Some Completeness Results in the Mathematical Theory
" of Computation

Check for
Updates

DONALD M. KAPLAN

Stanford University,* Stanford, California

ABSTRACT. A formal theory is described which incorporates the “assignment” function
a(l, k, £) and the “contents’ function c(¢, £). The axioms of the theory are shown to comprise
a complete and congistent set.

KEY WORDS AND PHRASES: axioms, formal theory, logic, completeness, formal logic consistency
theory of computation, mathematical logic

CR CATEGORIES: 5.21, 5.24, 5.29

In [1], McCarthy introduces computer program state vectors along with two fune-
tions used to compute explicitly with them. Certain facts about these funetions
are given in [1], and in this paper it is shown that these facts constitute a complete
set of axioms in an appropriate formal theory 3.

Before developing this formal theory, we discuss state vectors and functions on
them so that the relevance of formulas in 3 is apparent.

A state vector is simply a family of quantities {z;},7 € I, [= {1,2, ---}, where
for each ¢, z; € D, where D is the set of all possible quantities. The exact nature of D
is left unspecified here, but many applications would find D containing such subsets
as the integers, certain character strings, finite bit sequences, the real numbers, ete.

Distinet from state vectors as defined above is the program state vector which, for
a program at a given point during its execution, indicates the set of current assign
ments of values to the variables of the program. In the case of a machine language
program, the program state vector indicates the set of current contents of those
registers whose contents change during the course of program execution. Specifi-
cally, the program state vector for a program = is defined as the ordered pair (M, ; 13
where £ is a state vector in the general sense deseribed above and M , is a 1-1 ‘mup{)lﬁéé'
of program variables (or register addresses) into the positive integers. Thus, if vis
a variable of » then the M, (v)-th term in £ is the quantity currently w‘asiguc(.l 1o o

In order to compute explicitly with state vectors, we introduce the function ¢
I,V — D, where V = {2 : z is a state vector}, and write ¢(4, £) to denote the ith
term (quantity) of £ We also introduce the function a: I, D, V. — V and write
a(%, k, £) to denote the state vector that results when the ith term in £ 1s replaced
with the quantity k and the other terms in £ are left unchanged. In 1], an GX*‘“‘W%
is given showing the transformation of a simple computer program into expressions
utilizing this formalism.

We now define a formal theory 3 = (Fm', Az’, R1, R2). We follow [2] here. e

(1) % has the following countable set of symbols: parentheses, brackets, the

: art by the
* Department of Computer Science. The research reported here was supported f;; plggg Y
Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-)

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968, pp. 124-134.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321439.321447&domain=pdf&date_stamp=1968-01-01

Completeness Resulls in M athematical Theory of Computation 125

comma, individual constant letters ki , ks , - - -, ordinary funetion letters /i, /i, - - - |
» rno » .

fi", - where fi" is the kth function of n arguments, index letters éy , 4, -,
Gai, oo, state letters &, &, -+ -, the special function letters a and ¢, and the

predicate symbol = "".

A finite sequence of symbols of 7 is called an expression of 3, If p and ¢ are
expressions of %', then p =, ¢ means p and ¢ are symbol for symbol the same ex-
pression of 3.

(2) There is an effectively decidable subset Fm' of the expressions of 7’ called
the set of well-formed formulas (wfs) of 3. Wis are defined recursively as follows.

First we define terms:

{a) Individual constant letters k; are terms.

(b) If fi" 13 a function letter, and ¢; , -+ , ¢, are terms, then f."[6, -+, ¢ isa
term.

{¢) If s is an index letter and £ is an n-state (see definition below), then ¢(4u ,)
is a term.

{d) An expression is a term only if it can be shown to be a term on the basis of
cdauses (), (b), and (¢).

Next, we define n-states:

{a) The state letter £, is an n-state.

(b) If 7, is an index letter, and ¢ is a term, and § is an n-state, then a(vu , ¢, &)
is an n-state.

