
Some Completeness Results in the Mathematical ~Fheory

of Computation

DONALD M. K A P L A N

Stanford University,* Stanford, California

ABSTRACT. A formal theory is described which incorporates the " , " ,~ss~gnrnma tt" f~tnct.io~x
a(i, k, () and the " c o n t e n t s " funct ion c(i, ~). The axioms of the theory a r e s h o w n to comprise
a complete attd consistent set.

KEY WORDS AND PIIRASES: axioins, formal theory, logic, completeness, f o r m a l 1 og ic consistency,
theory of computat ion, mathemat ica l logic

CR CATEGORIES: 5.21, 5.24, 5.29

In [1], McCarthy introduces computer program state vectors a l o n g w i t h two fm~c-
tions used to compute explicitly with them. Certain facts a b o u t t h e s e funcl;io~s
are given in [1], and in this paper it is shown that these facts e o n s t . i t u t e ~ complete
set of axioms in an appropriate formal theory 3.

Before developing this formal theory, we discuss state veer.ors a n d functions oa
them so that the relevance of formulas in 3 is apparent.

A state vector is simply a family of quantities lxd, i E I, I ~ { 1, 2, . - -}, where
for each i, xi ~ D, where D is the set of all possible quantities. T h e e x a c t nature of D
is left unspecified here, but many applications would find D c o n t a i n i n g such subsets
as tile integers, certain character strings, finite bit sequences, t h e r e i d numbers , ct, c,

Distinct from state vectors as defined above is the program s tate vector which, for
a program at a given point during its execution, indicates the s e t o f c u r r e n t ~tssig~
ments of values to the variables of the program. In the ease of a m a c h i n e bmguage
program, the program state vector indicates the set of cur ren t eo n t e r~ t s of t.h(~e
registers whose contents change during the course of program e x e c u t i o n . Speeifi.-
tally, the program state vector for a program ~r is defined as the o r d e r e d pa, ir (M , , ~)
where ~ is a state vector in the general sense described above and 21/I~ is ~:t 1--I mappi~g
of program variables (or register addresses) into tile positive i n t e g e r s . Thus , if v is
a variable of 7r then the M~(v)-th term in (is the quantity c u r r e n t l y assigtted t~;, ~',

In order to eomput.e explicitly with state vectors, we i n t r o d u c e t h e funetio~ c:
I , V --~ D, where V = {x : x is a state vector}, and write c(i, ~) t o d e n o t e the i~h
term (quantity) of ~. We also introduce the function a: I, D, V --~ V and write
a(i, k, ~) to denote the state vector that results when the i th t e r m in (is replaced
with the quantity k and the other terms in ~ are left unchanged. I n [1], at1 example
is given showing the transformation of a simple computer p r o g r a m i n t o expressions
utilizing this formMism.

We now define a formal theory 3' = (Fro', Ax', I l l , 1/2). W e f o l l o w [2] here.
(1) 3' has the following countable set of symbols: p a r e n t h e s e s , brackets , the

* Depar tment of Computer Science. The research reported here was s u p p o r t e d irl p a r t by ~he
Advanced Research Projects Agency of the ONce of the Secretary of D e f e n s e (SD-1S3).

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968, laP. 124-134.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321439.321447&domain=pdf&date_stamp=1968-01-01

Completeness Results in Mathematical Theory of Computation 125

,1 ~2 comma, individual constant letters kl , k2, • • • , ordinary funetioa letters j l , J l , • " ' ,
if ' , . . . where j~" is the kth function of n arguments, iadex letters i n , iI~, . • •
i,,k, " ' , state letters [1, ~2, " " , the special function letters a ,'rod e, and the
predicate symbol " = "

A finite sequence of symbols of 5' is called an expression of 3'. If' p trod q are
!

expressions of 5 , then p = s q means p and q are symbol for symbol the same ex-
pression of 5'.

(2) There is an effectively decidable subset Fro' of the expressions of 3' called
the set of well-formed formulas (wfs) of 3. Wfs are defined reeursively as follows.

First we define terms:
(a) Individual cons tant letters k~ are terms.
(b) I f fk ~ is a funct ion letter, and tl , . . . , t, are terms, then jL'~[h , . . . , t,,] is a

term.
(e) If i,~k is an index letter and (is an n-state (see definition below), tilen c('i,,~, ~)

is a term.
(d) An expression is a term only if it can be shown to be a term on the basis of

clauses (a), (b), and (e).
Next, we define n-states:
(a) The state letter ~n is an n-state.
(b) If ink is an index letter, and t is a term, and ~ is an n-state, then a(i,,~, t, ~)

is an n-state.
(c) An expression is an n-state only if it can be shown to be an n-state on the

basis of clauses (a) and (b).
The definitions given above for terms and n-states are potentially intinitely

rccursive, so tha t the restriction mus t be added tha t terms and n-states be finite

expressions of 5'.
_ of 3 . Speei- Finally, the predicate symbol applied to terms yields the wfs " '

fically, an expression of 5' is a well,formed formula if and only if it is of the form

t~ = t2 where h and t: are terms.
(3) A set Ax' c Fro' is set aside and called the set of axioms of 3'. The set

