets requires some assumption of the parallel capabili ty present. 
The  assumptions we believe to be reasonable are tha t :  (a) all the coefficients of a 
single row can be accessed and processed in parallel; (b) it is possible, by  a single 
command,  to cause the same operations to be performed simultaneously on all the 
coefIieients so accessed. 

With these assumptions it, becomes better  to complete the diagonalization in a 
single sweep, since then a given row need be accessed only once and then used to 
complete the diagonalizati0n of a column. 

C. To consider the potential for improvement,  we suppose we have two auxiliary 
memories which we label R and S, each capable of holding (nd-1)  words. The main 
memory  is assumed to contain an n × ( n + l )  array. The matrix A is inserted in 
the first n columns, the remaimng column being filled with l ' s  to represent the iden- 
tity. We denote hy B the changing matrix which is originally the identi ty and ul- 
t imately A '~. The program tha t  follows is designed to minimize the main memory 
required by compressing the supermatrix tha t  is conceptually used. Then, assuming 
no pivoting is necessary, we can use the following program: 

For i stepped from 1 to n: 
(a) Re~d out tile ith row into the R-memory. 
(b) Comptlte k~i = 1/a~. 
(e) Multiply the R-memory by k ,  and leave in R. 

,For j stepped from I to n, skipping j = i: 
(d) itead out aj~. 
(e) Read ( - a , )  times the R-raemory into S, without changing R. 
(f) Add the nth coefficient in S to the ith. Set the nth coefficient to zero. 
(g) Additively read S into the j th  row of the main memory. This procedure eliminates a/~ 

from A and moves the corresponding coefficient of B into this position. 
(h) After completing steps (d)-(g) throughj = n, clear and add the nth coefficient in R into 

the ith position in R. 
(i) Clear and add R into the ith row of the main memory. This reduces the ith diagonal entry 

in A to unity, and suppresses it, replacing it by the corresponding entry of B. 
(j) Step i as indicated, and repeat from (a) if i < n. 

Wllen the program is completed through i = n, the  inverse of A is contained in the 
first n cohmms of the main memory.  
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Of these steps, (b), which computes a reciprocal, and (c) and (e), which involve 
parallel multiplication with a common multiplier, are apt to be conside4"ably slower 
than the other steps. Furthermore, these steps will take the same time each time 
they occur. In inverting an n X n matrix, steps (b) and (e) are done n times, and 
step (e), n ( n - 1 )  times. Step (e) will dominate, and the time required will asymp- 
totically equal kn s, as n --> ~o, where ~ is some constant not less than unity whose 
exact value depends on the effect of the transfer steps. 

D. In the paragraph above, note the comparison between 'n ~ operations for the 
serial processor, and/on 2 major steps for the parallel processor. While these figures 
do not give a comparison of the resultant speeds that  is wholly fair, it is valid to 
infer that  parallel processing can be very much faster for large matrices. 

E. Other parallel programs can also be considered, which may be useful i~l par- 
ti tular circumstances or for particular types of matrices, of which the tridiagonal 
type is a notable example. We can, for example, handle each column serially, but 
start working on the next column before the first is completed. Working initially 
on the ith column, we can start on the ( i + l ) - s t  column as soon as the ( i + l ) - s t  
row is finished, providing the resultant a.i+l.~+l is a suitable pivot eleme~lt. After 
the next step, when the terms in the ith and (iq-1)-st columns in the (i~-2)-nd 
row have been eliminated, we can start  work on the ( i+2) -nd  column, and so on. 
Providing the operation on each column is kept one step behind that on the previous 
column, the operations will not interfere. 

Such a process irl general appears to be more involved, and to require more com- 
plex logical and arithmetic capabilities than the purely pardlel process described 
above. However, it might be advantageous in particular circumstances, depending 
on the particular capabilities of the processor being used, or for specialized types of 
matrices. For example, if we have available a processor that has the parallel capabil- 
ity required for' large rnatriees, then it has excess capacity for' small matrices. By 
simultaneously operating on two or more columns, we can make use of this excess 
capacity to obtain a further increase of speed. 

