
Exploring Genomic Datasets: from Batch to Interactive and Back
Luca Nanni

Dip. Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

luca.nanni@polimi.it

Pietro Pinoli
Dip. Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Milan, Italy
pietro.pinoli@polimi.it

Arif Canakoglu
Dip. Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Milan, Italy
arif.canakoglu@polimi.it

Stefano Ceri
Dip. Elettronica, Informazione e Bioingegneria,

Politecnico di Milano, Milan, Italy
stefano.ceri@polimi.it

ABSTRACT
Genomic data management is focused on achieving high perfor-
mance over big datasets using batch, cloud-based architectures; this
enables the execution of massive pipelines, but hampers the capa-
bility of exploring the solution space when it is not well-defined, by
choosing different experimental samples or query extraction param-
eters. We present PyGMQL, a Python-based interoperability soft-
ware layer that enables testing of experimental pipelines; PyGMQL
solves the impedance mismatch between a batch execution environ-
ment and the agile programming style of Python, and provides trans-
parency of access when exploration requires integrating local and
remote resources.Wrapping PyGMQL and Python primitiveswithin
Jupyter notebooks guarantees reproducibility of the pipeline when
used in different contexts or by different scientists. The software is
freely available at https://github.com/DEIB-GECO/PyGMQL.

CCS CONCEPTS
• Mathematics of computing → Exploratory data analysis;
Cluster analysis; • Applied computing → Computational ge-
nomics;

KEYWORDS
Scientific datamanagement; impedancemismatch; data transparency;
interactive data exploration
ACM Reference Format:
Luca Nanni, Pietro Pinoli, Arif Canakoglu, and Stefano Ceri. 2018. Exploring
Genomic Datasets: from Batch to Interactive and Back. In ExploreDB 2018
: 5th International Workshop on Exploratory Search in Databases and the
Web , June 15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3214708.3214710

1 INTRODUCTION
With the growth of availability of well-curated scientific databases,
data exploration is becoming a crucial aspect of scientific research;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ExploreDB 2018 , June 15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5847-7/18/06.
https://doi.org/10.1145/3214708.3214710

experimental results can be confirmed by queries over repositories
of curated knowledge; this trend is particularly relevant in life
science, as many communities are investing huge efforts in openly
accessible data collections.

Among life science applications, genomic data management is
the most relevant for the database community, due to the recent
development of massive genome sequencing technologies, that is
producing a huge amount of genomic datasets – by 2025, the global
size of genomic data is expected to exceed the size of all YouTube
videos by one or two orders of magnitude [16]. Worldwide inter-
national data sequencing efforts have already produced important
results in terms of curated repositories; classical examples include
the Encyclopedia of DNA Elements (ENCODE, [6]) the Cancer
Genome Atlas (TCGA, [17]), the 1000 Genomes Project [15]. Ac-
cording to many biologists and clinicians, a wealth of information
is undisclosed within such repositories; their discovery requires a
combination of data extraction, analysis, and exploration tools.

As part of a large project in genomic data management, we de-
veloped GMQL [10] [9], a data management system for integrating
heterogeneous datasets which are either produced by experimental
activities or retrieved from repositories of curated data. The peculiar
aspects of GMQL are the provisioning for a high-level, declarative
approach to data extraction and the support of a cloud-based imple-
mentation over genomic repositories, which have the typical big
data dimensions. As GMQL is implemented using cloud engines
(the currently preferred engine is Apache Spark [18]), GMQL is
best suited to support batch queries over large datasets, typically
part of complex pipelines, with executions that can require hours of
computing time. Such data-driven, query-based approach is clearly
inadequate for data exploration.

This paper describes PyGMQL, our approach to data exploration
that uses GMQL. Technically, PyGMQL is a relatively simple soft-
ware component when compared to GMQL, as it is essentially a
Python interface to GMQL. However, such interface had to solve
classical data exploration problems, such as:

• Impedance mismatch, i.e the need of transforming data
from set-oriented to record-oriented interaction: such need is
stronger in an exploratory session where we need to support
several of these transformations.

