
Fast, High Precision Ray/Fiber Intersection

using Tight, Disjoint Bounding Volumes

Nikolaus Binder, Alexander Keller

NVIDIA

2 4 9 16 22
0

5

10

subdivision depth

G
ra

y
s/

s

2 9 16 22
0

5

10

subdivision depth

2 6 9 16 22
0

5

10

subdivision depth

Nakamaru/Ohno [12]

Our method

Figure 1: The performance of methods pruning with (overlapping) AABBs drops dramatically with increas-
ing subdivision depth, whereas our tight, disjoint bounding volumes always allow for efficient
pruning and instant termination.

Abstract

Analyzing and identifying the shortcomings of current subdivision methods for finding inter-
sections of rays with fibers defined by the surface of a circular contour swept along a Bézier
curve, we present a new algorithm that improves precision and performance. Instead of the
inefficient pruning using overlapping axis aligned bounding boxes and determining the closest
point of approach of the ray and the curve, we prune using disjoint bounding volumes defined by
cylinders and calculate the intersections on the limit surface. This in turn allows for computing
accurate parametric position and normal in the point of intersection. The iteration requires only
one bit per subdivision to avoid costly stack memory operations. At a low number of subdivi-
sions, the performance of the high precision algorithm is competitive, while for a high number of
subdivisions it dramatically outperforms the state-of-the-art. Besides an extensive mathematical
analysis, source code is provided.

1 Introduction

State-of-the-art photo realistic image synthesis is based on (quasi-) Monte Carlo simulation of light
propagation: Rays are traced to connect the camera with the light sources. Then, the contribution
of all these light paths is summed up.

Often, fibers for hair and fur are part of the scenery. These fibers are usually modeled as sweep
surfaces along Bézier curves with a circular cross section and a parametric radius, which may
vary along the curve. While triangles are a very common representation for most other parts of
the scene geometry, they often are a very unsuitable approximation for fibers. Reasons for this
exception include memory restrictions, numerical issues, and efficiency considerations. Therefore,
especially in high quality rendering, custom primitives are used for fibers, and intersections of rays
with these primitives must be found.

1

ar
X

iv
:1

81
1.

03
37

4v
1

 [
cs

.G
R

]
 8

 N
ov

 2
01

8

2 Previous Work

Most popular approaches are based on recursive subdivision of the curve [Cat74], after which either
the segment of the curve can be approximated by a simple primitive or an iterative solver refines the
solution. The number of subdivisions required for a certain reduction of curvature can be reduced
by a more thorough analysis, however at the price of a significantly increased effort [HARL05].

Generalized cylinders [BB82] are a common representation for hair fibers. They are defined by
sweeping an arbitrary two-dimensional contour along a three-dimensional curve. Intersections of
rays with these objects can be found without tessellation [BK85]: Each ray is projected into a
parametric frame aligned to the trajectory of the curve, i.e. the contour is fixed. At the same
time the trajectory of the ray becomes a two-dimensional curve. Then, the ray and the contour
are subdivided simultaneously until the size of their bounding boxes fall below a threshold. During
the process, combinations of the two intervals for which the bounding boxes do not overlap can be
pruned. In a final step, the exact intersection points are calculated, which requires solving equations
of higher polynomial degree.

The method can be simplified by either restricting the shape of the sweep curve [vW84] or
the shape of the contour without subdividing the curve first [vW85]. However, finding roots of
polynomials with a high degree is still required and remains numerically challenging.

Intersections of rays and sweep surfaces with a circular cross section can also be found by combin-
ing the equations of the trajectory of a ray and the parametric distance of a point to a parametric
position on the curve [Lei95]. Again, roots of a polynomial with high degree must be found.

Approximating the intersection on the surface of the fiber with the closest point of approach of
the ray and the curve lowers the polynomial degree. The closest point of approach of two lines
can be determined very efficiently in ray-centric coordinate systems using an adaptive linearization
method based on recursive subdivision [NO02]. If only primary visibility from a pin hole camera is
of concern, it can be beneficial to compute line samples instead of point samples [BGA12]. In the
same spirit, cone tracing can decrease the number of samples significantly [QCH+14]. The obtained
coverage information, however, may not fit the architecture of a fully path traced simulation.

Improvements of a “top level” hierarchy referencing fibers and unrolling curve subdivision such
that the number of segments matches the SIMD width may improve performance on certain archi-
tectures [WBW+14]. More recent iterative root finding methods can replace recursive subdivision
to improve convergence speed and precision at the same time [Res17].

While these methods computing the closest point of approach deliver state-of-the-art performance
for a certain level of detail, they all suffer from the underlying approximation, which prohibits
the determination of the correct intersection on the surface of the fiber and the normal in the
intersection. An example for this issue is shown in Figure 2. Furthermore, the inefficiency of the
pruning tests of subdivision-based methods becomes prohibitive for a high number of subdivisions.
Finally, recursive methods using a stack suffer from memory bandwidth limitations, especially on
current GPUs.

Fast ray tracing is possible due to efficient data structures that identify all potential parts of the
scene that may be intersected by a ray. The state-of-the-art for these acceleration data structures
performs hierarchical partitioning of either space or the set of objects. Furthermore, there exist
hybrid schemes that partition both the set of objects and space in order to improve performance
[SFD09]. As the construction and traversal of such acceleration data structures is almost orthogonal
to the actual ray/fiber intersection, we focus on improving the latter in this article.

2

Figure 2: Left: Methods based on the closest point of approach cannot determine the correct parametric
position and normal. Right: Our method computes both with high precision.

3 Algorithm

Our algorithm is a member of the family of subdivision-based methods computing intersections of
rays with fibers by recursively bisecting the curve and pruning regions that cannot be intersected
by the ray [Cat74].

The first contribution is a stackless iterative variant that only keeps track of subdivision levels
that require backtracking and re-computes all necessary data instead of employing a stack. Our
second contribution is a fast pruning test with oriented cylinders that significantly improves the
accuracy, especially for a high number of subdivisions. After a termination criterion is met, e.g. a
fixed number of subdivisions, the final intersection with the linearized segment, represented by a
cylinder with oriented end caps, is computed. As bounding cylinders of neighboring curve segments
now are disjoint by construction and closer segments are always intersected first, our algorithm
can immediately terminate after an intersection has been found (3rd contribution). Instead of
approximating the actual intersection on the surface of the fiber with the closest point of approach,
we reuse the intersection already determined for pruning (4rd contribution) and are able to compute
an accurate normal (5th contribution).

3.1 Numerically Robust Curve Representation

A näıve implementation for cubic Bézier curves using four control points (p0, p1, p2, p3) suffers from
severe floating point precision issues in our algorithm due to cancellation in differences required to
determine the cylinder axis (p3 − p0) and the tangent in the split point.

Therefore, we use a representation tailored to our pruning test as illustrated in Figure 3: We
maintain the first control point p := p0, the tangents in the start and end points t0 := p1− p0, t1 :=
p3−p2, and the direction d := p3−p0. This representation requires different rules for the subdivision
of (p, d, t0, t1) into

(
pL, dL, tL0 , t

L
1

)
and

(
pR, dR, tR0 , t

R
1

)
, where

∆p = 3
8 t0 + 1

2d−
3
8 t1,

tc = −1
8 t0 + 1

4d−
1
8 t1,

3

•

•
•

•

t0

d
t1

p := p0

p1
p2

p3

Figure 3: Representing the curve with the tuple
{p,d, t0, t1} improves the numerical
robustness of the method significantly.

