
Matrix Inversion Using Parallel Processing

MARSHALL C. PEASE

Stanford Research Institute,* Menlo Park, California

ABSTRACt. Two general methods of matrix inversion, Gauss's algorithm and the method of
bordering, are analyzed from the viewpoint of their adaptability for parallel computation. The
analysis is not based on any specific type of parallel processor; its purpose is rather to see if
parallel capabilities could be used effectively in matrix inversion.

It is shown that both methods are indeed able to make effective use of parallel capability.
With reasonable assumptions on the parallelism that is available, the speeds of the two methods
are roughly comparable. The two methods, however, make use of different kinds of parallelism.

To implement Gauss's algorithm we would like to have (a) parallel transfer capability for r~
numbers, if the matrix is n X n, (b) the capability for parallel multiplication of the accessed
numbers by a common multiplier, and (c) parallel additive read-in capability. For the method
of bordering, we need, primarily, the capability of forming the Euclidean inner product of two
n-dimensional real vectors. The latter seems somewhat harder to implement, but, because it is
an operation that is fundamental to linear algebra in general, it is one that might be made
available for other purposes. If so, then the method of bordering becomes of interest.

1. Introduction

It is our purpose here to consider two methods for the inversion of nonsingular real
square matrices [1, 2], and to discuss their applicability for parallel computation.

Previous studies of matrix inversion by machine computation have largely been
confined to methods suitable for sequential operation. This has been a reasonable
restriction, since existing computers all operate in an essentially sequential manner.
Recently, however, there has been considerable interest in the development of com-
puters and subunits of computers that have been adapted to parallel operation.
The feasibility of devices of this sort has been demonstrated and some--such as
associative, or content-addressed memories- -are either in production or close to it.
It seems evident tha t in the near future parallel processors will become increasingly
available. I t is becoming important, therefore, to consider how such capability can
be exploited in the various classes of computational problems commonly encoun-
tered.

The problem of inverting matrices is one that occurs in many problems of prac-
tical importance. Also, it is a problem that can easily grow out of bounds as large
matrices are considered. I t is a problem for which there is great advantage in im-
proving computational speed. I t has seemed useful to consider, in general terms,
how parallel operation could be exploited in the inversion of matrices.

Some work has been done in this direction by other workers. For example, Crane
and Githens [3] have considered the programming of a content-addressed memory
for various problems, including, as one example, matrix inversion. However, these
studies usually have been concerned with particular types of parallel processing,

* Computer Techniques Laboratory. This work was sponsored by the Office of Naval Research,
Information Systems Branch, under Contract Nonr 4833(00).

Journal of the Association for Computing Machinery, VoL 14, No. 4, October 1967, pp. 757-764

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321420.321434&domain=pdf&date_stamp=1967-10-01

758 MARSHALL C. PEASE

whereas our concern is with the problem itself and with parallel processing in gen-
eral.

A related, but not identical, problem is that of solving a set of linear equations,
i.e., solving the vector equation 1

Ax = y (1)

for x, given y.

We chose to study the inversion problem, rather than that of solving eq. (1),
since we felt that, by so doing, we would be able to reach a better understanding
of what could be accomplished, and how, with parallel techniques. However, the
reader should keep in mind that the two problems are not identical, so that state-
meats regarding the relative merits of inversion procedures may not carry over into
the solution of eq. (1).

We consider two general methods of matrix inversion. The first, using Gauss's
algorithm, is important since most methods in current use are of this type.

The second is the method of bordering. It is discussed to some extent by Faddeeva
[4], but has not generally been used, since it is not, in general, as efficient as Gauss's
algorithm in serial processes.

2. Gauss's Algorithm

The basis of most of the methods that are currently used is Gauss's algorithm.
This is usually stated as a procedure for solving eq. (1). However, it can be readily
adapted to obtaining the inverse of A, providing one exists.

We observe, first, that any row operation on A can be described as a sequence of
premultiplications of A by the following nonsingular matrices, taken as elementary:

i. £~(X), which multiplies row i by a scalar X ~ 0. C~(X) is diagonal with
l ' s on the main diagonal except in the ith column, where there is X.

ii. Ci j , which interchanges row i and row j, has coefficients Cr, as follows:

cry = 1 if r ~ i o r j ; c~j = c j~= 1; cr, = 0 otherwise.

iii. D~(X), which adds X times row j to row i, has coefficients dra as follows:

drr = 1 for al l r ; d~j -- X; dr, -- 0 otherwise.