3. Bordering Method 
The second method we discuss is also a practical one. I t  has not been found to be 
generally useful for serial processing, but may be well suited for processors h~tvirtg 
particular parallel capabilities. For example, it appears that it would be of great 
general utility to be able to form the inner product of two n-dimensional vectors by a 
single parallel operation. The method of bordering is, then, a way of using this ca- 
pability in computing the inverse. 

The basic method is to invert a k X ~ submatrix that  consists of the first k rows 
and columns. We use this submatrix to find the htverse of the ( k + l )  × ( k + l )  
submatrix that  is the original submatrix bordered by the next row and column. 
We repeat until the entire matrix is inverted. 

We start with the a~ element, which, for the moment, we assume to be nonzero. 
We replace it by its reciprocal. We consider this as a 1 × 1 matrix bordered by the 
elements a~2, a~2, and a2,, and obtain the inverse of the 2 × 2 matrix in the upper 
left corner. We continue until the entire matrix is inverted. 

At any given step, after the ( k - l )  × ( k - l )  submatrix has been inverted, we 
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consider the matrix M~, whic~ eontab~ ~he first k rows and cotumas of ~he contents 

of ghe memory.  This is given by 

Ak-i u 

gf air 

Here A~_~. is the submat;rix consisting of the first ~ - 1  rows and columns of A. In  
M~,  we assume that  we have already inverted A~_l I n  M~ then, A -~ • , ~_~ is bordered 

by u, v r, a M  a, where u is the vector eonsistirN of the first ( k - l )  rows of the kth 
column of A and v r is the transposed vector consisting of the first ( k - 1 )  columns 

of the kth row. A~ is given by 

~\V ~ ak~ 

amd its inverse is e~siiy found go be 

(A~ + p(A~-~ u) (v~A~-~,) -PA[~ u) 
A~ '~ = - -  pvrA/.~ p 

where 

= + - p  ( v r A ~  - - 1 ) ,  

0 - 1  

T~--i U%--I p = p~ = (akk -- v Ak-i ) . 

We a ~ m n e  theft 1/p~ # 0. If  this fails, then pivoting must  be used. We have not 
~tudicd the stability problem for this method, but  would expect it to be necessary 
~;o ~void legating pk get ~oo large by comparison with the remaining elements of the 
matrix. Agedly, such problems are beyond the scope of this paper. 

A~summm t, hem that p~ is well behaved, we need to pull out of the array the sub- 
veto,ors u ~md v r, and the c()efficient a ~ .  We compute  pk and the/c-dimensional 
w:~a~;~r col l (A~-lu),  - ! 1  and row {(v A~-l), --1}. The  correction dyad  is then 
re~d in a~ i~ is computed.  

Assuming approximately the same amount  of parallel computat ion facilities as 
we ~sumed  for Gausses Mgorit.hm. but  organized so as to form Euclidean inner 
oroducts, we (urn break up the ~)peration into the following substeps: 

a) CMeu|ate A~:~u and form the veer.or col { (A,~Slu), -- 1 t. Th i s  requires the computa t ion  of 
( k - I t  componeavs~ Cleat" the coetticients in u as u is read out  of the main memory.  As a 
re*~uongble specification of what  parallel capabil i ty we might  expect to have,  we assume 
(he capabil i ty of calculating only one eoefficien~ ar~ a time. This  amounts  to assuming 
tha t  we can form the Eucliderm inner product  of two (k -1 ) -d imens iona l  vectors (u 
i~'ld a row of m A e ~  as a sim~fltaneous computat ion.  There  are, then,  k - 1  such  computa-  
tions. 

(b) CMculat, e r -~ v A~-, and form the veer,or row {(vrM!~), --11. Clear the coefficients in 
v~ from ~he ma in memory. Oa the same assumptions as in (a), tiffs requires (k--l) com- 
I)utations~ 

(c) Calenlate vT/k~l~u, This is ~ single computation by the previous assuraptiom 
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(d) Calculate p and clear a~ from the main memory. This requires one subtract ion and o~e 
reciprocation; we call this one computation. 