•
p0

p1p2

•
p3

Figure 4: A loop violating the constraints re-
quired to construct disjoint bounding
volumes must be split beforehand.

and

pL = p, pR = p + ∆p,

dL = ∆p, dR = d−∆p,

tL0 =
1

2
t0, tR0 = tc,

tL1 = tc, tR1 =
1

2
t1.

As we will use disjoint bounding volumes, only one of the two sets needs to be calculated as
determined by the pruning test. In fact this subdivision can be computed even slightly more
efficiently than the subdivision of (p0, p1, p2, p3) and only exposes a minimal amount of instruction
divergence due to branching.

3.2 Efficient Hierarchical Pruning

Each region of the subdivision is conservatively bounded by an oriented cylinder, which is partitioned
by a plane located in the split point and perpendicular to the tangent in the split point of the curves.
The limit surface of these cylinders guarantees that an intersection is always mapped to the closest
point on the curve.

Only if the intersection of the ray with the plane is inside the cylinder, both sub-regions must
be considered. Then, subdivision starts with the region whose bounding volume is intersected first
along the ray. Figure 5 shows an example with four possible cases. Note that the test for inclusion
only requires comparing the distances of the two ray/cylinder intersections with the distance of the
intersection with the plane.

As these pruning tests are performed with disjoint bounding volumes and refinement always
continues with the closest sub-region, subdivision can immediately terminate after an intersection
has been found. Instant termination is essential for a high number of subdivisions because otherwise
the number of unpruned regions may grow exponentially with subdivision depth.

While bounding both subcurves in individual cylinders instead of using one partitioned cylinder
improves the culling accuracy, the overhead of computing and intersecting two bounding volumes
outweighs the theoretical benefit in practice, especially since the benefit quickly decreases with
subdivision.

3.3 Implementation

Pruning is performed in a ray centric coordinate system, in which the ray starts in the origin and goes
along the positive z axis (“unit ray”). A reliable orthonormal basis can be efficiently constructed
using Duff et al.’s recent improvement of Frisvad’s method [Fri12, DBC+17]. The transformation
into the local frame only needs to be performed once at the beginning by calculating a local set of

4

left, right

left, rightleft, right right, left

Figure 5: Bounding cylinders with partitioning planes improve the efficiency of pruning tests and allow for
instant termination after an intersection has been found.

control points. In this coordinate system, we can simplify ray/plane intersection and the infinite
cylinder intersection described by Cychosz et al. [CW94] significantly since ∀v ∈ R3: 〈v, d〉 = vz
and v − o = v for a unit ray defined by its origin and direction (o, d). Listings 1 and 2 present
the resulting optimized intersection functions; the simplified ray/cylinder intersection is derived in
Appendix A.

We use four-dimensional control points, where the first three components are the position, and
the last one defines the radius. This consistent representation allows for cubic interpolation of the
radius.

Bounding cylinders are oriented along the vector connecting the first and last control point and
have a conservative radius defined by the sum of the maximum radius in the region and the maximum
distance of the inner control points to the cylinder axis. We also use Bézier curves for radius
interpolation, and bound the parametric radius using the convex hull property.

An example implementation for the computation of a conservative radius for the bounding cylin-
ders and cubic Bézier curves is given in Listing 8, using the distance of the two inner control points
to the axis determined by the method shown in Listing 3.

The infinite cylinders are cropped by restricting the t-parameter interval of the ray. After de-
termining initial bounds of the t parameter interval, in each subdivision step one of the interval
bounds is updated; both are recalculated after backtracking. A simple implementation for cubic
Bézier curves is shown in Listing 6.

Recursive subdivision is performed by an iterative process by maintaining a bit string in which
each subdivision level is represented by one bit and the current size of the parametric domain. After
the pruning test, the corresponding bit in the bit string is set to one if and only if both subregions
must be considered, and only in this case backtracking is required. Then, the control points and the
t interval are recalculated to avoid maintaining a stack of control points. The current parametric
interval of the curve can directly be derived from the bit stack. It is always maintained in two
integer variables for start and size of the interval, which must be converted to floating point values
in the unit interval before calculating new control points. This conversion is shown in Listing 4.

Upon termination, the intersection of the ray with the bounding cylinder used for pruning already
determines the intersection with the linearized segment. Only very little effort is required to compute
the normal and the parametric value in the intersection, and this calculation is performed by all
threads of a warp simultaneously in the very end. Listing 13 shows a possible implementation.

3.4 Constraints and Limitations

A bisection into subregions that can be bounded by disjoint bounding volumes poses well-defined
restrictions on the allowed sets of control points. At the same time, the constraints also ensure
that curves with valid configurations cannot be split into invalid ones. For cubic Bézier curves the

5

Figure 6: While curves may be split disjointly in cusps, thicker fibers can still overlap splitting planes, causing
visible defects. While the left fiber does not suffer from this issue, the fiber in the middle, which
goes along the same curve but has a larger radius does. Of course, fibers with parametric radius
(right) can also overlap partitioning planes.

t̂1

t̂u

n̂

pu

p3

Figure 7: Illustration of finding the closest point on the normal plane in a point on the curve to a partitioning
plane.

constraints

〈p2 − p0, p1 − p0〉 ≥ 0,

〈p3 − p1, p1 − p0〉 ≥ 0,

〈p3 − p1, p3 − p2〉 ≥ 0,

〈p2 − p0, p3 − p2〉 ≥ 0,

〈p2 − p0, p3 − p1〉 ≥ 0

guarantee that the curve can be recursively split into subcurves with disjoint bounding volumes.
Appendix B provides the constraints required for quadratic Bézier curves and all necessary proofs
for both quadratic and cubic Bézier curves. Curves that do not fulfill these constraints must be
subdivided beforehand. An example for such a configuration is shown in Figure 4.

While these constraints are necessary, they are not sufficient to guarantee disjoint bounding
volumes of fibers: If a point on the surface (perpendicular to the tangent tu of the point on the
curve pu, at a distance defined by the radius in that point ru) intersects the partitioning plane in
the split point, a valid part of the surface of the fiber will be cropped.

Figure 6 shows three examples: The leftmost fiber with a small, constant radius does not suffer
from this issue, while the surface of the other ones intersects the split plane as their radius is too
large, and thus errors may be introduced. Besides thick fibers, high curvatures (e.g. in cusps)
can cause similar issues. Regions with such a behavior must be isolated and require subdivision
beforehand, too. Note that a similar issue affects methods based on the closest point of approach.

