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wstracr.  This paper describes a mathematical model for the study of contour-line data.
Formal definitions are given for the various classes of contour lines found on a contour map.
The concept of cliff lines is introduced and the properties of both contour lines and cliff lines
are investigated. The objective of the paper is to lay a foundation for the development of
algorithms that will facilitate the digital computer solution of problems involving contour-line
data.
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Iniroduction. Data that can be displayed by a contour map is found in many
engineering applications. Any piecewise-continuous, single-valued function of two
econtinuous independent variables can be represented in the form of a contour map.
The most common example is a contour map representing elevation as a function of
position in & two-dimensional geographic region. Other geographic-position-de-
pendent variables that are commonly represented in the form of contour maps are
tfemperature (isotherms) and pressure (isobars). However, the use of contour maps
need not be restricted to dependent variables relating to geographic position, An
example of a contour map used for a more general dependent variable is a plot of
equal-loudness curves drawn as a function of the intensity and frequency of an
audible tone.

In most of the applications of contour maps, the relationship between the de-
pendent, variable and the independent variables cannot be conveniently expressed
by an equation. However, there are some applications in which contour maps are
used even though an equation is readily at hand because the contour maps facilitate
visualization of the data. An example of the latter is a plot of the equipotential lines
around an electrie dipole.

A forma) method for analyzing contour maps through the use of a mathematical
model is discussed in this paper. Various terms are defined to facilitate the discus-
sion of contour maps. The objective of the paper is to lay a foundation for the
development of algorithms that will facilitate the digital computer solution of prob-
lems involving contour-line data.
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The Contowr-Line Model. The model deseribed here can be used to represent cer-
tain piecewise-continuous, single-valued functions of two continuous independent
variables. It is convenient to regard the independent variables as the position
coordinates of points p on a (two-dimensional) surface and the dependent variable
as an elevation function, E. The quantity E (p) is called the elevation of p.

1. Definition of Model

A semismooth domain is a two-dimensional domain of points over which the elevation
function is continuous and single-valued and the domain cannot be enlarged and
still retain this property. A semismooth subdomain is a domain contained within a
semismooth domain. A boundary function of a semismooth domain is defined for
each boundary point of the semismooth domain to be the limiting value of the eleva-
tion function as the boundary point is approached providing such a limit exists. If,
for arbitrarily small values of ¢, every e-neighborhood of a boundary point of &
semismooth domain is divided by boundary lines into two or more semismooth
subdomaing of the same semismooth domain, the boundary function of the semi-
smooth domain is defined with respect to each semismooth subdomain separately as
the limiting value of the elevation function in that semismooth subdomain, provid-
ing such a limit exists. A smoath domain is a semismooth domain whose boundary
function is defined (with respect to smooth subdomains if necessary) and con-
tinuous. A smooth subdomain is a domain contained within a smooth domain. The
{maximum, minimum} boundary function of a smooth domain is defined for each
boundary point of the smooth domain to be the value of the boundary function
with respect to that smooth subdomain which {maximizes, minimizes} the value.'

A cliff line is a directed line® or line segment on which the elevation function at
each point of the ¢liff line is multivalued and takes on all values between and in-
cluding two bounds. The bounds form two single-valued functions of position along
the cliff line. The function for the upper bound is called the left limat function, L,
and the function for the lower bound is called the right limit function, R, of the cliff
line. A cliff point is a cliff line that has degenerated into a point; such singular points
are not considered in this model.

A map is a two-dimensional domain of points composed entirely of smooth do-
mains and cliff lines such that the following conditions are satisfied:

1. Every boundary point of a smooth domain is on a cliff line or is a boundary
point of the map.

2. For each point p; on a cliff line, { L (p:), R (p:)} equals the value of the {maxi-
mum, minimum} boundary function of the smooth domain (s) on the {left,
right} of the cliff line at p, .}

An example of an elevation function and its corresponding map is shown in Figure 1.

To eliminate certain pathological cases, the following restriction is included in the
definition of a map:

Restriction. It is assumed that for every point p on the map, any finite-siz
neighborhood of p can be divided into a finite number of connected sets such that the
' A statement of the form: ... {ay, a2, ..., @}, .. {by, ba, ..., bub.n. ... (Mg, Moy ooy Ml
1s & shorthand notation indieating a set of n parallel statements. For example, the statement
“12,8} -+ {3, 7} = {5, 12} represents the statements 2 4 3 = 5 and “5 4+ 7 = 12.”