For the solution of eq. (1), Gauss's algorithm may be described as a procedure
for finding a matrix C which, when premultiplying A, reduces it to either upper or
lower triangular form. The matrix C is developed as a product of the elementary
matrices given above. Applying C to eq. (1), we obtain

(CA)x = Cy. (2)

Since (CA) is triangular, eq. (2) is easily solved.
We can handle inversion in a similar fashion. Conceptually, we set up the super-

matrix B = (A I). (We say "conceptually" since procedures can be devised which
avoid the necessity of actually setting up the supermatrix, and which therefore use
memory more efficiently than indicated here. See below.) We first develop a C

1 We use boldface capitals to indicate matr ices and boldface lower-case le t te rs to indicate

vectors .

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

Matriz Lnversion Using Parallel Procesabig 759

that triangularizes A, told apply it to B. We then coati,me 'the process to obtain a
D that reduces (CA) first to diagonM, and then to the unit matrix. That is, we find a
D such that

D C (A I) = (D C A D C) = (I D C) ~

SinceDCA = I, (D C) = A -~.

The basic process for de~er,nJnbg C first makes certsin that, a~ # 0, t f a~,i = 0,
we first, permute rows by a sui~dtJe C~ to brb~g a nonzero element iat, o this posi-
tion, (There must be at least (me nm~zero entry i~ ~he first column, Mace A :is non-
singular.) We then use 'n--I etementaw matrices D~ (k) to reduce :the rest of this
column to zero by addirg to ea& row the appropria~;e mult ipb of the first; ~x)w.

Next, we mM~e certain that the new a~:~ ss O~ tf a~ = 0, we I×?rmute row 2 with
some row for which i > 1, to bring a ~mnsero element, into [his p~>sition, (There
must be at least (me a,~ ¢ 0, i > 1, since otherwise column 2 wouM be a muldple
of cohm'm 1 and A would be singular.) We use severM D~,:(X) to :reduce the rest
of eohmm 2 to zero.

We continue until A is triangular. The process c~mnot terminate prematurely
if A is nonsingutar.

To find D, we now repeat the process, gfing baek~u'd and upwar& We use
a~, to eliminate all other elements from the ngh eohm~. Then we use a,o_~,,~_~ to
eliminate all elements above it from the (n--l),.sg column, and so om until A :is
diagonal. Finally, using CdX), we divide each row by a , , and so, obtain the identity.

Having moditied, by row nmnipulatio~ls, (A I) to obtain the idendty on the left,
we read A -1 on the right.

This process is theoretically valid bug may fail because of aumericN i:nstabitity
in the computations. To avdd such Mstabiligy, [~zvo~it~g is used. By this we mean
that, in preparation %r the eru nim~km, c4the s~bd elements im each new
column, we permute ~he remaining rows, or Nws a~d eolumms; so as go Naee a more
appropriate element--perhaps the laqgesg one (in absolute vNue), Nghough other
criteria are sometimes used--on the diagonM positiom q~ds c~ffiehmt N theo the
one that is used to eliminaee the o~hers in that column, in the ease of "hill pivoting,"
in which the largest available element of the mmMni:ag meAN× is moved i.ata) the
pivot position, instability has never bee~ observed. See [5}..

There are severM variations of the basic pivot~ing procedure that are used, in-
volving something less than full pivoting Fee example, we may restrict ourselves
to mw permut, ations, or look for a coefficient gbat i8 not :necessarily the largest
available but is, instead, simNy greater than some preset iimit~

There are also other variations whi& mh~mize the amount of addif, ional memory
required.

I t is beyond the scope of thb paper ~e em~sider these varia:gloas of pivoting. The
interested reader can find ~hem Nseussed ira considerable detait in [5], qThe pre~mnt
concern is for the extent by which ~he proeess itself can be parMlelized, assuming
pivoting either is not needed or is taken care d along the way,

Considering, now, how parallel capabili~¢ can be utilized in a procedure using
Gauss's Mgofithm, several applications are evident:

A. The manipulations described by the C or D matrices do the same thing to
all elements of a row (or eolm'm~). Ail t/he elements of ~he Nvog row, for example,

Ja~t~ of ~he Azea~:,Cm~i~ f~ C~rapu~g bfacahi~ery~ VoL I~, No, 4. October I~67

760 M A R S H A L L C, P E A S E

are multiplied by the appropriate number and subtracted from the row being
affected. There is evidently great advantage in being able to do all of these opera-
tions in parMlel.

