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~}~STRACT. This paper describes :~ mathematical model for the study of contour-line data. 
Formal definitions are given for the various classes of contour lines f o u n d  on a cotltour niap. 
The concept of cliff lines is introduced and the properties of both contour lines and cliff lines 
are investigated. The objective of the paper is to lay a foundation for the development of 
algorithms that will facilitate the digital computer solution of problems involving contour-line 
data, 
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Introduction. D a t a  t h a t  can be d i sp l ayed  by  a contour  m a p  is found in m a n y  
engineering appl ica t ions .  A n y  piecewise-cont inuous,  s ingle-wflued funct ion of two 
continuous independen t  va r i ab les  can be represented  in ti le form of a contour  map .  
The most common example  is a con tour  m a p  represent ing  elewtt ion as a funct ion of 
position in a two-d imens iona l  geographic  region. Other  geographic -pos i t ion-de-  
pendent var iab les  t ha t  are  commonly  represen ted  in the  form of contour  m~ps are  
temperature ( i so therms)  and  pressure  ( isobars) .  However ,  t i le  use of contour  maps  
I~eed not  be res t r ic ted  to dependen t  va r i ab les  re la t ing  to geographic  position. An  
example of a contour  m a p  used for a more  genera l  dependen t  var iab le  is a plot  of 
equal-loudness curves  d rawn  as a funct ion of the  in tens i ty  and f requency of an 
audible tone. 

In most  of the  app l i ca t ions  of contour  maps ,  the  re la t ionship between the  de- 
pendent va r i ab le  and t i le  independen t  var iab les  canno t  be convenien t ly  expressed 
t)y an equat ion.  However ,  there  are some appl ica t ions  in which contour  maps  are  
used even though an equa t ion  is readi ly  a t  hand  because the  contour  maps  fac i l i ta te  
visualization of the  da ta .  An example  of the l a t t e r  is a plot  of the  equ ipo ten t i a l  lines 

around an electr ic dipole. 
A forma] me thod  for ana lyz ing  contour  maps  th rough  the  use of a m a t h e m a t i c a l  

model is discussed in th is  paper .  Var ious  te rms are  defined to fac i l i ta te  the  discus- 
si0n of contour  maps .  T h e  objec t ive  of the pape r  is to l ay  a foundat ion  for the  
development of a lgor i thms  t ha t  will fac i l i ta te  the d ig i ta l  compute r  solut ion of prob-  
lems involving contour- l ine  da ta .  

* Present address: IBM Watson Research Center, Yorktown [:[eights, N. Y. 
iDepartment of Electrical Engineering. This research was sponsored by the Information 
Sciences Directorate, Air Force Office of Scientific Research, under Grant AF-AFOSR=24-65. 
The work was performed while the author was a research assistant. The paper is based on a 
Thesis submitted to the NYU Department of Electrical Engineering in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy. 

JoUrnal of the Association for Computing Machinery, Vol. 15, No. 2, April 1968, pp. 205-220. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321450.321454&domain=pdf&date_stamp=1968-04-01


2 0 6  s, p. MOnSE 

The Contour-Line Model. The model described here can be used to represent cer- 
tain piecewise-eontinuous, single-valued functions of two continuous independent 
variables. I t  is convenient to regard the independent variables as the position 
coordinates of points p on a (two-dimensional) surface and the dependent variable 
as an elevation function, E. The quantity E (p) is called the elevation of p. 

1. Definition of Model 

A semismooth domain is a two-dimensiongl domain of points over which the elevation 
function is continuous and single-valued and the domain cannot be enlarged and 
still retain this property. A semismooth subdomain is a domain contained within a 
semismooth domain. A boundary function of a semismooth domain is defined for 
each boundary point of the semismooth domain to be the limiting value of the elewt- 
tion function as the boundary point is approached providing such a limit exists. If, 
for arbitrarily small values of e, every e-neighborhood of a boundary point of a 
semismooth domain is divided by boundary lines into two or more semismoot~ 
subdonmins of the same semismooth domain, the boundary function of the semi- 
smooth domain is defined with respect to each semismooth subdomain separately 'as 
the limiting value of the elevation function in that  semismooth subdomain, provid- 
ing such a limit exists. A smooth domain is a semismooth domain whose boundary 
function is defined (with respect to smooth subdomains if necessary) and eo~l- 
tinuous. A smooth subdomain is a domain contained within a smooth domain. The 
{maximum, minimum} boundary function of a smooth donmin is defined for each 
boundary point of the smooth domain to be the value of the boundary funetio~ 
with respect to that smooth subdomain which {maximizes, miniinizes} the value. ~ 

A cliff line is a directed lind or line segment on which the elevation function a~ 
each point of the cliff line is multivalued and takes on all values between and in- 
eluding two bounds. The bounds form two single-valued functions of position alo~lg 
the cliff line. The function for the upper bound is called the left limit function, L, 
and the function for the lower bound is called the right limit function, R, of the cliff 
line. A cb~" point is a elit'f line that has degenerated into a point; such singular poi~ltS 
are not considered in this model. 