Ax ~ is defined by two axiom schemas:

A1 c(i , a (j , t, ~)) = c(i , ~),
A2 c(i , a (i , t, f)) = t,

~here i and j are any distinct index letters of the form i,~k, t is any term, and (is
any n-state, for any n = 1, 2, . . - . No te tha t i, j , t, ~ are used throughout with
the above meanings. Since Ax' is an effectively decidable subset of I, m , is there-

fore an axiomatic theory.
(4) The rules of inference of 5' are

R1 (tl = h , t ~ = h),

R2 (a (h , h) , h = h , a (h , t2)),

where tl and t2 are terms and where the wf a (t i , t2) arises from (a(tl, h) by replacing
some, but not necessarily all, occurrences of h by t2. Obviously, these rules charac-
terize the reflexivity and substi tut ivi ty properties of equality; in a first-order theory,
the axioms associated with equality would be introduced along with the predicate
and modus ponens would then be the operative rule of inference, t towever, framing
of the completeness derived in this paper within a full propositional and quantifica-

Journal of the As,~ociation for Comput ing Machinery, Vol, 15, No. 1, January 1968

126 DONALD M. KAPLAN

tional structure would only add more complexity, not more significance, to the
results obtained. We write ~-~ if and only if a C Fro' and is derivable using Ax',
R1 and R2.

Of course, a w f ~ has meaning only when an interpretation is given for the sym-
bols in (L An interpretation consists of

(a) a nonempty set D (the domain) of quantities,
(b) a mapping of ordinary function letters fk" into n-place operations in D,
(e) a mapping of individual constant letters k~ into D,
(d) 1-1 mapping of t h e i n d e x l e t t e r s i ~ , k = 1,2, . . . , i n t o l f o r n = 1 , 2 , . . .
(e) a mapping of state letters into families with index set I and terms chosen

from D,
(f) an assignment of the equality relation in D to the predicate symbol " - "

Thus, we write x = ~ y if and only if x and y are the same element of D.
The notion of t ru th for wfs of 5 ~ is intuitively dear, but can be precisely defined

as follows. Let there be given an interpretation with domain D. We now define
what it means for a w f a to be true in the given interpretation. As a preliminary
step, we define a total function v* of one argument, which maps terms into quanti-
ties in D.

(a) If k~ is an individual constant letter, then v*(k~) is the interpretation in D
of this constant.

(b) If fk ~ is an ordinary function letter and g is the corresponding n-place opera-
tion in D given by the interp~;etation, and tl , .- • , t~ are terms, then v*(fk~[tl, . . . ,
t.]) =D g(v*(h) , ' ' ' , v*(t~)).

(C) If ink is an index letter and ~ an n-state, and if the integer p C I is the inter-
pretation of i ~ , then v (e (z~ , ~)) = , pth term of u*(~), where u* is defined below.

The total function u* of one argument maps n-states into families with elements
chosen from D.

(a) If ~ is a state letter, then u * (~) is the family, with index set I and terms
chosen from D, given for ~. by the interpretation.

(b) If ins is an index letter, t a term, and ~ an n-state, and if the integer p E I
, u (a(,~k, t, ~)) is defined as having the same is the interpretation of i.k then * '

terms as u*(~) except for the p th term which is v*(t) .
From the definitions above we can easily obtain the following two results, which

are needed later on.
(a) * " * " v (c(*,k , a (i ~ , t, ~))) =D V (C(*.k, ()) if k # I.
(b) * " v (C(~nk, a(i,~k, t, ~))) =D v*(t) .
The definition of t ru th for wfs is then: a wf a of the form h = h is true (fora

given interpretation) if and only if v*(h) =D v*(h) , and a w f a is valid (according
to 5 ~) if and only if (~ is true "in all interpretations" (abbreviated i.a.i.). We write

a ff and only ff a is a valid wf.
t Before moving on to the completeness theorems for 5 , we need a few preliminarY

definitions, two lemmas, and a proposition.
(a) A simple term is a term of the form e(i, ~) or k~ or fk~[tl, . . • , t~], where

tl , " • , t~ are terms.
(b) A totally simple term is a term of the form c(i, ~,~) or kl or f k ' [h , " " , t~]i

where h , " " , t. are totally simple terms.
LEM~.A 1. I f ti and t2 are totally simple terms and ~ h = t~ then h = B t~ .