* The word “line” when used in this paper does not necessarily imply a straight line.
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Fre. 1. (a) Example of an evaluation function; (b) its corresponding map

TABLE I. CrLasSIFICATION OF NEIGHBORHOODS
CeNTERED AT POINT P

Neighborhood contains only poinis (other than p)

Neighborhood or of each of the indicated elevations
elevation type
<E(p) =E(p) >E(p)

I X

1T X

III X
3% X X

A X X
VI X X
VII X X X

elevations of points in each set are in one of the following categories:

1. All elevations less than ¥ (p).

2. All elevations equal to E (p).

3. All elevations greater than K (p).
Also each connected set of points of elevation equal to £ (p) can be decomposed into
4 finite number of open connected sets and a finite number of lines.

2. Elevation Types

Contour lines will be defined by examining E (p) for points p in the neighborhood of
& given point on a map. This approach requires introduction of the concepts of
neighborhood types and elevation types.

Select a point p on a given map. If p lies on a cliff line, E(p) can be an:” number
that satisfies the relation R(p) < E(p) < L(p). Consider a neighborhood of p
With a radius of 6. The points in this neighborhood could have elevations greater
than, equal to, or less than E (p). A table can be constructed in which a neighborhood
f?fpe is assigned to every conceivable combination of these elevations, as shown in
Table 1. Not all the neighborhood types are possible as will be seen below. The
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Fra. 2. Examples of elevation types and subcritical neighborhoods. The region has an eleva-
tion function that varies with radial distance as shown in (a). The elevation type and critical
radius of selected points in the region are given in (b).

neighborhood type is a function of § and p and is written as T (p, 8). If pisona
cliff line, the neighborhood type is also a function of the value of E (p) chosen. There
exists a maximum value, & , such that for all § < & the neighborhood type is not a
function of 8. That neighborhood type is called the elevation type of p, written Tx(p),
and 8 is called the critical radius of p. Any neighborhood of p whose radius is less
than 8 is called a suberitical neighborhood of p.

The neighborhood type of p with respect to line I;, designated as Ty (p):, is
defined as the neighborhood type obtained by considering only those points that
are not on the line. The subscript ¢ can be removed from Ty (p); if there is no am-
biguity as to which line is involved. The elevation type with respect to a line, Te(p)s,
the critical radius with respect to a line, and a subcritical neighborhood with respect to
a line are similarly defined. Examples of elevation types and suberitical neighbor-
hoods are shown in Figure 2.

ProrERTY 1. Netghborhood type VI is impossible.

Proor. Let py be a point such that Ty(pe, 8) = VI. A line ! can be drawn that
lies entirely in the §-neighborhood and connects a point whose elevation is less than
E(po) to a point whose elevation is greater than E (py) and does not pass through
Do . As a consequence of the continuity of the elevation function in a smooth domain
and the “bridging” ® by cliff lines of the elevation function in adjacent smooth
domains, [ must pass through at least one point p, such that E (p1) = E(po). Thus
Tw(py, 8) = VIL

Note that neighborhood type VI with respect to a line is possible.
Some simple consequences that follow from the definition of elevation type LI are
the following:
L If Ts(po) = II and p, is a point in a subcritical neighborhood of po, then
E(po) = E(p).
2. No point on a cliff line can have elevation type II. It appears as though
points on cliff lines cannot have elevation type I or III. This is not true a3
is shown in Figure 3.

% The bridging is a consequence of the fact that the elevation function at each point of the cliff

line is multivalued and takes on all values between and including the values of the two limit
functions.
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Fic. 3. Example of a point on a cliff line with elevation type 1. Point p is on a cliff line. The
left limit function at p is 1 and the right limit function at p is —2. For an assumed elevation
of 1, Tg (p) = L

PropERTY 2. Starting at a point po for which Tw(pe) = {ILIV,V.VII,VII},
a line segment can always be drawn such that for each point p; on the line, E (p,) =
Elpe) and Te(ps) = (ILIV,V IV or VII, Vor VII}.

Proor. Only the last of the five parts of this property are proved. The other
four proofs are similar. Let po be a point such that Tz (pe) = VIL Let N be a sub-
eritical neighborhood of p, . Lines can always be drawn through N that isolate those
points of elevation greater than E (p,) from those points of elevation less than or
equal to F (pe). These lines are composed entirely of points whose elevations are
equal to E (po). Every point on these lines has elevation type V or VII. Point po
lies on one of these lines. That line satisfies the requirements of this property.

Cororrary 2.1. A line segment can always be drawn through a point po for which

Te(po) = {II,VII,VII} such that for each point p; on the line, E (p;) = E (po)

and Tg(ps) = {ILIV or VILV or VII}.

