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In [1], McCarthy introduces computer program state vectors a l o n g  w i t h  two fm~c- 
tions used to compute explicitly with them. Certain facts a b o u t  t h e s e  funcl;io~s 
are given in [1], and in this paper it is shown that these facts e o n s t . i t u t e  ~ complete 
set of axioms in an appropriate formal theory 3. 

Before developing this formal theory, we discuss state veer.ors a n d  functions oa 
them so that the relevance of formulas in 3 is apparent. 

A state vector is simply a family of quantities lxd, i E I, I ~ { 1, 2, . - -}, where 
for each i, xi ~ D, where D is the set of all possible quantities. T h e  e x a c t  nature  of D 
is left unspecified here, but  many applications would find D c o n t a i n i n g  such subsets 
as tile integers, certain character strings, finite bit sequences, t h e  r e i d  numbers ,  ct, c, 

Distinct from state vectors as defined above is the program s tate  vector which, for 
a program at a given point during its execution, indicates the s e t  o f  c u r r e n t  ~tssig~ 
ments of values to the variables of the program. In the ease of a m a c h i n e  bmguage 
program, the program state vector indicates the set of cur ren t  eo n t e r~ t s  of t.h(~e 
registers whose contents change during the course of program e x e c u t i o n .  Speeifi.- 
tally, the program state vector for a program ~r is defined as the o r d e r e d  pa, ir ( M , ,  ~) 
where ~ is a state vector in the general sense described above and 21/I~ is  ~:t 1--I mappi~g 
of program variables (or register addresses) into tile positive i n t e g e r s .  Thus ,  if v is 
a variable of 7r then the M~(v)-th term in ( is the quantity c u r r e n t l y  assigtted t~;, ~', 

In order to eomput.e explicitly with state vectors, we i n t r o d u c e  t h e  funetio~ c: 
I ,  V --~ D, where V = {x : x is a state vector}, and write c(i, ~) t o  d e n o t e  the i~h 
term (quantity) of ~. We also introduce the function a: I, D,  V --~ V and write 
a(i, k, ~) to denote the state vector that results when the i th  t e r m  in ( is replaced 
with the quantity k and the other terms in ~ are left unchanged. I n  [1 ], at1 example 
is given showing the transformation of a simple computer p r o g r a m  i n t o  expressions 
utilizing this formMism. 

We now define a formal theory 3' = (Fro', Ax',  I l l ,  1/2). W e  f o l l o w  [2] here. 
(1) 3' has the following countable set of symbols: p a r e n t h e s e s ,  brackets ,  the 
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,1 ~2 comma, individual constant  letters kl ,  k2, • • • , ordinary funetioa letters j l ,  J l ,  • " ' , 
if ' ,  . . .  where j~" is the  kth function of n arguments,  iadex letters i n ,  iI~, . • • 
i,,k, " ' ,  state letters [1, ~2, " "  , the special function letters a ,'rod e, and the 
predicate symbol " = "  

A finite sequence of symbols of 5' is called an expression of 3'. If' p trod q are 
! 

expressions of 5 ,  then p = s  q means p and q are symbol for symbol the same ex- 
pression of 5'. 

(2) There is an effectively decidable subset Fro' of the expressions of 3' called 
the set of well-formed formulas (wfs) of 3. Wfs are defined reeursively as follows. 

First we define terms: 
(a) Individual cons tant  letters k~ are terms. 
(b) I f fk  ~ is a funct ion letter, and tl , . . .  , t, are terms, then jL'~[h , . . .  , t,,] is a 

term. 
(e) If i,~k is an index letter and ( is an n-state (see definition below), tilen c('i,,~, ~) 

is a term. 
(d) An expression is a term only if it can be shown to be a term on the basis of 

clauses (a),  (b),  and (e).  
Next, we define n-states: 
(a) The state letter ~n is an n-state. 
(b) If ink is an index letter, and t is a term, and ~ is an n-state, then a(i,,~, t, ~) 

is an n-state. 
(c) An expression is an n-state only if it can be shown to be an n-state on the 

basis of clauses (a) and (b). 
The definitions given above for terms and n-states are potentially intinitely 

rccursive, so tha t  the restriction mus t  be added tha t  terms and n-states be finite 

expressions of 5'. 
_ of 3 . Speei- Finally, the predicate symbol . . . . .  applied to terms yields the wfs " ' 

fically, an expression of 5'  is a well,formed formula if and only if it is of the form 

t~ = t2 where h and t: are terms. 
(3) A set Ax' c Fro' is set aside and called the set of axioms of 3'. The set 

Ax ~ is defined by two axiom schemas: 