(¢) An expression is an n-state only if it can be shown to be an n-state on the
basis of clauses (a) and (b).

The definitions given above for terms and n-states are potentially infinitely
recursive, so that the restriction must be added that terms and n-states be finite
expressions of 3’

Finally, the predicate symbol “=" applied to terms yields the wfs of 3”. Speci-
fically, an expression of 3’ is a well-formed formula if and only if it is of the form
i = l, where {; and £, are terms.

(3) A set Az’ © Fm' is set aside and called the set of axioms of 3. The set
A" is defined by two axiom schemas:

Al c(4,0(j, 8, £) = (3, §),
A2 c(4,a(i, b, £)) = ¢,
where 7 and j are any distinet index letters of the form .. , ¢ is any term, and £ 1s
any n-state, for any n = 1,2, --- . Note that 1, 7, t, ¢ are used throughout with
the above meanings. Since Az’ is an effectively decidable subset of Fm', 3 is there-
fore an axiomatic theory.
(4) The rules of inference of 3’ are

Rl (t1=t27t'2=t1>?
R2 (Q(h,h),t=t,alt, b))

where ; and ¢, are terms and where the wf G({:, t,) arises from G(4 , &) by replacing
some, but not necessarily all, occurrences of & by & . Obviously, these rules charac-
terize the reflexivity and substitutivity properties of equality; in a first-order theory,
the axioms associated with equality would be introduced along with the predicate
and modus ponens would then be the operative rule of inference. However, frapaing
of the completeness derived in this paper within a full propositional and quantifica-

Journal of the Association for Computing Machinery, Vol, 15, No. 1, January 1968

1% DONALD M. KAPLAN

tional structure would only add more complexity, nob more significance, to the
results obtained. We write @ if and only if @ € F m’ and is derivable using Ay,
R1 and R2.

Of course, a wf @ has meaning only when an interpretation is given for the sym.
bols in @. An interpretation consists of

(a) a nonempty set D (the domain) of quantities,

(b) & mapping of ordinary function letters f;” into n-place operations in D,

(¢) a mapping of individual constant letters k; into D,

(d) 1-1 mapping of the index letters i , k = 1,2, -++ ,into I forn = 1,2, ...

(¢) a mapping of state letters into families with index set I and terms chosen
from D,

(f) an assignment of the equality relation in D to the predicate symbol “=",
Thus, we write ¢ = p y if and only if # and y are the same element of .

The notion of truth for wis of 3’ is intuitively clear, but can be precisely defined
as follows. Let there be given an interpretation with domain D. We now define
what it means for a wf @ to be frue in the given interpretation. As a preliminary
step, we define a total function v* of one argument, which maps terms into quanii-
ties In I, ’

{a) If &; is an individual constant letier, then v*(k;) is the interpretation in D
of this constant.

(b) If fi" is an ordinary function letter and g is the corresponding n-place opers-
tion in D given by the interpretation, and & , - - - , t, are terms, then v*(f"[4, -+,
) =o g(o* (), -+, v" ().

(¢) If 44 is an index letter and § an n-state, and if the integer p € [is the inter-
pretation of 7, , then v*(¢(im , £)) = o pth term of 4*(§), where u* is defined below.

The total function «* of one argument maps n-states into families with clements
chosen from D.

(a) If &, is a state letter, then uw*(£,) is the family, with index set I and terms
chosen from D, given for £, by the interpretation.

(b) If iy is an index letter, ¢ a term, and ¢ an n-state, and if the integer p € 1
is the interpretation of 4. , then w*(a(iu, ¢, £)) is defined as having the same
terms as u*(£) except for the pth term which is o*(2).

From the definitions above we can easily obtain the following two results, which
are needed later on.

