Some Completeness Results in the Mathematical Theory of Computation

DONALD M. KAPLAN
Stanford University,* Stanford, California

ABSTRACT. A formal theory is described which incorporates the "assignment" function $a(i, k, \xi)$ and the "contents" function $c(i, \xi)$. The axioms of the theory are shown to comprise a complete and consistent set.
key words and phrases: axioms, formal theory, logic, completeness, formal logic consistency, theory of computation, mathematical logic
or categories: $5.21,5.24,5.29$

In [1], McCarthy introduces computer program state vectors along with two functions used to compute explicitly with them. Certain facts about these functions are given in [1], and in this paper it is shown that these facts constitute a complete set of axioms in an appropriate formal theory J.
Before developing this formal theory, we discuss state vectors and functions on them so that the relevance of formulas in \mathfrak{J} is apparent.

A state vector is simply a family of quantities $\left\{x_{i}\right\}, i \in I, \quad I=\{1,2, \cdots\}$, where for each $i, x_{i} \in D$, where D is the set of all possible quantities. The exact nature of D is left unspecified here, but many applications would find D containing such subsets as the integers, certain character strings, finite bit sequences, the real numbers, etc.

Distinct from state vectors as defined above is the program state vector which, for a program at a given point during its execution, indicates the set of current assignments of values to the variables of the program. In the case of a machine language program, the program state vector indicates the set of current contents of those registers whose contents change during the course of program execution. Specif. cally, the program state vector for a program π is defined as the ordered pair (M_{x}, ξ) where ξ is a state vector in the general sense described above and M_{π} is a 1-1 mapping of program variables (or register addresses) into the positive integers. Thus, if v is a variable of π then the $M_{\pi}(v)$-th term in ξ is the quantity currently assigned to v.
In order to compute explicitly with state vectors, we introduce the function c : $I, V \rightarrow D$, where $V=\{x: x$ is a state vector $\}$, and write $c(i, \xi)$ to denote the th term (quantity) of ξ. We also introduce the function $a: I, D, V \rightarrow V$ and write $a(i, k, \xi)$ to denote the state vector that results when the i th term in ξ is replaced with the quantity k and the other terms in ξ are left unchanged. In [1], an example is given showing the transformation of a simple computer program into expressions utilizing this formalism.
We now define a formal theory $J^{\prime}=\left(F m^{\prime}, A x^{\prime}, \mathbf{R 1}, \mathbf{R 2}\right)$. We follow [2] here.
(1) 3^{\prime} has the following countable set of symbols: parentheses, brackets, the

* Department of Computer Science. The research reported here was supported in part by the Advanced Research Projects Agency of the Office of the Secretary of Defense (SD-183).
comma, individual constant letters k_{1}, k_{2}, \cdots, ordinary function letters $j_{1}^{1}, f_{1}^{2}, \cdots$, $f_{k}{ }^{n}, \cdots$ where $f_{k}{ }^{n}$ is the k th function of n arguments, index letters i_{11}, i_{12}, \cdots, $i_{n k}, \cdots$, state letters ξ_{1}, ξ_{2}, \cdots, the special function letters a and c, and the predicate symbol " $=$ ".

A finite sequence of symbols of 3^{\prime} is called an expression of 3^{\prime}. If p and q are expressions of σ^{\prime}, then $p={ }_{E} q$ means p and q are symbol for symbol the same expression of 5^{\prime}.
(2) There is an effectively decidable subset $F m^{\prime}$ of the expressions of J^{\prime} called the set of well-formed formulas (wfs) of \mathfrak{J}. Wfs are defined recursively as follows.
First we define terms:
(a) Individual constant letters k_{i} are terms.
(b) If $f_{k}{ }^{n}$ is a function letter, and t_{1}, \cdots, t_{n} are terms, then ${f_{k}}^{n}\left[t_{1}, \cdots, t_{n}\right]$ is a term.
(c) If $i_{n k}$ is an index letter and ξ is an n-state (see definition below), then $c\left(i_{n k}, \xi\right)$ is a term.
(d) An expression is a term only if it can be shown to be a term on the basis of clauses (a), (b), and (c).

Next, we define n-states:
(a) The state letter ξ_{n} is an n-state.
(b) If $i_{n k}$ is an index letter, and t is a term, and ξ is an n-state, then $a\left(i_{n k}, t, \xi\right)$ is an n-state.
(c) An expression is an n-state only if it can be shown to be an n-state on the basis of clauses (a) and (b).

The definitions given above for terms and n-states are potentially infinitely recursive, so that the restriction must be added that terms and n-states be finite expressions of \mathbf{J}^{\prime}.

Finally, the predicate symbol $"=$ " applied to terms yields the wfs of 3 '. Specifically, an expression of J^{\prime} is a well-formed formula if and only if it is of the form $t_{1}=t_{2}$ where t_{1} and t_{2} are terms.
(3) A set $A x^{\prime} \subseteq F m^{\prime}$ is set aside and called the set of axioms of 3^{\prime}. The set $A x^{\prime}$ is defined by two axiom schemas:

$$
\begin{aligned}
& \text { A1 } \quad c(i, a(j, t, \xi))=c(i, \xi) \\
& \text { A2 } \quad c(i, a(i, t, \xi))=t
\end{aligned}
$$

where i and j are any distinct index letters of the form $i_{n k}, t$ is any term, and ξ is any n-state, for any $n=1,2, \cdots$. Note that i, j, t, ξ are used throughout with the above meanings. Since $A x^{\prime}$ is an effectively decidable subset of $I m^{\prime}, J^{\prime}$ is therefore an axiomatic theory.
(4) The rules of inference of J^{\prime} are

$$
\begin{array}{ll}
\text { R1 } & \left(t_{1}=t_{2}, t_{2}=t_{1}\right), \\
\text { R2 } & \left(\mathbb{Q}\left(t_{1}, t_{1}\right), t_{1}=t_{2}, \mathbb{Q}\left(t_{1}, t_{2}\right)\right),
\end{array}
$$

where t_{1} and t_{2} are terms and where the wf $\mathfrak{Q}\left(t_{1}, t_{2}\right)$ arises from $\mathfrak{Q}\left(t_{1}, t_{1}\right)$ by replacing some, but not necessarily all, occurrences of t_{1} by t_{2}. Obviously, these rules characterize the reflexivity and substitutivity properties of equality; in a first-order theory, the axioms associated with equality would be introduced along with the predicate and modus ponens would then be the operative rule of inference. However, framing of the completeness derived in this paper within a full propositional and quantifica-
tional structure would only add more complexity, not more significance, to the results obtained. We write \mathcal{F} if and only if $\mathbb{Q} \in F m^{\prime}$ and is derivable using $A x^{\prime}$, R1 and R2.