B. in terms of the basic algorithm using serial processing, we can either (a)
diagonalize on a single pass through the matrix, or (b) first triangularize and then
diagonalize. For matrix inversion, there is no clear choice. (In solving a set of linear
equatiofts (1), it is necessary only to triangularize.) Including the operations on I
in the supermatrix, both processes require, asymptotically, n a operations, where an
operation is defined as the replacement of a~ by a~i - akja~k/a~k, where akk is the
pivot element. (The computat ion of 1/akk need be done only once per pivot element,
and tha t of a~k/a~k, only once per row, so tha t our operation is essentially one
multiplication and one subtraction.)

With parallel processing, the total number of operations is not significant. What
matters is the number of sets of operations, where each set involves those being
done in parallel.

The count of such sets requires some assumption of the parallel capabili ty present.
The assumptions we believe to be reasonable are tha t : (a) all the coefficients of a
single row can be accessed and processed in parallel; (b) it is possible, by a single
command, to cause the same operations to be performed simultaneously on all the
coefIieients so accessed.

With these assumptions it, becomes better to complete the diagonalization in a
single sweep, since then a given row need be accessed only once and then used to
complete the diagonalizati0n of a column.

C. To consider the potential for improvement, we suppose we have two auxiliary
memories which we label R and S, each capable of holding (nd-1) words. The main
memory is assumed to contain an n × (n + l) array. The matrix A is inserted in
the first n columns, the remaimng column being filled with l ' s to represent the iden-
tity. We denote hy B the changing matrix which is originally the identi ty and ul-
t imately A '~. The program tha t follows is designed to minimize the main memory
required by compressing the supermatrix tha t is conceptually used. Then, assuming
no pivoting is necessary, we can use the following program:

For i stepped from 1 to n:
(a) Re~d out tile ith row into the R-memory.
(b) Comptlte k~i = 1/a~.
(e) Multiply the R-memory by k , and leave in R.

,For j stepped from I to n, skipping j = i:
(d) itead out aj~.
(e) Read (- a ,) times the R-raemory into S, without changing R.
(f) Add the nth coefficient in S to the ith. Set the nth coefficient to zero.
(g) Additively read S into the j th row of the main memory. This procedure eliminates a/~

from A and moves the corresponding coefficient of B into this position.
(h) After completing steps (d)-(g) throughj = n, clear and add the nth coefficient in R into

the ith position in R.
(i) Clear and add R into the ith row of the main memory. This reduces the ith diagonal entry

in A to unity, and suppresses it, replacing it by the corresponding entry of B.
(j) Step i as indicated, and repeat from (a) if i < n.

Wllen the program is completed through i = n, the inverse of A is contained in the
first n cohmms of the main memory.

JQurtml of the Association for Computing Machinery, VoL 14, No. 4, October 1967

Matrix Inversion Using Parallel Processing 761

Of these steps, (b), which computes a reciprocal, and (c) and (e), which involve
parallel multiplication with a common multiplier, are apt to be conside4"ably slower
than the other steps. Furthermore, these steps will take the same time each time
they occur. In inverting an n X n matrix, steps (b) and (e) are done n times, and
step (e), n (n - 1) times. Step (e) will dominate, and the time required will asymp-
totically equal kn s, as n --> ~o, where ~ is some constant not less than unity whose
exact value depends on the effect of the transfer steps.

D. In the paragraph above, note the comparison between 'n ~ operations for the
serial processor, and/on 2 major steps for the parallel processor. While these figures
do not give a comparison of the resultant speeds that is wholly fair, it is valid to
infer that parallel processing can be very much faster for large matrices.

E. Other parallel programs can also be considered, which may be useful i~l par-
ti tular circumstances or for particular types of matrices, of which the tridiagonal
type is a notable example. We can, for example, handle each column serially, but
start working on the next column before the first is completed. Working initially
on the ith column, we can start on the (i + l) - s t column as soon as the (i + l) - s t
row is finished, providing the resultant a.i+l.~+l is a suitable pivot eleme~lt. After
the next step, when the terms in the ith and (iq-1)-st columns in the (i~-2)-nd
row have been eliminated, we can start work on the (i+2) -nd column, and so on.
Providing the operation on each column is kept one step behind that on the previous
column, the operations will not interfere.

Such a process irl general appears to be more involved, and to require more com-
plex logical and arithmetic capabilities than the purely pardlel process described
above. However, it might be advantageous in particular circumstances, depending
on the particular capabilities of the processor being used, or for specialized types of
matrices. For example, if we have available a processor that has the parallel capabil-
ity required for' large rnatriees, then it has excess capacity for' small matrices. By
simultaneously operating on two or more columns, we can make use of this excess
capacity to obtain a further increase of speed.