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

Completeness Resu l t s in M a t h e m a t i c a l T h e o r y o f C) m p u t a t w m 127

PROOF. We give ~m it~duetive proof w h e r e c a s e s (~) a~d (b) b d o w co~):~tit~u~e the
primitive induct ion level.

(a) h = ~' lc~ for some i.

~t~ = t~ =~ v*(k~) = v v*(t~) i.a.i.

~ t2 = ~ /C i

(b)

~ t~ = ~ ~

(c)

~ t t = ~ ' 6 .

tl = E C(ink , ~ .) for some n and/c .

* ' v* (6) i .mi . v (c(~.~, a)) =~

t l ~ E ~2 .

, h2, " ' " , h~] for s o m e n , /6 and t e r m s t l l , h2, ' . . , tl,~.

* , n
~) (Jk [t l i , t12, " ' " , t l n]) = D V*(~2) i.a.i.

t~ = E f F [t 2 1 , t~2 , . . . , h ~]

and v * (h j) =D v*(6j) , j = 1, 2, . . . , n i.a.i.

But, tl and b2 are to ta l ly s imple t e rms , t h e r e f o r e tl~, h2, .. • , t~ , , /~21,6z, "- • , 6 ,
are also to ta l ly s imple t e rms . Assume t h e l e m m a holds for h~ and tht, h~ and t2~,
"" , h, and t~,. T h e n tn = E h i , h2 = E t22 , . - . , h , = E t~, • Thus , h = E 6 • This
completes the induct ion and the prodf of t h e l emma . T h e essential po in t here is
simply t ha t two to ta l ly s imple t e r m s c a n n o t b e equal in all i n t e rp re t a t ions mfless
they are the same te rm.

L~MM~ 2. I f N t l = ~ , ~ t3 = t4 , ~ h = t3 , then ~ t ~ = & where h , 6 , h , a n d h
are terms.

PROOF. F r o m the g iven in fo rmat ion we h a v e

v*(h) = D v*(t2) i.a.i.,

v*(t3) = , v*(t4) i.a.i.,

v*(tl) =D v * (h) i.a.i.

In any par t icular in te rp re ta t ion , we h a v e c e r t M n l y the th ree equali t ies above . H e n c e
v*(t2) =D v*(t4) in this in te rpre ta t ion . S ince a n y in t e rp re t a t i on gives this resul t ,
we have v*(t2) = D v*(t4) i.a.i., t h a t is ~ h = t4 .

PROPOSITION 1 (P1) . ~t = t where t i s a n y t e rm.
PROOF.

(1) c(i , a (i , t, ~)) = t, A2

(2) c(i , a (i , t, ~)) = t, A2

(3) t = t. R2 on (1) a n d (2)

THEOREM 1 (T 1) . ~-a ~ ~(~; that is, all t h e o r e m s of 3' are valid.
PRooF. F i r s t we show t h a t the ax ioms a r e v a l i d .

Journal of the Association for Computing Machinery, Vol. 15, No. I, Jseauary 1968

128 DONALD M. KAPLAN

AI: c(i, a, (j, t, ~)) = c(i, ~).
v*(c(i, a(j , t, ~))) =D V*(c(i, ~)) i.a.i, f rom the defi~lition of v*.

So, ~ c (i , a(j , t, ~)) = c(i, ~).

A2: c(i, a(i, t, ~)) = t.

v*(c(i, a(i, t, ~))) = D v*(t) i .ai . f rom the definition of v*.

So, ~ c (i , a(i , t, ~)) = t.

Next we show that the rules of inference R1 and R2 preserve val idi ty . Consider
Rl (t l = t2, t~ = tl) and assume ~t l = t2. Then, by the definit ion of validity,
v*(tl) =~ v*(t~) i.a.i, or alternatively we can write v*(b2) =D v*(tl) i.a.i., that is
~ = tl • Thus, R1 is seen to preserve validity.

Consider R 2 (a (t l , tl), tl = ~ , a(t~, &)) and assume ~ (~ (t l , t,) and ~ts = t~.
The validity of a (t s , tl) depends on the quantities in D into which v* maps the
terms in a(t~, t,). Clearly, if v*(ts) =D V*(&) i.a.i., then subs t i tu t ion of the term
t2 for occurrences of the term tl in (~(t,, t~) to generate (~(t, , b2) will no t affect this
validity, so that ~ a (t s , t2) as well.

Since the axioms are valid and the rules of inference preserve validi ty, then all
theorems of 3' are valid.

THEOREM 2. COMPLETENESS OF 5' (T2) . ~ a ~ ~-(~; i.e., all valid wfs are theorems
of a'.

PROOF. We give a constructive proof so tha t given any valid wf a , we show how
to construct a proof of a .

First, we define a total function r* of one argument which maps te rms into other
terms.