Of course, a wf α has meaning only when an interpretation is given for the symbols in Q. An interpretation consists of
(a) a nonempty set D (the domain) of quantities,
(b) a mapping of ordinary function letters f_{k}^{n} into n-place operations in D,
(c) a mapping of individual constant letters k_{i} into D,
(d) 1-1 mapping of the index letters $i_{n k}, k=1,2, \cdots$, into I for $n=1,2, \cdots$,
(e) a mapping of state letters into families with index set I and terms chosen from D,
(f) an assignment of the equality relation in D to the predicate symbol " $=$ ". Thus, we write $x=_{b} y$ if and only if x and y are the same element of D.

The notion of truth for wfs of \Im^{\prime} is intuitively clear, but can be precisely defined as follows. Let there be given an interpretation with domain D. We now define what it means for a wf a to be true in the given interpretation. As a preliminary step, we define a total function v^{*} of one argument, which maps terms into quantities in D.
(a) If k_{i} is an individual constant letter, then $v^{*}\left(k_{i}\right)$ is the interpretation in D of this constant.
(b) If $f_{k}{ }^{n}$ is an ordinary function letter and g is the corresponding n-place operation in D given by the interpretation, and t_{1}, \cdots, t_{n} are terms, then $v^{*}\left(f_{k}{ }^{n}\left[t_{1}, \cdots\right.\right.$, $\left.\left.t_{n}\right]\right)={ }_{D} g\left(v^{*}\left(t_{1}\right), \cdots, v^{*}\left(t_{n}\right)\right)$.
(c) If $i_{n k}$ is an index letter and ξ an n-state, and if the integer $p \in I$ is the interpretation of $i_{n k}$, then $v^{*}\left(c\left(i_{n k}, \xi\right)\right)={ }_{D} p$ th term of $u^{*}(\xi)$, where u^{*} is defined below.

The total function u^{*} of one argument maps n-states into families with elements chosen from D.
(a) If ξ_{n} is a state letter, then $u^{*}\left(\xi_{n}\right)$ is the family, with index set I and termis chosen from D, given for ξ_{n} by the interpretation.
(b) If $i_{n k}$ is an index letter, t a term, and ξ an n-state, and if the integer $p \in I$ is the interpretation of $i_{n k}$, then $u^{*}\left(a\left(i_{n k}, t, \xi\right)\right)$ is defined as having the same terms as $u^{*}(\xi)$ except for the p th term which is $v^{*}(t)$.

From the definitions above we can easily obtain the following two results, which are needed later on.
(a) $v^{*}\left(c\left(i_{n k}, a\left(i_{n l}, t, \xi\right)\right)\right)={ }_{b} v^{*}\left(c\left(i_{n k}, \xi\right)\right)$ if $k \neq l$.
(b) $v^{*}\left(c\left(i_{n k}, a\left(i_{n k}, t, \xi\right)\right)\right)={ }_{b} v^{*}(t)$.

The definition of truth for wfs is then: a wf Q of the form $t_{1}=t_{2}$ is true (fora given interpretation) if and only if $v^{*}\left(t_{1}\right)={ }_{b} v^{*}\left(t_{2}\right)$, and a wf \mathbb{Q} is valid (according to J^{\prime}) if and only if Q is true "in all interpretations" (abbreviated i.a.i.). We write $F Q$ if and only if Q is a valid wf.
Before moving on to the completeness theorems for J^{\prime}, we need a few preliminary definitions, two lemmas, and a proposition.
(a) A simple term is a term of the form $c\left(i, \xi_{n}\right)$ or k_{i} or $f_{k}^{n}\left[t_{1}, \cdots, t_{n}\right]$, where t_{1}, \cdots, t_{n} are terms.
(b) A totally simple term is a term of the form $c\left(i, \xi_{n}\right)$ or k_{i} or $f_{k}{ }^{n}\left[t_{1}, \cdots, t_{n}\right]$ where t_{1}, \cdots, t_{n} are totally simple terms.

Lemma 1. If t_{1} and t_{2} are totally simple terms and $\vDash t_{1}=t_{2}$ then $t_{1}={ }_{E} t_{2}$.

Proof. We give an inductive proof where cases (a) and (b) below constitute the primitive induction level.
(a) $t_{1}={ }_{E} k_{i}$ for some i.

$$
\begin{aligned}
\vDash t_{1}=t_{2} & \Rightarrow v^{*}\left(k_{i}\right)={ }_{D} v^{*}\left(t_{2}\right) \text { i.a.i. } \\
& \Rightarrow t_{2}={ }_{E} k_{i} \\
& \Rightarrow t_{1}={ }_{E} t_{2}
\end{aligned}
$$

(b) $t_{1}={ }_{E} c\left(i_{n k}, \xi_{n}\right)$ for some n and k.

$$
\begin{aligned}
\vDash t_{1}=t_{2} & \Rightarrow v^{*}\left(c\left(i_{n k}, \xi_{n}\right)\right)={ }_{D} v^{*}\left(t_{2}\right) \text { i.a.i. } \\
& \Rightarrow t_{2}={ }_{E} c\left(i_{n k}, \xi_{n}\right) \\
& \Rightarrow t_{1}={ }_{E} t_{2}
\end{aligned}
$$

(c) $t_{1}={ }_{E} f_{k}{ }^{n}\left[t_{11}, t_{12}, \cdots, t_{1 n}\right]$ for some n, k, and terms $t_{11}, t_{12}, \cdots, t_{1 n}$.