• Distribution transparency, i.e. the ability of transparently
combining local and remote datasets in the operations of the
query language.

https://github.com/DEIB-GECO/PyGMQL
https://doi.org/10.1145/3214708.3214710
https://doi.org/10.1145/3214708.3214710


ExploreDB 2018 , June 15, 2018, Houston, TX, USA Luca Nanni, Pietro Pinoli, Arif Canakoglu, and Stefano Ceri

• Reproducibility, i.e. the ability of an entire experiment to
be replicated, either by the same researcher or by someone
else working independently.

In this paper, after a short description of GMQL, we describe the
technical features of PyGMQL, and specifically how it addresses
the above challenges. For demonstrating the effectiveness of our
exploration approach, we dedicate a long section to a biological
example, which however is much simplified in its biological descrip-
tion so that it can be understood with limited domain knowledge.
We conclude by showing the limitations of current predominant ap-
proaches, which are based on low-level scripting embedded within
rather static workflow languages.

2 METHODS
GMQL: batch analysis of genomic datasets
GMQL is a data management and query system for biological data-
driven research. The main components of the system are: (a) a
repository where we import large public datasets as well as private
data; (b) a query language, which combines classical relational
algebra operators with domain specific ones; (c) a Web accessible
interface for browsing the repository, composing and launching
queries and retrieving the results; and (d) an implementation based
on cloud computing technologies to cope with the big data nature
of the biological research.

The data model used by GMQL is a significant improvement with
respect to its competitors. GMQL organizes data within datasets,
each of which consists of a collection of samples. A sample consists
of two components: experimental observations (e.g., list of muta-
tions, expression of genes) and metadata, providing clinical and
macroscopic features of the patient/sample as well as information
on how the experiment has been performed.

GMQL is an algebraic language whose operations apply to either
one or two datasets and produce a result dataset; a GMQL query
is invoked by requiring the materialization of its result, which in
turn causes the recursive computation of all the datasets building
intermediate results, up to the source datasets stored in the repos-
itory. GMQL operations include classic relational operations as
well as domain-specific ones; their peculiarity is to apply both to
observations and to metadata, thereby progressively aggregating
the metadata that explains how the result is built from the source
datasets.

The repository integrates curated datasets from several open
sources (currently, 18 datasets and 138K samples) and describes het-
erogeneous information, including mutations, expression (activity)
of each gene, protein-DNA interaction and 3D conformation of the
genome.

PyGMQL: motivation
GMQL is a batch system; the scientist has to write a query, setting all
the needed parameters, run it andwait for the results. Unfortunately,
this approach is not suited for data exploration. In fact, in the
preliminary step of a study, scientists do not clearly know what
to ask to the data. In this case, the full query should be written
in an interactive procedure, where the results of the current step
guide the formulation of the next step. Even when the query is
clear from the very beginning, many parameters may not be known

a priori (e.g., which genomic distance to consider, which level of
significance of a statistical test to accept) and have to be selected
via a trial and error process.

Furthermore, the evaluation of intermediate results requires sta-
tistical and visualization methods which are much easier to be ex-
pressed in an imperative and interactive environment, using freely
available libraries and resources. PyGMQL attempts to combine
the power of the declarative formalism of GMQL with the many
advantages of a scripting language such as Python: high quality
packages for statistics, machine learning and data visualization,
an interactive execution model, a huge community support, the
availability of advanced development tools (in particular we enforce
the use of Jupyter Notebooks1).

PyGMQL: architecture
Library abstractions to solve the impedance mismatch. PyGMQL

is an open source Python library designed to make the embedding
of GMQL queries within scripts as natural as possible. The first
issue it solves is the impedance mismatch between the imperative
record-based approach of Python and the declarative set-based
approach of GMQL by introducing two abstract data types that
represent the state of a GMQL variable. Those are:

• GMQLDataset: represents a dataset in a GMQL query and is
used to perform genomic operations in a set-based fashion,
coherentlywith the system approach. The user can transform
a dataset by using the operators of the library (which directly
map to the primitives of GMQL). In fact, a GMQLDataset does
not include any data, but it contains a direct acyclic graph
(DAG) that represents the flow of GMQL operations to build
the associated dataset. Every operation on a GMQLDataset
returns another GMQLDataset with a modified DAG, with
the exception of the materialize operator, which instead
triggers the execution.