(8) 9 (e(in, alin , 1, £))) =p 0" (c(in, §)) i k=L

(b) 0*(e(im , im, £, £))) =0 6*(2). :

The definition of truth for wfs is then: a wf @ of the form & = & is true (fora
given interpretation) if and only if »*(4) = v*(&), and a wf @ is velid (according
to 4') if and only if @ is true “in all interpretations” (abbreviated i.a.i.). We Wl’lt@
k=& if and only if @ is a valid wi.

Before moving on to the completeness theorems for 3, we need a few preliminary-

~ definitions, two lemmas, and a proposition.

() A simple term is a term of the form ¢(, £) or k; or fi™{ty, -, tu), whe

by, -+, iy are terms. -
(b) A tolally simple term is a term of the form (i, &) or ki or fi"lty, - b

where & , - - ; {, are totally simple terms. :
Leavva 1. If ty and b are totally simple terms and t=t, = t, then ty =z b .

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

Completeness Results in M athemalical Theory of Computation 127

Proor. We give an inductive proof where cases (a) and (b) below constitute the
primitive induction level.

(a) & =g k:for some 4.
Ebh o= t=0"(k) =5 0"(&) La.i
=1y =gk
=3y =g by
(b) & =g c(ink, &) for some n and k.
Ebh = b= 0"(clim, &) =, v*(t) i.a.i.

= t2 =g C('ink 3 En)

=l =pl.
(¢) & =gf"ltu, tu, - -, tw] for some n, k, and terms &, ty, -+, b, .
[:tl = lg = U*(fkn[tu , tlg y T, tln]) = p U*(tz) 1.a.i.

= b =pfi b, ba, -, bl
and v*(t;) =p v*(4;), J =12 - ,nial

But, 4 and #, are totally simple terms, therefore t, she, o0 b, by, b, o e by
are also totally simple terms. Assume the lemma holds for &; and #y , b and f,
ybhwand by Then ty =gty , by =g ten, -,y =4 bn . Thus, &, =g & . This
completes the induction and the proof of the lemma. The essential point here is
simply that two totally simple terms cannot be equal in all interpretations unless
they are the same term.

Lemua 2. If £ty = b, Eby = 4, b = I , then =ty = tywhere ty | &, t; , and
are terms.

Proor. From the given information we have

v*(h) =po¥(t) iad,
”*(ta) =p U*(t4) ia.l.,
v () =p v*(8) Lad.

In any particular interpretation, we have certainly the three equalities above. Hence
”*(tz) =p v*(t) in this interpretation. Since any interpretation gives this result,
we have v*(8,) =p v™(ts) lad., that is =t = ¢, .

Prorosirion 1 (P1). }t = ¢ where t is any term.

Proor.

(1) e(r,a(i, t,8) =t A2
(@) c(i,a(s,t,8) =t A2
3) t=1t R2on (1) and (2)

Turormm 1 (T1). @ = =a; that i, all theorems of 5 are valid.
Proor. First we show that the axioms are valid.

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

198 DONALD M. KAPLAy

Al: c(iya, (j, 4, &) = c(3, §).
v*(c(, a(j, 1, £))) =p v*(e(4, £)) La.l. from the definition of v*,

So, Ec(4, a(j, 1, £)) = (%, £).
A2: c(d,a(i, b, E)) =t
v (c(4, a(i, 1, £))) =» v*(t) 1.a.i. from the definition of v*.

So, =c(7, a(d, b, £)) = t.

Next we show that the rules of inference R1 and R2 preserve validity. Consider
RI(ty = &, &, = &) and assume k=t = f,. Then, by the definition of validity,
v*(t)) =p v*(k) Lad. or alternatively we can write (&) =5 v*(4) i.al., that i
=t = & . Thus, R1 is seen to preserve validity.

Consider R2(G(t;, &), b = &, @(4, &)) and assume =G(#, &) and =4 =,
The validity of @(f, &) depends on the quantities in D into which »* maps the
terms in @(y, 1). Clearly, if v* (1) =p v™(f) i.a.i., then substitution of the term
f, for occurrences of the term & in Q4 , &) to generate @(#;, &) will not affect this
validity, so that =G(t,) as well.