3. Bordering Method
The second method we discuss is also a practical one. I t has not been found to be
generally useful for serial processing, but may be well suited for processors h~tvirtg
particular parallel capabilities. For example, it appears that it would be of great
general utility to be able to form the inner product of two n-dimensional vectors by a
single parallel operation. The method of bordering is, then, a way of using this ca-
pability in computing the inverse.

The basic method is to invert a k X ~ submatrix that consists of the first k rows
and columns. We use this submatrix to find the htverse of the (k + l) × (k + l)
submatrix that is the original submatrix bordered by the next row and column.
We repeat until the entire matrix is inverted.

We start with the a~ element, which, for the moment, we assume to be nonzero.
We replace it by its reciprocal. We consider this as a 1 × 1 matrix bordered by the
elements a~2, a~2, and a2,, and obtain the inverse of the 2 × 2 matrix in the upper
left corner. We continue until the entire matrix is inverted.

At any given step, after the (k - l) × (k - l) submatrix has been inverted, we

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

762 MARSHALL C, PEASE

consider the matrix M~, whic~ eontab~ ~he first k rows and cotumas of ~he contents

of ghe memory. This is given by

Ak-i u

gf air

Here A~_~. is the submat;rix consisting of the first ~ - 1 rows and columns of A. In
M~, we assume that we have already inverted A~_l I n M~ then, A -~ • , ~_~ is bordered

by u, v r, a M a, where u is the vector eonsistirN of the first (k - l) rows of the kth
column of A and v r is the transposed vector consisting of the first (k - 1) columns

of the kth row. A~ is given by

~\V ~ ak~

amd its inverse is e~siiy found go be

(A~ + p(A~-~ u) (v~A~-~,) -PA[~ u)
A~ '~ = - - pvrA/.~ p

where

= + - p (v r A ~ - - 1) ,

0 - 1

T~--i U%--I p = p~ = (akk -- v Ak-i) .

We a ~ m n e theft 1/p~ # 0. If this fails, then pivoting must be used. We have not
~tudicd the stability problem for this method, but would expect it to be necessary
~;o ~void legating pk get ~oo large by comparison with the remaining elements of the
matrix. Agedly, such problems are beyond the scope of this paper.

A~summm t, hem that p~ is well behaved, we need to pull out of the array the sub-
veto,ors u ~md v r, and the c()efficient a ~ . We compute pk and the/c-dimensional
w:~a~;~r col l (A~-lu), - ! 1 and row {(v A~-l), --1}. The correction dyad is then
re~d in a~ i~ is computed.

Assuming approximately the same amount of parallel computat ion facilities as
we ~sumed for Gausses Mgorit.hm. but organized so as to form Euclidean inner
oroducts, we (urn break up the ~)peration into the following substeps:

a) CMeu|ate A~:~u and form the veer.or col { (A,~Slu), -- 1 t. Th i s requires the computa t ion of
(k - I t componeavs~ Cleat" the coetticients in u as u is read out of the main memory. As a
re*~uongble specification of what parallel capabil i ty we might expect to have, we assume
(he capabil i ty of calculating only one eoefficien~ ar~ a time. This amounts to assuming
tha t we can form the Eucliderm inner product of two (k -1) -d imens iona l vectors (u
i~'ld a row of m A e ~ as a sim~fltaneous computat ion. There are, then, k - 1 such computa-
tions.

(b) CMculat, e r -~ v A~-, and form the veer,or row {(vrM!~), --11. Clear the coefficients in
v~ from ~he ma in memory. Oa the same assumptions as in (a), tiffs requires (k--l) com-
I)utations~

(c) Calenlate vT/k~l~u, This is ~ single computation by the previous assuraptiom

Jvu~mt af ~be ~s~cb~ion ~r Computing Machinery, VoL 14. No. 4, October 1~7

Matrix Invers~ion Using ParalleZ Processing 763

(d) Calculate p and clear a~ from the main memory. This requires one subtract ion and o~e
reciprocation; we call this one computation.

(e) Calculate p times the vector obtained in (a). This is erie computation.
(f) Taking the coefficients of the vector formed in (b) one at a time, form the product of th is

coefficient with the vector found in (a) ~nd additively read it into the corresponding
column of t.he main memory, This requires k computations.