A1 c(i ,  a ( j ,  t, ~)) = c(i ,  ~), 
A2 c(i ,  a ( i ,  t, f ) )  = t, 

~here i and j are any distinct index letters of the form i,~k, t is any term, and ( is 
any n-state, for any n = 1, 2, . . -  . No te  tha t  i, j ,  t, ~ are used throughout  with 
the above meanings. Since Ax' is an effectively decidable subset of I, m ,  is there- 

fore an axiomatic theory.  
(4) The rules of inference of 5' are 

R1 (tl = h , t ~  = h),  

R2 ( a ( h ,  h) ,  h = h ,  a ( h ,  t2)), 

where tl and t2 are terms and where the wf a ( t i ,  t2) arises from (a(tl,  h) by  replacing 
some, but not  necessarily all, occurrences of h by  t2. Obviously, these rules charac- 
terize the reflexivity and substi tut ivi ty properties of equality;  in a first-order theory, 
the axioms associated with equality would be introduced along with the predicate 
and modus ponens would then be the operative rule of inference, t towever,  framing 
of the completeness derived in this paper  within a full propositional and quantifica- 
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tional structure would only add more complexity, not more significance, to the 
results obtained. We write ~-~ if and only if a C Fro' and is derivable using Ax', 
R1 and R2. 

Of course, a w f  ~ has meaning only when an interpretation is given for the sym- 
bols in (L An interpretation consists of 

(a) a nonempty set D (the domain) of quantities, 
(b) a mapping of ordinary function letters fk" into n-place operations in D, 
(e) a mapping of individual constant letters k~ into D, 
(d) 1-1 mapping of t h e i n d e x l e t t e r s i ~ , k  = 1,2, . . .  , i n t o l f o r n  = 1 , 2 , . . .  
(e) a mapping of state letters into families with index set I and terms chosen 

from D, 
(f) an assignment of the equality relation in D to the predicate symbol " - "  

Thus, we write x = ~ y if and only if x and y are the same element of D. 
The notion of t ru th  for wfs of 5 ~ is intuitively dear,  but  can be precisely defined 

as follows. Let  there be given an interpretation with domain D. We now define 
what it means for a w f  a to be true in the given interpretation. As a preliminary 
step, we define a total function v* of one argument, which maps terms into quanti- 
ties in D. 

(a) If k~ is an individual constant letter, then v*(k~) is the interpretation in D 
of this constant. 

(b) If  fk ~ is an ordinary function letter and g is the corresponding n-place opera- 
tion in D given by the interp~;etation, and tl ,  .- • , t~ are terms, then v*(fk~[tl, . . . ,  
t.]) =D g(v*(h) ,  ' ' '  , v*(t~)).  

(C) If  ink is an index letter and ~ an n-state, and if the integer p C I is the inter- 
pretation of i ~ ,  then v ( e (z~ ,  ~) ) = ,  pth term of u*(~), where u* is defined below. 

The total function u* of one argument maps n-states into families with elements 
chosen from D. 

(a) If  ~ is a state letter, then u * ( ~ )  is the family, with index set I and terms 
chosen from D, given for ~. by the interpretation. 

(b) If ins is an index letter, t a term, and ~ an n-state, and if the integer p E I 
, u (a(,~k, t, ~)) is defined as having the same is the interpretation of i.k then * ' 

terms as u*(~) except for the p th  term which is v*(t) .  
From the definitions above we can easily obtain the following two results, which 

are needed later on. 
( a )  * " * " v (c(*,k ,  a ( i ~ ,  t, ~) ) )  =D V (C(*.k, ( ) )  if k # I. 
( b )  * " v (C(~nk, a(i,~k, t, ~) ) )  =D v*(t) .  
The definition of t ru th  for wfs is then: a wf a of the form h = h is true (fora 

given interpretation) if and only if v*(h)  =D v*(h) ,  and a w f  a is valid (according 
to 5 ~) if and only if (~ is true "in all interpretations" (abbreviated i.a.i.). We write 

a ff and only ff a is a valid wf. 
t Before moving on to the completeness theorems for 5 ,  we need a few preliminarY 

definitions, two lemmas, and a proposition. 
(a) A simple term is a term of the form e(i, ~ )  or k~ or fk~[tl, . .  • , t~], where 

tl ,  " • , t~ are terms. 
(b) A totally simple term is a term of the form c(i,  ~,~) or kl or f k ' [h ,  " "  , t~]i 

where h ,  " "  , t. are totally simple terms. 
LEM~.A 1. I f  ti and t2 are totally simple terms and ~ h = t~ then h = B t~ . 
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PROOF. We give ~m it~duetive proof  w h e r e  c a s e s  (~) a~d (b)  b d o w  co~):~tit~u~e the 
primitive induct ion level. 

(a) h = ~' lc~ for  some  i. 

~t~ = t~ =~ v*(k~) = v  v*(t~) i.a.i. 

~ t2 = ~ /C i 

(b) 

~ t~ = ~ ~ 

(c) 

~ t t  = ~ ' 6 .  

tl = E  C(ink , ~ . )  for some n and/c .  

* ' v* (6 )  i .mi .  v (c(~.~, a ) )  =~ 

t l  ~ E ~2 . 

, h2, " ' "  , h~] for  s o m e  n ,  /6 and  t e r m s  t l l ,  h2, ' . .  , tl,~. 