A map is a two-dimensional domain of points composed entirely of smooth do. 
mains and (',lift lines such that the following conditions are satisfied: 

1. Every boundary point of a smooth domain is on a cliff line or is a boundary 
point of the map. 

2. For each point p~ on a cliff line, {L(p~), R(p~)} equals the value of the {maxi~ 
nmm, mininmm} t)oundary function of the smooth domain (s) on the{left, 
right} of the cliff line at p~ .= 

An example of an elevation function and its corresponding map is shown in Figure 1. 
'Fo eliminate certain pathologic:d cases, the following restriction is included in the 

definition of a map: 

Restriction. It is assumed that for every point p on the map, any finite-size 
neighborhood of p can be divided into afinite number of connected sets such that th( ~ 

l A s ta tement  of the form: . . .  la~, a2 . . . . .  a,,}.. .  {b~, b2 . . . . .  b , }  . . . . . .  I m ~ ,  m ~ ,  . . . ,  m,~} .... 

is a shor thand  netat ion iltdicating a set of n parallel s t a tements .  For  example,  the statemen~- 
"{2, 5} -? 13, 7} = 15, 121" represents the s ta tements  " 2  - k  3 = 5 "  a n d  " 5  q- 7 = 12." 
2 The word " l ine"  when used in this paper  does not  necessarily imply a s t r a igh t  line. 
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(a) Example of an evaluation function; (b) its corresponding map 

T A B L E  I .  CLASSIFICATION OF NEIGHBORttOODS 

CENTERED AT POINT p 

Neighborhood or 
elevatio*~ type 

Neighborhood contains only points (olher than p) 
of each of the indicated elevations 

<E(p) =E(p) >E(p) 

I X 
I I  X 
I I I  × 
IV X X 
V × X 
Vi X X 
VII X X X 

elevations of points in each set are in one of the following categories: 
1. All elevations less than E (p). 
2. All elevations equal to E (p). 
3. All elevations greater than E (p). 

Also each connected set of points of elevation equal to E (p) can be decomposed into 
ajinite number of open connected sets and a finite number of lines. 

2. Elevation Types 

Contour lines will be defined by examining E (p) for points p in the neighborhood of 
a given point on a map. This approach requires introduction of tile concepts of 
neighborhood types and elevation types. 

Select a point p on a given map. If p lies on a cliff line, E(p) can be an:" number 
the4 satisfies the relation R(p) < E(p) < L(p). Consider a neighborhood of p 
with a radius of & The points in this neighborhood could have elew~tions greater 
than, equal to, or less than  E (p). A table can be constructed in which a neighborhood 
~Ype is assigned to every conceivable combination of these elevations, as shown in 
Table I. Not  all the neighborhood types are possible as will be seen below. The 
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FIG. 2. Examples of elevation types and subcritical neighborhoods. The region has an eleva- 
tion function that varies with r~dial distance as shown in (a). The elevation type and critic:~l 

radius of selected points ill the region are given ia (b). 

neighborhood type  is a function of ~i and p and  is wr i t ten  as TN(p, ~). I f  p is on a 
cliff line, the neighborhood type  is also a function of tile va lue  of E (p) chosen. There 
exists a m a x i m u m  value,  ~0, such t ha t  for all ~i < ~i0 the ne ighborhood type  is not a 
function of ~t. T h a t  neighborhood type  is called the elevation type of p, wr i t ten  T i p ) ,  
and ~0 is called tile critical radius of p. Any neighborhood of p whose radius is less 
than  ~t0 is called a subcritical neighborhood of p. 

The  neighborhood type  of p with respect  to line l~, des ignated as TN(p)~, is 
defined as the neighborhood type  obt~fined by  considering only those points that 
are not on the line. Tile subscript  i can be removed  from TN (p)i  if there is no am- 
biguity as to which line is involved. T h e  elevation type with respect to a line, T~(p)~ , 
tile crilical radius with respect to a line, and a subcritical neighborhood with respect to 
a line are similarly defined. Examples  of elevation types  and  suberit ical  neighbor- 
hoods are shown in Figure  2. 

PROPERTY 1. Neighborhood type VI  is impossible. 
PltOOF. Let  p0 be a point  such t h a t  TN(po, ~) = VI. A line l can  be drawn that 

lies entirely in the it-neighborhood ~tnd connects a point  whose elevat ion is less thtttl 
E(po) to a point whose elevation is greater  than  E(po) and  does not  pass  through 
p0. As a consequence of the cont inui ty  of the elevation function in a smooth  don~ai~ 
and the  "br idging"  3 by cliff lines of the elevation function in ad jacent  smooth 
domains,  1 mus t  pass through at  least  one point  p~ such t h a t  E (pl) = E (p0). Thus 
TN(p0, ~) = VI I .  

Note  tha t  neighborhood type  VI  with respect  to a line is possible. 
Some simple consequences tha t  follow from the definition of e levat ion type  I I  are 

the following: 
1. If T~(po) = I I  and p~ is a point  in a subcrit ical  neighborhood of p0, then 

E(po) = E(p~). 
2. No point  on a cliff line can have  elevat ion type  I I .  I t  appears  as though 

points on cliff lines cannot  have  elevation type  I or I I I .  This  is not  true as 
is shown in Figure 3. 

3 The bridging is a consequence of the fact that the elevation function at each point of the cliff 
line is multivalued and takes on all values between and including the values of the two limit 
functions. 
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FIG. 3. Example  of a po in t  oil a cliff line wi th  elevation type I. Point  p is on a cliff line. The  
!eft limit funct ion  at p is 1 and tile r ight  linfit funct ion at, p is - 2 .  For an assumed e levat ion  

of 1, TE (p) = [. 