• GDataframe: represents the result of a GMQL query, as re-
turned by a materialize invocation. It is made of two Pan-
das2 Dataframes (equivalent to relational tables) holding the
resulting regions and metadata. The two tables are synchro-
nized by using a common column representing the sample
identifier (see Figure 1). Regions of a sample correspond to
distinct rows, each with the same sample identifier; instead,
all the metadata of a given sample are collected in a single
row, with a single sample identifier. Note that samples can
have a bag (array) of values for the same metadata attribute.
The GDataframe enables a record-based data manipulation.

Pandas Dataframes can be easily manipulated by the most com-
mon Python utilities for data analysis. A GDataframe can be im-
ported back into a GMQLDataset, by means of a to_GDB primitive.
Technically, this is done by referencing the GDataFrame as one of
the inputs of the DAG associated with the GMQLDataset. Figure 2
provides a visual representation of the possible transitions between
GMQLDataset and GDataframe and the related functions.

The possibility of exporting data to GDataframes and then im-
porting them back to GMQLDatasets is one of the most important

1http://jupyter.org/
2https://pandas.pydata.org/



Exploring Genomic Datasets: from Batch to Interactive and Back ExploreDB 2018 , June 15, 2018, Houston, TX, USA

Figure 1: Example of a GDataframe structure

Figure 2: Main functions for the communication between
GMQLDataset and GDataframe

features of PyGMQL, allowing to exploit the power and the per-
formances of GMQL for data retrieval and a variety of Python
resources for data analysis. A PyGMQL pipeline is therefore an
interleaving of set- and record-oriented processing.

Lazy evaluation of queries and caching of the results. PyGMQL
has been designed with the objective of adapting to the lazy evalua-
tion technology of GMQL; thus, no operation is actually performed
until the materialize operation is applied to a GMQLDataset. This
strategy of execution is inspired by other big data frameworks like
Apache Spark and enables a variety of optimization and paralleliza-
tion strategies, as the entire DAG is considered and global decisions
can be taken.

The DAG structure of PyGMQL holding the query is also used
to cache the intermediate results. Since the user may want to run
the same code multiple times, for example when working in an
interactive programming environment like Jupyter Notebooks, this
feature provides a considerable speed-up in performance. If a user
decides to materialize a GMQLDataset D_1 in order to explore it and
then decides to define the new variable D_2 = D_1.operator(...),
a new node is added to the computation DAG, but the caching
mechanism keeps the previous result in memory. In this way, when
a D_2.materialize() operation is encountered, the computation
of the nodes building D_1 is skipped.

Local and remote execution modes. The library can operate in
two different modes of execution, which can be changed at any time
and alternated during the program using the function set_mode:

• Local execution: the computation of the query result is per-
formed directly in the user machine using a local GMQL
back-end.

• Remote execution: the computation of the query is performed
by a remote GMQL engine and the results are later down-
loaded for follow-up Python processing. The transmission
of the query information is done by passing to the remote
engine a serialization of the query DAG.

In addition, PyGMQL can operate on both local and remote
datasets: in the first case, data is stored in the user machine while
in the second it resides in a remote GMQL repository. When the
materialization operation is requested on a variable, the library
automatically manages the synchronization between the sources
and decides where the actual query execution must be performed.
This depends on the mode in which the library is set, leading to
four different scenarios, which are described in Table 1.