* , n 
~) ( Jk  [ t l i ,  t12,  " ' "  , t l n ] )  = D  V*(~2) i.a.i. 

t~ = E f F [ t 2 1 ,  t~2 ,  . . .  , h ~ ]  

and v * ( h j )  =D v*(6j ) ,  j = 1, 2, . . .  , n i.a.i. 

But, tl and b2 are to ta l ly  s imple t e rms ,  t h e r e f o r e  tl~, h2, ..  • , t~ , , /~21,6z,  "- • , 6 ,  
are also to ta l ly  s imple t e rms .  Assume t h e  l e m m a  holds for  h~ and tht, h~ and  t2~, 
"" , h, and  t~,. T h e n  tn = E  h i ,  h2 = E  t22 , . - .  , h ,  = E  t~, • Thus ,  h = E  6 • This  
completes the induct ion and  the  prodf of t h e  l emma .  T h e  essential  po in t  here  is 
simply t ha t  two to ta l ly  s imple  t e r m s  c a n n o t  b e  equal  in all i n t e rp re t a t ions  mfless 
they are the  same te rm.  

L~MM~ 2. I f  N t l  = ~ , ~ t3  = t4 , ~ h  = t3 , then ~ t ~  = & where h , 6 , h , a n d  h 
are terms. 

PROOF. F r o m  the  g iven  in fo rmat ion  we h a v e  

v*(h )  = D v*(t2) i.a.i., 

v*(t3) = ,  v*(t4) i.a.i., 

v*(tl) =D v * ( h )  i.a.i. 

In any par t icular  in te rp re ta t ion ,  we h a v e  c e r t M n l y  the  th ree  equali t ies  above .  H e n c e  
v*(t2) =D v*(t4) in this in te rpre ta t ion .  S ince  a n y  in t e rp re t a t i on  gives this resul t ,  
we have v*(t2) = D v*(t4) i.a.i., t h a t  is ~ h  = t4 .  

PROPOSITION 1 (P1) .  ~t  = t where t i s  a n y  t e rm.  
PROOF. 

(1) c( i ,  a ( i ,  t, ~)) = t, A2 

(2) c(i ,  a ( i ,  t, ~)) = t, A2 

(3) t = t. R2  on (1 )  a n d  (2)  

THEOREM 1 ( T 1 ) .  ~-a ~ ~(~; that is, all  t h e o r e m s  of  3' are valid. 
PRooF. F i r s t  we show t h a t  the ax ioms a r e  v a l i d .  
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AI:  c(i, a, (j, t, ~)) = c(i, ~). 
v*(c(i, a(j ,  t, ~) ) ) =D V*(c(i, ~) ) i.a.i, f rom the defi~lition of v*. 

So, ~ c ( i ,  a( j ,  t, ~)) = c(i, ~). 

A2: c(i, a(i,  t, ~)) = t. 

v*(c(i, a(i,  t, ~) ) ) = D v*(t) i .ai .  f rom the definition of v*. 

So, ~ c ( i ,  a(i ,  t, ~)) = t. 

Next we show that  the rules of inference R1 and R2 preserve val idi ty .  Consider 
Rl ( t l  = t2, t~ = tl) and assume ~t l  = t2. Then,  by  the  definit ion of validity, 
v*(tl) =~  v*(t~) i.a.i, or alternatively we can write v*(b2) =D v*(tl) i.a.i., that is 
~ = tl • Thus, R1 is seen to preserve validity. 

Consider R 2 ( a ( t l ,  tl), tl = ~ ,  a( t~,  &)) and assume ~ ( ~ ( t l ,  t,) and ~ts = t~. 
The validity of a ( t s ,  tl) depends on the quantities in D into which v* maps the 
terms in a(t~,  t,). Clearly, if v*(ts) =D V*(&) i.a.i., then  subs t i tu t ion  of the term 
t2 for occurrences of the term tl in (~(t,, t~) to generate (~(t, ,  b2) will no t  affect this 
validity, so that  ~ a ( t s ,  t2) as well. 

Since the axioms are valid and the rules of inference preserve validi ty,  then all 
theorems of 3' are valid. 

THEOREM 2. COMPLETENESS OF 5' (T2) .  ~ a  ~ ~-(~; i.e., all valid wfs are theorems 
of a'. 

PROOF. We give a constructive proof so tha t  given any valid wf a ,  we show how 
to construct a proof of a .  

First, we define a total  function r* of one argument  which maps  te rms into other 
terms. 

(a) If tl is a simple term, then r*(tl) =E tl .  
(b) If t, =B c(i, a(j ,  t, ~)), then r*(tl) =E c(i, ~). 
(c) If tl =E c(i, a(i,  t, ~)), then r*(tl) =~  t. 