(a) If tl is a simple term, then r*(tl) =E tl .
(b) If t, =B c(i, a(j , t, ~)), then r*(tl) =E c(i, ~).
(c) If tl =E c(i, a(i, t, ~)), then r*(tl) =~ t.

We now define two proof-generating procedures, each accept ing a single term as
parameter. An ALaOL-like representation is used for clari ty and brevi ty . Boolean
procedures simpleterm(t) and totaUysimpleterm(t) are assumed available, an as-
sumption warranted by the decidability of the set of all terms. T h e procedure
proofstep(x, y) emits a proof step x with justification y.

t e r m p r o c e d u r e reduce(t); v a l u e t; t e r m t;

b e g i n c o m m e n t this procedure cons t ruc t s a proof of ~t = q where q is a s imple term. qis
re turned as the value of the procedure;
t e r m p, q;
proofstep(t = t, P1);
q ~ - t;
w h i l e --1 simpleterm(q) d o

b e g i n
~-- r*(q);

proofstep(q = p, AI or A2);
proofstep(t = p, R2) ;
q ~ p

end ;
reduce ~ q

e n d procedure reduce;

Journal of the Association for Computing Machinery, Vol. 16, No, 1, January 1968

6 ; ~ m f l e ~ e s s R e s u l t s i n M a t h e m a t i c a l T h e o r y oJ • C o m p u t a t i o n 129

To verify t ha t the sequence of proof s teps genera ted bv proeedure r e d u c e (t) eon-
',titutes a val id proof, it is on ly necessary to ob~ei•ve t h a ((t - *~ " '
"" " ~ F ' : = '/' ~21) IOl" a H B e r l l l s
;r and that the app l ica t ions of 112 are eorreet. I n the next. p rocedure a c e r t a i n
bose~ess of no t a t i on is i n t roduced , b u t the mean ing should be app~trent..

t e r m p r o c e d u r e reducelolal ly(t) i v a l u e t; t e r n , t;

beein comment this procedure constructs a proof of ~L = t' wi~ere t' is a tot,,dly simple term•
~' is returned as the wdue of the procedure;
terrnt l :

h~teger j , n:
~e

i f -n *imple lerm(l) t h e n t' ~-- reduce(l)
e l s e proofa tep(t = l, P 1) ;

i f - ~ lolall!mimpletem~ (l') t h e n

et~nment t' = u f~'[ll , " • " , &] where at least one of the terms tt , .. • t,~ is not. to~dly
simple;

R*r j ~-- 1 s t e p 1 u n t i l n d o
begl n

~ ' ~ f~=[h , ' . tj_t , rMueegotallq(t~), l j+, , 1~1;
proofstep(t = t', R2)

end;
reducetolatly +- t'

e ~ d procedure reducetotally;

Cor~sider now a n y wf a where ~(,~. Suppose a is of the form h = t~ where t, and
t~: a ~ terms. Cons t ruc t proofs of kt, q* and kt,~ l,* = = ~ using procedures r e d u c e (t)
and r e d u c e t o t a l l y (t ~ where bo th h* an d t * • ~ are to ta l ly simple terms•

From T1 we then have t ha t ~ t t = tt* and ~12 = t~*. But , we are g iven theft
ruth = h ; from L e m m a 2 we then ob t a in ~ t t* = h*. Since h* and t~* are tot, Mty
~hn'ple terms, we can app ly .Lemma 1 a n d ob t a in h* - , : e • T h a t is, h* and ta* are l *
~.he same term, ~ymbol for symbol• T h a t be ing so, P I gives kq* = re*.

Sea, from the proof eonsgruet ions we have 1-41 = h* ~md ~-tz = t~* a n d we wri te
bh ,~ t * = ,~ as ~m ins tance of P1 . U s i n g R 2 o n I-h = h ' a n d]~h* = t~* gives }-h =
¢~'. whieh on app ly ing R1 gives ~-b2* = tt This last resul t together wi th (h b*
:rod !12 gives kt~ = h , w h i e h on app ly ing R I gives ~h = t~, i.e., keg, wh id t
:ompletes the proof of comple teness for a' .

We ~ow have a theory 3' which is eornplete attd so ean be used to deduce all val id
dz~temen,s about {u{uality of terms. However , in a potent ia l ly more powerful t heo ry
~, ~ hmfld also, be able to deduce all val id s t a t emen t s abou t equal i ty of n.-states (i .e. ,
~a~e vectors). To form a new theory 3 = (F r n , A x , R I , 112, 113, R4) tha t will
@~w such dedueti , ms, we modi fy 3' in the m a n n e r ou t l ined below.