Note that a query can apply to many local and remote datasets.
The library keeps track of the origin of each dataset and when the
execution is triggered, on the basis of the data location and mode
of the library, the source nodes of the DAG are renamed to fit the
actual location of the data that the engine will use.

local mode remote mode

local
dataset

Load the dataset
from the local

storage

Upload the dataset
to the remote
repository

remote
dataset

Download the
dataset from the
remote repository

Define a local
pointer to the
remote dataset

Table 1: Possible scenarios of data synchronization depend-
ing on the location of the dataset and themode of the library

Integration in Jupyter Notebooks. PyGMQL is optimized for being
used inside a Jupyter Notebook; this setting ideally supports users
in alternating data processing, data presentation and visualization
steps, in the context of a well-defined interaction. Figure 3 shows a
Notebook at work in two steps of the use case described below, the
first one for exploring an initial dataset (in particular, the profile
includes metadata attributes and values), the second one for build-
ing and then exploring the regions of a result dataset, imported as
a GDataframe.

3 CLUSTERING OF DNA REGIONS
To illustrate both the expressive power and the flexibility of PyG-
MQL, we propose an example of biological data analysis; in the
example we integrate several types of datasets, having different
sizes and formats. PyGMQL is used in conjunction with standard
Python routines and external libraries, showing the high interop-
erability of the library with other well known interactive tools.
Since the focus of this work is not on the biological implications of
the described analysis, we will present a high-level description of
the problem which is incomplete from a biological perspective; it
assumes little biological background of the reader.



ExploreDB 2018 , June 15, 2018, Houston, TX, USA Luca Nanni, Pietro Pinoli, Arif Canakoglu, and Stefano Ceri

Figure 3: Example of usage of PyGMQL in a Jupyter note-
book environment

Problem setting
The genome can be partitioned into regions called topologically
associating domains (TADs); two consecutive TADs on the genome
are separated by a genomic region, called junction. DNA elements
(primarily genes, but also other biological actors) within a TAD
are known to physically interact with each other more intensively
than with DNA elements in different TADs [5]. Many groups in
biological research centers are engaged in understanding how the
subdivision of the genome into highly connected portions may
affect gene expression and regulation [14]. Along this direction,
we are supporting biologists in studying the physical interactions
between connected TADs, which hint to higher-level regulatory
mechanisms.

Connections between regions of the genome can be revealed by
several experimental techniques; among them, we consider Chro-
matin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)
- a technique used to determine zones in the genome to which a
specific protein binds [7]. Our pipeline uses such ChIA-PET pairs
as edges for building a connection map between the topological
domains in the genome.

Simply stated, the objective of our exploratory activity is the
search of clusters of nodes in a network, where nodes are TADs
and edges are ChIA-PET connections (see Fig. 4), where we explore
alternatives in the choice of nodes and edges and in the definition
of a TAD junction window (see Fig. 5). The pipeline is divided in
two main sections:

• Cluster extraction (local): an adjacency matrix between TAD
is created on the basis of ChIA-PET connections. TADs are
stored in a small-size dataset locally available, ChIA-PETs
are stored in a mid-size remote dataset. The exploratory
session uses the local GMQL system, by selectively loading
relevant samples from the ChIA-PET dataset from the re-
mote repository and using them together with the local TAD
dataset.

Figure 4: Schematic representation of the genome with
nodes representing TADs and edges representing ChiA-PET
connections

Figure 5: Cluster extraction pipeline

• Cluster analysis (remote): once the most interesting clusters
are selected, several different features of TADs forming a
cluster and of DNA elements within each TAD are studied,
by loading the cluster to the remote GMQL system, and using
other datasets which are remotely stored in the repository.

TAD dataset selection and manipulation
The first parameter of the pipeline that must be chosen is the cell
type (attribute cell) of considered TADs. The meta-selection func-
tion retrieves the samples which have a particular value for the
selected attribute. We decide to select the es cell line.

Next, we must adapt a TAD dataset to the needs of our pipeline.
In particular, each TAD has the simple schema < chr , start , stop >
describing the chromosome and the coordinates of its start and stop
position on the genome, but it has no identifier. As the unique identi-
fication of TADS is required, we provide it by first extracting a TAD
sample, then using the numpy python library to assign a numeric
identifier to each TAD region, and finally storing it back as a dataset,
to be used in following queries. Note the use of materialize fol-
lowed by the use of to_GDB functions, and that each resulting TAD
will have a new schema < chr , start , stop, tad_id >.