CoroLLARY 2.2. Starting at a point po for which Tx(po) = {IV,V.VILVII}, a

line segment can always be drawn such that for each point p; on the line and p: ¥ po ,

E(p;) = E(po) and T 5 (p;) isconstant and is equal to{ I III,IV.V} or{IV,V,VI,VI}.

CoroLLARY 2.3. A line segment can always be drawn through a point po for which

Te(p) = VII such that for each point p; on the line and p; # po, £ (p:) =

Epe) and T g (p;) = {IV or VI,V or VI}.

ProrerrY 3. If, for some point p, Te(p) = {LILIILIV,V,VL,VII}, then
Telp) = {Tor IVILIIT or VIV,V VILVII}.

Proor. Let N be a subcritical neighborhood of p. If a line [ through p contains
any points in N of elevations {greater, less} than E (p), there must be other points
in N but not on { of elevations {greater, less} than E (p). Thus any difference between
tlevation type and elevation type with respect to a line must be due to the considera-
tion of points of elevation equal to E (p).

CoroLLARY 3.1. If p Ues on a line and T(p) = {LILIILIV,V,VII}, then
Te(p) = SIITIILT or IV, III or V,VI or VII}.

PropERTY 4. If, for some point p, Te(p) = {I,III} and every point on the line
has the same elevation,* then Tx(p) = {IV,V}.

‘Ifpis a point on the cliff line, then the requirement is that every point on the line have
the same elevation as that elevation used for p in determining T'g(p) and T (p).
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Fie. 4. Example of contour lines: (a) variation of elevation with radial distance;
(b) some contour lines of the region

Proor. The subcritical neighborhood and suberitical neighborhood with respect
to a line differ by the inclusion of a set of points whose elevations equal E (p). The
property now follows directly from the definitions of elevation types as given in
Table I.

3. Contour Lines

Contour lines are used as a graphical device for displaying the elevations of different
points on a map [5]. There are a number of different classes of contour lines that can
be drawn on a map. A line is a {positive, negative, mazimum, minimum} contour line
of value e if for all points p, on the line, E (p;) = eand Tx(p;) = {Vor VI or VIL, IV
or VI or VILLIIT}. Note that if Tz (p:) = VI or VII for a segment of the line, that
segment is part of both a positive contour line and a negative contour line. Such a
segment is called an ¢sorithm. If E(po) = e and Tx(po) = {I,II1} for some point
Po, then py is said to be a {mazimum, minimum} contour point of value e. Maximum
and minimum contour points are considered special cases of maximum and minimum
contour lines.

Positive and negative contour lines are called normal contour lines. Maximum
and minimum contour lines are called degenerate contour lines.” Examples of contour
lines are shown in Figure 4.

In the preceding discussion contour lines are defined in terms of points on the
lines. The following two properties establish the criteria for determining whether a
point lies on a contour line.

PrOPERTY 5. A point p lies on an isorithm of value E (po) if Tx(po) = VII.

Proor. Corollaries 2.3 and 3.1 state that a line segment can be drawn through
posuch that for all points p, on the line, E (p;) = E (po) and Tx(p:) = V,VI, or VIL
This line satisfies the definition of a positive contour line of value E (ps). The exist-
ence of a negative contour line passing through p, can be similarly demonstrated.

Properry 6. If Tg(pe) = {IV, V}, then py lies on a {maximum, minimum} con-
tour line of value E (po). If no such line exists, pq 1s either the endpoint of a {maximum,
minimum} contour line or po lies on a {negative, positive} contour line of value E (po)-

Proor. Only the last of the two parts of this property are proved. The other

* A method of “normal-izing” degenerate contour lines is presented in the Appendix.
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proof is similar. Let Tx(po) = V. If there exists a line 4 through pe such
that Te(po)1 = 11, i must consist entirely of points whose elevations are B (o).
(These are the very points that require that 7’5 (py) = V rather than III.) This line,
consisting of points p; with E (p;) = E (py) and T 5 (p,), = III, satisfies the definition
of a minimum contour line. If no such line exists, there may be a line ; starting at
po for which Te(ps)s = III for all points p; on &, other than po . This line is a mini-
mum contour line ending at po . If neither of these lines exist, Corollary 2.2 assures
the existence of a line /3 containing pe that consists entively of points p; such that
E(ps) = E(po) and Te(p:)s = V. The line I; satisfies the definition of a positive
contour line.

PropERTY 7. If p lies on a {positive, negative, maximum, minimum} contour line,
Telp) = VIV, LIII} or {VII,VII,IV V].

Proor. This property follows direcily from Property 3 and the definitions of
the different classes of contour lines.