(1) a has the same e o u n t a b l e set of symbols as :5' with the addi t ion of the predi-
:ate symbol " = "

!2) //';m = Fro ' U {x : x is an expression of a of the form 0t ~ 0z where 0~ and 0=
,re n-slates for any n = 1, 2, - . . } . T h e expressions in F m and oaly those are the

(3) A x = A S U l:c : x is a n i n s t a n c e of axiom schema A 3 , A 4 , or A S I .

A3 a (i , t , a (j , s , ()) ~ a (j , s , a (i , t , ()) .

A 4 a(i , t, a (i , s, ~)) --= a(i , t, ~).

A 5 a(i , c(i , ~), ~) _= ~.

Journal of the A~ocistion for Computing Machinery, VoL 15, No, 1, January 1968

130 D O N A L D ~¢[. KA.Pi.4: N

(4) The rules of inference of 5 are R1 and R2 (ex tended to all wfs of 3) together

with
R3 (01 -~ 02,02 -= 01)

and
R4 (0~(0~, 0~), 01 --= 02, 0~(01, 02))

where a C Fm and 0, arid 02 are n-states for any n = 1, 2, • • • . The same comments
offered earlier about R1 and R2 are relevant here regarding R3 and R4. We
write }-a if and only if a is a wf and is derivable using A x and R1, R2, R3, and R~L

As before, a w f a E Fm has meaning only when an in terpre ta t ion is given to the
symbols in a. Art interpretat ion is defined exact ly as before with the addition that
art assignment of the equali ty relation in the set of all families with index set I and
terms chosen from D is made to the predicate symbol " ~ ". Thus, we write {x~} ~a~
{Yd w h e r e i C I a n d x ~ , y ~ D , i f a n d o n l y i f z ~ = D y ~ , i = 1, 2 ,

The definitions of t ru th and validity for wfs are ex tended as follows: a w f a of
the form 0~ ~- 02, where 0, and 0~ are n-states is true (fo r a given interpretation) if
and only if u*(OD ~D u*(O~), and a is valid (accord ing to 3) if and only if a is
true in all interpretations. From the 1-1 nature of the mappings given by the inter-
pretation for index letters and from the definition of u*, we obtain tha t u*(01) ~D,

!i!
/)* " , "" u*(02) if and only if v*(e(i,~k, 01)) = v (e(*nk 02)) for each k = 1, 2, • ;i.e,i

0~ ~ 02 is true if and only if c(i~k, 0~) = e(i~k, 0:) is t rue for each k = 1, 2, .. : ;
Then, 0~ ~- 0~ is valid if arid only if c(i , k , 01) = c (i ~ , 02) is valid for
each lc = 1, 2, As before, we write ~ a if and on ly if ~ is a valid wf.

Before moving on to the completeness theorems for 3, we need a lemma, a proposi-
tion, and a definition.

LEMMA 3. I f ~01 --= 02 , ~0 , ~ 0, , ~0 , =-- Oa , then ~0~ ~- O, where 0,, 02, 0~
and O, are n-states for any n = 1, 2 ,)

PROOF. From the given information, we have

~ c (i , ~ , 0~) = c(i ,~, 02), k = 1, 2, . . . ,

~c(in~,O~) = c(ink,O~), k = 1 , 2 , . . . ,

= o (i . , , o,) , = , ,

By applying Lemma 2 to the above three s t a t emen t s for k = 1, 2, - . . , we obtain

~ c (i , ~ , th) = c(i ,~, 0,), k = 1, 2 , . . . ;

i e., ~0~ -= 04.

PROoF.PROPOS~TmN 2 (P2) . ~(~ ~ where } is any n-state for n = 1, 2, . . .

(1) a(i, c(i, }), }) ~ }, A5

(2) a(i, e(i, }), ~) ~ }, A5

(3) ~ -~ }. R4 on (1) and (2)

We define the canonical form for n-states to be

a(i~k~, h , a(ink~, ~2 , a(. . .a(i~kp, t~, ~) . . .)))

Journal of the Association for Computing Machinery, Vol, 15, No, 1, J a n u a r y 1968

Completeness Results in Mathematical Theory of Computation 131

where if p = 0 we have simply ~ , where kl < k2 • • • < k~ and where tl , t~, • -- , t~
are totally simple terms such ~hat r i s e c(i~kj , ~,~) f o r j = 1, 2, .. • , p.

T~oREM 3 (T3) . ~-(~ ~ ~ a; that is, all theorems of 3 are valid.
pitOOF. First we show that the new axioms given by A3, A4, and A5 are valid.

A3: a(i, t, a(j , s, ~)) .~ a(j , s, a(i, t, ~)).
Consider the following deduction and the result obtained; m, i, and j are distinct.