We now define two proof-generating procedures, each accept ing a single term as 
parameter. An ALaOL-like representation is used for clari ty and  brevi ty .  Boolean 
procedures simpleterm(t) and totaUysimpleterm(t) are assumed available, an as- 
sumption warranted by  the decidability of the set of all terms.  T h e  procedure 
proofstep(x, y) emits a proof step x with justification y. 

t e r m  p r o c e d u r e  reduce(t); v a l u e  t; t e r m  t; 

b e g i n  c o m m e n t  this  procedure  cons t ruc t s  a proof of  ~t = q where  q is a s imple  term. qis 
re turned as the value of the  procedure;  
t e r m  p, q; 
proofstep(t  = t, P1); 
q ~ -  t; 
w h i l e  --1 simpleterm(q) d o  

b e g i n  
~-- r*(q); 

proofstep(q = p, AI or  A2); 
proofstep(t  = p,  R2) ; 
q ~ p  

end ;  
reduce ~ q 

e n d  procedure reduce; 
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To verify t ha t  the  sequence  of proof s teps genera ted  bv  proeedure  r e d u c e ( t )  eon-  
',titutes a val id  proof, it  is on ly  necessary  to ob~ei•ve t h a (  ( t  - *~ " ' . . . .  
""  " ~ . . . .  F ' :  = '/' ~21) IOl" a H  B e r l l l s  
;r and that  the app l ica t ions  of 112 are eorreet. I n  the  next. p rocedure  a c e r t a i n  
bose~ess of no t a t i on  is i n t roduced ,  b u t  the  mean ing  should be app~trent.. 

t e r m  p r o c e d u r e  reducelolal ly( t )  i v a l u e  t; t e r n ,  t; 

beein comment  this procedure constructs a proof of ~L = t' wi~ere t' is a tot,,dly simple term• 
~' is returned as the wdue of the procedure; 
terrnt l :  

h~teger  j ,  n: 
~e 

i f  -n *imple lerm(l )  t h e n  t' ~-- reduce(l )  
e l s e  proofa tep( t  = l, P 1 ) ;  

i f - ~  lolall!mimpletem~ (l') t h e n  

et~nment t' = u f~'[ll , " • " , &] where at least one of the terms tt , .. • t,~ is not. to~dly 
simple; 

R*r j ~-- 1 s t e p  1 u n t i l  n d o  
begl n 

~ ' ~  f~=[h , ' . tj_t , rMueegotallq(t~),  l j+, ,  . . . .  1~1; 
proofstep(t  = t', R2) 

end;  
reducetolatly +- t' 

e ~ d  procedure reducetotally; 

Cor~sider now a n y  wf a where ~(,~. Suppose  a is of the  form h = t~ where  t, and  
t~: a ~  terms. Cons t ruc t  proofs of kt, q* and  kt,~ l,* = = ~ using procedures r e d u c e ( t )  
and  r e d u c e t o t a l l y ( t ~  where bo th  h* an d  t * • ~ are to ta l ly  simple terms• 

From T1 we then  have  t ha t  ~ t t  = tt* and  ~12 = t~*. But ,  we are g iven theft 
ruth = h ; from L e m m a  2 we then  ob t a in  ~ t t*  = h*. Since h* and  t~* are tot, Mty 
~hn'ple terms, we can  app ly  .Lemma 1 a n d  ob t a in  h* - , :  e • T h a t  is, h* and  ta* are l *  
~.he same term, ~ymbol  for symbol•  T h a t  be ing so, P I  gives kq* = re*. 

Sea, from the proof eonsgruet ions  we have  1-41 = h* ~md ~-tz = t~* a n d  we wri te  
bh ,~ t * = ,~ as ~m ins tance  of P1 .  U s i n g R 2 o n  I-h = h ' a n d  ]~h* = t~* gives }-h = 
¢~'. whieh on app ly ing  R1 gives ~-b2* = tt This  last  resul t  together  wi th  ( h  b* 
:rod !12 gives kt~ = h , w h i e h  on  app ly ing  R I  gives ~h = t~, i.e., keg, wh id t  
:ompletes the proof of comple teness  for a' .  

We ~ow have a theory  3' which is eornplete  attd so ean be used to deduce  all val id  
dz~temen,s about  {u{uality of terms.  However ,  in a potent ia l ly  more powerful  t heo ry  
~, ~ hmfld also, be able  to deduce  all  val id s t a t emen t s  abou t  equal i ty  of n.-states (i .e. ,  
~a~e vectors).  To  form a new theory  3 = ( F r n ,  A x ,  R I ,  112, 113, R4)  tha t  will 
@~w such dedueti ,  ms, we modi fy  3' in the  m a n n e r  ou t l ined  below. 

(1) a has the same  e o u n t a b l e  set  of symbols  as :5' with the addi t ion of the  predi-  
:ate symbol " = "  

!2) //';m = Fro '  U {x : x is an  expression of a of the form 0t ~ 0z where 0~ and  0= 
,re n-slates for any  n = 1, 2, - . . } .  T h e  expressions in F m  and  oaly  those are the  

(3)  A x  = A S  U l:c : x is a n  i n s t a n c e  of axiom schema A 3 ,  A 4 ,  or  A S I .  

A3 a ( i , t , a ( j , s , ( ) )  ~ a ( j , s , a ( i , t , ( ) ) .  

A 4  a(i ,  t, a ( i ,  s, ~)) --= a( i ,  t, ~). 