PrROPERTY 8. Let po be a point through which passes one and only one® {positive,
negative} contour line of value e and through which passes no {minimum, moximum)
contour line of value e. Every subcritical neighborhood of po can be reduced to a smaller
neighborhood that vs diwided by the contour line into two open sets of points—one con-
sisting entirely of points whose elevations are {greater than, less than} ¢ and the other
conlaining mo points of elevation {greater than, less than} e. These sets are called the
{hi-set, lo-set} of po and the {lo-set, hi-set} of po , respectively.

Proor. Let py be a point through which passes only one positive contour line of
value e. Draw a subcritical neighborhood N around py . In this neighborhood there
must be at least one point p; such that K (p;) > e. Let N; be the open set of points
lying in N and on the same side of the contour line as p; . Let N» be the open set
of points lying in N but on the other side of the contour line. Assume there is at
least one point in N; that has an elevation of e, and that N cannot be reduced to
remove all such points. Then lines can be drawn through N; that isolate those points
whose elevations are greater than e from those points whose clevations are not
greater than e. These lines are positive or minimum contour lines of value ¢, and at
least one of these lines, other than the given contour line, passes through po . There-
fore py is on & minimum contour line or is on more than one positive contour line of
value e, and this is a contradiction. Thus there are no points of elevation e in Ny.
Also, there are no points of elevation less than ¢ in Ny because that would require
at least one point of elevation e in Ny . Thus the elevation of every point in Ny is
greater than e. If N, contains a point whose elevation is greater than e, every point
in N; would have an elevation greater than e. The elevation type of p, with respect
to the contour line would be III, but this contradicts the definition of a positive
tontour line, Thus every point in N, has an elevation less than or equal toe. A similar
proof holds for negative contour lines.

If all points on a segment of a normal contour line have their hi-sets on the same
side of the contour line, that segment is assigned a positive direction such that all
hisets are on the left as the segment is traversed in its positive direction. The set of
all points satisfving the definition of a normal contour line of value e can be de-

*This statement implicitly prohibits the possibility of the same normal contour line passing
through po more than once.
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composed into a finite number of such directed line segments. These segments are
defined to lie on the same contour line only if their positive directions are consistent,
The positive direction of @ normal contour line is the positive direction of its segments,
Degenerate contour lines are undirected line segments.

Property 9. Let p be a point on a normal contour line. Let S be any circle about p
that does not intersect with the boundary of the domain of the map. If there is a point on
the contour line that is outside S and in the {positive, negative} direction along the con-
tour line from p, then there is a point on the contour line that is outside S and in the
{negative, posiitve} direction along the contour line from p.

Proor. Let p be a point on a positive contour line of value e and let S be a circle
about p. Draw lines through S that separate those points of elevation greater than
e from those points of elevation less than or equal to e. Each of these lines are seg-
ments of positive contour lines of value e and every segment of a positive contour
line of value ¢ inside S 1s included in this collection of lines. Kach line is either a
closed curve inside S or intersects S twice. Thus if a positive contour line comes into
S, it will go out of S. A similar proof is valid for negative contour lines.

Cororrary 9.1.  Narmal contour lines cannot start or end at any point that wsnot o
boundary point of the map.

CoroLLarY 9.2.  Normal contowr lines that do not intersect any boundaries of the
map are closed curves.

CororrarY 9.3. There are as many {positive, negative} contour line segments of o
given value entering a potnt as there are {positive, negative] contour line segments of
that value leaving the poind.

Cororrary 9.4. Between any two positive contour line segments of the same value
{entering, leaving} a point there 1s a positive contour line segment of that value {leaving,
entering) the point. This is also true for negative contour lines.

A point that has more than one {positive, negative} contour line segment of a
given value entering it is called a saddle. At points for which more than one segment
of a normal contour line of a given value enters the point, there is an ambiguity as
to which segment leaving the point is the continuation of which segment entering
the point. The following rule resolves this ambiguity.

Rule 1. Tach {positive, negative} contour line segment of value ¢ leaving a point
is considered as the continuation of the first { positive, negative} contour line segment
of value ¢ in the {counterclockwise, clockwise} direction entering the point.

4.  Properties of Cliff Lines

Ambiguities may result unless some rules are established for the termination of cliff
lines. Such rules can be formulated based on the behavior of the limit functions.
The symbol L(p™*) is used to represent lim, _,L (p1), where py is another point on
the cliff line and in the positive direction from p. Similar definitions apply to L @ h
R(p*), and R(p™).