(1) c(m, a(i , t, a(j , s, ~))) = c(m, a(j , s, ~)), A1

(2) c(m, a(j , s, ~)) = c(m, ~), A1

(3) c(m, a(i , t, a(j , s, ~))) = c(m, ~), R2 on (1) and (2)

(4) c(m, a(j , s, a(i , t, ~))) = c(m, a(i, t, ~)), A1

(5) c(m, a(i , t, ~)) = c(m, ~), A1

(6) c(m, a(j , s, a(i , t, ~))) = c(m, ~), R2 on (4) and (5)

(7) c(m, ~) = c(m, a(j , s, a(i, t, ~))) , R1 on (6)

(8) c (m , a (i , t , a (j , s , ~))) = c (m , a (j , s , a (i , t , ~))) . R2 on (3) and (7)

Then T1 gives ~ c (m, a(i, t, a(j , s, ~))) = c(m, a(j , s, a(i, t, ~))) for any m distinct
from i and j. Consider now the following deduction and the result obtained; i and j
are distinct and m = B i.

(1) c(m, a(i , t, a(j , s, ~))) = t, A2

(2) c(m, a(j , s, a(i , t, ~))) = c(m, a(i, t, ~)), A1

(3) c(m, a(i , t, ~)) = t, A2

(4) c(m, a(j , s, a(i , t, ~))) = t, R2 on (2) and (3)

(5) t = c(m, a(j , s, a(i, t, ~))) , R1 on (4)

(6) c(m, a(i , t, a(j , s, ~))) = c(m, a(j , s, a(i , t, ~))). R2 on (1) and (5)

Then T] gives ~ c (m , a(i , t, a(j , s, ~))) = c(m, a(j , s, a(i, t, ~))) for distinct i
and j and m =E i.

A proof similar to tha t above gives the same result for distinct i a n d j and m = ~ j .
Thus, for all m we have ~ c (m , a(i, t, a(j , s, ~))) = c(m, a(j , s, a(i, t, ~))), and so
by the definition of validity ~ a (i , t, a(j , s, ~)) = a(j , s, a(i, t, ~)). Hence, the
axioms given by A3 are all valid.

Proofs structured like the one above can be given to show that the axioms given
by A4 and A5 are all valid.

As well, straightforward arguments like those in T1 can be given to show that
R2 extended to wfs of 5 and R3 and R4 lead from valid wfs to other vatid wfs.

Thus, since the axioms of 5 are valid and since the rules of inference of 5 preserve
validity, then all theorems of 5 are valid.

TI~EOREM 4. COMPLETENESS OF ~ (T4). ~(~ ~]-(~, i.e., all valid wJ~ are theorems
of~,

PI~OOF. This theorem has already been proved (T2) for wfs of the form tl = t2

Journal of the A~ooiation for Computing Machinery, Vol. 15, No. 1, January 1968

132 DO~a~D M. KAPLAN

where t, and & are terms. Thus, we consider here only wfs (~ of the form 0~ ~ 02.

Once again a constructive proof is given. Several proof-constructing p r o c e d u r e s are
used in addition to r e d u c e (t) and r e d u c e t o t a l l y (t) defined above. For the description
of the new procedures, an ALGOL-like representation is again used.

The first three procedures are used to manipulate n-stt~es s and c o n s t r u c t proofs
of ~-s = s', where s' is the result of the manipulation. In these p rocedu re s , the
the argument s is of the form

a (j l , 6 , a (j ~ , t~ , a (. . . a (j t , , , a (j , , , + l , t i n + , , a (. . . a (j p , tp , ~,~)-- .))) - • -)))

and 0m is used to represent

a (j , n , t , , a (j , n + l , t,,,+~ , a (. . . a (j v , tp , ~) . . .))) .

s t a t e p r o c e d u r e i n t e rchange(s , m);
v a l u e s, m; s t a t e s; i n t e g e r m;
b e g i n c o m m e n t this procedure c o n s t r u c t s a proof of ~s -~ s ' whe re s ' is l ike s, e x c e p t that

the ru th and (m + 1)-st asmgnments are in te rchanged , s ' is reBurned as t h e v a l u e of the
procedure . Wi th in s, we have j~ # E j,~-~ ;
s t a t e s';
proofstep(Om ~ a(j,~+~ , t,,+~ , a(jm , t,, , 0re+z)), A3);
s ' * - a (j l , tl , a (. . - a(jm-1 , t ,~-1, a (j~+l , t,,~+l , a(j ,~ , t m , 0m+2)))"" "));
proo f s t ep (s ~ d , R4) ;
in terchange ~-- s t

e n d procedure in terchange;

s t a t e p r o c e d u r e de le ledup l i ca te (s , m) ;

v a l u e s, m; s t a t e s; i n t e g e r m;
b e g i n c o m m e n t th is p rocedure cons t ruc t s a proof of ks -=- s ' where s' is t h e s a m e a s s except