Since the axioms are valid and the rules of inference preserve validity, then all
theorems of 3’ are valid.

TuEoREM 2. COoMPLETENESS OF § (T2). EQ = F@; 1.e., oll valid wfs are theorems
of 7.

Proor. We give a constructive proof so that given any valid wf @, we show how
to construet a proof of @.

First, we define a total function #* of one argument which maps terms into other
terms.

(a) If & is a simple term, then () =3t .

(b) Ift =g c(s, a(j, ¢, £)), thenr™(h) =5 (i, £).

(¢) Ifty =ge(4,a(s,t,8)), thenr™(ty) =5t

We now define two proof-generating procedures, each accepting a single term as
parameter. An Arcor-like representation is used for clarity and brevity. Boolean
procedures simpleterm(t) and tolallysimpleterm(t) are assumed available, an as-
sumption warranted by the decidability of the set of all terms. The procedure
proofstep(x, y) emits a proof step & with justification Y.

term procedure reduce(t); valuet; termi;
begin comment this procedure construets a proof of '} ='g¢ where ¢ is a simple term. ¢
returned as the value of the procedure;
term p, g;
proofstep(t = t, P1);
g1
while - simpleterm(q) do
begin
= r*g);
proofstep(g = p, Al or A2);
proofstep(t = p, R2);
ge—p
end;
reduce « q
end procedure reduce;

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

Completeness Results in M athematical Theory of Computation 129

To verify that the sequence of proof steps generated by procedure reduce(t) con-
stitutes a valid proof, it is only necessary to observe that bo = r*(2) for all terms
z and that the applications of R2 are correct. In the next procedure a certain
Iposeness of notation is introduced, but the neaning should he apparent.

term procedure reducelotally(t); value £ term 5
begin comunent this procedure constructs a proof of F = i’ where I is a totally simple term.
 is returned as the value of the procedure;
ferm I
integer 7, n;
e f;
if — stmplelerm () then ! « reduce(t)
else proofstep(t = 1, P1);
if — totallysimpleterm(t') then

¢omment ' =y firlty, -+, (] where at least one of the terms by o b is not totally
gimple;

for j «— 1 step 1 until n do
begin

Ve flt, - o, reducetotally (1), T M
proofstep(t = 1', R2)
end;
reducelolally « t/
snd procedure reducetotally;

Consider now any wf @ where =a@. Suppose @ is of the form , = £, where fy and
& vre terms. Construct proofs of Fy = 4% and Ft = 6% using procedures reduce({)
and reducetotally(t) where both &* and & are totally simple terms.

From T1 we then have that =6 = £ and Fh = 4" But, we are given that
k=t = 1 ; from Lemma 2 we then obtain 4% = 4, Since 4,* and " are totally
simple terms, we can apply Lemma 1 and obtain 6% =4 t,*. That is, &, and £,* arve
the same term, symbol for symbol. That being so, P1 gives |4* = *.

So, from the proof constructions we have |t = 4" and Fo = 6" and we write

Fi" = " as an instance of P1. Using R2on p4 = 4" and 4% = t,* gives iy =
&, which on applying R1 gives F," = ¢ . This last result together with |, = £*
and R2 gives b, = &, which on applying R1 gives |4 = &, ie., }@, which
sompletes the proof of completeness for 7.
We now have a theory 3" which is complete and s0 can be used to deduce all valid
statements about equality of terms. However, in a potentially more powerful theory
e should also be able to deduce all valid statements about equality of n-states (i.e.,
tate vectors). To form a new theory 3 = (Fm, Az, R1, R2, R3, R4) that will
tow such deductions, we modify 3 in the manner outlined below.