Prorerty 10. Let p be any point on a cliff line that is not an endpoint of the cliff
line. Then

L(p) 2 max(Lp™), L)), R@p) < minRET), RE)).
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Proor. The limiting value of the elevatlon function at p* must be a limiting
value of the elevation function at p because p™ is in every neighborhood of p. Thus
the Value of the boundary function in the smooth domain on the left side of the cliff
fine at p” must be less than or equal to the maximum value of the boundary func-
tions in the smooth domains on the left side of the cliff line at p. Thus L(p™) < L (p).
Similarly L(p7) < L(p), R(®") > R(p),and R(p™) > R(p).

CoroLrary 10.1 If p ds the {initial, terminal} point of a cliff line, L (p) > {L(p™),

Lp ) and R(p) < {R(p"), R(p7)}.

ProrERTY 11, Let p be a point such that there is al least one cliff line segment
entering p and at least one cliff line segment leaving p. Let C be the line formed by these
two segments. If {L, R} s discontinuous at p, then there vs another cliff line segment
thal contains p and les on the {left, right} side of C.

Proor. Assume there is no cliff line segment that contains p and lies to the left
of €. Then there is only one smooth domain to the left of ¢ at p. A discontinuity in
the left limit function of €' at p must be accompanied by a discontinuity in the
boundary function of the smooth domain on the left of the cliff line at p. But the
boundary function of the smooth domain is continuous. This is a contradiction and
hence the assumption is false.

CoroLrary 11.1.  The {left, right} limit function is continuous at all points of a

cliff line that are not also on some other cliff line.

PropERTY 12.  Let p be a point that lies on one or more cliff lines. Let Cy, Cy, .. .,
(o1 be the cliff line segments entering or leaving p such that Cipy is the next cliff line
segment after C; in the counterclockwise direction around p. Let &; | ¢, and 4; be defined
us follows:

[ = L if C;enters p, ¢ = R ¢ = L, C_J— afCientersp,

' R if C; leaves p; AL i = R T4 i C;leaves p;
and all subscripts are taken modulo n. Let L (p); and R (p), represent the limit functions
Jor eliff line C; at point p. Then

Comp(@H1 )iy = fi’(pni)i, 1=20,1,...,n — L

An example of this property is illustrated in Figure 5.

Proor.  Consider a neighborhood of p that is small enough so as not to contain
any segments of cliff lines that do not pass through p and not to contain any other
points that lie on more than one cliff line. The neighborhood is divided into sectors
by all the cliff lines that pass through p. Let S, be the sector bound by C'; and Ciyy

C -

! Tiar — KA

c C,i“(p );n' Q‘(p ,);
2

R(p‘)I = R (p")o

g R(p™, =L (p™)
LipTiy =L (ph),
¢ C, Lte ) =R (p7),

3

Fra, 5. Illustration of the relation between the limit functions of
intersecting cliff lines
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Fra. 6. Example of an ambiguity in selecting cliff lines: (a) surface representing
elevation function; (b) three choices for cliff lines—choice (ii) is the correct choice.

Note that the interior of each sector is a smooth subdomain. Therefore, the limiting
value of the boundary function of S; along C; as p is approached is equal to the
limiting value of the boundary function along C;,, as p is approached. But a limit
function is equal to the boundary function on the corresponding side of the cliff line.
Assume C; and Cyyy are both directed away from p. Then R(p*)iy = L.
Generalizing this equation for other combination of directions for C; and C',y yields
the equation stated in the property.

Rule2. If at any point p on a cliff line either L (p™) < R(p™), or L @) <R@Y,
or L(p™) = R(p*),or L(p”) = R(p"), then the cliff line is to be interpreted as two
cliff lines with p being an endpoint of both.

Rule 3. If p is a point on a cliff line and more than one of the cliff line segments
entering p do not have L(p™) = R(p~) or more than one of the cliff line segments
leaving p do not have L (p™) equal to R (p*), then p is considered an endpoint of all
cliff lines containing p. This rule is illustrated in Figure 6.

Prorerty 13, Let C be a cliff line that cannot be subdivided into two or more cliff
lines by Rule 2. If the left or right limil function of C 1s discontinuous at a point p, then
p s an endpoint of all cliff lines contatning p.

Proor.  Tet €y be the portion of (' entering p and C, be the portion of (' leaving
p- By hypothesis L(p™); = R(p™);and L(p ")y = R (p*)s . If L is discontinuous at
pthen L(p~)1 5 L(p*)s. Then by Property 11 there exists a cliff line C; on the left
of € such that p is contained on (5. Assume (5 is directed toward p and assume
there is no other cliff line on the left of €' that contains p. Then by Property 12,
L(p™)s = Lp™)sand R(p™)s = L(p")y . Therefore L(p™)s = R(p”)s . Thus there
are two cliff line segments directed toward p for which L(p) # E(p). But Rule 2
states that in such cases p is considered as an endpoint of all cliff lines containing p.
If there is imore than one cliff line that contains p and is on the left of C, an extension
of this argument shows that for at least one of these cliff lines I, (p) # Rp).