Such configurations can be identified as shown in Figure 7: The surface point closest to the plane
in the split point perpendicular to the split tangent t1 is on the plane perpendicular to the tangent
t at the parametric position. Gram-Schmidt orthogonalization yields the displacement from the

6

0

15

30

75

Figure 8: Pruning with oriented cylinders (right) dramatically lowers the total number of regions of interest
by reducing the number false positives compared to pruning with axis aligned bounding boxes
(left), especially for a high number of subdivisions.

curve closest to the split plane

nu = t1 − 〈t1, t̂u〉 · t̂u

= t1 −
〈t1, tu〉tu
〈tu, tu〉

∝ 〈tu, tu〉t1 − 〈t1, tu〉tu,

where tu = (1− u)2(p1 − p0) + 2(1− u)u(p2 − p1) + u2(p3 − p2) and t1 = p3 − p2 for a cubic Bézier
curve. As nu has a maximum degree of 4, checking all solutions ui ∈ [0, 1] of

〈p3 − pu + ru · n̂u, t̂1〉 = 0 or just

〈p3 − pu + r̄ · n̂u, t̂1〉 = 0, ru ≤ r̄

requires solving a quartic equation, e.g. using Ferrari’s method [Smi29], eliminating the cubic term
using the Tschirnhaus transformation [Boy68].

As the curvature decreases with subdivision (see subdivision rules in Section 3.1) and the max-
imum radius r̄ is a constant, it is sufficient to check each fiber only initially in its two end points
with corresponding tangents.

While it would be trivially possible to support all possible curve configurations and overcome the
issues in cusps and with very thick fibers by optionally allowing overlapping bounding volumes in
certain subdivisions, the overhead of checking the criteria in every subdivision step and recording
the ones that overlap will most likely not pay off in practice since the number of such configurations
is usually small. As furthermore the cost of splitting beforehand is rather moderate, the overall
penalty tends to be negligible.

4 Results and Discussion

We evaluated the performance and precision of the presented algorithm using single fibers along
quadratic and cubic Bézier curves.

Figure 8 compares the number of pruning tests required for our method to pruning with axis
aligned bounding boxes for a high number of subdivisions. As expected the overlapping axis aligned
bounding boxes result in an exponential growth of regions that cannot be pruned. Note that the
bounding boxes are aligned to the main axis of the coordinate system of each ray, hence they appear
to be warped.

Figure 1 shows the performance for intersecting ∼1 million rays with a single fiber on an NVIDIA
Titan V. While the relative performance does depend on the orientation and curvature of the fiber,
as pruning with axis aligned bounding boxes benefits from straight, aligned fibers, the main issue
for the dramatic slowdown of the state-of-the art remains: After a certain number of subdivisions,

7

the bounding boxes of two curves resulting from the subdivision of a region overlap almost entirely.
Then, none of them can be pruned and a significant amount of additional backtracking is required.

Nakamaru’s method [NO02] does not take into account the ray direction for deciding which
subcurve is checked first, therefore causing exponential growth of valid regions in the worst case.
Hybrids between the two methods, i.e. pruning with axis aligned bounding boxes, taking ray
direction into account, and calculating the final intersection with cylinders not only suffer from
divergence caused by the additional test, but are mostly limited by the pruning inefficiency, and
therefore may be only valuable in rare cases.

Combining the fiber intersection with a top level hierarchy referencing fibers, or regions on fibers
if the fiber must be split beforehand, is straightforward. The top level hierarchy is primarily
orthogonal to fiber intersection unless fibers are partitioned into very small regions. Then, the
increased efficiency of the pruning tests of the presented method becomes even more important.

Note that in practice, intersection cost is almost always dominated by the performance of travers-
ing the hierarchy referencing the fibers and other geometry in the scene. Nevertheless, we calculate
accurate intersections and normals on the surface in a reliable way and do so either with a small
overhead or – if high precision is of concern – dramatically faster.

5 Conclusion

We have presented an algorithm that outperforms the state-of-the-art subdivision-based ray/fiber
intersection method significantly for a high number of subdivisions, and computes accurate inter-
sections on the surface of the fiber with an accurate normal. In addition, we also determine a
precise parametric position. Even for small numbers of subdivisions, which quite often lead to
visible artifacts in Nakamaru’s method [NO02], the approximation error of our algorithm is well
understood and the overhead of pruning with oriented cylinders instead of axis aligned bounding
boxes remains reasonable. While the algorithm cannot handle arbitrary fibers, configurations that
cannot be supported can be identified in advance. Subdividing such fibers resolves the issues.

Future opportunities include displacements and arbitrary contours, both only requiring an addi-
tional intersection test after pruning with conservative bounding cylinders.

References

[BB82] D. Ballard and C. Brown. Computer Vision. Prentice Hall Professional Technical
Reference, 1st edition, 1982.

[BGA12] R. Barringer, C. Gribel, and T. Akenine-Möller. High-quality curve rendering using
line sampled visibility. ACM Trans. Graph., 31(6):162:1–162:10, 2012.

[BK85] W. Bronsvoort and F. Klok. Ray tracing generalized cylinders. ACM Trans. Graph.,
4(4):291–303, October 1985.

[Boy68] C. Boyer. A History of Mathematics. Wiley, New York, 1968.

[Cat74] E. Catmull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, The University of Utah, 1974. AAI7504786.

[CW94] J. Cychosz and W. Waggenspack, Jr. Intersecting a ray with a cylinder. In Paul S.
Heckbert, editor, Graphics Gems IV, pages 356–365. Academic Press Professional, Inc.,
San Diego, CA, USA, 1994.

8

[DBC+17] T. Duff, J. Burgess, P. Christensen, C. Hery, A. Kensler, M. Liani, and R. Villemin.
Building an orthonormal basis, revisited. Journal of Computer Graphics Techniques
(JCGT), 6(1):1–8, 2017.

[dC59] P. de Casteljau. Outillages methodes calcul. Technical report, Citroën France, 1959.

[Fri12] J. Frisvad. Building an orthonormal basis from a 3d unit vector without normalization.
Journal of Graphics Tools, 16(3):151–159, 2012.

[HARL05] T. Hain, A. Ahmad, S. Racherla, and D. Langan. Fast, precise flattening of cubic bézier
path and offset curves. Comput. Graph., 29(5):656–666, October 2005.

[Lei95] A. Leipelt. Ray tracing a swept sphere. In Alan W. Paeth, editor, Graphics Gems V,
pages 258–267. Academic Press, 1995.

[NO02] K. Nakamaru and Y. Ohno. Ray tracing for curves primitive. In WSCG, pages 311–316,
2002.

[QCH+14] H. Qin, M. Chai, Q. Hou, Z. Ren, and K. Zhou. Cone tracing for furry object rendering.
IEEE Transactions on Visualization and Computer Graphics, 20(8):1178–1188, August
2014.

[Res17] A. Reshetov. Exploiting budan-fourier and vincent’s theorems for ray tracing 3d bézier
curves. In Proceedings of High Performance Graphics, HPG ’17, pages 5:1–5:11, New
York, NY, USA, 2017. ACM.

[SFD09] M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding volume hierarchies.
In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
7–13, New York, NY, USA, 2009. ACM.

[Smi29] D. Smith. A Source Book in Mathematics. McGraw-Hill Book Company, Inc., London,
1929.

[vW84] J. van Wijk. Ray tracing objects defined by sweeping planar cubic splines. ACM Trans.
Graph., 3(3):223–237, July 1984.

[vW85] J. van Wijk. Ray tracing objects defined by sweeping a sphere. Computers & Graphics,
9(3):283–290, 1985.