PROPERTY 2. Starting at a point po for which ~'g(po) = { I I , I V , V , V I I ,  VI I } ,  
a line segment can always be drawn such that for each point pi on the line, E (pl) = 
E(po) and TE(p~) = { I I , I V ,  V , I V  or VI I ,  V or VI I } .  

PROOF. Only the last of the five parts of this property are proved. The other 
four proofs are similar. Let p0 be a point such that  T~(p0) = VII. Let N be a sub- 
(~ritical neighborhood of p0 • Lines can always be drawn through N that  isolate those 
points of elevation greater than E(po)  from those points of elevation less than or 
equal to E(po).  These lines are composed entirely of points whose elevations are 
equal to E(po).  Every point on these lines has elevation type V or VII. Point p0 
lies on one of these lines. That  line satisfies the requirements of this property. 

COROLLARY 2.1. A line segment can always be drawn through a point po for which 
T~.(po) = {I I ,  V I I ,  VI I }  such that for each point p~ on the line, E (p~) = E (po) 
and 7'E(p~) = { I I , I V  or V I I ,  V or VI I } .  

COROL~ARY 2.2. Starting at a point po for which TE(po) = {IV,  V , V I I , V I I } ,  a 
line segment can always be drawn such that for each point pi on the line and p~ ~ po , 
E (p ~ ) = E (po) and T ~ (p i ) is constant and is equal to { I, I I [ ,  I V, V} or { I V, V, VI, VI}. 

COROLLARY 2.3. A line segmennt can always be drawnn through a point po for which 
7'g(p0) = V I I  such that for each point pi on the line and pi ~ po, E (pi) = 
£(po) and TE(pi)  = { IV  or V I , V  or VI}.  

PttOPEnTY 3. If ,  for some point p, TE(p)  = { I , I I , I I I , I V , V ,  VI,  VII} ,  then 
T~(p) = {I or I V , I I , I I I  or V , IV ,  V, VI I ,  VI I} .  

PROOF. Let N be a subcritical neighborhood of p. If a line l through p contains 
atly points in N of elevations {greater, less} than E (p), there must be other points 
i~l N but not on I of elevations { greater, less} than E (p). Thus any difference between 
elevation type and elevation type with respect to a line must be due to the considera- 
tio~l of points of elevation equal to E (p). 

COttOLLARY 3.1. I f  p lies on a line and T~z(p) = { [ , I I , I [ I , I V ,  V ,VI I } ,  then 
Tg(p) = { I , I I , I I I , I  or I V , I l l  or V, VI  or VII} .  

PROPERTY 4. If ,  for some point p, TE (p ) = { I , I I I }  and every point on the line 
has t • 4 he same elevatwn, then T E (p ) = { IV,V} .  

If p is a poin t  on the cliff line, then  the  requ i rement  is t ha t  every point  on the line have 
the same elevat ion as t h a t  elevat ion used for p in de termining TF,(p) and  TF,(P). 
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(a) variation of elevation with radial distance; 
(b) some contour lines of the region 

P[tOOF. The subcritical neighborhood and subcritieal neighborhood with respect 
to a line differ by the inclusion of a set of points whose elevations equal E (p). The 
property now follows directly from the definitions of elevation types as given in 
Table I. 

3. Contour Lines 

Contour lines are used as a graphical device for displaying ttle elevations of different 
points on a map [5]. There are a number of different classes of contour lines that carl 
be drawn on a map. A line is a {positive, negative, max imum,  minimum} contour li'rte 
of value e if for all points pi on the line, E (pal = e and T~(I)i) = {V or VI or VII, IV 
or VI or VII , I , I I I} .  Note that  if T~ ( p J  = VI  or VI I  for a segment of the line, that 
segment is part  of both a positive contour line and a negative contour line. Such a 
segment is called an isorithm. If E(po) = e and T~(po) = {I,IH} for some point 
P0, then p0 is said to be a {maximum, minimum} contour point of value e. Maxinmm 
and minimum contour points are considered special cases of maximum and minimum 
contour lines. 

Positive and negative contour lines are called normal contour lines. Maximum 
and minimum contour lines are called degenerate contour lines. 5 Examples of contour 
lines are shown in Figure 4. 

hi the preceding discussion contour lines are defined in terms of points on the 
lines. The following two properties establish the criteria for determining whether a 
point lies on a contour line. 

PBOPBBTY 5. A point Po lies on an isorithm of value E (po) i f  T ~ (po) = VI[.  
PROOF. Corollaries 2.3 and 3.1 state that  a line segment can be drawn through 

p0 such that  for all points Pl on the line, E (p~) = E (p0) and T~ ( p J  = V,VI, or VII. 
This line satisfies the definition of a positive contour line of value E (p0). The exist- 
ence of a negative contour line passing through p0 can be similarly demonstrated. 

P~OeERTY 6. I f  T~(po) = {IV, V}, then p6 lies on a {maximum, minimum} con- 
tour line of value E (po). I f  no such lirte exists, po is either the endpoint of a {maximum, 
minimum} contour line or po lies on a {negative, positive} contour line of value E (po). 