Cororranry 13.1.  The left and right limit functions of a cliff line are continuous
along the cliff line.

5. Contowr Lines in Cliff Lines

A complete understanding of contour lines requires a knowledge of the behavior of
contour lines at a cliff line. The following study of this behavior yields the result that
the contour lines merging to form a cliff line do not cross each other.
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PropERTY 14, Let p be a potnt on a cliff line C'. Point p must also lie on the follow-
ng contous {ines:

1. Positive and negative contour lines of value e for all e such that R(p) < e <

L(p);

2. Negative or maximum contour line of value L (p),;

3. Positive or minimum contour line of value K (p).
oint p may also lze on the following contour lines:

4. Positive contour line of value L (p);

5. Negative contour line of value R (p).
oinl p may not lie on any other contour line.
PROOF.
1. For any arbitrarily small neighborhood around p there must be a point in the
ighborhood and on the left side of €' whose elevation is greater than ¢ and a point
the neighborhood and on the right side of (' whose elevation is less than e. If
(p) is taken as ¢, then T'x(p) = VIL Therefore p lies on a positive and negative
ntour line of value e as a result of Property 5.
2. For any arbitrarily small neighborhood around p there must be a point on
e right side of C' whose elevation is less than L(p). If E(p) is taken as L(p),
en Te(p) = I, IV or VIL If Tx(p) = I, then p is a maximum contour point.
Te(p) = IV, then p lies on a maximum or negative contour line as a result of
operty 6. If Tx(p) = VII, then p lies on a negative contour line as a result of
operty 5.
3. Proved in like manner as 2.
L. In any arbitrarily small neighborhood around p there may be a point in the
ghborhood and on the left side of ' whose elevation is greater than L(p). In
scase if I (p) is taken as L (p), then Tx(p) = VII. Therefore p lies on a positive
ttour line as a result of Property 5.
i Proved in like manner as 4.
“0int p cannot lie on any contour line of value e for e > L(p) ore < R(p) be-
se such an e would not be one of the possible elevations of p. Obviously p cannot
on any degenerate contour lines of value ¢ for R(p) < ¢ < L(p). The only
wining contour lines for p to lie on are a maximum contour line of value R (p)
| a minimum contour line of value L (p). If E (p) is taken as L (p), then Tx(p) =
V, or VII. Therefore, p cannot lie on a minimum contour line of value L (p)

1 result of Property 7. Similarly, p cannot lie on a maximum contour line of
le R(p).

‘hus the contour lines mentioned in Property 14 must meet and travel along the
line, When a contour line travels along a cliff line, there must be a point on the
line at which the contour line joins the cliff line and another point at which the
tour line separates from the cliff line. The contour line is said to “enter” and
ve” the cliff line at these two points respectively.

ROPERTY 15. When a normal contour line travels along a cliff line, the positive
stion of the contour line ¥s the same as the positive direction of the cliff line.

ROOF. The cliff line has the higher elevation on its left side. But so does a
nal contour line. Thus, the positive direction of a cliff line and the normal
our lines that are traveling along it must be the same.

lthough a degenerate contour line is an undirected line, it is found convenient
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to define a positive direction to that portion of a degenerate contour line that
travels along a cliff line. To be consistent with normal contour lines, the posifie
direction of that portion of a degenerate contour line that travels along a cliff line
is defined to be the same as the positive direction of the cliff line. Using this defin}.
tion, the word “normal” is not needed in Property 15.

ProrERTY 16.

1. If there is a segment of a cliffl line for which L 1s monotonically {increasing,
decreasing) and Luin < € < Lz, then a positive and negative contour line of value
¢ {entered, left} the cliff line segment from the left.

2. If there is a segment of a cliff line for which R <s monolonically {increasing,
decreasing) and Ruin < € < Bunaz, then a posttive and negative contour line of value ¢
{left, entered} the cliff line segment from the right.

3. If there is a segment of a cliff line for which L is monotonically {increasing,
decreasing} and Luq: = e, then a negative or mazimum contour line of value e {entered,
lefty the cliff line segment from the left.

4. If there is a segment of a cliff line for which R is monotonically {increasing,
decreasing} and Ruin = e, then a positive or minimum contour line of value e {left,
entered) the cliff line segment from the right.

5. If there is a segment of a cliff line for which {R, L} = e for all points on the
segment, then a {negative, positive} contour line of value e may have entered or left the
cliff line segment from the {right, left}.