(1) 5 has the same countable set of symbols as 3" with the addition of the predi-
ate symbol “=",

(2) Pm = Fm' U {2 : z'is an expression of 3 of the form 8, = 0, where 6, and ¢,
%} n;‘itate&s foranyn = 1,2, .. -}. The expressions in Fm and only those are the
VIS of 3,

(3) Az = Az’ U {z ¢ x is an instance of axiom schema A3, A4, or A5}.

A3 a(i, t,a(j, s, £)) = alj, s, ali, t, £)).
AL a(i, t,a(i, 5, 8)) = a(i, ¢, £).

A5 a(i, e(i, £),8) = &

i

Journal of the Association for Computing Machinery, Vol. 15, No, 1, January 1968

130 DONALD M. KAPLyn
(4) The rules of inference of 5 ure B1 and R2 {extended to all wis of J) togethey.
with
R (=, th = 6)

and
R4 (G(6y, 8), 6 = 6, G(f1, 6))

where @ € Fm and 8 and 6 are n-states for any # = 1, 2, -+ . The same commentg
offered earlier about R1 and R2 are relevant here regarding R3 and R4, We
write |-@ if and only if @ is a wf and is derivable using Ax and R1, R2, R3, and R4,

As before, o wf @ € Fm has meaning only when an interpretation is given to the
symbals in @. An interpretation is defined exactly as before with the addition that
an assignment of the equality relation in the set of all families with index set I and
terms chosen from D is made to the predicate symbol “="". Thus, we write {x} =,
{y} whered € Jandx;, yi € Dy il and only fa: =p i, 2= 1,2, -+

The definitions of truth and validity for wfs are extended as follows: a wi @ of
the form 6, = 6, , where 6, and 8 are n-states is érue (for a given interpretation) if
and only if »*(8) =5 u*(8), and @ is valid (according to 3) if and only if ¢ ix
true in all interpretations. From the 1-1 nature of the mappings given by the infer-
pretation for index letters and from the definition of %*, we obtain that »*(8) =,
u*(8,) if and only if v*(c(4u , 0)) =p 0" (c(iue, Go)) foreach k = 1,2, - ;ig,
0 = B is true if and only if ¢{iw, 61) = c{iw, &) is true foreach kb = 1,2, ..,
Then, ¢ = @ is valid if and only if c(tm, 1) = ¢(u,fs) is valid for
easch k = 1,2, ... As before, we write =@ if and only if @ is a valid wf.

Before moving on to the completeness theorems for J, we need a lemma, a. proposi-
tion, and a definition,

Tnanra 3. If =y == 02, I"—"B;; = 64 f l:ﬂ] = 83 y then =8 = 8, Whei'e ﬂ] s 92,63.,
and 0y are n-slates for anyn = 1,2, -- -,
Proor. From the given information, we have

Ee(ing, 1) = cliu, &), E=1,2, ...,
Ee(in ,) = (i, 04), k=1,2-..,
(i,) = e(du , 63), k=1,2,...,
By applying Lemma, 2 to the above three statements fork = 1, 2, - - -, we obtain
Ee(lue , 0) = ¢(Znx 5 64), k=1,2 ..., '
ie., =6 = 6;.

Prorosrrion 2 (P2). ©& = £ where ¢ is any n-state forn = 1,2, --- .
Proor.

(1) a(d, e(i,£),£) =¢ AS

(2) a(s, e(, £),8) =& A5

(3) t=1¢. R4 on (1) and (2)
We define the canonical form for n-states to be

@(tniys G(Tukgy by (- 'a(i“*pr i,)0)))

Journal of the Asgocintion for Computing Maehinery, Vol. 15, No. I, J ANUAry 1968

completeness Resulls in M athematical Theory of Computation 131

whereif p = 0 we have simply £, , where ky < ky -+ <k, and wheret, &, --- , %
are totally simple terms such that ¢;7 & ¢(du; , £) forj = 1,2, .-+, p.