$$
\begin{aligned}
F t_{1}=t_{2} & \Rightarrow v^{*}\left(f_{k}{ }^{n}\left[t_{11}, t_{12}, \cdots, t_{1 n}\right]\right)={ }_{D} v^{*}\left(t_{2}\right) \text { i.a.i. } \\
& \Rightarrow t_{2}={ }_{k} f_{k}^{n}\left[t_{21}, t_{22}, \cdots, t_{2 n}\right] \\
& \text { and } v^{*}\left(t_{1 j}\right)={ }_{D} v^{*}\left(t_{2 j}\right), \quad j=1,2, \cdots, n \text { i.a.i. }
\end{aligned}
$$

But, t_{1} and t_{2} are totally simple terms, therefore $t_{11}, t_{12}, \cdots, t_{1 n}, t_{21}, t_{22}, \cdots, t_{2 n}$ are also totally simple terms. Assume the lemma holds for t_{11} and t_{21}, t_{12} and t_{22}, $\cdots, t_{1 n}$ and $t_{2 n}$. Then $t_{11}={ }_{E} t_{21}, t_{12}={ }_{E} t_{22}, \cdots, t_{1 n}={ }_{E} t_{2 n}$. Thus, $t_{1}={ }_{E} t_{2}$. This completes the induction and the proof of the lemma. The essential point here is simply that two totally simple terms cannot be equal in all interpretations unless they are the same term.
Lemma 2. If $\vDash t_{1}=t_{2}, \vDash t_{3}=t_{4}, \vDash t_{1}=t_{3}$, then $\vDash t_{2}=t_{4}$ where t_{1}, t_{2}, t_{3}, and t_{4} are terms.
Proof. From the given information we have

$$
\begin{aligned}
& v^{*}\left(t_{1}\right)={ }_{D} v^{*}\left(t_{2}\right) \text { i.a.i., } \\
& v^{*}\left(t_{3}\right)={ }_{D} v^{*}\left(t_{4}\right) \text { i.a.i. } \\
& v^{*}\left(t_{1}\right)={ }_{D} v^{*}\left(t_{3}\right) \text { i.a.i. }
\end{aligned}
$$

In any particular interpretation, we have certainly the three equalities above. Hence $v^{*}\left(t_{2}\right)={ }_{D} v^{*}\left(t_{4}\right)$ in this interpretation. Since any interpretation gives this result, we have $v^{*}\left(t_{2}\right)={ }_{b} v^{*}\left(t_{4}\right)$ i.a.i., that is $\vDash t_{2}=t_{4}$.
Proposition $1(\mathbf{P 1})$. $\vdash t=t$ where t is any term.
Proof.

$$
\begin{array}{lll}
\text { (1) } c(i, a(i, t, \xi))=t, & \text { A2 } \\
\text { (2) } c(i, a(i, t, \xi))=t, & \text { A2 } \\
\text { (3) } t=t . & \text { R2 on (1) and (2) }
\end{array}
$$

Theorem 1 (T1). $\vdash Q \Rightarrow \vDash Q$; that is, all theorems of J^{\prime} are valid.
Proof. First we show that the axioms are valid.

A1: $c(i, a,(j, t, \xi))=c(i, \xi)$.
$v^{*}(c(i, a(j, t, \xi)))={ }_{b} v^{*}(c(i, \xi))$ i.a.i. from the definition of v^{*}.
So, $\vDash c(i, a(j, t, \xi))=c(i, \xi)$.
A2: $c(i, a(i, t, \xi))=t$.
$v^{*}(c(i, a(i, t, \xi)))={ }_{D} v^{*}(t)$ i.a.i. from the definition of v^{*}.
So, $\vDash c(i, a(i, t, \xi))=t$.
Next we show that the rules of inference R1 and R2 preserve validity. Consider $\mathbf{R 1}\left(t_{1}=t_{2}, t_{2}=t_{1}\right)$ and assume $\vDash t_{1}=t_{2}$. Then, by the definition of validity, $v^{*}\left(t_{1}\right)={ }_{D} v^{*}\left(t_{2}\right)$ i.a.i. or alternatively we can write $v^{*}\left(t_{2}\right)={ }_{D} v^{*}\left(t_{1}\right)$ i.a.i., that is $\vDash t_{2}=t_{1}$. Thus, R1 is seen to preserve validity.

Consider $\mathbf{R} 2\left(\mathbb{Q}\left(t_{1}, t_{1}\right), t_{1}=t_{2}, \mathbb{Q}\left(t_{1}, t_{2}\right)\right)$ and assume $\vDash Q\left(t_{1}, t_{1}\right)$ and $\vDash t_{1}=t_{2}$. The validity of $\mathfrak{a}\left(t_{1}, t_{1}\right)$ depends on the quantities in D into which v^{*} maps the terms in $Q\left(t_{1}, t_{1}\right)$. Clearly, if $v^{*}\left(t_{1}\right)={ }_{D} v^{*}\left(t_{2}\right)$ i.a.i., then substitution of the term t_{2} for occurrences of the term t_{1} in $Q\left(t_{1}, t_{1}\right)$ to generate $Q\left(t_{1}, t_{2}\right)$ will not affect this validity, so that $\vDash \mathbb{Q}\left(t_{1}, t_{2}\right)$ as well.

Since the axioms are valid and the rules of inference preserve validity, then all theorems of ξ^{\prime} are valid.

Theorem 2. Completeness of $T^{\prime}(\mathbf{T} 2) . \vDash Q \Rightarrow \vdash \mathbb{Q}$; i.e., all valid wfs are theorems of T^{\prime}.

Proof. We give a constructive proof so that given any valid wf Q, we show how to construct a proof of a.

First, we define a total function r^{*} of one argument which maps terms into other terms.
(a) If t_{1} is a simple term, then $r^{*}\left(t_{1}\right)={ }_{k} t_{1}$.
(b) If $t_{1}={ }_{E} c(i, a(j, t, \xi))$, then $r^{*}\left(t_{1}\right)={ }_{E} c(i, \xi)$.
(c) If $t_{1}={ }_{E} c(i, a(i, t, \xi))$, then $r^{*}\left(t_{1}\right)={ }_{E} t$.