Proor. Only the first half of the first part of this property will be proved here.
The rest of the property is proved in a similar manner. At the beginning of the cliff
line segment, there is a point p; such that L(p;) < e. There are no contour lines of
value e traveling in the cliff line at p; as a result of Property 14. At some point p:
along the cliff line segment, R (p,) < ¢ < L(pz). Thus a positive and negative con-
tour line of values e is traveling with the cliff line at p: as a consequence of Property
14. Therefore a positive and negative contour line have either entered or left the
segment somewhere before p, . Since the contour lines travel in the same direction
as the cliff line (Property 15), the contour lines must have entered the segment.
Since the left limit function is related to conditions on the left of the cliff line, the
contour lines whose existence was predicted by examining the left limit function
must have entered the cliff line from the left.

Notice that Property 16 provides the basis for a graphical method of determining
where contour lines enter and leave cliff lines. The method was discussed in [5]
and is illustrated in Figure 7.

PropPERTY 17.

1. Al contour lines that enter and leave a cliff line from the {left, right} leave on o
last-in-first-out basis.

2. All contour lines that enter a cliff line from the {left, right} and leave towards the
{right, left} do so on a first-in-first-out basis.

3. Each contour line that enters and leaves a cliff line from the {left, right} must
either enter and leave before, or enter and leave after, any contour line that entered from
the {right, left} can leave towards the {left, right}.

7 Int {5] properties of contour lines are developed from an intuitive point of view. Contour lines

are defined from the physieal concept of level surfaces rather than the mathematical concep!
of elevation type.
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POSITIVE AND NEGATIVE
POSITIVE AND NEGATIVE CONTOUR LINES OF VALUE
POSITIVE AND NEGATIVE CONTOUR LINES OF VALUE &g ENTER FROM LEFT
CONTOUR LINES OF VALUE e. LEAVE TOWARD LEFT
e ENTER FROM LEFT &

NEGATIVE CONTOUR POSITIVE CONTOUR \/
LINE OF VALUE g LINE OF VALUE ¢ ggg%&g :I%%SN(EJ(;AJA{EE
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e
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CONTOUR LINE OF VALUE
¢, ENVERS AND LEAVES
AT SAME POINT ON RIGHT

Fie. 7. Determining where contour lines enter and leave cliff line

4. Each contour line that enters and leaves a cliff line from the {left, right} must
aither enter and leave before, or enter and leave after, any contour line that leaves to-
wards the {right, left} can enter from the {left, right}.

5. If one contour line enters a cliff line from the left and leaves towards the right and
another contour line enters the cliff line from the right and leaves towards the left, one
contour line must both enter and leave before the other contour line can enter.

Proor. The proofs of these statements consist of simple arguments based on
Property 16. For brevity, only the first half of the first statement is proved here.
Let e; and e, be the values of two normal contour lines , and I, and let ¢; < e.
If the two contour lines are to enter from the left, then L must be less than ¢; at
segments of the cliff line preceding the first point of entry. Contour line ; will have
entered when L becomes greater than ¢; and I, will have entered when I becomes
greater than e, . Hence }; will enter before I, . Similarly, I, will leave before [; .
Hence the contour lines leave on a last-in-first-out basis.

CoroLLarY 17.1. Contour lines do not cross each other when traveling along a
ciff line.

6. Intersections of Contour Lines

Contour lines can never cross each other but under certain conditions they may
intersect. This is proved in what follows.

PropERTY 18. Two positive or two negative contour lines of the same value cannot
€rogs.

Proor. Thisis a consequence of Corollary 9.4 and Rule 1.

ProPERTY 19. A positive and a negative contour line of the same value cannot
tross,
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Proor. Tet [ be a positive contour line of value ¢ passing through p. Let I
be the segment of | preceding p and J be the segment of ¢ following p. Assume a
negative contour line segment & of value ¢ intersecls with the right side of [ at .
Further assume that 5 is directed toward p. Let N be an arbitrarily small neighbor.
hood of p. There are points of elevation less than e in & and {o the right of both |
and Iy . Thus there is a negalive contour line segment I directed away from p and
to the right of both [ and &, (¢, may be superitnposed on £ if so it is considered ag
being an infinitesimal distance to the right of I.) By Rule 1, {; is the continuation
of I; . Hence the positive contour line 4f; and the negutive contour line Ll do not
Cross,

Next assume a negative contour line segment s intersects with the left side of
{ at p. Further assume that l; 1s directed toward p. By a similar argument there ig 3
positive contour line segment l; directed toward p and to the left of bolth { and i
But, by Rule 1, s is the continuation of s and not i1 . This contradicts the hypothesis;
thus this situation is inpossible.