PnOOF. Only the last of the two parts of this property are proved. The other 

5 A method of "Imrmal-izing" degenerate contour lines is presented in the Appendix. 
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proof is similar. Le t  TE(po) = V. I f  there exists a line /1 th rough  po such 
that T~(po)l = I I I ,  li nms t  consist entirely of points  whose elewttions are E(po). 
(These are the ve ry  points  t h a t  require tha t  TE (po) = V ra ther  than  I I I . )  This  line, 
consisting of points  pi with E (p~) = E (p0) and q~E (pi)l  = I I I ,  satisfies the definition 
of a minimum contour  line. If  no such line exists, there  m a y  be a line 12 s tar t ing at. 
p0 for which TE (p;)2 = I I I  for all points  p~ on 12 other  than  po. This  line is a mini- 
mum contour line ending a t  po • If  ne i ther  of these lines exist, Coroll~ry 2.2 assures 
the existence of a line 13 containing p0 t ha t  consists entirely of points  p~ such tha t  
E(pi) = E(po) and T~:(pl)~ = V. T h e  line 13 satisfies the definition of a posi t ive 
contour line. 

PROPERTY 7. I f  p lies on a {positive, negative, maximum, minimum} contour line, 
rE(p) = { V, IV, I ,HI}  or { V H , V H , I V ,  V}. 

PI~ooF. This  p rope r ty  follows direci~ly f rom Prope r ty  3 and the definitions of 
the different classes of contour  lines. 

PROPERTY 8. Let po be a point through which passes one and only one 6 {positive, 
negative} contour line of value e and through which passes no {minimum, maximum} 
contour line of value e. Every subcritical neighborhood of po can be red'ueed to a smaller 
neighborhood that is divided by the contour line into two open sets of points--one con- 
sisting entirely of points whose elevations are {greater than, less than} e and the other 
containing no points oJ" elevation {greater than, less than} e. These sets are called the 
{hi-set, lo-set} of po and the {lo-set, hi-set} of po , respectively. 

PROOF. Let  p0 be a point  th rough  which passes only one positive contour  line of 
value e. Draw a suberit ical  neighborhood N around p0 • In  this neighborhood there 
must be a t  least one point  pl such t h a t  E (p~) > e. Le t  N~ be the  open set of points 
lying ill N and on the same side of the contour  line as p , .  Let  N2 be the open set  
of points lying in N bu t  on the  other  side of tile contour  line. Assume there is a t  
least one point in N~ t h a t  has an elevat ion of e, and  t ha t  N cannot  be reduced to 
remove all such points. Then  lines can be drawn through  N, tha t  isolate those points 
whose elevations are greater  than  e from those points  whose elevations are not  
greater than  e. These  lines are posit ive or min imum contour  lines of value e, and a t  
least one of these lines, o ther  than  the  given contour  line, passes through p0 • There-  
fore p0 is on a m i n i m u m  contour  line or is on more than  one posit ive contour  line of 
value e, and this is a contradict ion.  T h u s  there are no points of elevation e in N1. 
Also, there are no points  of e levat ion less than  e in N~ because tha t  would require 
at least, one point  of elevation e in N1.  Thus  the elevation of every point in N, is 
greater than  e. I f  N2 contains a point whose elevat ion is greater  than  e, evetT point  
in N2 would have  an elevation greater  than  e. The  elevation type of p0 with respect  
to the contour line would be I I I ,  bu t  this contradic ts  the definition of a posi t ive 
e0ntour line. Thus  every point  in N~ has an elevation less than or equal  to e. A similar 
proof holds for negat ive  contour  lines. 

If all points on a segment  of a normal  contour  line have  their hi-sets on the same 
side of the contour line, tha t  segment  is assigned a positive direction such t ha t  all 
hi-sets are on the left as the segment  is t raversed in its positive direction. The  set of 
all points satisfying the  definition of a normal  contour  line of wdue  e can be de- 

';This s ta tement  implici t ly prohibi t s  the possibi l i ty  of the same normal  contour  line passing 
through P0 more than  once. 
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composed into a finite number of such directed line segments. These segments are 
defined to lie on the same contour line only if their positive directions are consistent 
The positive direction of a normal contour line is the positive direction of its segments. 
Degenerate contour lines are undirected line segments. 

PaOPEI~TY 9. Let p be a point on a normal contour line. Let S be any circle abottt p 
that does not intersect with the boundary of the domain of the map. I f  there is a point o~ 
the corttour line that is outside S and in the {positive, negative} db'ection along the con- 
tour line from p, then there is a point on the contour line that is outside S and in the 
{negative, positive} direction along the contovr line from p. 

PROOF. Let p be a point on a positive contour line of w~lue e and let S be a circl(~ 
about p. Draw lines through S that  separate those points of elevation greater than 
e from those points of elevation less than or equal to e. Each of these lines are seg- 
ments of positive contour lines of value e and every segment of a positive contour 
line of value e inside S is included in this collection of lines. Each line is either a 
closed curve inside S or intersects S twice. Thus if a positive contour line comes into 
S, it will go out of S. A similar proof is valid for negative contour lines. 

COROLLARY 9.1. Normal contour lines cannot start or end at any point that is not a 
boundary point of the map. 

COROLLARY 9.2. Normal contour lines that do not intersect any boundaries of the 
map are closed curves. 