Exploring Genomic Datasets: from Batch to Interactive and Back ExploreDB 2018 , June 15, 2018, Houston, TX, USA

Figure 6: Schematic representation of the data exchange be-
tween the query engine and the Python environment

import gmql as gl
import numpy as np

gl.set_mode("local")

tads = gl.load_from_path(local_path="./path/to/tads")
tads_es = tads[tads['cell'] == 'es']
tads_m = tads_es.materialize ()
tads_m.regs['tad_id '] = np.arange(len(tads_m.regs))
tads = tads_m.to_GDB ()

A schematic representation of the sequence of operations can be
found in figure 6, where the interaction between the query engine
and the Python environment is highlighted.

Extraction of the TAD junctions
We next build the junctions of each TAD, which represent its end-
points. They depend on the junction window parameter, represent-
ing the size of junctions; these are experimentally ill-defined, hence
windows may range between few thousands and forty thousand
bases. The junction_window is a parameter of the pipeline and
needs to be tuned by the scientist. Junction are defined for both
the start and stop positions by using the region projection opera-
tion (reg_project operator of GMQL), expressed by a PyGMQL
function (we show the case for start):
junction_window = 20000

junctions = tads.reg_project(new_field_dict={
'start ': tads.start - junction_window ,
'stop' : tads.start + junction_window})

Creating the TAD interaction map
The next step concerns the definition of the edges of the interaction
graph between TADs. At this stage, we must select the ChIA-PET
dataset; like in the TAD case, the researcher should use the cell
metadata to select a compatible cell line. Given that we use the
es cell line for TADs, we select the es cell line also for ChIA-PET;
note that in many cases identical cell lines are not available and the
biologist must select compatible cell lines.

chiapet = gl.load_from_remote("chia_pet")
chiapet = chiapet[chiapet['cell'] == 'es']

In summary, at this stage a pipeline depends on the selection of
three parameters: the Window size and the cell lines for the TAD
and ChIA-PET samples.

Next, a domain-specific operation of GMQL, embedded by a
PyGMQL function, builds the TAD interaction map as a network
of nodes and edges; explaining this code goes beyond the purposes
of this paper, although the code is very compact and effectively
combines PyGMQL and Pandas primitives. Eventually, the final
data structure is an adjacency matrix M ∈ Nnt×nt where nt is the
total number of topological domains.

Clustering
The next step of the analysis consists in uncovering clusters of
TADs which are as numerous as possible and are also strongly
connected. This is easily achieved using the Louvain Modularity
community detection algorithm [2]. In Table 2 we report the highest
cardinality clusters that were found.

cluster id #TADs #diff. chr %contig. TADs
2 30 13 30.0%

1207 6 1 66.7%
364 5 1 60.0%
171 5 1 40.0%

Table 2: Top 4 clusters by number of TADs involved

The first cluster is an outlier with respect both to the size and
the number of different chromosomes it spans; it represents a good
candidate for follow-up cluster analysis. In general, by altering the
parameters of our pipeline, we can find interesting candidates for
follow-up analysis. Provisioning of new experimental samples in
the TADs and ChIA-PET datasets may trigger as well new data
analysis sessions.

Cluster analysis
The second part of our pipeline focuses on the analysis of a selected
cluster of TADs. For example, understanding which genes are active
in various biological conditions or which transcription factors bind
to specific regions inside the cluster could help in the identification
of its function. Since the TADs cluster spans a large section of the
genome (13 chromosomes, more than 200 genes and in the order of
millions bases), its analysis is computationally demanding. More-
over, the analysis can take advantage of publicly available biological
datasets; many of them are available on the GMQL repository. For
all these reasons, the cluster analysis must move from the local
machine to the remote, cloud-based environment; this change is
simply performed by setting the execution mode to remote.