Notice that when a positive and negative contour line join to form an isorithm,
although they are superimposed, the positive contour line should be considered as
being an infinitesimal distance to the left of the negative contour line.

Prorerry 20. A {maximwm, minimum] contour Iine and a {negative, positive}
contour line of the same value carnot intersect.

Proor. Only the last part of this property is proved. The other proof is very
similar.

Assuine the intersection between a positive contour line f;, and a minimum con-
tour line & , both of value e, cceurs at a single point po. Then Tg {po)2 = IIL Let
N be a critical neighborhood of p with respect to fy . Let p, be some point other than
po that is in ¥ and lies on j . Point py does not lie on I; and E (p1) = e because p;
is on I . But since pe contains p; in its suberitical neighborhood with respect to &,
T 5 (o) cannot be ILI. This is & contradiction; therefore a positive and minimum
contour line cannot intersect at a single point. The intersection of the two contour
lines cannot occeur on a line because the elevation types of points on this line with
respect to the line would have conflicting requirements as imposed by the definition
of positive and of minimum contour lines.

PropErTY 21. A {meximum, maztmum, minimum} contour line and a [minimum,
positive, negative] contour line of the same value cannot intersect.

Proor, The proof for Property 20 is also valid here. However, an alternate
proof is presented. Only the first of the three parts is proved. The other two proofs
are similar. Property 7 says that all points on a maximum contour line have eleva-
tion types I or IV and all points on a minimum contour line have clevation types
ITI or V. Hence, the two contour lines can have no points in common.

PropERTY 22. Two {maximum, mintmum] contowr lines of the same value cannol
inlersect.

Proor. The proof that they cannot intersect at a point is the same as the proof
used in Property 20. If they intersect in  line there must be some point p for which
they first join. But then the elevation type of p with respect to either of the de-
generate contour lines cannot be T or TTT because every neighborhood of p contains
a point that is on one of the contour lines and not the other. This leads to a con-
tradiction.
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PropErTY 23. Contour lines of different values cannot intersect at points that are
inside @ smooth domain.

Proor. Let p be the intersection point between a contour line of value ¢ and
a contour line of value e, . The elevation of p must be both ¢; and e, . But this violates
ihe single-valued elevation requirements of points lying in a smooth domain.

ProrERTY 24.  Contour lines do not cross each other when traveling along a cliff line.
Proor. See Corollary 17.1.

Properties 18 through 24 can be summarized by the following two properties.
PropERTY 25. Contour lines never cross.

PropeERTY 26. T'wo contour lines can intersect at a point of a smooth domain only
if both are normal contour lines and of the same value.

(onclusion. Contour maps representing different quantities can be studied in a
unified manner by the use of a formal model. The contour map model presented in
this paper uses the abstract concept of elevation type from which many of the
intuitive notions about contour maps can be deduced. The results thus obtained
are independent of the physical data represented by the contour map. One can
apply the results obtained to any dependent variable providing the dependent
variable satisfies the requirements set forth in this paper.

APPENDIX. Eliminating Degenerate Contour Lines

The concept of degenerate contour lines is a natural consequence of the theory
based on elevation types. In certain applications, complications are caused by the
presence of degenerate contour lines. In such cases a method is needed to eliminate
degenerate contour lines. This can be accomplished by circumseribing in the
[counterclockwise, clockwise] direction a {negative, positive} contour line of value
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Fig. 8, Examples of transforming degenerate contour lines into normal contour lines
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¢ around every {maximum, minimum} contour line of value ¢ and, in addition,
ingeribing in the fclockwise, counterclockwise] direction a [ncgative, positivel
contour line of value ¢ inside every {maximum, minimum} contour line of value ¢
that is a closed curve. These enveloping normal contour lines are shrunk such that
the maximum distance from any point on the normal contour lines (o its nearest
point on the degenerate contour lines approaches zero. The degenerate contonr
lines can be replaced by these normal eontour lings, Rule 1 is then applied to the
intersections of these normal contour lines with themselves and with the other nor-
mal contour lincs on the map. Examples of transforming degenerate contour lines
into normal eontour lines are shown in Figure 8 A contour map with no degenerate
contour lines is called a normal contour map,

Note that the terms “inscribe” and “circumscribe” used in the preceding para-
graph imply that a closed curve has an inside and an outside, If the domain of the
map is a closed surface, the inside and outside of closed curve are undefined. How-
ever, the procedure outlined in the preceding paragraph gives the same result
regardless of which side of the closed curve is selected as the inside.
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