t h a t the (m + 1)-sl a s s i g n m e n t (a dupl ica te one) is de le ted . W i t h i n s, we h a v e j,~ = Ej,~+l;
s t a t e S';
p r o o f s t e p (0 ~ --= a (j a , t m , 0.,+2), A4);
s ' ~ - a (j l , 6 , a (. . - a(j ,~ , t,~ , Ore*2) '")) ;
proo f s t ep (s --= s ' , R4);
dele tedupl ica te +- s ~

e n d procedure de le tedupl ica le;

s t a t e p r o c e d u r e de le tevaeuous(s , m);
v a l u e s, m; s t a t e s; i n t e g e r m;
b e g i n c o m m e n t th i s p rocedu re cons~rucm a proof of ~s ~ s ' whe re s ' is t he s a m e a s s except

tha t the mth a s s i g n m e n t (a vacuous one) is de le ted , s ' is r e tu rned as t h e v a l u e of the
procedure . Wi th in s, we have tm = E c(jm , ~) and j l , " '" , jp all d i s t i n c t ;
s t a t e s;
t e r m t;
t +- redueetotal ly(c(jm , 0re+l));
c o m m e n t s ince t h e j ~ , j , ~ _ , , - . . , 3v are d i s t i nc t , t is now c (j }~) a n d a proof

of ~c(j~, a~+,) = c(jm, ~) has been c o n s t r u c t e d ;
p r o o f s t e p (a (j m , C(jm, 0~-~), 0,~-,) ~ 0~-~1, A5);
p r o o f s t e p (a (j ~ , c(j~ , ~) , 8,~.~) ------ ~,,~_~ , R2);
c o m m e n t th i s las t s t e p s t a t e s t h a t ~-~= -~ 8m+, ;
s ' ~ a (j l , t~ , a (. . . a (j m - 1 , tin--1 , 8m+-l) " " ")) ;
proo f s t ep (s --= s ' , R4);
deletevacuous ~ s '

e n d procedure de le tevacuous;

In the following procedure, the argument s is of the form

a (i ~ , t~ , a (i n ~ 2 , t~ , a (' . . a (i ~ , t v , } , ,) ' ' "))) .

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

Comple teness R e s u l t s i n M a t h e m a t i c a l T h e o r y o f C o m p u t a t w n 133

s ta te p r o c e d u r e canonical@); v a l u e s; s t a t e s;
beg in c o m m e n t th is p rocedu re cons~rucr, s a proof of ~-s ~ s' where s' is the canonical form

of s. s ' is r e tu rned as t he value of t he procedure ;
s t a t e st;
i n t e g e r j , m;
proofstep(s = s, P2) ;
8 ~ +-- s;
c o m m e n t first wc do a s imple sor t on t h e second subsc r ip t of the index l e t t e r s in s and as

ass ignments are r ea r ranged , dup l i ca t e s are deleted. Proofs of these manipula t ions are
con t r ac t ed ;

for m +-~ 1 s t e p l u n t i l p - 1 d o
for j e - i s t e p 1 u n t i l p - - m d o
i f k/ = ki+~ t h e n

b e g i n
s' ~ deleteduplicate(s ' , j) ;
proofstep(s -= s ' , R4);
p ~ - - - p - 1

e n d
else if k1 > kj+~ t h e n

b e g i n
s' ~ inlerchange(s ' , j) ;
proefslep(s ------ s ' , R4)

e n d ;
c o m m e n t second, we c o n v e r t all of t h e ~erms t~, .-- , l~ into to ta l ly s imple t e rms and

cons t ruc t proofs of t h e convers ions ;
for j ~ 1 s t e p 1 u n t i l p d o

begin
s' ~-- a(i~kt , h , a (. . . a(ink~ , reducelotally (tj), a (. . . a (i~p , t~, ~) . . -)) . - .)) ;
proofstep(s ~ s ' , R2)

e n d ;
c o m m e n t th i rd , we de le te all vacuous a s s ignment s which reassign to a var iable the

q u a n t i t y a l ready t h e r e and c o n s t r u c t proofs of the d d e t i o n s . N o t e t ha t t he i~kt , • •. , i,,kp
are now d i s t i nc t ;

for j ~ 1 s t e p 1 u n t i l p do
i f t/ = a c(inkj , ~n) t h e n

begin
s' ~ deletevacuous(s' , j) ;
proofstep(s ~ s ' , R4) ;
p , ~ - - p - 1

e n d ;
canonical +-- s t

e n d procedure canonical;

C o n s i d e r n o w a n y w f a of t h e f o r m 0~ -= 02 w h e r e ~ a a n d 0~ a n d 0~ a r e n - s t a t e s

for s o m e n = 1, 2, - • • . F i r s t c o n s t r u c t p r o o f s of 0~ =-- 0 * * a n d 0~ ~ 02 u s i n g p r o -

c edu r e c a n o n i c a l (s) s o t h a t b o t h 0~* a n d 0~* a r e ir~ c a n o n i c a l f o r m .