[WBW+14] S. Woop, C. Benthin, I. Wald, G. Johnson, and E. Tabellion. Exploiting local ori-
entation similarity for efficient ray traversal of hair and fur. In Proceedings of High
Performance Graphics, HPG ’14, pages 41–49, Aire-la-Ville, Switzerland, Switzerland,
2014. Eurographics Association.

9

Appendix A: Intersection of a unit ray with an infinite cylinder

The ray/cylinder intersection described by Cychosz et al [CW94] can be simplified for unit rays,
because a normalization of the cylinder axis is not required:

The smallest distance between the ray and an infinite line through the points p and q, i.e. with
axis A := q − p, normalized to Â := A

|A| is

d = |p ·D|, where

D =
R̂× Â

|R̂× Â|
.

For l̄A := 1
|A| ,

R̂× Â = R̂× (A · l̄A) = (R̂×A) · l̄A = (−ay, ax, 0)T · l̄A.

Furthermore,

|R̂× Â| =
√
l̄2A(a2y + a2x) = l̄A

√
a2x + a2y.

Therefore,

D =
R̂× Â

|R̂× Â|
=

(−ay, ax, 0)T · l̄A√
a2x + a2y · l̄A

=
(−ay, ax, 0)T√

a2x + a2y

,

and the squared minimum distance between the ray and the line is

d2 =
(axpy − aypx)2

a2x + a2y
. (1)

The ray hits the infinite cylinder though p and q with the radius r if and only if

d2 ≤ r2.

For the special cases of a line along the z axis, in which the denominator of (1) would be zero, the
squared distance between the ray and the line is the two-dimensional distance of p to the origin,
i.e. d2 = p2x + p2y.

Setting g := a2x+a2y, the distance of the closest point of approach (cpa) of the ray and the cylinder

10

from the ray origin is

tcpa =
(p× Â) ·D
|R̂× Â|

=
l̄A(p×A) · (−ay ,ax,0)

T
√
g

l̄A
√
g

=
(p×A) · (−ay, ax, 0)T

g

=
(pyaz − pzay, pzax − pxaz, pxay − pyax)T · (−ay, ax, 0)T

g

=
−pyayaz + pza

2
y + pza

2
x − pxazax

g

=
pzg − az(pyay + pxax)

g

= pz −
az(pyay + pxax)

g
.

The intersections of the ray and the cylinder are located at (0, 0, t± s), where

s =

∣∣∣∣∣
√
r2 − d2

R̂ · Ô

∣∣∣∣∣ and

Ô =
D × Â

|D × Â|
.

Again, a normalization of A is not required, as its inverse length l̄A cancels out:

D × Â =
(−ay, ax, 0)T

√
g

× (A · l̄A) =
(
(−ay, ax, 0)T ×A

)
· l̄A√

g

= (axaz, ayaz,−g)T · l̄A√
g
,

Hence,

|D × Â| =

√
l̄2A√
g2

(a2xa
2
z + a2ya

2
z + g2) =

l̄A√
g

√
a2z(a

2
x + a2y) + g2

=
l̄A√
g

√
a2zg + g2,

Ô =
(axaz, ayaz,−g)T√

a2zg + g2
=

(axaz, ayaz,−g)T√
g(a2z + g)

.

For a unit ray with R̂ = (0, 0, 1)T , we only need to consider

Oz = − g√
g(a2z + g)

= −
√

g

a2z + g
,

11

since all terms are positive. Finally,

s =

√
r2 − d2√

g
a2z+g

=

√
r2 − d2

g
a2z+g

=

√
(r2 − d2)(a2z + g)

g
,

and the distance to the closest visible surface boundary is

t =

{
tcpa − s tcpa ≥ s

tcpa + s otherwise.

If t < 0, the cylinder is behind the ray origin.

12

Appendix B: Curve Constraints

B.1 Quadratic Bézier Curves

Lemma 1. The two subcurves defined by their control points
(
pL0 , p

L
1 , p

L
2

)
and

(
pR0 , p

R
1 , p

R
2

)
resulting

from de Casteljau subdivision [dC59] in the domain center of the quadratic Bézier curve defined by
the control points (p0, p1, p2) can be enclosed by disjoint bounding volumes partitioned by a plane
located in the split point s := p0+2p1+p2

4 orthogonal to the tangent in the split point t := p2 − p0 if
and only if

〈p1 − p0, p1 − p2〉 ≤ 0. (2)

Proof. As Bézier curves are defined as a convex combination of the control points, the bounding
volumes of the two sub curves are disjointedly can be split by the plane located in s and orthogonal
to t if 〈

pLi − s, t
〉
≤ 0 and (3)〈

pRi − s, t
〉
≥ 0 ∀i ∈ {0, 1, 2}. (4)

De Casteljau subdivision in the domain center creates the control points

(
pL0 , p

L
1 , p

L
2

)
:=

(
p0,

p0 + p1
2

,
p0 + 2p1 + p2

4

)
and

(
pR0 , p

R
1 , p

R
2

)
:=

(
p0 + 2p1 + p2

4
,
p1 + p2

2
, p2

)
of the two subcurves.
pL2 = pR0 = s obviously fulfill the conditions by construction.
For pL0 := p0 〈

p0 −
p0 + 2p1 + p2

4
, p2 − p0

〉
≤ 0

⇔ 〈3p0 − 2p1 − p2, p2 − p0〉 ≤ 0

⇔ 〈p0 − p2, p2 − p0〉︸ ︷︷ ︸
≤0

+〈2p0 − 2p1, p2 − p0〉 ≤ 0

⇐ 〈p0 − p1, p2 − p0〉 ≤ 0. (5)

Analogously, checking pR2 := p2 gives 〈p1 − p2, p2 − p0〉 ≤ 0. The reversed conditions

〈p1 − p0, p2 − p0〉 ≥ 0 and (6)

〈p1 − p2, p0 − p2〉 ≥ 0 (7)

can be combined to

〈p1 − p0, p1 − p2〉 ≤ 0, (8)

as the projections of p1 − p0 and p1 − p2 onto p2 − p0 must have different signs to satisfy both
conditions (so that p1 is inside the hatched area in Figure 9).

13

p0

p1

p2

Figure 9: p1 must be inside the hatched area if and only if (6) and (7) are satisfied. Only in that case (2) is
also fulfilled.

Finally, for pL1 := 1
2p0 + 1

2p1 the conditions are always met, as〈
pL1 − s, t

〉
≤ 0

⇔
〈
p0 + p1

2
− p0 + 2p1 + p2

4
, p2 − p0

〉
≤ 0

⇔ 〈2p0 + 2p1 − (p0 + 2p1 + p2), p2 − p0〉 ≤ 0

⇔ 〈p0 − p2, p2 − p0〉 ≤ 0. (9)

The remaining proof for pR1 is analogous. As all control points are now on one side of the split-
ting plane, their convex hull property ensures that all control points of further subcurves and the
subcurve itself must also be on this side. �

Lemma 2. Splitting the quadratic Bézier curve fulfilling (2) in the domain center results in two
subcurves that both also satisfy (2). Hence, all nested subcurves fulfill the condition.