We now define two proof-generating procedures, each accepting a single term as parameter. An Algol-like representation is used for clarity and brevity. Boolean procedures simpleterm (t) and totallysimpleterm (t) are assumed available, an assumption warranted by the decidability of the set of all terms. The procedure $\operatorname{proofstep}(x, y)$ emits a proof step x with justification y.

```
term procedure reduce \((t)\); value \(t\); term \(t\);
begin comment this procedure constructs a proof of \(H=q\) where \(q\) is a simple term. \(q\) is
    returned as the value of the procedure;
    term \(p, q\);
    proofstep ( \(l=t, \mathbf{P 1}\) );
    \(q \leftarrow t ;\)
    while \(\neg\) simpleterm \((q)\) do
        begin
            \(p \leftarrow r^{*}(q) ;\)
            \(\operatorname{proofstep}(q=p, \mathbf{A l}\) or A2);
            proofstep ( \(t=p, \mathbf{R 2}\) );
            \(q \leftarrow p\)
        end;
    reduce \(\leftarrow q\)
end procedure reduce;
```

To verify that the sequence of proof steps generated by procedure reduce(i) constitutes a valid proof, it is only necessary to observe that $-\vec{x}=r^{*}(x)$ for all terms x and that the applications of $\mathbf{R 2}$ are correct. In the next procedure a certain looseness of notation is introduced, but the meaning should be apparent.

```
term procedure relucetotally \((t)\); value \(t\); term \(\ell\);
begin comment this procedure constructs a proof of \(h=t^{\prime}\) where \(t^{\prime}\) is a totally simple term.
    it returned as the value of the procedure;
    term t;
    integer \(j, n\);
```



```
    if \(\neg\) stmpleterm \((t)\) then \(t^{\prime} \leftarrow\) reduce \((t)\)
                                    else proofstep \((l=l, \mathbf{P I})\);
    if - tolallysimpleterm ( \(l^{\prime}\) ) then
    comment \(t^{\prime}={ }_{E} f_{k}\left[t_{1}, \cdots, t_{n}\right]\) where at least one of the terms \(t_{1}, \cdots, t_{n}\) is not totally
    simple;
    for \(j<-1\) step 1 until \(n\) do
        begin
            \(l^{\prime} \leftarrow f_{k}{ }^{n} t_{1}, \cdots, t_{j-1}\), reducetotally \(\left.\left(l_{j}\right), t_{j+1}, \cdots, t_{n}\right]\);
            proofstep \(\left(t=t^{\prime}, \mathbf{R 2}\right)\)
    ond;
    Teducetotally \(\leftarrow t^{\prime}\)
cud procedure reducetotally;
```

Consider now any wf \mathbb{Q} where $\vDash \mathbb{Q}$. Suppose \mathcal{Q} is of the form $t_{1}=t_{2}$ where t_{1} and Tare terms. Construct proofs of $\vdash_{1}=t_{1}{ }^{*}$ and $+t_{2}=t_{2}{ }^{*}$ using procedures reduce(t) and reducetotally (t) where both $t_{1}{ }^{*}$ and $t_{2}{ }^{*}$ are totally simple terms.
From T1 we then have that $\vDash t_{1}=t_{1}^{*}$ and $\vDash t_{2}=t_{2}^{*}$. But, we are given that $F t_{1}=t_{2}$; from Lemma 2 we then obtain $F t_{1}^{*}=t_{2}^{*}$. Since t_{1}^{*} and t_{2}^{*} are totally stmple terms, we can apply Lemma 1 and obtain $t_{1}{ }^{*}={ }_{e} t_{2}{ }^{*}$. That is, $t_{3}{ }^{*}$ and $t_{a}{ }^{*}$ are the same term, symbol for symbol. That being so, $\mathbf{P 1}$ gives $H_{1}{ }^{*}=t_{2}^{*}$.
So, from the proof constructions we have $f_{1}=t_{1}^{*}$ and $f_{2}=t_{2}^{*}$ and we write $H_{4}^{*}=t_{2}^{*}$ as an instance of P1. Using R2 on $H_{1}=t_{1}^{*}$ and $H_{1}{ }^{*}=t_{9}^{*}$ gives $H_{4}=$都, which on applying R1 gives $f_{2} t_{2}^{*}=t_{1}$. This last result together with $f t_{3}=t_{2}{ }^{*}$ and R2 gives $f t_{2}=t_{1}$, which on applying R1 gives $f t_{1}=t_{2}$, i.e., $f Q$, which sompletes the proof of completeness for J^{\prime}.
We now have a theory 3^{\prime} which is complete and so can be used to deduce all valid statements about equality of terms. However, in a potentially more powerful theory , should also be able to deduce all valid statements about equality of n-states (i.e., tate vectors). To form a new theory $\mathfrak{J}=(F m, A x, \mathbf{R 1}, \mathbf{R 2}, \mathbf{R 3}, \mathbf{R 4})$ that will dilow such deductions, we modify J^{\prime} in the manner outlined below.
(1) J has the same countable set of symbols as y^{\prime} with the addition of the prediate symbol " \equiv ".
(2) $\mathrm{Fm}=F m^{\prime} \cup\left\{x: x\right.$ is an expression of J of the form $\theta_{1} \equiv \theta_{2}$ where θ_{1} and θ_{2} we n-states for any $n=1,2, \cdots\}$. The expressions in $F m$ and only those are the th of 3.
(3) $A x=A x^{\prime} \cup\{x: x$ is an instance of axiom schema $\mathbf{A} 3, \mathbf{A 4}$, or $\mathbf{A 5}\}$.