A 5  a(i ,  c(i ,  ~), ~) _= ~. 
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(4) The  rules of inference of 5 are R1 and R2 (ex tended  to all wfs of 3) together 

with 
R3 (01 -~ 02,02 -= 01) 

and 
R4 (0~(0~, 0~), 01 --= 02, 0~(01, 02)) 

where a C Fm and 0, arid 02 are n-states for any n = 1, 2, • • • . The  same comments 
offered earlier about R1 and R2 are relevant  here  regarding R3 and R4. We 
write }-a if and only if a is a wf and is derivable using A x  and R1, R2, R3, and R~L 

As before, a w f  a E Fm has meaning only when an in terpre ta t ion  is given to the 
symbols in a.  Art interpretat ion is defined exact ly  as before  with the addition that 
art assignment of the equali ty relation in the set of all families with index set I and 
terms chosen from D is made to the predicate symbol  " ~  ". Thus,  we write {x~} ~a~ 
{Yd w h e r e i C I a n d x ~ , y ~ D ,  i f a n d o n l y i f z ~ = D y ~ , i =  1, 2 , . . . .  

The  definitions of t ru th  and validity for wfs are ex tended  as follows: a w f  a of 
the form 0~ ~- 02, where 0, and 0~ are n-states is true ( fo r  a given interpretation) if 
and only if u*(OD ~D u*(O~), and a is valid (accord ing  to 3) if and only if a is 
true in all interpretations. From the 1-1 nature  of the  mappings  given by the inter- 
pretation for index letters and from the definition of u*, we obtain tha t  u*(01) ~D, 

!i! 
/)* " , ""  u*(02) if and only if v*(e(i,~k, 01)) = v  (e(*nk 02)) for  each k = 1, 2, • ;i.e,i 

0~ ~ 02 is true if and only if c(i~k, 0~) = e(i~k, 0:) is t rue  for each k = 1, 2, .. : ;  ..... 
Then, 0~ ~- 0~ is valid if arid only if c( i , k ,  01) = c ( i ~ ,  02) is valid for 
each lc = 1, 2, . . . .  As before, we write ~ a  if and on ly  if ~ is a valid wf. 

Before moving on to the completeness theorems for  3, we need a lemma, a proposi- 
tion, and a definition. 

LEMMA 3. I f  ~01 --= 02 , ~0 ,  ~ 0, ,  ~0 ,  =-- Oa , then ~0~ ~- O, where 0,, 02, 0~ 
and O, are n-states for any n = 1, 2 , . . . .  ) 

PROOF. From the given information, we have 

~ c ( i , ~ ,  0~) = c(i ,~,  02), k = 1, 2, . . .  , 

~c(in~,O~) = c(ink,O~), k = 1 , 2 ,  . . .  , 

= o ( i . , ,  o,) ,  = , ,  

By applying Lemma 2 to the above three s t a t emen t s  for  k = 1, 2, - . . ,  we obtain 

~ c ( i , ~ ,  th) = c(i ,~,  0,), k = 1, 2 , . . .  ; 

i e., ~0~ -= 04. 

PROoF.PROPOS~TmN 2 (P2) .  ~( ~ ~ where } is any n-state for  n = 1, 2, . . .  

(1) a(i,  c(i, }), }) ~ }, A5 

(2) a(i,  e(i, }), ~) ~ }, A5 

(3) ~ -~ }. R4 on (1) and (2)  

We define the canonical form for n-states to be 

a(i~k~, h ,  a(ink~, ~2 , a( .  . .a(i~kp, t~,  ~ ) .  . . ) ) )  
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where if p = 0 we have simply ~ ,  where kl < k2 • • • < k~ and where tl ,  t~, • -- , t~ 
are totally simple terms such ~hat r i s e  c(i~kj , ~,~) f o r j  = 1, 2, .. • , p. 

T~oREM 3 (T3) .  ~-(~ ~ ~ a;  that is, all theorems of 3 are valid. 
pitOOF. First  we show that  the new axioms given by A3, A4, and A5 are valid. 

A3: a(i,  t, a(j ,  s, ~)) .~ a( j ,  s, a(i, t, ~)). 
Consider the following deduction and the result obtained; m, i, and j are distinct. 

(1) c(m, a(i ,  t, a( j ,  s, ~))) = c(m, a(j ,  s, ~)), A1 

(2) c(m, a( j ,  s, ~) ) = c(m, ~), A1 

(3) c(m, a(i ,  t, a( j ,  s, ~)))  = c(m, ~), R2 on (1) and (2) 

(4) c(m, a( j ,  s, a(i ,  t, ~)))  = c(m,  a(i,  t, ~)), A1 

(5) c(m, a(i ,  t, ~)) = c(m, ~), A1 

(6) c(m, a( j ,  s, a(i ,  t, ~)))  = c(m, ~), R2 on (4) and (5) 

(7) c(m, ~) = c(m, a(j ,  s, a(i,  t, ~))) ,  R1 on (6) 

(8) c ( m , a ( i , t , a ( j , s , ~ ) ) )  = c ( m , a ( j , s , a ( i , t , ~ ) ) ) .  R2 on (3) and (7) 

Then T1 gives ~ c (  m, a( i, t, a(j ,  s, ~ ) ) ) = c( m, a(j ,  s, a( i, t, ~) ) ) for any m distinct 
from i and j. Consider now the following deduction and the result obtained; i and j 
are distinct and m = B i. 