Proof. For the left subcurve 〈
pL1 − pL0 , p

L
1 − pL2

〉
≤ 0

⇔
〈
p0 + p1

2
− p0,

p0 + p1
2

− p0 + 2p1 + p2
4

〉
≤ 0

⇔ 〈p1 − p0, 2p0 + 2p1 − p0 − 2p1 − p2〉 ≤ 0

⇔ 〈p1 − p0, p0 − p2〉︸ ︷︷ ︸
≥0 by Eq. (6)

≤ 0,

and for the right subcurve 〈
pR1 − pR0 , p

R
1 − pR2

〉
≤ 0

⇔
〈
p1 + p2

2
− p0 + 2p1 + p2

4
,
p1 + p2

2
− p2

〉
≤ 0

⇔ 〈2p1 + 2p2 − (p0 + 2p1 + p2), p1 + p2 − 2p2〉 ≤ 0

⇔ 〈p2 − p0, p1 − p2〉 ≤ 0

⇔ 〈p2 − p1, p0 − p2〉︸ ︷︷ ︸
≥0 by Eq. (7)

≤ 0.

�

B.2 Cubic Bézier Curves

Lemma 3. The two subcurves defined by their control points
(
pL0 , p

L
1 , p

L
2 , p

L
3

)
and

(
pR0 , p

R
1 , p

R
2 , p

R
3

)
resulting from de Cateljau subdivision [dC59] in the domain center of a cubic Bézier curve defined

14

by the control points (p0, p1, p2, p3) can be enclosed in disjoint bounding volumes partitioned by a
plane located in the split point s := 1

8(p0 + 3p1 + 3p2 + p3) and orthogonal to the tangent in the
split point t := 3

4(−p0 − p1 + p2 + p3) if

〈p2 − p0, p1 − p0〉 ≥ 0 and (10)

〈p3 − p1, p1 − p0〉 ≥ 0 and (11)

〈p3 − p1, p3 − p2〉 ≥ 0 and (12)

〈p2 − p0, p3 − p2〉 ≥ 0 and (13)

〈p2 − p0, p3 − p1〉 ≥ 0. (14)

Proof. As a Bézier curve results from a convex combination of its control points, the bounding
volumes of the two sub curves can disjointedly be split by the plane located in s and orthogonal to
t if 〈

pLi − s, t
〉
≤ 0 and〈

pRi − s, t
〉
≥ 0 ∀i ∈ {0, 1, 2, 3}.

De Casteljau subdivision in the domain center creates the control points

(
pL0 , p

L
1 , p

L
2 , p

L
3

)
:=

(
p0,

p0 + p1
2

,
p0 + 2p1 + p2

4
,
p0 + 3p1 + 3p2 + p3

8

)
and

(
pR0 , p

R
1 , p

R
2 , p

R
3

)
:=

(
p0 + 3p1 + 3p2 + p3

8
,
p1 + 2p2 + p3

4
,
p2 + p3

2
, p3

)
of the two subcurves.

Obviously pL3 = pR0 = s meet the conditions by construction with the given constraints1.
For pL2 = p0+2p1+p2

4 〈
pL2 − s, t

〉
≤ 0

⇔
〈
p0 + 2p1 + p2

4
− p0 + 3p1 + 3p2 + p3

8
,
3(−p0 − p1 + p2 + p3)

4

〉
≤ 0

⇔ 〈2p0 + 4p1 + 2p2 − (p0 + 3p1 + 3p2 + p3),−p0 − p1 + p2 + p3〉 ≤ 0

⇔ 〈p0 + p1 − p2 − p3,−p0 − p1 + p2 + p3〉︸ ︷︷ ︸
≤0

≤ 0.

For pL1 = p0+p1
2 〈

pL1 − s, t
〉
≤ 0

⇔
〈
p0 + p1

2
− p0 + 3p1 + 3p2 + p3

8
,
3(−p0 − p1 + p2 + p3)

4

〉
≤ 0

⇔ 〈4p0 + 4p1 − (p0 + 3p1 + 3p2 + p3),−p0 − p1 + p2 + p3〉 ≤ 0

⇔ 〈3p0 + p1 − 3p2 − p3,−p0 − p1 + p2 + p3〉 ≤ 0

⇔ 〈3(p2 − p0) + (p3 − p1), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 3 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

+4 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

+ 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

≥ 0.

15

t

p0

pL1

pL2

p1 p2

p3

s

Figure 10: p0 must be located on the left side of the separation plane together with pL2 if
〈
pL2 − p0, t

〉
≥ 0.

Finally, knowing that pL2 is already on the correct side of the splitting plane (see also Figure 10),
pL0 is on the same side of the plane if 〈

pL2 − pL0 , t
〉
≥ 0

⇔
〈
p0 + 2p1 + p2

4
− p0,

3 (−p0 − p1 + p2 + p3)

4

〉
≥ 0

⇔ 〈−3p0 + 2p1 + p2,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈2(p1 − p0) + (p2 − p0), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 2 〈p1 − p0, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (10)

+2 〈p1 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (11)

+ 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

+ 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

≥ 0.

For the right subcurve 〈
pR1 − s, t

〉
≥ 0

⇔
〈
p1 + 2p2 + p3

4
− p0 + 3p1 + 3p2 + p3

8
,
3 (−p0 − p1 + p2 + p3)

4

〉
≥ 0

⇔ 〈2p1 + 4p2 + 2p3 − p0 − 3p1 − 3p2 − p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈−p0 − p1 + p2 + p3,−p0 − p1 + p2 + p3〉︸ ︷︷ ︸
≥0

≥ 0,

〈
pR2 − s, t

〉
≥ 0

⇔
〈
p2 + p3

2
− p0 + 3p1 + 3p2 + p3

8
,
3 (−p0 − p1 + p2 + p3)

4

〉
≥ 0

⇔ 〈4p2 + 4p3 − p0 − 3p1 − 3p2 − p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈−p0 − 3p1 + p2 + 3p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈(p2 − p0) + 3(p3 − p1), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

+4 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

+3 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

≥ 0,

1Note that the curves do touch in s and hence their bounding volumes would have a shared plane. In practice,
we still work with disjoint bounding volumes by assigning everything on the partitioning plane explicitly to the
subcurve tested first; the result obviously remains the same.

16

and again knowing that pR1 is already on the correct side of the splitting plane, pR3 is on the same
side of the plane if 〈

pR3 − pR1 , t
〉
≥ 0

⇔
〈
p3 −

p1 + 2p2 + p3
4

,
3 (−p0 − p1 + p2 + p3)

4

〉
≥ 0

⇔ 〈−p1 − 2p2 + 3p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈(p3 − p1) + 2(p3 − p2), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 〈p3 − p1, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (14)

+ 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

+2 〈p3 − p2, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (13)

+2 〈p3 − p2, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (12)

≥ 0.

(15)

Finally, as a Bézier curve is a convex combination of its control points, the curve is always enclosed
in their convex hull, and therefore all subcurves in the two domains are completely on one side of
the split plane each. �

Lemma 4. Splitting the cubic Bézier curve fulfilling the conditions (10), (11), (12), (13), (14) in
the middle results in two subcurves that also satisfy them all. Hence, all nested subcurves from
further bisection fulfill the conditions.