A3 $a(i, t, a(j, s, \xi)) \equiv a(j, s, a(i, t, \xi))$.
A4 $a(i, t, a(i, s, \xi)) \equiv a(i, t, \xi)$.
A5 $a(i, c(i, \xi), \xi) \equiv \xi$.
(4) The rules of inference of 5 are R 1 and $\mathbf{R 2}$ (extended to all wfs of 5) togethe with

$$
\mathbf{R 3} \quad\left(\theta_{1} \equiv \theta_{2}, \theta_{2} \equiv \theta_{1}\right)
$$

and

$$
\mathbf{R 4}\left(\alpha\left(\theta_{1}, \theta_{1}\right), \theta_{1} \equiv \theta_{2}, a\left(\theta_{1}, \theta_{2}\right)\right)
$$

where $\alpha \in F m$ and θ_{1} and θ_{2} are n-states for any $n=1,2, \cdots$. The same comments offered earlier about R1 and R2 are relevant here regarding R3 and R4. We write H^{Q} if and only if Q is a wf and is derivable using $A x$ and R1, R2, R3, and R4.

As before, a wf $\mathbb{A} \in F m$ has meaning only when an interpretation is given to the symbols in a. An interpretation is defined exactly as before with the addition that an assignment of the equality relation in the set of all families with index set I and terms chosen from D is made to the predicate symbol " \equiv ". Thus, we write $\left\{x_{i}\right\} \equiv o$ $\left\{y_{i}\right\}$ where $i \in I$ and $x_{i}, y_{i} \in D$, if and only if $x_{i}={ }_{b} y_{i}, i=1,2, \cdots$.

The definitions of truth and validity for wfs are extended as follows: a wf \mathfrak{a} of the form $\theta_{1} \equiv \theta_{2}$, where θ_{1} and θ_{2} are n-states is true (for a given interpretation) if and only if $u^{*}\left(\theta_{1}\right) \equiv_{b} u^{*}\left(\theta_{2}\right)$, and \mathbb{Q} is valid (according to J) if and only if \mathbb{Q} is true in all interpretations. From the 1-1 nature of the mappings given by the interpretation for index letters and from the definition of u^{*}, we obtain that $u^{*}\left(\theta_{1}\right)=0$ $u^{*}\left(\theta_{2}\right)$ if and only if $v^{*}\left(c\left(i_{n k}, \theta_{1}\right)\right)={ }_{b} v^{*}\left(c\left(i_{n k}, \theta_{2}\right)\right)$ for each $k=1,2, \cdots$;..., $\theta_{1}=\theta_{2}$ is true if and only if $c\left(i_{n k}, \theta_{1}\right)=c\left(i_{n k}, \theta_{2}\right)$ is true for each $k=1,2, \cdots$. Then, $\theta_{1} \equiv \theta_{2}$ is valid if and only if $c\left(i_{n k}, \theta_{1}\right)=c\left(i_{n k}, \theta_{2}\right)$ is valid for each $k=1,2, \cdots$. As before, we write $\vDash a$ if and only if a is a valid wf.

Before moving on to the completeness theorems for 5 , we need a lemma, a proposition, and a definition.

Lemma 3. If $\models \theta_{1} \equiv \theta_{2}, \vDash \theta_{3} \equiv \theta_{4}, \vDash \theta_{1} \equiv \theta_{3}$, then $\models \theta_{2} \equiv \theta_{4}$ where $\theta_{1}, \theta_{2}, \theta_{2}$, and θ_{1} are n-states for any $n=1,2, \cdots$.

Proof. From the given information, we have

$$
\begin{array}{ll}
\vDash c\left(i_{n k}, \theta_{1}\right)=c\left(i_{n k}, \theta_{2}\right), & k=1,2, \cdots, \\
\vDash c\left(i_{n k}, \theta_{3}\right)=c\left(i_{n k}, \theta_{4}\right), & k=1,2, \cdots, \\
\vDash c\left(i_{n k}, \theta_{1}\right)=c\left(i_{n k}, \theta_{3}\right), & k=1,2, \cdots .
\end{array}
$$

By applying Lemma 2 to the above three statements for $k=1,2, \cdots$, we obtain

$$
\begin{aligned}
& \quad \vDash c\left(i_{n k}, \theta_{2}\right)=c\left(i_{n k}, \theta_{4}\right), \quad k=1,2, \cdots ; \\
& \text { i.e., } \vDash \theta_{2} \equiv \theta_{4} .
\end{aligned}
$$

Proposition 2 ($\mathbf{P 2}$). $\quad \vdash \xi \equiv \xi$ where ξ is any n-state for $n=1,2, \cdots$. Proof.

(1) $a(i, c(i, \xi), \xi) \equiv \xi$,	A5
(2) $a(i, c(i, \xi), \xi) \equiv \xi$,	A5
(3) $\xi \equiv \xi$.	R4 on (1) and (2)

We define the canonical form for n-states to be

$$
a\left(i_{n k_{1}}, t_{1}, a\left(i_{n k_{2}}, t_{2}, a\left(\cdots a\left(i_{n k_{p}}, t_{p}, \xi_{n}\right) \cdots\right)\right)\right)
$$

where if $p=0$ we have simply ξ_{n}, where $k_{1}<k_{2} \cdots<k_{p}$ and where $t_{1}, t_{2}, \cdots, t_{p}$ are totally simple terms such that $t_{j} \neq E_{E} c\left(i_{n k_{j}}, \xi_{n}\right)$ for $j=1,2, \cdots, p$.

Theorem 3 (T3). $\quad \mid-Q \Rightarrow \vDash Q$; that is, all theorems of 3 are valid.
Proof. First we show that the new axioms given by A3, A4, and $\mathbf{A} 5$ are valid.

$$
\mathbf{A 3}: \quad a(i, t, a(j, s, \xi)) \equiv a(j, s, a(i, t, \xi))
$$

Consider the following deduction and the result obtained; m, i, and j are distinct.

$$
\begin{array}{ll}
\text { (1) } c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, \xi)), & \text { A1 } \\
\text { (2) } c(m, a(j, s, \xi))=c(m, \xi), & \text { A1 } \\
\text { (3) } c(m, a(i, t, a(j, s, \xi)))=c(m, \xi), & \text { R2 on (1) and (2) } \\
\text { (4) } c(m, a(j, s, a(i, t, \xi)))=c(m, a(i, t, \xi)), & \text { A1 } \\
\text { (5) } c(m, a(i, t, \xi))=c(m, \xi), & \text { A1 } \\
\text { (6) } c(m, a(j, s, a(i, t, \xi)))=c(m, \xi), & \text { R2 on (4) and (5) } \\
\text { (7) } c(m, \xi)=c(m, a(j, s, a(i, t, \xi))), & \text { R1 on (6) } \\
\text { (8) } c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, a(i, t, \xi))) . & \text { R2 on (3) and (7) }
\end{array}
$$