COROLLARY 9.3. There are as many {positive, negative} contour line segments of a 
given value entering a point as there are {positive, negative} contour line segments of 
that value leaving the point. 

COROLLARY 9.4. Between any two positive contour line segments of the same value 
{entering, leavingl a point there is a positive contour line segment of that value I leaving, 
entering} the point. This is also true J~r negative contour lines. 

A point that  has more than one {positive, negative} contour line segment of a 
given value entering it is called a saddle. At points for which more than one segme~t 
of a normal contour line of a given value enters the point, there is an ambiguity as 
to which segment leaving the point is the continuation of which segment entering 
the point. The following rule resolves this ambiguity. 

Rule 1. Each {positive, negative} contour line segment of value e leaving a point 
is considered as the continuation of the first { positive, negativel contour line scgmeILt 
of value e in the { counterclockwise, clockwisel direction entering the point. 

4. Properties of Cliff Lines 

Ambiguities may result unless some rules are established for the termination of cliff 
lines. Such rules can be formulated based on the behavior of the limit functions. 
The symbol L (p+) is used to represent lim,,~.pL (p~), where p~ is another point o~1 
the cliff line and in the positive direction from p. Similar definitions apply to L (p-), 
R(p+), and R(p- ) .  

PROeERTY 10. Let p be any point on a cliff line that is not an endpoint of the dij]' 
line. Then 

L (p )  >_ max(L(p+),  L ( p - ) ) ,  R(p)  < min(R(p+),  R ( p - ) ) .  
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PI{OOF. The limiting value of the elevation function at p~ must be a limiting 
value of the elevation function at  p because p~ is in every neighborhood of p. Thus 
the value of the boundary function in the smooth domain on the left side of the cliff 
line at p+ must be less than or equal to the maximum value of the boundary fune- 
~i0ns in the smooth domains on the left side of the cliff line at p. Thus L (p ~) _< L (p). 
SimilarlyL(p-) < L(p) ,  R(p  +) > R ( p ) , a n d R ( p - )  > R ( p ) .  

COROLLARY 10.1. I f  p is the { initial, terminal} poh~t of a cl(g" lirw, L (p ) > { L (p +), 
L(p-)} and R ( p )  < {l~(p~), R(p- )} .  

t)aovEm'Y 11. Let p be a point such that there is at least one cl([]' line segment 
t,~tering p and at least one cl~" Ene segment leaving p. Let C be the line formed by these 
twosegments. I f  {L, R} is discontinuous at p, then there is another cl'~i~" line segment 
t/lat contains p and lies on the {left, right} side of C. 

VaOOF. Assume there is no cliff line segment that  contains p and lies to the left 
of C. Then there is only one smooth domain to the left of C at  p. A discontinuity in 
the left limit function of C at p must  be accompanied by a discontinuity in the 
boundary function of the smooth domain on the left of the cliff line at p. But  the 
boundary function of the smooth domain is continuous. This is a contradiction and 
hence the assumption is false. 

COROLLAnY 11.1. The {left, right} limit function is continuous at all points of a 
cl'i[f line that are not also on some other cliff line. 

PROPERTY 12. Let p be a point that lies on one or more cliff lines. Let Co, C~ . . . . .  
(',,-1 be the cliff line segments entering or leaving p such that Ci+~ is the next cliff line 
segment after C~ 'in the counterclockwise direction around p. Let ~'~ , ~'i', and ~ be defined 
c~s j?llows : 

if C~ leaves p ;  'if ~=i = R ;  ~ = ~" Ci leaves p ;  

aml all subscripts are taken modulo n. Let L (p ) i and R (p ) i represent the limit functions 
/Or cliff line Ci at point p. Then 

~-~+~(p'~+~)~+~ = ~ ' / ( p " ) , ,  i = 0, 1 . . . . .  n - 1. 

An example of this property is illustrated in Figure 5. 
PROOF. Consider a neighborhood of p tha t  is small enough so as not to contain 

a~y segments of cliff lines that  do not pass through p and not to contain any other 
points that lie on more than one cliff line. The neighborhood is divided into sectors 
i)y all the cliff lines that  pass through p. Let S~ be the sector bound by C~ and C~+t 

FIG.  5. 

( p~i+q : ( p~ i }  
' ; ÷1  ' i 

R ( P  +) = R ( p + )  
i o 

: ÷} R ( P + ) 2  L (p  , 

L ( P - ) 3  = L ( P + ) z  

C3 Co L ( p - )o  = R ( p - )  

Illustration of the relation between the limit functions of 
intersecting cliff lines 
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(Q)  

\ \ 
/ \  

( i )  [ i l }  ( i i i )  
( b )  

Fro. 6. Example of an arnbiguity in selecting cliff lines: (a) surface representing 
elevation function; (b) three choices for cliff lines--choice (ii) is the correct choice, 

Note that the interior of each sector is a smooth subdomain. Therefore, the limiting 
value of the boundary function of S~ along C~ as p is approached is equal to the 
limiting value of the boundaw function along Ci+~ as p is approached. But a limit 
function is equal to the boundalT function on the corresponding side of the cliff line. 
Assume Ci and C~+1 are both directed away from p. Then R(p+)i+l = L(p+)~. 
Generalizing this equation for other combination of directions for C~ and C~+, yields 
the equation stated in the property. 