Proof. For the left subcurve 〈
pL2 − pL0 , p

L
1 − pL0

〉
≥ 0

⇔
〈
p0 + 2p1 + p2

4
− p0,

p0 + p1
2

− p0

〉
≥ 0

⇔ 〈−3p0 + 2p1 + p2
4

,
p1 − p0

2
〉 ≥ 0

⇔ 〈−3p0 + 2p1 + p2, p1 − p0〉 ≥ 0

⇔ 〈(p2 − p0) + 2(p1 − p0), p1 − p0〉 ≥ 0

⇔ 〈p2 − p0, p1 − p0〉︸ ︷︷ ︸
≥0 by Eq. (10)

+2 〈p1 − p0, p1 − p0〉︸ ︷︷ ︸
≥0

≥ 0,

〈
pL3 − pL1 , p

L
1 − pL0

〉
≥ 0

⇔
〈
p0 + 3p1 + 3p2 + p3

8
− p0 + p1

2
,
p0 + p1

2
− p0

〉
≥ 0

⇔ 〈−3p0 − p1 + 3p2 + p3
8

,
p1 − p0

2
〉 ≥ 0

⇔ 〈−3(p2 − p0) + (p3 − p1), p1 − p0〉 ≥ 0

⇔ −3 〈p2 − p0, p1 − p0〉︸ ︷︷ ︸
≥0 by Eq. (10)

+ 〈p3 − p1, p1 − p0〉︸ ︷︷ ︸
≥0 by Eq. (11)

≥ 0,

17

〈
pL3 − pL1 , p

L
3 − pL2

〉
≥ 0

⇔
〈
p0 + 3p1 + 3p2 + p3

8
− p0 + p1

2
,
p0 + 3p1 + 3p2 + p3

8
− p0 + 2p1 + p2

4

〉
≥ 0

⇔ 〈−3p0 − p1 + 3p2 + p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈3(p2 − p0) + (p3 − p1), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 3 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

+4 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

+ 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

≥ 0,

〈
pL2 − pL0 , p

L
3 − pL2

〉
≥ 0

⇔
〈
p0 + 2p1 + p2

4
− p0,

p0 + 3p1 + 3p2 + p3
8

− p0 + 2p1 + p2

4

〉
≥ 0

⇔ 〈−3p0 + 2p1 + p2,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈(p2 − p0) + 2(p1 − p0), (p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

+ 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

+2 〈p1 − p0, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (10)

+2 〈p1 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (11)

≥ 0,

〈
pL2 − pL0 , p

L
3 − pL1

〉
≥ 0

⇔
〈
p0 + 2p1 + p2

4
− p0,

p0 + 3p1 + 3p2 + p3
8

− p0 + p1
2

〉
≥ 0

⇔ 〈−3p0 + 2p1 + p2, p0 + 3p1 + 3p2 + p3 − 4p0 − 4p1〉 ≥ 0

⇔ 〈−3p0 + 2p1 + p2,−3p0 − p1 + 3p2 + p3〉 ≥ 0

⇔ 〈2(p1 − p0) + (p2 − p0), 3(p2 − p0) + (p3 − p1)〉 ≥ 0

⇔ 6 〈(p1 − p0), (p2 − p0)〉︸ ︷︷ ︸
≥0 by Eq. (10)

+2 〈(p1 − p0), (p3 − p1)〉︸ ︷︷ ︸
≥0 by Eq. (11)

+3 〈(p2 − p0), (p2 − p0)〉︸ ︷︷ ︸
≥0

+ 〈(p2 − p0), (p3 − p1)〉︸ ︷︷ ︸
≥0 by Eq. (14)

≥ 0.

For the right subcurve 〈
pR2 − pR0 , p

R
1 − pR0

〉
≥ 0

⇔
〈
p2 + p3

2
− p0 + 3p1 + 3p2 + p3

8
,
p1 + 2p2 + p3

4
− p0 + 3p1 + 3p2 + p3

8

〉
≥ 0

⇔ 〈−p0 − 3p1 + p2 + 3p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈3(p3 − p1) + (p2 − p0), (p3 − p1) + (p2 − p0)〉 ≥ 0

⇔ 3 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸,≥ 0 + 4 〈p3 − p1, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (14)

+ 〈p2 − p0, p2 − p0〉︸ ︷︷ ︸
≥0

≥ 0,

18

〈
pR3 − pR1 , p

R
1 − pR0

〉
≥ 0

⇔
〈
p3 −

p1 + 2p2 + p3
4

,
p1 + 2p2 + p3

4
− p0 + 3p1 + 3p2 + p3

8

〉
≥ 0

⇔ 〈−p1 − 2p2 + 3p3,−p0 − p1 + p2 + p3〉 ≥ 0

⇔ 〈(p3 − p1) + 2(p− 3− p2), (p3 − p1) + (p2 − p0)〉 ≥ 0

⇔ 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

+ 〈p3 − p1, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (14)

+2 〈p3 − p2, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (12)

+2 〈p3 − p2, p2 − p0〉︸ ︷︷ ︸
≥0 by Eq. (13)

≥ 0,

〈
pR3 − pR1 , p

R
3 − pR2

〉
≥ 0

⇔
〈
p3 −

p1 − 2p2 + p3
4

, p3 −
p2 + p3

2

〉
≥ 0

⇔ 〈−p1 − 2p2 + 3p3,−p2 + p3〉 ≥ 0

⇔ 〈2(p3 − p2) + (p3 − p1), p3 − p2〉 ≥ 0

⇔ 2 〈p3 − p2, p3 − p2〉︸ ︷︷ ︸
≥0

+ 〈p3 − p1, p3 − p2〉︸ ︷︷ ︸
≥0 by Eq. (12)

≥ 0,

〈
pR2 − pR0 , p

R
3 − pR2

〉
≥ 0

⇔
〈
p2 + p3

2
− p0 + 3p1 + 3p2 + p3

8
, p3 −

p2 + p3
2

〉
≥ 0

⇔ 〈−p0 − 3p1 + p2 + 3p3, p3 − p2〉 ≥ 0

⇔ 〈3(p3 − p1) + (p2 − p0), p3 − p2〉 ≥ 0

⇔ 3 〈p3 − p1, p3 − p2〉︸ ︷︷ ︸
≥0 by Eq. (12)

+ 〈p2 − p0, p3 − p2〉︸ ︷︷ ︸
≥0 by Eq. (13)

≥ 0,

〈
pR2 − pR0 , p

R
3 − pR1

〉
≥ 0

⇔
〈
p2 + p3

2
− p0 + 3p1 + 3p2 + p3

8
, p3 −

p1 + 2p2 + p3
4

〉
≥ 0

⇔ 〈−p0 − 3p1 + p2 + 3p3, 3p3 − p1 − 2p2〉 ≥ 0

⇔ 〈3(p3 − p1) + (p2 − p0), 2(p3 − p2) + (p3 − p1)〉 ≥ 0

⇔ 6 〈p3 − p1, p3 − p2〉︸ ︷︷ ︸
≥0 by Eq. (12)

+3 〈p3 − p1, p3 − p1〉︸ ︷︷ ︸
≥0

+2 〈p2 − p0, p3 − p2〉︸ ︷︷ ︸
≥0 by Eq. (13)

+ 〈p2 − p0, p3 − p1〉︸ ︷︷ ︸
≥0 by Eq. (14)

≥ 0.