(1) c(m, a(i ,  t, a( j ,  s, ~))) = t, A2 

(2) c(m, a( j ,  s, a(i ,  t, ~))) = c(m, a(i,  t, ~)), A1 

(3) c(m, a(i ,  t, ~)) = t, A2 

(4) c(m, a( j ,  s, a(i ,  t, ~))) = t, R2 on (2) and (3) 

(5) t = c(m, a( j ,  s, a(i,  t, ~))) ,  R1 on (4) 

(6) c(m, a(i ,  t, a(j ,  s, ~))) = c(m, a(j ,  s, a(i ,  t, ~))).  R2 on (1) and (5) 

Then T] gives ~ c ( m ,  a(i ,  t, a( j ,  s, ~)))  = c(m, a( j ,  s, a(i, t, ~))) for distinct i 
and j and m =E i. 

A proof similar to tha t  above gives the same result for distinct i a n d j  and m = ~ j .  
Thus, for all m we have ~ c ( m ,  a(i,  t, a(j ,  s, ~) ) ) = c(m, a(j ,  s, a(i, t, ~) ) ), and so 
by the definition of validity ~ a ( i ,  t, a(j ,  s, ~) ) = a(j ,  s, a(i,  t, ~)). Hence, the 
axioms given by A3 are all valid. 

Proofs structured like the one above can be given to show that  the axioms given 
by A4 and A5 are all valid. 

As well, straightforward arguments like those in T1 can be given to show that  
R2 extended to wfs of 5 and R3 and R4 lead from valid wfs to other vatid wfs. 

Thus, since the axioms of 5 are valid and since the rules of inference of 5 preserve 
validity, then all theorems of 5 are valid. 

TI~EOREM 4. COMPLETENESS OF ~ (T4). ~(~ ~ ]-(~, i.e., all valid wJ~ are theorems 
of~, 

PI~OOF. This theorem has already been proved (T2)  for wfs of the form tl = t2 
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where t, and & are terms. Thus, we consider here only wfs (~ of the form 0~ ~ 02. 

Once again a constructive proof is given. Several proof-constructing p r o c e d u r e s  are 
used in addition to r e d u c e ( t )  and r e d u c e t o t a l l y ( t )  defined above. For the description 
of the new procedures, an ALGOL-like representation is again used. 

The first three procedures are used to manipulate n-stt~es s and c o n s t r u c t  proofs 
of ~-s = s', where s' is the result of the manipulation. In  these p rocedu re s ,  the 
the argument s is of the form 

a ( j l  , 6 ,  a ( j ~  , t~ , a (  . . . a ( j  . . . .  t , ,  , a ( j , , , + l  , t i n + , ,  a (  . . . a ( j p  , tp  , ~,~)-- . ) ) )  - • -))) 

and 0m is used to represent 

a ( j , n  , t ,  , a ( j , n + l  , t,,,+~ , a ( .  . . a ( j v  , tp  , ~ ) .  . . ) ) ) .  

s t a t e  p r o c e d u r e  i n t e rchange( s ,  m);  
v a l u e  s, m; s t a t e  s; i n t e g e r  m; 
b e g i n  c o m m e n t  this  procedure  c o n s t r u c t s  a proof of ~s -~ s '  whe re  s '  is l ike  s, e x c e p t  that 

the  ru th  and (m + 1)-st  asmgnments  are  in te rchanged ,  s '  is  reBurned as t h e  v a l u e  of the 
procedure .  Wi th in  s, we have  j~ # E j,~-~ ; 
s t a t e  s';  
proofstep(Om ~ a(j,~+~ , t,,+~ , a( jm , t,, , 0re+z)), A3);  
s '  * -  a ( j l  , tl , a ( .  . - a( jm-1 , t ,~-1, a ( j~+l  , t,,~+l , a(j ,~ , t m  , 0m+2)))"" "));  
proo f s t ep ( s  ~ d ,  R4) ;  
in terchange  ~-- s t 

e n d  procedure in terchange;  

s t a t e  p r o c e d u r e  de le ledup l i ca te ( s ,  m)  ; 

v a l u e  s, m; s t a t e  s; i n t e g e r  m; 
b e g i n  c o m m e n t  th is  p rocedure  cons t ruc t s  a proof of ks -=- s '  where  s'  is t h e  s a m e  a s  s except 

t h a t  the  (m + 1)-sl a s s i g n m e n t  (a dupl ica te  one) is de le ted .  W i t h i n  s, we h a v e  j,~ = Ej,~+l; 
s t a t e  S'; 
p r o o f s t e p ( 0 ~  --= a ( j a  , t m ,  0.,+2), A4); 
s '  ~ - a ( j l  , 6 , a ( . . -  a(j ,~ , t,~ , Ore*2) '")) ;  
proo f s t ep ( s  --= s ' ,  R4);  
dele tedupl ica te  +- s ~ 