TurorEM 3 (T3). |G = E=Q@; that is, all theorems of 3 are valid.
ProoF. First we show that the new axioms given by A3, A4, and A5 are valid.
A3: a(i, t,a(j, 8, £)) = a(f, s, 0(3, 4, £)).
Copsider the following deduction and the result obtained; m, ¢, and j are distinet.

(1) e(m, a(i, b, a(j, s, £))) = e(m, a(j, s, £)), Al

(2) e(m,a(j,s, £)) = c(m,), Al

3) c(m,a(4, ¢, a{j, s, £))) = c(m, £), R2 on (1) and (2)
(4) e(m,a(y, s, a(d, t, £))) = c(m, a(é, L, £)), Al

(5). c(m, a(4, b, £)) = c(m, £), Al

(6) . e(m, a(y, s, a(i, t,£))) = ¢(m, §), _ R2 on (4) and (5)
(7) e(m, &) = c(m, a(j, s, a(, 8, £))), R1 on (6)

(8) c(m,a(i,t, a(f,s,£))) = c(m,a(f, s, a4t £))). R2 on (3) and (7)

Then T1 gives kEc(m, a(i, t, a(j, s, £))) = c(m, a(j, 8, a(1, t, £))) for any m distinct
from 4 and 5. Consider now the following deduction and the result obtained; ¢ and j
are distinet and m =g 7.

(1) ec(m,a(i, t,a(f, s, £))) =t A2

(2) ¢(m,a(y,s, a(i,t,£))) = c(m,a(i,t8)), Al

8) c¢(m,a(it £)) =t A2

(4). c(m,a(d, s, a(t, ¢ £))) = ¢, R2 on (2) and (3)
(5) t=c(m,a(f,s, a(s,t£))), R1 on (4)

(6) c(m,a(st,a(j,s£)) = c(m, a(j, s,a(,1,£))). R2on (1) and (5)

Then T1 gives E=c(m, a(4, t, a(j, s, £))) = ¢(m, a(j, s, a(4, t, £))) for distinet <
and j and m =5 3.

A proof similar to that above gives the same result for distinct Zand jand m =z j.
Thus, for all m we have Ec(m, a(4, ¢, a(j, 8, £))) = ¢(m, a(j, s, a(4, t, £))), and so
by the definition of validity Ea(s, ¢, a(j, s, £)) = a(j, s, a(i, t, £)). Hence, the
axioms given by A3 are all valid.

Proofs structured like the one above can be given to show that the axioms given
by A4 and A5 are all valid.

As well, straightforward arguments like those in T1 can be given to show that
R2 extended to wfs of 3 and R3 and R4 lead from valid wfs to other valid wfs.

Thus, since the axioms of 3 are valid and since the rules of inference of J preserve
validity, then all theorems of 3 are valid.

TerorEM 4. CompLETENESS OF 3 (T4). =G = |G, 1.e., all valid wfs are theorems
of 5‘ ; ;
Proor. This theorem has already been proved (T2) for wfs of the form # = &

Journal of the Assoeiation for Computing Machinery, Vol. 15, No. 1, January 1968

132 DONALD M. KAPLAN

where ¢, and & are terms. Thus, we consider here only wfs @ of the form & =10;.
Once again a constructive proof is given. Several proof-constructing procedures are
used in addition to reduce(t) and reducetotally(t) defined above. For the description
of the new procedures, an Argor-like representation is again used.

The first three procedures are used to manipulate n-states s and construct proofs
of Fs = &, where s’ is the result of the manipulation. In these procedures, the
the argument s is of the form

a(jlytlya<j2at2ya(‘ o a(jmatﬂwa(jmﬂ’t77t+1:a<"' G'(jpytp;én)' :))) T)))
and 6,, is used to represent
a(]m , tm) a(j7rz+l ’ tm+1 y a‘(T '(l(jp) tp y En) v)))‘