Then Tl gives $\vDash c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, a(i, t, \xi)))$ for any m distinct from i and j. Consider now the following deduction and the result obtained; i and j are distinct and $m={ }_{g} i$.

$$
\begin{array}{ll}
\text { (1) } c(m, a(i, t, a(j, s, \xi)))=t, & \text { A2 } \tag{1}\\
\text { (2) } c(m, a(j, s, a(i, t, \xi)))=c(m, a(i, t, \xi)), & \text { A1 } \\
\text { (3) } c(m, a(i, t, \xi))=t, & \text { A2 } \\
\text { (4) } c(m, a(j, s, a(i, t, \xi)))=t, & \text { R2 on (2) and (3) } \\
\text { (5) } t=c(m, a(j, s, a(i, t, \xi))), & \text { R1 on (4) } \\
\text { (6) } c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, a(i, t, \xi))), & \text { R2 on (1) and (5) }
\end{array}
$$

Then TI gives $\vDash c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, a(i, t, \xi)))$ for distinct i and j and $m={ }_{E} i$.
A proof similar to that above gives the same result for distinct i and j and $m={ }_{E} j$. Thus, for all m we have $\vDash c(m, a(i, t, a(j, s, \xi)))=c(m, a(j, s, a(i, t, \xi)))$, and so by the definition of validity $\vDash a(i, t, a(j, s, \xi))=a(j, s, a(i, t, \xi))$. Hence, the axioms given by $\mathbf{A 3}$ are all valid.

Proofs structured like the one above can be given to show that the axioms given by A4 and A5 are all valid.

As well, straightforward arguments like those in T1 can be given to show that R2 extended to wfs of J and $\mathbf{R 3}$ and R4 lead from valid wfs to other valid wfs.

Thus, since the axioms of \Im are valid and since the rules of inference of \Im preserve validity, then all theorems of \mathcal{J} are valid.

Theorem 4. Completeness of 5 (T4). $\vDash Q \Rightarrow \vdash Q$, i.e., all valid wfs are theorems of 3 .

Proof. This theorem has already been proved (T2) for wfs of the form $t_{1}=t_{2}$
where t_{1} and t_{2} are terms. Thus, we consider here only wfs \mathbb{Q} of the form $\theta_{1}=\theta_{2}$. Once again a constructive proof is given. Several proof-constructing procedures are used in addition to reduce (t) and reducetotally (t) defined above. For the description of the new procedures, an Algol-like representation is again used.

The first three procedures are used to manipulate n-states s and construct proofs of $\vdash s=s^{\prime}$, where s^{\prime} is the result of the manipulation. In these procedures, the the argument s is of the form

$$
a\left(j_{1}, t_{1}, a\left(j_{2}, t_{2}, a\left(\cdots a\left(j_{m}, t_{m}, a\left(j_{m+1}, t_{m+1}, a\left(\cdots a\left(j_{p}, t_{p}, \xi_{n}\right) \cdots\right)\right)\right) \cdots\right)\right)\right.
$$

and θ_{m} is used to represent

$$
a\left(j_{m}, t_{m}, a\left(j_{m+1}, t_{m+1}, a\left(\cdots a\left(j_{p}, t_{p}, \xi_{n}\right) \cdots\right)\right)\right)
$$

```
state procedure interchange(s, m);
    value \(s, m\); state \(s\); integer \(m\);
    begin comment this procedure constructs a proof of \(F s \equiv s^{\prime}\) where \(s^{\prime}\) is like \(s\), except that
        the \(m\) th and \((m+1)\)-st assignments are interchanged. \(s^{\prime}\) is returned as the value of the
        procedure. Within \(s\), we have \(j_{m} \not{ }_{E} j_{m+1}\);
        state \(s^{\prime}\);
        proofstep \(\left(\theta_{m} \equiv a\left(j_{m+1}, t_{m+1}, a\left(j_{m}, t_{m}, \theta_{m+2}\right)\right), \mathbf{A} 3\right)\);
        \(s^{\prime} \leftarrow a\left(j_{1}, t_{1}, a\left(\cdots a\left(j_{m-1}, t_{m-1}, a\left(j_{m+1}, t_{m+1}, a\left(j_{m}, t_{m}, \theta_{m+2}\right)\right)\right) \cdots\right)\right) ;\)
        proofstep(s \(\left.\equiv s^{\prime}, \mathbf{R} 4\right)\);
        interchange \(\leftarrow s^{\prime}\)
    end procedure interchange;
state procedure deleteduplicate (s, \(m\) );
    value \(s, m\); state \(s\); integer \(m\);
    begin comment this procedure constructs a proof of \(\mid s \equiv s^{\prime}\) where \(s^{\prime}\) is the same as \(s\) except
        that the ( \(m+1\) )-st assignment (a duplicate one) is deleted. Within s, we have \(j_{m}=E j_{m+1}\);
        state \(\boldsymbol{s}^{\prime}\);
        proofstep \(\left(\theta_{m} \equiv a\left(j_{m}, t_{m}, \theta_{m+2}\right), \mathbf{A 4}\right)\);
        \(s^{\prime} \leftarrow a\left(j_{1}, t_{1}, a\left(\cdots a\left(j_{m}, t_{m}, \theta_{m+2}\right) \cdots\right)\right) ;\)
        proofstep ( \(s \equiv s^{\prime}, \mathbf{R} 4\) );
        deleteduplicate \(\leftarrow s^{\prime}\)
    end procedure deleteduplicate;
state procedure deletevacuous \((s, m\) );
    value \(s, m\); state \(s\); integer \(m\);
    begin comment this procedure constructs a proof of \(f=s^{\prime}\) where \(s^{\prime}\) is the same as \(s\) except
        that the \(m\) th assignment (a vacuous one) is deleted. \(s^{\prime}\) is returned as the value of the
        procedure. Within \(s\), we have \(t_{m}={ }_{E} c\left(j_{m}, \xi_{n}\right)\) and \(j_{1}, \cdots, j_{p}\) all distinct;
        state s ;
        term \(t\);
        \(t \leftarrow \operatorname{reducetotally}\left(c\left(j_{m}, \theta_{m+1}\right)\right)\);
        comment since the \(j_{m}, j_{m+1}, \cdots, j_{p}\) are distinct, \(t\) is now \(c\left(j_{m}, \xi_{n}\right)\) and a proof
            of \(1 c\left(j_{m}, \theta_{m+1}\right)=c\left(j_{m}, \xi_{n}\right)\) has been constructed;
        proofstep \(\left(a\left(j_{m}, c\left(j_{m}, \theta_{m+1}\right), \theta_{m+1}\right) \equiv \theta_{m+1}, \mathbf{A 5}\right)\);
        proofstep \(\left(a\left(j_{m}, c\left(j_{m}, \xi_{n}\right), \theta_{m+1}\right) \equiv \boldsymbol{\theta}_{m+1}, \mathbf{R 2}\right)\);
        comment this last step states that \(\hat{\theta}_{m}=\theta_{m+1}\);
        \(s^{\prime} \leftarrow a\left(j_{1}, t_{1}, a\left(\cdots a\left(j_{m-1}, t_{m-1}, \theta_{m+1}\right) \cdots\right)\right) ;\)
        proofstep ( \(s=s^{\prime}, \mathbf{R} 4\) );
        deletevacuous \(\leftarrow s^{\prime}\)
    end procedure deletevacuous;
```