e n d  procedure de le tedupl ica le;  

s t a t e  p r o c e d u r e  de le tevaeuous(s ,  m); 
v a l u e  s, m; s t a t e  s; i n t e g e r  m; 
b e g i n  c o m m e n t  th i s  p rocedu re  cons~rucm a proof  of ~s ~ s '  whe re  s '  is t he  s a m e  a s  s except 

tha t  the  mth  a s s i g n m e n t  (a vacuous  one)  is de le ted ,  s '  is r e tu rned  as t h e  v a l u e  of the 
procedure .  Wi th in  s, we have  tm = E  c( jm , ~ )  and  j l ,  " '"  , jp all d i s t i n c t ;  
s t a t e  s; 
t e r m  t; 
t +- redueetotal ly(c( jm , 0re+l)); 
c o m m e n t  s ince t h e  j ~ , j , ~ _ , , - . . ,  3v are d i s t i nc t ,  t is now c ( j  . . . .  }~) a n d  a proof 

of ~c(j~,  a~+,) = c( jm,  ~ )  has  been c o n s t r u c t e d ;  
p r o o f s t e p ( a ( j m ,  C( jm,  0~-~), 0,~-,) ~ 0~-~1, A5); 
p r o o f s t e p ( a ( j ~  , c(j~ , ~ ) ,  8,~.~) ------ ~,,~_~ , R2);  
c o m m e n t  th i s  las t  s t e p  s t a t e s  t h a t  ~-~= -~ 8m+, ; 
s '  ~ a ( j l  , t~ , a ( .  . . a ( j m - 1 ,  tin--1 , 8m+-l) " " " )) ; 
proo f s t ep ( s  --= s ' ,  R4);  
deletevacuous ~ s '  

e n d  procedure  de le tevacuous;  

In the following procedure, the argument s is of the form 

a ( i ~  , t~ , a ( i n ~  2 , t~ , a ( ' .  . a ( i ~  , t v ,  } , , ) ' '  " ) ) ) .  
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s ta te  p r o c e d u r e  canonical@); v a l u e  s; s t a t e  s; 
beg in  c o m m e n t  th is  p rocedu re  cons~rucr, s a proof of ~-s ~ s' where  s' is the  canonical  form 

of s. s '  is r e tu rned  as t he  value  of t he  procedure ;  
s t a t e  st; 
i n t e g e r  j ,  m; 
proofstep(s = s, P2) ; 
8 ~ +-- s; 
c o m m e n t  first  wc do a s imple  sor t  on t h e  second subsc r ip t  of the  index l e t t e r s  in s and as 

ass ignments  are r ea r ranged ,  dup l i ca t e s  are deleted.  Proofs  of these manipula t ions  are 
con t r ac t ed ;  

for m +-~ 1 s t e p  l u n t i l  p - 1  d o  
for j e -  i s t e p  1 u n t i l  p - - m  d o  
i f  k/ = ki+~ t h e n  

b e g i n  
s' ~ deleteduplicate(s ' ,  j )  ; 
proofstep(s -= s ' ,  R4);  
p ~ - - - p -  1 

e n d  
else if  k1 > kj+~ t h e n  

b e g i n  
s' ~ inlerchange(s ' ,  j ) ;  
proefslep(s ------ s ' ,  R4) 

e n d ;  
c o m m e n t  second,  we c o n v e r t  all of t h e  ~erms t~, .-- , l~ into to ta l ly  s imple  t e rms  and 

cons t ruc t  proofs  of t h e  convers ions ;  
for  j ~ 1 s t e p  1 u n t i l  p d o  

begin 
s' ~-- a(i~kt , h , a ( . . .  a(ink~ , reducelotally (tj), a ( . . .  a ( i~p  , t~, ~ ) . . - ) ) . - . ) ) ;  
proofstep(s ~ s ' ,  R2) 

e n d ;  
c o m m e n t  th i rd ,  we de le te  all vacuous  a s s ignment s  which  reassign to a var iable  the  

q u a n t i t y  a l ready  t h e r e  and  c o n s t r u c t  proofs  of the  d d e t i o n s .  N o t e  t ha t  t he  i~kt , • •. , i,,kp 
are now d i s t i nc t ;  

for  j ~ 1 s t e p  1 u n t i l  p do  
i f  t/ = a c(inkj , ~n) t h e n  

begin 
s' ~ deletevacuous(s' ,  j ) ;  
proofstep(s  ~ s ' ,  R4) ;  
p , ~ - - p -  1 

e n d ;  
canonical +-- s t 

e n d  procedure canonical; 

C o n s i d e r  n o w  a n y  w f  a of  t h e  f o r m  0~ -= 02 w h e r e  ~ a a n d  0~ a n d  0~ a r e  n - s t a t e s  

for  s o m e  n = 1, 2, - • • . F i r s t  c o n s t r u c t  p r o o f s  of  0~ =-- 0 * * a n d  0~ ~ 02 u s i n g  p r o -  

c edu r e  c a n o n i c a l ( s )  s o  t h a t  b o t h  0~* a n d  0~* a r e  ir~ c a n o n i c a l  f o r m .  