�

Appendix C: Intersection code

19

f loat i n t e r s e c t p l a n e (const vec3f p , const vec3f n)
{

return dot3 (n , p) / n . z ;
}

Listing 1: Intersection of a unit ray with a plane through p with normal n.

tuple<f loat , f loat> i n t e r s e c t c y l i n d e r
(

const vec3f o ,
const vec3f a ,
const f loat r

)
{

const f loat d = a . x ∗ o . y − a . y ∗ o . x ;
const f loat g = a . x ∗ a . x + a . y ∗ a . y ;
i f (g == 0 && o . x ∗ o . x + o . y ∗ o . y < r ∗ r)

return make tuple(−FLT MAX, FLT MAX) ;

const f loat h = 1 .0 f / g ;
const f loat e = r ∗ r − d ∗ d ∗ h ;

i f (e < 0)
return make tuple (FLT MAX, FLT MAX) ;

const f loat t cpa = o . z − a . z ∗ (a . x∗o . x + a . y∗o . y) ∗h ;
const f loat s = s q r t f (e ∗ (a . z ∗ a . z + g) ∗ h) ;

return make tuple (t cpa − s , t cpa + s) ;
}

Listing 2: Intersection of a unit ray with an infinite cylinder with radius r through o along a.

20

f loat d i s t 2 p o i n t s l i n e
(

const vec3f& p ,
const vec3f& q ,
const vec3f& d

)
{

const f loat c = dot3 (d , d) ;

const f loat bp = dot3 (p , d) / c ;
const vec3f pPbp = p − bp ∗ d ;
const f loat l2 pPbp = dot3 (pPbp , pPbp) ;

const f loat bq = dot3 (q , d) / c ;
const vec3f qPbq = q − bq ∗ d ;
const f loat l2 qPbq = dot3 (qPbq , qPbq) ;

return s q r t f (max(l2 pPbp , l2 qPbq)) ;
}

Listing 3: Maximum distance of the two points p, q to the line starting in the origin and going along d.

tuple<f loat , f loat> g e t i n t e r v a l
(
const int32 t s t a r t ,
const int32 t s i z e

)
{

const int32 t ui0 = 0 x3f800000 | s t a r t ;
const f loat u0 = i n t a s f l o a t (u i0) − 1 .0 f ;
const int32 t ui1 = min (ui0 + s i z e , 0x40000000) ;
const f loat u1 = i n t a s f l o a t (u i1) − 1 .0 f ;
return make tuple (u0 , u1) ;

}

Listing 4: Conversion of the integer representation of the interval (start, size) to the floating point interval
[u0, u1].

vec4f eva l (const BezierCurve c , const f loat u)
{

f loat v = 1 .0 f − u ;
return v ∗ v ∗ v ∗ c . p0

+ 3 .0 f ∗ u ∗ v ∗ v ∗ c . p1
+ 3 .0 f ∗ u ∗ u ∗ v ∗ c . p2
+ u ∗ u ∗ u ∗ c . p3 ;

}

vec4f e v a l d e r i v a t i v e (const BezierCurve c , const f loat u)
{

f loat v = 1 .0 f − u ;
return v ∗ v ∗ (c . p1 − c . p0)

+ 2 .0 f ∗ u ∗ v ∗ (c . p2 − c . p1)
+ u ∗ u ∗ (c . p3 − c . p2) ;

}

Listing 5: Evaluate cubic Bézier curve and its (scaled) derivative.

21

BezierCurveDelta c a l c u l a t e c o n t r o l p o i n t s
(

const BezierCurve& c ,
const uint32 t c u r s t a r t ,
const uint32 t c u r s i z e

)
{

f loat u0 , u1 ;
t ie (u0 , u1) = g e t i n t e r v a l (c u r s t a r t , c u r s i z e) ;
const vec4f p = eva l (c , u0) ;
const vec4f d = eva l (c , u1) − p ;
const vec4f t0 = (u1 − u0) ∗ e v a l d e r i v a t i v e (c , u0) ;
const vec4f t1 = (u1 − u0) ∗ e v a l d e r i v a t i v e (c , u1) ;
return BezierCurveDelta (p , d , t0 , t1) ;

}

Listing 6: Re-calculation of the cubic Bézier curve represented by the tuple (p, d, t0, t1) for an interval [u0, u1]
used after backtracking.

void su bd iv i d e an d s e t
(

const bool go r i gh t ,
const vec4f& center ,
const vec4f& t cen t e r ,
BezierCurveDelta& c

)
{

i f (g o r i g h t)
{

c . p += cente r ;
c . d −= cente r ;
c . t0 = t c e n t e r ;
c . t1 ∗= 0.5 f ;

}
else
{

c . d = cente r ;
c . t0 ∗= 0.5 f ;
c . t1 = t c e n t e r ;

}
}

Listing 7: Subdivide the curve

f loat c a l c u l a t e c o n s e r v a t i v e r a d i u s
(

const BezierCurveDelta& c
)
{

const f loat d i s t = d i s t 2 p o i n t s l i n e (c . t0 . xyz () , c . t1 . xyz () , c . d . xyz ()) ;
const f loat max r = c . p .w + max(max(0 . 0 f , c . t0 .w) , max(c . d .w, c . d .w − c . t1 .w)) ;
return d i s t + max r ;

}

Listing 8: Calculate a conservative radius of a cylinder bounding a cubic Bézier curve.

22

tuple<bool , bool> s u b d i v i d e p a r t i t i o n a n d u p d a t e
(

const BezierCurveDelta& c ,
const f loat t0 ,
const f loat t1 ,
f loat& t min ,
f loat& t max

)
{

vec4f cente r ;
vec4f t c e n t e r ;
t ie (center , t c e n t e r) = c . g e t c en t e r and tangen t () ;
const f loat t p l a n e = i n t e r s e c t p l a n e (c . p . xyz () + cente r . xyz () , t c e n t e r . xyz ()) ;

const bool g o r i g h t = t p l a n e > t0 ˆ t c e n t e r . z > 0 ;
const bool bo th h i t = t0 < t p l a n e && t1 > t p l a n e ;

// Update t i n t e r v a l
i f (t p l a n e > t0) t max = min (t max , t p l a n e) ;
else t min = max(t min , t p l a n e) ;

// Subdivide
su bd iv i d e a nd s e t (go r i gh t , center , t c en t e r , c) ;

return make tuple (both h i t , g o r i g h t) ;
}

Listing 9: Partition space, subdivide curve, and update state

tuple<f loat , f loat> c a l c u l a t e t i n t e r v a l
(

const BezierCurveDelta& cur c ,
const f loat ray t max

)
{

const f loat t0 = i n t e r s e c t p l a n e (cu r c . p , cu r c . t0) ;
const f loat t1 = i n t e r s e c t p l a n e (cu r c . p + cur c . d , cu r c . t1) ;
f loat t min = 0 .0 f ;
i f (cu r c . t0 . z > 0) t min = max(t min , t0) ;
i f (cu r c . t1 . z < 0) t min = max(t min , t1) ;
f loat t max = ray t max ;
i f (cu r c . t0 . z < 0) t max = min (t max , t0) ;
i f (cu r c . t1 . z > 0) t max = min (t max , t1) ;

return make tuple (t min , t max) ;
}

Listing 10: Calculate the valid t interval between the cropping planes.