In the following procedure, the argument s is of the form

$$
a\left(i_{n k_{1}}, t_{1}, a\left(i_{n k_{2}}, t_{2}, a\left(\cdots a\left(i_{n k_{p}}, t_{p}, \xi_{n}\right) \cdots\right)\right)\right)
$$

```
state procedure canonical(s); value \(s\); state \(s\);
    begin comment this procedure constructs a proof of \(f s \equiv s^{\prime}\) where \(s^{\prime}\) is the canonical form
        of \(s . s^{\prime}\) is returned as the value of the procedure;
        state \(s^{\prime}\);
        integer \(j, m\);
        proofstep \(\left(s \equiv s, \mathrm{P}^{2}\right)\);
        \(s^{\prime} \leftarrow s\);
        comment first we do a simple sort on the second subscript of the index letters in \(s\) and as
            assignments are rearranged, duplicates are deleted. Proofs of these manipulations are
            contructed;
        for \(m \leftarrow 1\) step 1 until \(p-1\) do
        for \(j \leftarrow 1\) step 1 until \(p-m\) do
        if \(k_{j}=k_{j+1}\) then
            begin
                \(s^{\prime} \leftarrow\) deleteduplicate \(\left(s^{\prime}, j\right)\);
                proofstep ( \(s \equiv s^{\prime}, \mathbf{R 4}\) );
                \(p \leftarrow p-1\)
            end
        else if \(k_{j}>k_{j+1}\) then
            begin
                \(s^{\prime} \leftarrow\) interchange \(\left(s^{\prime}, j\right)\);
                    proofstep \(\left(s \equiv s^{\prime}, \mathbf{R} 4\right)\)
            end;
        comment second, we convert all of the terms \(t_{1}, \cdots, t_{p}\) into totally simple terms and
            construct proofs of the conversions;
        for \(j \leftarrow 1\) step 1 until \(p\) do
            begin
                \(s^{\prime} \leftarrow a\left(i_{n k_{1}}, t_{1}, a\left(\cdots a\left(i_{n k_{j}}\right.\right.\right.\), reducetotally \(\left.\left.\left.\left(t_{j}\right), a\left(\cdots a\left(i_{n k_{p}}, t_{p}, \xi_{n}\right) \cdots\right)\right) \cdots\right)\right) ;\)
                proofstep ( \(s \equiv s^{\prime}, \mathbf{R 2}\) )
            end;
        comment third, we delete all vacuous assignments which reassign to a variable the
            quantity already there and construct proofs of the deletions. Note that the \(i_{n k_{1}}, \cdots, i_{n k p}\)
            are now distinct;
        for \(j \leftarrow 1\) step 1 until \(p\) do
        if \(t_{j}={ }_{E} c\left(i_{n k_{j}}, \xi_{n}\right)\) then
            begin
            \(s^{\prime} \leftarrow\) deletevacuous \(\left(s^{\prime}, j\right)\);
            proofstep ( \(s=s^{\prime}, \mathbf{R 4}\) );
            \(p \leftarrow p-1\)
            end;
        canonical \(\leftarrow s^{\prime}\)
    end procedure canonical;
```

Consider now any wf Q of the form $\theta_{1} \equiv \theta_{2}$ where $\vDash Q$ and θ_{1} and θ_{2} are n-states for some $n=1,2, \cdots$. First construct proofs of $\theta_{1} \equiv \theta_{1}{ }^{*}$ and $\theta_{2} \equiv \theta_{2}{ }^{*}$ using procedure canonical (s) so that both $\theta_{1}{ }^{*}$ and $\theta_{2}{ }^{*}$ are in canonical form.
From T3 we then have that $\vDash \theta_{1} \equiv \theta_{1}{ }^{*}$ and $\vDash \theta_{2} \equiv \theta_{2}{ }^{*}$. But we are given that $\vDash \theta_{1} \equiv \theta_{2}$; from Lemma 3 we then obtain $E \theta_{1}{ }^{*} \equiv \theta_{2}{ }^{*}$ which by definition means that $\vDash c\left(i_{n j}, \theta_{1}^{*}\right)=c\left(i_{n j}, \theta_{2}^{*}\right)$ for $j=1,2, \cdots$.