The list of clusters, locally stored in a PandasDataframe clusters,
must be loaded to the remote server. Each row of this dataset repre-
sents a TAD, identified by a cluster-id. We can transform a given
cluster (e.g. the second one) into a GMQL variable (with schema
< chr , start , stop, cluster − id >) in the following way:
cluster = clusters[clusters.cluster_id == 2]
cluster_tads = gl.from_pandas(cluster).to_GDB ()



ExploreDB 2018 , June 15, 2018, Houston, TX, USA Luca Nanni, Pietro Pinoli, Arif Canakoglu, and Stefano Ceri

Since the cluster analysis depends on the biologist objective, it
is neither feasible nor in our goals to continue this example along
all directions, we will just briefly mention one of them; this final
part requires some understanding of epigenomics.

In the following, we show the processing of a remote dataset of
peaks of transcription factors, which represent zones of the genome
that regulate the production of a particular protein. These proteins
in turn regulate activation/de-activation of genes, basically defin-
ing the physiological characteristics of the studied tissue. Since the
dataset stores information about multiple cell types and organisms,
we select only human samples from the es cell. We then use the map
function to assign to each TAD in the cluster the set of transcription
factors that lie inside of it (variable tad_tf). Since a transcription
factor can be present multiple times in the same TAD, an aggrega-
tion is necessary to sum all its signal values (gl.SUM("signal")).

gl.set_mode("remote")

tf_dataset = gl.load_from_remote("tf_dataset")
tf_dataset = tf_dataset[(tf_dataset['cell'] == 'es')

& (tf_dataset['data_type '] == 'TF')
& (tf_dataset['cell_organism '] == 'human ')]

tad_tf = cluster_tads.map(tf_dataset ,
{'signal_sum ': gl.SUM("signal")})

tad_tf = tad_tf.materialize ()

Each region of the resulting GDataframe will have schema <
chr , start , stop, t f _id, siдnal_sum > and will represent how each
transcription factor interacts with each TAD. Using Python is now
easy to create a matrix T ∈ Rnt×nt f representing the aggregated
signal of each transcription factor for each TAD. We can exploit this
structure to derive statistics about the most relevant transcription
factors in the selected cluster.

4 RELATEDWORK
While GMQL has many competitors, PyGMQL is a unique first
step in the direction of bridging data exploration to genomic data
management. Genomic data analysis is mostly performed by using
programming languages such as R and Python, the classical data
scientist languages. Within the R community, Bioconductor[8] is
a popular genomic toolbox; its components are published after a
verification process by a wide community of users. Similarly, the
Python community uses BioPython[4], an open source set of tools
for computational biology and biological data manipulation. The
main limitation of these approaches is the lack of scalability.

BEDTools[13], BEDOPS[11] and GROK[12] are very popular
tools among bioinformaticians for genomic region manipulations.
They provide operations similar to those of GMQL, but they operate
at the sample level (iteration over samples must be programmed).
Thus, complex queries have to be composed via command line
scripts, and critical operation such as data conversion and pipeline
controls have to be coded. Although quite popular, this approach
is obviously neither reproducible nor highly productive from a
software engineering perspective.

A higher-level software organization, that guarantees better re-
producibility, is achieved by describing programmatic steps as tasks
of a workflow; two relevant systems in genomic data management
are Galaxy and Firecloud. Galaxy [1] is a web-based workflow plat-
form that is used by bioinformaticians to perform batch pipelines
which are quite similar to the ones described in this paper. Firecloud

[3] is an open platform for secure and scalable workflow-based anal-
ysis of genomic data, hosted by the Broad Institute in Boston, a
center of excellence for biomedical and genomic research. Fire-
Cloud provides a storage and billing system through GoogleCloud
resources.

The FireCloud project is in the process of providing a Python
interface matching with its pipelines; we are discussing with the
FireCloud administrators the integration of GMQL as one of the
supported tools within FireCloud and the possibility of connecting
its forthcoming Python interface to PyGMQL; the goal is provid-
ing an integrated environment which seamlessly combines batch
processing over the GoogleCloud and interactive data exploration.