23

vec3f trans form
(

const vec3f& p ,
const vec3f& or i g in ,
const vec3f& u ,
const vec3f& v ,
const vec3f& w

)
{

vec3f q = p − o r i g i n ;
return vec3f (dot3 (q , u) , dot3 (q , v) , dot3 (q , w)) ;

}

BezierCurve t r an s f o rm to ray f rame
(

const vec3f& or i g in ,
const vec3f& d i r e c t i o n ,
const BezierCurve& c

)
{

const vec3f w = d i r e c t i o n ;
vec3f u , v ;
t ie (u , v) = make ONB(w) ;

return BezierCurve (trans form (c . p0 , o r i g i n , u , v , w) ,
trans form (c . p1 , o r i g i n , u , v , w) ,
trans form (c . p2 , o r i g i n , u , v , w) ,
trans form (c . p3 , o r i g i n , u , v , w)) ;

}

Listing 11: Transform a cubic Bézier curve to a ray frame.

void go down
(

const bool both h i t ,
const bool go r i gh t ,
uint32 t& c u r s i z e ,
uint32 t& b i t s t r i n g ,
uint32 t& c u r s t a r t

)
{

c u r s i z e /= 2 ;
i f (bo th h i t) b i t s t r i n g ˆ= c u r s i z e ;
i f (g o r i g h t) c u r s t a r t ˆ= c u r s i z e ;

}

void jump up
(

uint32 t& c u r s i z e ,
uint32 t& c u r s t a r t ,
uint32 t& b i t s t r i n g

)
{

// c tz = count t r a i l i n g z e ro s
c u r s i z e = 1 << c t z (b i t s t r i n g) ;
c u r s t a r t ˆ= c u r s i z e ;
b i t s t r i n g ˆ= c u r s i z e ;
c u r s t a r t &= ˜(c u r s i z e − 1) ;

}

Listing 12: Bit string manipulation to advance to the next finer level (go down) and for backtracking
(jump up).

24

Intersection c a l c u l a t e i n t e r s e c t i o n
(

const uint32 t c u r s t a r t ,
const uint32 t c u r s i z e ,
const f loat t ,
const BezierCurve& c ,
const BezierCurveDelta& cur c

)
{

// Pro j e c t i n t e r s e c t i o n − p 0 onto p n − p 0
vec3f hb = cur c . p . xyz () − vec3f (0 , 0 , t) ;
f loat u l o c a l = dot3 (hb , cu r c . d . xyz ()) ;
u l o c a l /= dot3 (cu r c . d . xyz () , cu r c . d . xyz ()) ;
u l o c a l = max(0 . 0 f , min (1 . 0 f , −u l o c a l)) ;

f loat u0 , u1 ;
t ie (u0 , u1) = g e t i n t e r v a l (c u r s t a r t , c u r s i z e) ;
f loat u = u0 + u l o c a l ∗ (u1 − u0) ;

// End caps ?
i f (u == 0.0 f | | u == 1.0 f)
{

vec3f n = (u == 0.0 f ? c . p0 . xyz () : c . p3 . xyz ()) −
(u == 0.0 f ? c . p1 . xyz () : c . p2 . xyz ()) ;

return Intersection (t , u , normal ize3 (n)) ;
}

vec3f ap = cur c . p . xyz () + u l o c a l ∗ cu r c . a x i s ;

// Recompute frame
vec3f frame u , frame v ;
t ie (frame u , frame v) = make ONB(r a y d i r e c t i o n) ;

// Cac lu la te normal in g l o b a l frame
vec3f normal = normal ize3 (t ∗ r a y d i r e c t i o n − ap . x ∗ frame u − ap . y ∗ f rame v −
ap . z ∗ r a y d i r e c t i o n) ;

return Intersection (t , u , normal) ;
}

Listing 13: Calculate the normal and u parameter in the intersection.

25

Intersection i n t e r s e c t
(

const Ray& ray ,
const BezierCurve& c ,
const uint32 t min s ize ,

)
{

// State
const BezierCurve c l o c a l = t rans f o rm to ray f rame (ray . o r i g i n , ray . d i r e c t i o n , c) ;
BezierCurveDelta cu r c = c l o c a l ; // conver s i on {p0 , p1 , p2 , p3} −> {p , d , t0 ,

t1 }
f loat t = FLT MAX;
uint32 t b i t s t r i n g = 0 ;
uint32 t c u r s i z e = 1 << 23 ;
uint32 t c u r s t a r t = 0 ;
f loat t min , t max ;

// Set the i n i t i a l t i n t e r v a l
t ie (t min , t max) = c a l c u l a t e t i n t e r v a l (cur c , ray . t max) ;

while (t rue)
{

const f loat c u r r = c a l c u l a t e c o n s e r v a t i v e r a d i u s (cu r c) ;

f loat t0 , t1 ;
t ie (t0 , t1) = i n t e r s e c t c y l i n d e r (cu r c . p , cu r c . d , c u r r) ;
i f (t1 >= t min && t0 <= t max)
{

i f (c u r s i z e <= min s i z e)
{

t = t0 ;
break ;

}

// Subdivide and go down in the h i e ra r chy
bool both h i t , g o r i g h t ;
t ie (both h i t , g o r i g h t) = s u b d i v i d e p a r t i t i o n a n d u p d a t e (cur c , t0 , t1 , t min ,

t max) ;
go down (both h i t , go r i gh t , c u r s i z e , b i t s t r i n g , c u r s t a r t) ;

}
else
{

// Done?
i f (! b i t s t r i n g) break ;

// Backtracking
jump up (c u r s i z e , c u r s t a r t , b i t s t r i n g) ;
cu r c = c a l c u l a t e c o n t r o l p o i n t s (c l o c a l , c u r s t a r t , c u r s i z e) ;

// Re−c a l c u l a t e the t i n t e r v a l
t ie (t min , t max) = c a l c u l a t e t i n t e r v a l (cu r c) ;

}
}

// Ca lcu la t e normal e t c . i f a c l o s e r i n t e r s e c t i o n has been found
i f (t < ray . t max)

return c a l c u l a t e i n t e r s e c t i o n (c u r s t a r t , c u r s i z e , t , c , cu r c) ;
else

return Intersection () ; // no i n t e r s e c t i o n
}

Listing 14: Iterative routine for ray/fiber intersection using recursive subdivision with disjoint bounding
volumes. 26

	1 Introduction
	2 Previous Work
	3 Algorithm
	3.1 Numerically Robust Curve Representation
	3.2 Efficient Hierarchical Pruning
	3.3 Implementation
	3.4 Constraints and Limitations

	4 Results and Discussion
	5 Conclusion
	A Intersection of a unit ray with an infinite cylinder
	B Curve Constraints
	B.1 Quadratic Bézier Curves
	B.2 Cubic Bézier Curves

	C Intersection code