Rule 2. If at any point p on a cliff line either L (p+) < R (p-) ,  or L (p-)  < R (p+), 
or L (p +) = R (p +), or L (p-) = R (p-), then the cliff line is to be interpreted as two 
cliff lines with p being an endpoint of both. 

Rule 3. If p is a point on a cliff line and more than one of the cliff line segments 
entering p do not have L(p- )  = R (p-) or more than one of the cliff line segments 
leaving p do not have I)(p+) equal to R (p+), then p is considered an endpoint of all 
cliff lines containing p. This rule is illustrated in Figure 6. 

PI~oPEwrv 13. Let C be a cliff line that cannot be ~'ubdivided into two or more cliff 
lines by Rule 2. I f  the left or right limit function of C is discontinuous at a poin! p, thel~ 
p is an endpoint of all cliff lines containing p. 

PItooF. I,et C~ be the portion of C entering p and C2 be the portion of C leaving 
p. By hypothesis L (p-)~ ¢ R (p-)~ and L (p+)~ ~ R (p+)2 • If L is discontinuous at 
p then L(p-)~ ~ L(p+),2. Then by Property 11 there exists a cliff line Ca on the left 
of C such that p is contained on Ca. Assume Ca is directed toward p and assume 
there is no other cliff line on the left of C that contains p. Then by Property 12, 
L (P-)a = L (p+)e and R (p-)a = L (p-)~. Therefore L (p-)a ~ R (p-)a • Thus there 
are two cliff line segments directed toward p for which L(p )  # R(p ) .  But Rule 2 
states that in such cases p is considered as an endpoint of all cliff lines containing p. 
If there is more than one cliff line that contains p and is on the left of C, an extension 
of this argument shows that for at least one of these cliff lines L (p) ~ R (p). 

CO[¢OLLAI{Y 13.1. The left and right limit fu*wtions of a cliff" line are conlinuous 
along the cl,(ff line. 

5. Contour Lines in Cliff Lines 

A complete underst~mding of contour lines requires a knowledge of the beh~vior of 
contour lines at a cliff line. The following study of this behavior yields the result that 
file contour lines merging to form a cliff line do not cross each other. 
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~t,tOPERTY 14. Let p be a point on a cl'~fl" line (7. Point p must also lie on the fi~llow- 
~g contour lines: 

1. Positive and negative contour lines of value e Jbr all e such that R (p ) < e < 
L(p);  

2. Negative or maximum contour line of value L (p ); 
3. Positive or min imum contour line of value R (p). 

o'int p may also lie on the following contour lines: 
4. Positive contour line of value L (p ); 
5. Negative contour line of value R (p ). 

oint p may not lie on any other contour line. 
PROOF. 
1. For any  arbi trar i ly small neighborhood around p there must  be a point  in the 
,ighborhood and on the left side of C whose elevation is greater than e and a point  
the neighborhood and on tile right side of C whose elevation is less than e. I f  

(p) is taken as e, then T~ (p) = VII .  Therefore p lies on a positive and  negative 
ntour line of value e as a result of P rope r ty  5. 
2. For any  arbitrari ly small neighborhood around p there mus6 be a point on 
e right side of C whose elevation is less than  L(p ) .  I f  E ( p )  is t aken  as L(p) ,  
en T~.(p) = I, IV or VI I .  If  TE(p) = I, then p is a max imum contour  point. 
To(p) = IV, then p lies on a m a x i m um  or negative contour  line as a result of 
operty 6. I f  T~(p)  = V I I ,  then p lies on a negat ive  contour  line as a result of 
aperty 5. 
3. Proved in like manner  as 2. 
~. In any  arbitrari ly small neighborhood around p there m a y  be a point in the 
ghborhood and on the left side of C whose elevation is greater t han  L ( p ) .  In  
s ease if .E (p) is taken as L (p), then T~ (p) = VII .  Therefore p lies on a positive 
ttour line as a result of P rope r ty  5. 
~. Proved in like manner  as 4. 
)oint p cannot  lie on any  contour  line of value e for e > L (p) or e < R (p) be- 
se such an e would not  be one of the possible elevations of p. Obviously p cannot  
on any degenerate contour  lines of value e for R ( p )  < e < L(p) .  The only 
raining contour  lines for p to lie on are a maximum contour  line of value R(p )  
[ a minimum contour  line of value L (p). I f  E (p) is taken as L (p), then Te (p) = 
V, or VII .  Therefore, p cannot  lie on a minimmn contour  line of value L ( p )  
:t result, of Proper ty  7. Similarly, p cannot  lie on a max imum contour  line of 
~e R(p) .  

'hus the contour  lines ment ioned in P roper ty  14 mus t  meet  and travel  along the 
line. When a contour  line travels along a cliff line, there mus t  be a point  on the 
line at which the contour  line joins the cliff line and another  point a t  which the 

lour line separates from the cliff line. The contour line is said to "en te r"  and 
:re" the cliff line at  these two points respectively. 

ROPERTY 15. When a normal contour line travels along a cl~0" line, the positive 
:tion of the contour line is the same as the positive direction of the cliff line. 
~OOF. The  cliff line has the higher elevation on its left side. Bu t  so does a 
hal contour line. Thus,  the positive direction of a cliff line and the normal  
~our lines tha t  are traveling along it mus t  be the same. 