state procedure interchange(s, m);
value s, m; state s; integer m;
begin comment - this procedure constructs a proof of |s = s’ where s’ is like s, except that
the mth and (m 4 1)-st assignments are interchanged. s’ is returned as the value of the
procedure. Within s, we have jm # g i1 ;
state §';
proofstepOm = a(ni1 s tut1 , @G 5 tn , Onya)); AB);
sl A a(jl 3 tl > a(' b a{jm—-l 3 tm—l 3 a(jm—H 3 tm-H] a(jm] tm] 0m+2))) N))y
proofstep(s = §', R4);
interchange «— s’
end procedure inlerchange;
state procedure deleteduplicate(s, m);
value 8, m; state s; integer m;
begin comment this procedure constructs a proof of |s = s’ where s’ is the same as 3 except
that the (m + 1)-st assignment (a duplicate one) is deleted. Within s, we have j,. =g a1}
state s’;
proofstep(fm = a(jm , In , Ont2), Ad);
s'—aQi,t,a(--alfn, tu, Oug2)--));
proofstep(s = s’, R4);
deleteduplicate «— s’
end procedure deleteduplicate;
state procedure deletevacuous(s, m);
value s, m; state s; integer m;
begin comment this procedure constructs a proof of |s = s’ where s’ is the same as s except
that the mth assignment (a vacuous one) is deleted. s’ is returned as the value of the

procedure. Within s, we have t, =g ¢(jm , &) and ji, --+ , jp all distinet;

state s;

term {;

t « reducetotally(c(jm , Omsr));

comment since the jm, fmyr, --+, jp are distinet, ¢ is now ¢(jm , £) and a proof

of Fe(jm , Ont1) = ¢(jm , £») has been constructed;

proofstep(@(jm , €(m , Omt1), Ont1) = Omtr , AB);
proofstep(@(jm o €(m 5 £n)s Ont1) = Bmy1 , R2);
comment thislast step states that [, = 041 ;
s'—a(, b, a(- almet ;s but 5 Ongr) - <));
proofstep(s = s’, R4);
deletevacuous «— s’

end procedure deletevacuous;

In the following procedure, the argument s is of the form

a(Tnky 5 11 a(i,,k2 s b, a(- -a,('i,,;,p yto s En) e “¥)).

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

Completeness Results in M athematical Theory of Computation 133

state procedure canonical(s); value s; state s;
begin comment this procedure constructs a proof of }s = s’ where s’ is the canonical form
of s: 8" is returned as the value of the procedure;
state s';
integer j, m;
proofstep(s = s, P2);
s 8
comment first we do a simple sort on the second subscript of the index letters in s and as
assignments are rearranged, duplicates are deleted. Proofs of these manipulations are
contructed ;
for m «— 1 step 1 until p—1 do
for j «— 1 step 1 until p—m do
if k; = ki then
begin
8! « deleteduplicate(s’, j);
proofstep(s = s, R4);

pep -1
end
else if &y > k1 then
begin

s« interchange(s’, 7);
proofsiep(s = s’, R4)
end;
comment second, we convert all of the terms £y, +++ , I, into totally simple terms and
construct proofs of the conversions;
for j < 1 step 1 until p do
begin ,
8 — alingy , b, a(- - alink; , reducetotally (¢7), al--- aCinky , t s En) o)))
proofstep(s = s', R2)

end;
comment third, we delete all vacuous assignments which reassign to a variable Fhe
quantity already there and construct proofs of the deletions. Note that the tux , =+, takp

are now distinet;
for j « 1 step 1 until p do
if {5 =g c(ink; . £a) then
begin
s’ « deletevacuous(s’, 7);
proofstep(s = 8', R4);
pep—1
end;
canonieal « s’
end procedure canonical;

Consider now any wf @ of the form 6, = 6, where =@ >;a}nd 6; and 6, =|?,re ?@-states
for some n = 1,2, . First construct proofs of 6, = 6 and 6; = 6, using pro-

cedure canomcal(s) SO tha‘c both 6 and 6;" are in canomcal form.
From T3 we then have that =6, = 6, and =6 = 9", But. we are given that