The hth major step then requires 3h÷1 computations. For an n X n matrix,
we require N(n) computations, where

Herme

N(n) = N (n - 1) + 3 n + 1,

N (1) = 3 (steps (d), (e), and (f)) .

N(n) = ½(n+2)(3n-1).

Since this is asymptotic to 3n~/2, the method is comparable to Gauss's method,
which required kn 2, where h is at le~vst 1 ~nd may be significa.ntly higher.

In comparing the two methods, we have ~ot included ia either case the effect of
pivoting. The actual operations neeessaLy for pivoting are the same in either case.
The tests for the best pivot are quite different, however. In Gauss's method we need
only find the largest of the available elements. Hence the test is a simple search
procedure for which certain kinds of parallel processors (e.g., content-addressed
memories) are very' wall ad~pted.

In the bordering method, the test for the best pivot element requires us to find
an element for which / a~j - vrA~_l~u I has its maximum value. These coefficients
are obtained o~fly after a considerable amotmt of computation.

It appears, then, that the method of bordering should not be used in cases where
extensive pivoting is to be expected. If there is any likelihood that extensive pivot-
ing will he I~quired, Gauss's algorithm has a decisive advantage.

There are important classes of matrices for which pivoting is not required, for
example, matrices which are nearly diagonal and matrices which are symmetric
and known to be positive definite. ~ For these matrices, the method of borderip~g
may be preferable in terms of speed and size capability, depending on the particular
class of matrices involved, and the facility with which the parallel requirements
can be implemented.

4. Cemclusiqns

In this paper, we have considered how we might program the inversion of nonsingu-
lar matrices fl:)r a processor having parallel access and computation capability. In
particular we have considered two general methods of inversion: Gauss's algorithm
and the method of bordering.

We have bltentionally avoided assuming arty particular set of parallel capabil-
ities. Our purpose, instead, has been to gain some insight into what capabilities
would be most advantageous, and to develop a "feel" for the overall benefits that
could be obtained from such capabilities. A precise and quantitative evaluation of

That positive definite symmetric matrices do not need pivoting was pointed out to us by the
referee.

Journal of the Association for Computing 5Iachinery, Vol. 14, No. 4, October 1967

754 3~IARSHAL~ C. Pt~ASE [

the relative merits of the two methods must obviously depend on the detailed
capabilities that are available. He~ce, we ca~ o~fly say that the two methods look
ro~tghly comparable ir~ terms of speed.

We do observe a signifiear~t difference i~ the parallel capabilities that could be
effectively utilized by the two methods. In the ease of Gauss's algorithm we were
tepid t~o postulate the availability of (a) parallel readout, (b) parallel multiplication
by a commor~ multiplier, and (c) parallel additive readin. In the method of border-
ing, we were lead to assume primarily the capability of forming the Euclidean inner
product of two n~dimen.sioaal vectors, as well as parallel access and additive readin.
The Euclidean bmer product is a more complex operatio~ but, because of its funda-
mental import~mee ia the theory of liqueur vector spaces, might be made available
%r other purposes ~:~ well. If it is available, then the method of bordering should be
c(m~idered as ~ procedure of considerable interest for the inversion of matrices.

We cow,elude, then, that both raethods remain of interest, and that both can make
very effective use of paralleI processing capability.

~,C,X,,~ZOWL~:DSM~:N~.~' " The author is indebted to W. H. Kautz of Stanford Research
Ir~stitute for stimulating his interest in the problem, and for the benefit of his ex-
t)e~:ie~ee in the general :field of psralM processing.

RE FERENCE8

l~ P~;~e~, M~ C, Meshed o] Matrix Atgebra~ Academic Press, New York, 1965. (This is a good
source for ge~erM matrix theory.)
(:lA~:~c~a~ F. fL The Theory of Matrices (2 vols.). Chelsea, New York, 1960. (This is a
good source for genera[m~rix theory,)

8. CI~A~, B~ A,, ~uo GITH'~NS, J. A. Balk processing in distributed logic memory. IEEE
Tra~s~ EC46, 2 (April 1965), 18(~...I96.

4, F ~ ' ~ v ^ ~ V, N, Computational Methods of Linear Algebra. Dover, New York, 1959.
5~ W ~ : ~ o ~ , J, H. The Algebraic Eigenvaluc Problem. Clarendon Press, Oxford, 1965. (This

gives a detailed di.scussioa of the stability problem in general and of the effect of various
p{wtiag procedures,)

~ c ~ v ~ JuN~, 19¢:~; a~vxam) Ae~u~, 1967

;!

f

/

!i;