[though a degenerate contour  line is an undirected line, it is found convenient  
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to define a positive direction to that  portion of a degenerate contour line that 
travels along a cliff line. To be consistent with normal contour lines, the posili~,e 
direction of that portion of a degenerate contour line that  travels along a cliff line 
is defined to be the same as the positive direction of the cliff line. Using this defi~li- 
tion, the word "normal" is not needed in Property 15. 

PROPERTY 16. 
1. I f  there is a segment of a cliff line for which L is monotonically {increasing, 

decreasing} and L=~ < e < L . . . .  then a positive and negative contour line of val~tze 
e {entered, left} the cliff line segment from the left. 

2. I f  there "is a segment of a cliff line for which R is monotonically {inereasing, 
decreasing} and R,,~ < e < R . . . .  then a positive and negative contour line of value e 
{left, entered} the cliff line segment from the right. 

3. I f  there is a segment of a cliff line for which L is monotonically {increasing, 
decreasing} and L , ~  = e, then a negative or maximum contour line of value e { entered, 
left} the cliff line segment from the left. 

4. I f  there is a segment of a cliff line .for which R is monotonically {increasing, 
decreasing} and R,,i~ = e, then a positive or minimum contour line of value e {l¢, 
entered} the cliff line segment from the right. 

5. I f  there is a segment of a cliff line for which {R, L} = e for all points on th, 
segment, then a {negative, positive} contour line of value e may have entered or left the 
cliff line segment from the {right, left}. 

PltOOF. Only the first half of the first part  of this property will be proved here. 
The rest of the property is proved in a similar manner. At the beginning of the ctift 
line seglnent, there is a point pl such that  L (pl) < e. There are no contour lines of 
value e traveling in the cliff line at p~ as a result of Proper ty  14. At some point p~ 
along the (:lift line segnlent, R (p=) < e < L (p2). Thus a positive and negative coil- 
tour line of values e is traveling with the cliff line a t  p2 as a consequence of Property 
14. Therefore a positive and negative contour line have either entered or left the 
segment somewhere before p2 • Since the contour lines travel  in the same directio~ 
as the cliff line (Property 15), the contour lines must  have entered the segment. 
Since the left limit function is related to conditions on the left of the cliff line, the 
contour lines whose existence was predicted by examining the left limit functio,~ 
must have entered the cliff line from the left. 

Notice that Property 16 provides the basis for a graphical method of determining 
where contour lines enter and leave cliff lines. The method was discussed in [5] 7 
and is illustrated in Figure 7. 

Pttoima'rY 17. 
1. All contour lines that enter and leave a cliff line from the {left, right} leave on a 

last-in-jirst-out basis. 
2. All contour lines that enter a cliff line from the { left, right} and leave towards the 

{right, left} do so on a first-in-first-out basis. 
3. Each contour line that enters and leaves a cliff line from the {left, right} must 

either enter and leave before, or enter and leave after, any contour line that entered fro'in 
the {right, left} can leave towards the {left, right}. 

7 In [5] properties of contour lines are developed from an in tu i t ive  po in t  of view. Contour  lines 
are defined from the physical concept  of level surfaces r a the r  t h a n  the m a t h e m a t i c a l  concept 
of elew~tion type. 
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AT SAME POINT ON RIGHT 

FiG. 7. Determining where contour lines enter and leave cliff line 

4. Each contour line that enters and leaves a cliff line from the {left, right} must 
either enter and leave before, or enter and leave after, any contour line that leaves to- 
wards the {right, left} can enter from the {left, right}. 

5. I f  one contour line enters a cliff line from the left and leaves towards the right and 
another contour line enters the cliff line from the right and leaves towards the left, one 
cantour line must both enter and leave before the other contour line can enter. 

PROOF. The proofs of these statements consist of simple arguments based oIl 
Property 16. For brevity, only the first half of the first s tatement is proved here. 
Let el and e~ be the values of two normal contour lines ll and 12, and let el < e2. 
If the two contour lines are to enter from the left, then L must be less than el at 
segments of the cliff line preceding the first point of entry. Contour line ll will have 
eatered when L becomes greater than el and l~ will have entered when L becomes 
greater than e2. Hence ll will enter before 12. Similarly, /,2 will leave before l l .  
Hence the contour lines ]eave on a last-in-first-out basis. 

COROLLARY 17.1. Contour lines do not cross each other when traveling along a 
cliff line. 

6. Intersections of Contour Lines 

Contour lines can never cross each other but  under certain conditions they may 
intersect. This is proved in what follows. 

PROPERTY 18. TWO positive or two negative contour lines of the same value cannot 
cross. 

PROOF. This is a consequence of Corollary 9.4 and Rule 1. 

PROPERTY 19. A positive and a negative contour line of the same value cannot 
cross. 
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Pt~OOF. Let l be a positive contour line of value e passing through p. Let 11 
be the segment of l preceding p and 12 be the segment of l following p. Assume a 
negative contour line segment la of value e intersects with the right side of l at p. 
Further assume that  la is directed toward p. Let N be an arbitrarily small neighbor- 
hood of p. There are points of elevation less than e in N and to the right of both l 
and la • Thus there is a negative contour line segment 14 directed away from p and 
to the right of both l and la. (14 may be superimposed on l; if so it is considered as 
being an infinitesimal distance to the right of l.) By Rule 1, 14 is the continuation 
of la. Hence the positive contour line l~12 and the negative contour line lal4 do not 
cross. 