Suppose that

$$
\begin{aligned}
\theta_{1}^{*} & ={ }_{E} a\left(i_{n k_{1}}, t_{1}, a\left(\cdots a\left(i_{n k_{p}}, t_{p}, \xi_{n}\right) \cdots\right)\right) \\
\theta_{2}^{*} & ={ }_{E} a\left(i_{n l_{1}}, u_{1}, a\left(\cdots a\left(i_{n l_{q}}, u_{q}, \xi_{n}\right) \cdots\right)\right),
\end{aligned}
$$

and let

$$
\begin{aligned}
& I_{1}=\left\{i_{n k_{1}}, i_{n k_{2}}, \cdots, i_{n k_{p}}\right\}, \\
& I_{2}=\left\{i_{n l_{1}}, i_{n l_{2}}, \cdots, i_{n l_{q}}\right\} .
\end{aligned}
$$

For any specific $i \notin I_{1}$, reducetotally $\left(c\left(i, \theta_{1}^{*}\right)\right)$ will construct a proof of $\vdash c\left(i, \theta_{1}{ }^{*}\right)=c\left(i, \xi_{n}\right)$. Now either $i \in I_{2}$ or $i \notin I_{2}$. Suppose for the moment that $i \in I_{2}$ and in fact $i={ }_{E} i_{n l_{r}}$ for some $r, 1 \leq r \leq q$. Then reducetotally $\left(c\left(i, \theta_{2}^{*}\right)\right)$ will construct a proof of $1-c\left(i, \theta_{2}^{*}\right)=u_{r}$ where $u_{r} \not{ }_{B} c\left(i, \xi_{n}\right)$ since $\theta_{2}{ }^{*}$ is in canonical form.

These results and T1 give $\vDash c\left(i, \theta_{1}{ }^{*}\right)=c\left(i, \xi_{n}\right)$ and $\vDash c\left(i, \theta_{2}{ }^{*}\right)=u_{r}$, and since we have shown above that $\vDash c\left(i_{n j}, \theta_{1}^{*}\right)=c\left(i_{n j}, \theta_{2}^{*}\right)$ for $j=1,2, \cdots$, then certainly $\vDash c\left(i, \theta_{1}{ }^{*}\right)=c\left(i, \theta_{2}{ }^{*}\right)$ where $i={ }_{E} i_{n l_{r}}$. Then Lemma 2 gives $\vDash u_{r}=c\left(i, \xi_{n}\right)$. But, since $\theta_{2}{ }^{*}$ is in canonical form, u_{r} is a totally simple term as is $c\left(i, \xi_{n}\right)$. So Lemma 1 gives $u_{r}={ }_{E} c\left(i, \xi_{n}\right)$, a contradiction.

Thus, the supposition that $i \in I_{2}$ leads to a contradiction. So if $i \notin I_{1}$ then $i \notin I_{2}$, or alternatively, if $i \in I_{2}$ then $i \in I_{1}$. An argument symmetric to the one above gives that if $i \in I_{1}$ then $i \in I_{2}$ so that combined, these results give $I_{1}=I_{2}$. Since $\theta_{1}{ }^{*}$ and $\theta_{2}{ }^{*}$ are in canonical form, both I_{1} and I_{2} have elements ordered on the second subscript letter. Thus, $i_{n k_{j}}={ }_{E} i_{n l_{j}}$ for $j=1,2, \cdots, p$.

Now consider any specific $i \in I_{1}$, say $i={ }_{E} i_{n k_{r}}$ where $1 \leq r \leq p$. Then reducetotally $\left(c\left(i, \theta_{1}^{*}\right)\right)$ will construct a proof of $\vdash c\left(i, \theta_{1}^{*}\right)=t_{r}$ and TI gives $\vDash c\left(i, \theta_{1}^{*}\right)=$ t_{r}. Similarly, we obtain $\vDash c\left(i, \theta_{2}^{*}\right)=u_{r}$. But we know $\vDash c\left(i, \theta_{1}^{*}\right)=c\left(i, \theta_{2}^{*}\right)$ so that Lemma 2 gives $\vDash t_{r}=u_{r}$. Since t_{r} and u_{r} are totally simple terms, we have by Lemma 1 that $t_{r}={ }_{k} u_{r}$. Since this is true for any $i={ }_{E} i_{n k_{r}}$, then $t_{j}={ }_{E} u_{j}$ for $j=$ $1,2, \cdots, p$.

An examination of the canonical representation of $\theta_{1}{ }^{*}$ and $\theta_{2}{ }^{*}$ reveals that the results obtained in the preceding two paragraphs for the index letters and terms in $\theta_{1}{ }^{*}$ and $\theta_{2}{ }^{*}$ give $\theta_{1}{ }^{*}={ }_{E} \theta_{2}{ }^{*}$. That is, $\theta_{1}{ }^{*}$ and $\theta_{2}{ }^{*}$ are the same n-state, symbol for symbol. That being so, $\mathbf{P} 2$ gives $\vdash_{1}{ }^{*} \equiv \theta_{2}{ }^{*}$. But the proof constructions gave $\vdash \theta_{1} \equiv \theta_{1}^{*}$ and $\vdash \theta_{2} \equiv \theta_{2}^{*}$. Using $\mathbf{R 4}$ on $\vdash \theta_{1} \equiv \theta_{1}^{*}$ and $\vdash \theta_{1}^{*} \equiv \theta_{2}^{*}$ gives $\vdash \theta_{1} \equiv \theta_{2}^{*}$ which on applying $\mathbf{R} 3$ gives $\vdash \theta_{2}{ }^{*} \equiv \theta_{1}$. This last result together with $\vdash \theta_{2}=\theta_{2}{ }^{*}$ and $\mathbf{R 4}$ gives $\vdash \theta_{2} \equiv \theta_{1}$ which on applying $\mathbf{R} 3$ gives $\vdash \theta_{1} \equiv \theta_{2}$, that is, $\vdash \propto$.

So we see that the formal theory \mathfrak{J} is both complete and consistent; in addition the constructive proofs of completeness (in T2 and T4) mean that J is a decidable theory. These facts can now be utilized whenever state vectors, the functions a and c, and the axioms of J are incorporated into other formalisms.

REFERENCES

1. McCarthy, J. Towards a mathematical science of computation. Proc. IFIP Congr. 62 (1962), 21-28.
2. Mendelson, E. Introduction to Mathematical Logic. Van Nostrand, Princeton, N. J., 1964.

RECEIVED APRIL, 1967; REVISED JULY, 1967