6 = 6, ; from Lemma 3 we then obtain E=6,* = = 6," which by definition means
that =c(ia;, %) = c(ins, &) forj = 1,2,
Suppose that

61* =Ea(ink1 y iy a(' "a(inkp ’ tmfn)"‘)),
92* =Ea(7:nl1 >u17a("'a(inlq y Ug,y En)))7

and let
Il = {inkl ,inkg PR 7znkp}7

I, = {inll ; inlz y),L."'lq}’

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

134 DONALD M. KAPLAy

For any specific 7 ¢ I, reducetotally(c(s, 6.*)) will construct & proof- of
Fe(i, 6%) = ¢(4, £.). Now either ¢ € Lyor ¢ § I». Suppose for the momeilt that
i€ I, and in fact ¢ =g 1., for some 7, 1 < r £ ¢. Then reducetotally(c(%, 02)) will
construct a proof of }-c(4, 6,*) = u, where u, #g c(%, &) since 8, is in canonicy]
form.

These results and T1 give Ec(7, 67) = ¢(3, &) and F=c(7, 8,*) = ., and since
we have shown above that E¢(in;, 6:) = ¢(tn, 8,*) forj = 1,2, - - - , then cer.
tainly Ec(4, %) = (3, ;") where ¢ = g %, . Then Lemma 2 gives =, = e(%, &),
But, since 6," is in canonical form, v, is a totally simple term as is (1, £2) - So Lemmg
1 gives u, =z (%, £.), & contradiction.

“Thus, the supposition that ¢ € I, leads to a contradiction. Soif ¢ ¢ /s thene ¢ I,
or alternatively, if ¢ € I, then ¢ € I; . An argument symmetric to the one above
gives that if 4 € I; then ¢ € I, so that combined, these results give I, = I,. Since
6,* and 6,* are in canonical form, both I; and I; have elements ordered on the second
subseript letter. Thus, Zu; = g tu; forj = 1,2, -+, p.

Now consider any specific ¢ € I;, say ¢ =g im, where 1 < 7 < p. Then reduce-
totally (c(1, 6,")) will construct a proof of (3, 6.*) = t, and T1 gives F=c(7, 6,%) =
t, . Similarly, we obtain Ec(Z, &%) = u, . But we know =e(4, 6%) = c(3, 62") 50 that
Lemma 2 gives =t, = u,. Since ¢ and %, are totally simple terms, we have by
Lemma 1 that ¢, =z u, . Since this is true for any 7 = g %, , then {; = g u; forj =
1,2,.--,p

An examination of the canonical representation of 8,* and 6,* reveals that the
results obtained in the preceding two paragraphs for the index letters and terms
in 6, and 6* give 6,* =5 6,". That is, 6,* and 6;* are the same n-state, symbol for
symbol. That being so, P2 gives 6* = 8,*. But the proof constructions gave
b6, = 6, and [0, = 6,*. Using R4 on |6 = 6,* and |—01* = 6," gives K4 = 6"
which on applying R3 gives 6, = 6, . This last result together with |6, = [
and R4 gives |6, = 8; which on applying R3 gives |6, = 6, thatis, Q.

So we see that the formal theory 3 is both complete and consistent ; in addition the
constructive proofs of completeness (in T2 and T4) mean that 3 is a decidable
theory. These facts can now be utilized whenever state vectors, the functions
and ¢, and the axioms of 3 are incorporated into other formalisms.

REFERENCES

1. McCartaY, J. Towards a mathematical science of computation. Proc. IFIP Congr.
62.(1962), 21-28.

2.. MenpELsoN, E. Introduction to Mathematical Logic. Van Nostrand, Princeton, N. Js
1964

RECEIVED APRIL, 1967; REVISED JULY, 1967

Journal of the Association for Computing Machinery, Vol. 15, No. 1, January 1968