F r o m  T 3  w e  t h e n  h a v e  t h a t  ~0~  ~ 0~* a n d  ~0~ ~ 02". B u t  w e  a r e  g i v e n  t h a t  

~ -= 0~,  f r o m  L e m m a  3 w e  t h e n  o b t a i n  ~ * *  ~- 0 * • 2 w h i c h  b y  d e f i n i t i o n  m e a n s  

t h a t  ~ c ( i , ~ ,  0~*) = C ( i n i ,  /92*) f o r j  = 1, 2, . . "  . 

S u p p o s e  t h a t  
/9~* = ~ a (  i ~ ,  , h ,  a (  . . . a (  i , ~  , tv , ~ )  . . . ) ) ,  

/9~* = ~  a ( i ~  , u ~ ,  a ( . . . a ( i ~ t ~  , u q ,  ~ ) . . . )  ), 

and let 
I~ = { i ~ ,  in~  , ' " ,  i ~ } ,  

I~  = { i ~ ,  , i ~  , " "  , i a ~ } .  
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For  any  specific i ~ 11, reducetotally( c( i, 01")) will const ruct  ~ proof  of 
~c(i ,  01") = c(i ,  }~). N o w  either  i E 12 or i ~ 12. Suppose for the  m o m e n t  that 
i E I3 and in fact  i =B i~4 for  some r, 1 < r _< q. T h e n  reducetotally( c (  i ,  8~*)) will 
construct  a proof of ~-c(i, 82*) = ur where ur ~E  c(i ,  }n) since 02" is in  canonical 

form. 
These  results and T1 give ~C(i ,  01") = c(i,  ~ )  and ~ c ( i ,  02") = ur  , a n d  since 

we have  shown above t h a t  ~ c ( i ~ j ,  01") = c ( Q i ,  0~*) f o r j  = 1, 2, • - • , t hen  cer- 
ta in ly  ~ c (  i, ~1") = c( i,  82*) where i =E  i~z,. Then L e m m a  2 gives ~ u ~  = c(i, }~). 
But ,  since 82* is in canonical form, u~ is a to ta l ly  simple t e r m  as is c(i ,  ~ ) .  S o  Lemma 
1 gives u~ =E c(i,  }~), a contradict ion.  

Thus ,  the  supposi t ion t h a t  i E / 2  leads to a contradict ion.  So if i ~ I~ t h e n  i ~ I2, 
or a l ternat ively ,  if i E I~ then i E / 1 .  An a rgumen t  symmet r i c  to t h e  o n e  above 
gives tha t  if i E 11 then  i E 12 so tha t  combined, these results  give I1 = I ~ .  Since 
01" and  02" are in canonical  form, bo th  I i  and I2 have  elements  ordered  o n  t h e  second 

subscript  letter.  Thus,  i~kj = s i~z i f o r j  = 1, 2, . • • , p.  
Now consider any  specific i E I1,  say i = E ink, where  1 _~ r < p. T h e n  reduce- 

totally( c( i, 01") ) will cons t ruc t  a proof  of ~-c( i, 01") = # and T1 gives ~ c (  i ,  0,*) = 
t~. Similarly,  we obtain  ~ c ( i ,  02") = u~. But  we know ~ c ( i ,  01") = c ( i ,  0~*) so thai 
L e m m a  2 gives ~ 4  = u~. Since 4 and Ur are to ta l ly  simple t e r m s ,  w e  have by 
L e m m a  1 t ha t  4 = E u~.  Since this is t rue for any i = E ink,,  then  t~ = E u~ for j = 

1 ,2 ,  . . - , p .  
An examinat ion of the  canonical representat ion of 01" and  02* r e v e a l s  that  the 

results obta ined in the preceding two paragraphs  for  the  index l e t t e r s  a n d  terms 
in 01" and 02" give 01" = ~ 0~*. T h a t  is, 01" and 0~* are the  s ame  n - s t a t e ,  s y m b o l  for 
symbol .  T h a t  being so, P2 gives ~-0~* ~ 03". B u t  the  proof  c o n s t r u c t i o n s  gave 
[-01 ~ 01" and ~-03 ~ 02*. Using R4 on ~-0i w. 01" and  [-81" ~ 0.2* g i v e s  ~8~ -= 02* 
which on applying R3 gives t-02" ~- 0~. This  last  result  toge ther  w i t h  [-03 =- ~* 
and R 4  gives ~03 -= 01 which on applying R3 gives ~0~ --= 83, t h a t  is, b(~. 

So we see t h a t  the  fo rmal  theory  5 is bo th  complete  and  consis tent ;  i n  a d d i t i o n  the 
const ruct ive  proofs of completeness  (in T2  and T 4 )  mean  tha t  5 i s  a decidable 
theory.  These  facts  can  now be utilized whenever  s ta te  vectors ,  t h e  funct ions  a 
and  c, and  the  axioms of 5 are incorporated into o ther  formalisms.  
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