Next assume a negative contour line segment 15 intersects with the left side of 
l at p. Further assume that  15 is directed toward p. By a similar argument there is a 
positive contour line segment 16 directed toward p and to the left of both 1 and 15. 
But, by Rule 1, 12 is the continuation of 16 and not l~. This contradicts the hypothesis; 
thus this situation is impossible. 

Notice that  when a positive and negative contour line join to form an isorithm, 
although they are superimposed, the positive contour line should be considered as 
being an infinitesimal distance to the left of the negative contour line. 

PnOPERTY 20. A {maximum, minimum} contour line and a {negative, positive} 
contour line of the same value cannot intersect. 

PROOF. Only the last part of this property is proved. The other proof is very 
similar. 

Assume the intersection between a positive contour line l~ and a minimum con- 
tour line l~, both of value e, occurs at  a single point p0. Then T~(p0)2 = I I I .  Let 
N be a critical neighborhood of p with respect to 12 • Let p~ be some point other than 
p0 that  is in N and lies on 11 • Point pl does not lie on l~ and E(pl)  = e because pl 
is on l~. But since p0 contains pl in its subcritical neighborhood with respect to 12, 
TE (p0)~ cannot be III. This is a contradiction; therefore a positive and minimum 
contour line cannot intersect at a single point. The intersection of the two contour 
lines cannot occur on a line because the elevation types of points on this line with 
respect to the line would have conflicting requirements as imposed by the definition 
of positive and of minimum contour lines. 

PROPERTY 21. A {maximum, maximum, minimum} contour line and a {minimum, 
positive, negative} contour line of the same value cannot intersect. 

PROOF. The proof for Property 20 is also valid here. However, an alternate 
proof is presented. Only the first of the three parts is proved. The other two proofs 
are similar. Property 7 says that  all points on a maximum contour line have eleva- 
tion types I or IV and all points on a minimum contour line have elevation types 
I I I  or V. Hence, the two contour lines can have no points in common. 

PROP~nTY 22. Two {maximum, minimum} contour lines of the same value cannot 
intersect. 

PROOF. The proof tha t  they cannot intersect at a point is the same as the proof 
used in Property 20. If they intersect in a line there must be some point p for which 
they first join. But  then the elevation type of p with respect to either of the de- 
generate contour lines cannot be I or I I I  because every neighborhood of p contains 
a point that  is on one of the contour lines and not the other. This leads to a con- 
tradiction. 
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PROPEt{TY 23. Contour lines of d'~[ferent values cannot intersect at points that are 
h~side a smooth domain. 

PaooF. Let p be the intersection point between a contour line of value el and 
a contour line of value e2. The elevation of p nmst be both e~ and e,. But this violates 
the single-valued elevation requirements of points lying in a smooth domain. 

Pt¢OPERTY 24. Contour lines do not cross each other when traveling along a cl~]" line. 
PROOF. See Corollary 17.1. 

Properties 18 through 24 can be suminarized by the following two properties. 

PROPEItTY 25. Contour lines never cross. 

PROPERTY 26. Two contour lines can intersect at a point of a smooth domain only 
if both are normal contour lines and of the same value. 

Conclusion. Contour maps representing different quantities can be studied in a 
unified manner by the use of a formal model. The contour map model presented in 
tills paper uses the abstract concept of elevation type from which many of the 
intuitive notions about contour maps can be deduced. The results thus obtained 
are independent of the physical data represented by the contour map. One can 
apply the results obtained to any dependent variable providing the dependent 
variable satisfies the requirements set forth in this paper. 

APPENDIX. Eliminating Degenerate Contour Lines 

The concept of degenerate contour lines is a natural consequence of the theory 
based oft elevation types. In certain applications, complications arc caused by the 
presence of degenerate contour lines. In such cases a method is needed to eliminate 
degenerate contour lines. This can be accomplished by ciremnscribing in the 
{counterclockwise, clockwise} direction a {negative, positive} contour line of value 
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FIG. 8. Examples of transforming degenerate contour lines into normal contour lines 
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e around every {maximum, mininmm} contour line of value e and,  in addition, 
inscribing in the {clockwise, eountereloekwise} direction a {negative, positive} 
contour line of value e inside every {maximum, minimum} contour  line of value e 
that  is a closed curve. These enveloping normal contour  lines are shrunk such that 
the maximum distance from any  point on the normM contour lines to its nearest 
point on the degenerate contour lines approaches zero. The  degenerate contour 
lines can be replaced by these normal contour lines. Rule 1 is then applied to the 
intersections of these normal contour lines with themselves and with the other nor- 
mal contour lines on the map. Examples of t ransforming degenerate  contour lines 
into normal contour lines are shown in Figure 8. A contour  map with no degenerate 
contour lines is called a normal contour map. 

Note  that  the terms "inscribe" and "circumscribe" used in the preceding para- 
graph imply tha t  a closed curve has an inside and an outside. If  the domain of the 
map is a closed surface, the inside and outside of closed curve are undefined. How- 
ever, the procedure outlined in the preceding paragraph gives the same result 
regardless of which side of the closed curve is selected as the inside. 
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