(e) Calculate p times the vector obtained in (a). This is erie computation. 
(f) Taking the coefficients of the vector formed in (b) one at a time, form the product  of th is  

coefficient with the vector found in (a) ~nd additively read it into the corresponding 
column of t.he main memory, This requires k computations. 

The hth major step then requires 3h÷1 computations. For an n X n matrix, 
we require N(n) computations, where 

Herme 

N(n) = N ( n - 1 )  + 3 n +  1, 

N ( 1 )  = 3 (steps (d), (e), and (f)) .  

N(n) = ½(n+2)(3n-1).  

Since this is asymptotic to 3n~/2, the method is comparable to Gauss's method, 
which required kn 2, where h is at le~vst 1 ~nd may be significa.ntly higher. 

In comparing the two methods, we have ~ot included ia either case the effect of 
pivoting. The actual operations neeessaLy for pivoting are the same in either case. 
The tests for the best pivot are quite different, however. In Gauss's method we need 
only find the largest of the available elements. Hence the test is a simple search 
procedure for which certain kinds of parallel processors (e.g., content-addressed 
memories) are very' wall ad~pted. 

In the bordering method, the test for the best pivot element requires us to find 
an element for which / a~j - vrA~_l~u I has its maximum value. These coefficients 
are obtained o~fly after a considerable amotmt of computation. 

It appears, then, that the method of bordering should not be used in cases where 
extensive pivoting is to be expected. If there is any likelihood that extensive pivot- 
ing will he I~quired, Gauss's algorithm has a decisive advantage. 

There are important classes of matrices for which pivoting is not required, for 
example, matrices which are nearly diagonal and matrices which are symmetric 
and known to be positive definite. ~ For these matrices, the method of borderip~g 
may be preferable in terms of speed and size capability, depending on the particular 
class of matrices involved, and the facility with which the parallel requirements 
can be implemented. 

4. Cemclusiqns 

In this paper, we have considered how we might program the inversion of nonsingu- 
lar matrices fl:)r a processor having parallel access and computation capability. In  
particular we have considered two general methods of inversion: Gauss's algorithm 
and the method of bordering. 

We have bltentionally avoided assuming arty particular set of parallel capabil- 
ities. Our purpose, instead, has been to gain some insight into what capabilities 
would be most advantageous, and to develop a "feel" for the overall benefits that  
could be obtained from such capabilities. A precise and quantitative evaluation of 

That positive definite symmetric matrices do not need pivoting was pointed out to us by the  
referee. 
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the relative merits of the two methods must obviously depend on the detailed 
capabilities that are available. He~ce, we ca~ o~fly say that the two methods look 
ro~tghly comparable ir~ terms of speed. 

We do observe a signifiear~t difference i~ the parallel capabilities that  could be 
effectively utilized by the two methods. In the ease of Gauss's algorithm we were 
tepid t~o postulate the availability of (a) parallel readout, (b) parallel multiplication 
by a commor~ multiplier, and (c) parallel additive readin. In the method of border- 
ing, we were lead to assume primarily the capability of forming the Euclidean inner 
product of two n~dimen.sioaal vectors, as well as parallel access and additive readin. 
The Euclidean bmer product is a more complex operatio~ but, because of its funda- 
mental import~mee ia the theory of liqueur vector spaces, might be made available 
%r other purposes ~:~ well. If it is available, then the method of bordering should be 
c(m~idered as ~ procedure of considerable interest for the inversion of matrices. 

We cow,elude, then, that both raethods remain of interest, and that both can make 
very effective use of paralleI processing capability. 

~,C,X,,~ZOWL~:DSM~:N~.~' " The author is indebted to W. H. Kautz of Stanford Research 
Ir~stitute for stimulating his interest in the problem, and for the benefit of his ex- 
t)e~:ie~ee in the general :field of psralM processing. 
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