F r o m T 3 w e t h e n h a v e t h a t ~0~ ~ 0~* a n d ~0~ ~ 02". B u t w e a r e g i v e n t h a t

~ -= 0~, f r o m L e m m a 3 w e t h e n o b t a i n ~ * * ~- 0 * • 2 w h i c h b y d e f i n i t i o n m e a n s

t h a t ~ c (i , ~ , 0~*) = C (i n i , /92*) f o r j = 1, 2, . . " .

S u p p o s e t h a t
/9~* = ~ a (i ~ , , h , a (. . . a (i , ~ , tv , ~) . . .)) ,

/9~* = ~ a (i ~ , u ~ , a (. . . a (i ~ t ~ , u q , ~) . . .)),

and let
I~ = { i ~ , in~ , ' " , i ~ } ,

I~ = { i ~ , , i ~ , " " , i a ~ } .

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

134 DONALD M. KAPLAN

For any specific i ~ 11, reducetotally(c(i, 01")) will const ruct ~ proof of
~c(i , 01") = c(i , }~). N o w either i E 12 or i ~ 12. Suppose for the m o m e n t that
i E I3 and in fact i =B i~4 for some r, 1 < r _< q. T h e n reducetotally(c (i , 8~*)) will
construct a proof of ~-c(i, 82*) = ur where ur ~E c(i , }n) since 02" is in canonical

form.
These results and T1 give ~C(i , 01") = c(i, ~) and ~ c (i , 02") = ur , a n d since

we have shown above t h a t ~ c (i ~ j , 01") = c (Q i , 0~*) f o r j = 1, 2, • - • , t hen cer-
ta in ly ~ c (i, ~1") = c(i, 82*) where i =E i~z,. Then L e m m a 2 gives ~ u ~ = c(i, }~).
But , since 82* is in canonical form, u~ is a to ta l ly simple t e r m as is c(i , ~) . S o Lemma
1 gives u~ =E c(i, }~), a contradict ion.

Thus , the supposi t ion t h a t i E / 2 leads to a contradict ion. So if i ~ I~ t h e n i ~ I2,
or a l ternat ively , if i E I~ then i E / 1 . An a rgumen t symmet r i c to t h e o n e above
gives tha t if i E 11 then i E 12 so tha t combined, these results give I1 = I ~ . Since
01" and 02" are in canonical form, bo th I i and I2 have elements ordered o n t h e second

subscript letter. Thus, i~kj = s i~z i f o r j = 1, 2, . • • , p.
Now consider any specific i E I1, say i = E ink, where 1 _~ r < p. T h e n reduce-

totally(c(i, 01")) will cons t ruc t a proof of ~-c(i, 01") = # and T1 gives ~ c (i , 0,*) =
t~. Similarly, we obtain ~ c (i , 02") = u~. But we know ~ c (i , 01") = c (i , 0~*) so thai
L e m m a 2 gives ~ 4 = u~. Since 4 and Ur are to ta l ly simple t e r m s , w e have by
L e m m a 1 t ha t 4 = E u~. Since this is t rue for any i = E ink,, then t~ = E u~ for j =

1 ,2 , . . - , p .
An examinat ion of the canonical representat ion of 01" and 02* r e v e a l s that the

results obta ined in the preceding two paragraphs for the index l e t t e r s a n d terms
in 01" and 02" give 01" = ~ 0~*. T h a t is, 01" and 0~* are the s ame n - s t a t e , s y m b o l for
symbol . T h a t being so, P2 gives ~-0~* ~ 03". B u t the proof c o n s t r u c t i o n s gave
[-01 ~ 01" and ~-03 ~ 02*. Using R4 on ~-0i w. 01" and [-81" ~ 0.2* g i v e s ~8~ -= 02*
which on applying R3 gives t-02" ~- 0~. This last result toge ther w i t h [-03 =- ~*
and R 4 gives ~03 -= 01 which on applying R3 gives ~0~ --= 83, t h a t is, b(~.

So we see t h a t the fo rmal theory 5 is bo th complete and consis tent ; i n a d d i t i o n the
const ruct ive proofs of completeness (in T2 and T 4) mean tha t 5 i s a decidable
theory. These facts can now be utilized whenever s ta te vectors , t h e funct ions a
and c, and the axioms of 5 are incorporated into o ther formalisms.

REFERENCES

1. McCARTHY, J.
62 (1962), 21-28.

2. MENDELSON, E.
1964.

T o w a r d s a ma thema t i ca l science of c o m p u t a t i o n . P r o c . I F I P Congr.

Introduction to Mathematical Logic. Van N o s t r a n d , P r i n c e t o n , N. J.,

RECEIVED APRIL, 1967; REVISED JULY, 1967

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