5 CONCLUSION
PyGMQL has shown the huge potential that is offered to genomic
scientists when they can bridge data extraction capabilities which
scale and at the same time an agile data analysis context. The
library is publicly available and can be installed through the Python
Package Index with the command pip install gmql.

ACKNOWLEDGEMENTS
This work is supported by the ERC Advanced Grant 693174 "Data
Driven Genomic Computing" (GeCo).

REFERENCES
[1] Enis Afgan et al. 2016. The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2016 update. Nucleic acids research 44, W1
(2016), W3–W10.

[2] Vincent D. Blondel et al. [n. d.]. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment 2008, 10 ([n. d.]), P10008.

[3] Broad Institute. 2017. FireCloud. (2017). https://software.broadinstitute.org/
firecloud

[4] Peter JA Cock et al. 2009. Biopython: freely available Python tools for com-
putational molecular biology and bioinformatics. Bioinformatics 25, 11 (2009),
1422–1423.

[5] Jesse R. Dixon et al. [n. d.]. Topological domains inmammalian genomes identified
by analysis of chromatin interactions. Nature (apr [n. d.]), 376.

[6] ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements
in the human genome. Nature 489, 7414 (2012), 57.

[7] Melissa J. Fullwood et al. [n. d.]. Chromatin Interaction Analysis Using Paired-End
Tag Sequencing. Current Protocols in Molecular Biology 89, 1 ([n. d.]), 21.15.1–
21.15.25. https://doi.org/10.1002/0471142727.mb2115s89

[8] Robert C Gentleman et al. 2004. Bioconductor: open software development for
computational biology and bioinformatics. Genome biology 5, 10 (2004), R80.

[9] A. Kaitoua et al. 2017. Framework for Supporting Genomic Operations. IEEE Trans.
Comput. 66, 3 (March 2017), 443–457. https://doi.org/10.1109/TC.2016.2603980

[10] Marco Masseroli et al. 2015. GenoMetric Query Language: a novel approach to
large-scale genomic data management. Bioinformatics 31, 12 (2015), 1881–1888.
https://doi.org/10.1093/bioinformatics/btv048

[11] Shane Neph et al. 2012. BEDOPS: high-performance genomic feature operations.
Bioinformatics 28, 14 (2012), 1919–1920.

[12] Kristian Ovaska et al. 2013. Genomic region operation kit for flexible processing
of deep sequencing data. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB) 10, 1 (2013), 200–206.

[13] Aaron R Quinlan. 2014. BEDTools: the Swiss-army tool for genome feature
analysis. Current protocols in bioinformatics (2014), 11–12.

[14] Sadia Saeed et al. 2014. Epigenetic programming of monocyte-to-macrophage
differentiation and trained innate immunity. 345, 6204 (2014). https://doi.org/10.
1126/science.1251086

[15] Nayanah Siva. 2008. 1000 Genomes project. (2008).
[16] Zachary D. Stephens et al. 2015. Big data: astronomical or genomical? PLoS

biology 13, 7 (2015), e1002195.
[17] John N. Weinstein et al. 2013. The cancer genome atlas pan-cancer analysis

project. Nature genetics 45, 10 (2013), 1113.
[18] Matei Zaharia et al. 2016. Apache spark: a unified engine for big data processing.

Commun. ACM 59, 11 (2016), 56–65.

https://software.broadinstitute.org/firecloud
https://software.broadinstitute.org/firecloud
https://doi.org/10.1002/0471142727.mb2115s89
https://doi.org/10.1109/TC.2016.2603980
https://doi.org/10.1093/bioinformatics/btv048
https://doi.org/10.1126/science.1251086
https://doi.org/10.1126/science.1251086

	Abstract
	1 Introduction
	2 METHODS
	3 Clustering of DNA regions
	4 Related Work
	5 Conclusion
	References

