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Figure 1: In (a-b) and (c-d) some examples of source and our remapped renderings. In (e) the interface of one of the psychometric scaling experiments.

ABSTRACT
The need to manually match the appearance of a material in two
or more different rendering tools is common in digital 3D product
design, due to the wide range of tools and material models com-
monly used, and a lack of standards to exchange materials data.
Since the effect of BRDF parameters on rendered images is non-
uniform, visually matching to a reference is time consuming and
error-prone. We present an automatic BRDF remapping technique
to match the appearance of a source material model to a target, pro-
viding a mapping between their parameter spaces. Our framework,
based on Genetic Algorithm optimization and an image space simi-
larity metric, provides a faithful mapping among analytical BRDFs,
even when the BRDF models are deeply different. Objective and
perceptual evaluations confirm the efficacy of the framework.
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1 INTRODUCTION
The appearance of a virtual material depends on the underlying
BRDF model implementation; the same material model can be im-
plemented differently in different rendering tools [5] and even
between different versions of the same renderer, thus affecting the
appearance of the final renderings.
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In many contexts involving the development of 3D content, it is
common to make use of a range of different tools, however there is
no widespread standard to facilitate exchange of material models
and data. Therefore, given a material represented with a specific
model (source), not available in a different rendering tool or im-
plemented differently, a digital artist is left with the only option
to manually match the appearance of the source using a model
available in the rendering tool / model in use (target), i.e. manually
finding a mapping between the set of source parameters and the
target parameters. Such a manual remapping does not have any
actual reference point in terms of what parameters to use, and it is
mostly based on a pure guess. Selecting the appropriate parameters
value for a BRDF model is not straightforward, since they are often
not intuitive and their effect is non-uniform [4].

We propose an automatic image-based solution to find the best
mapping between the source and target models parameter spaces
(parameters remapping). Given a few renderings with the source
BRDF model, we use Genetic Algorithm (GA) optimization to find a
set of parameters in the target BRDF model, such that an object ren-
dered using the optimized parameters for the target model matches
appearance of the source one. The genetic algorithm is driven by a
computational metric defined in the image space, which compares
renderings of a scene under a specially designed incident lighting.

Related Work. [4] defined an image-based metric to measure the
distance between BRDFs. The metric is used to navigate variations
within a model and also in the space of BRDFs. The remapping of
BRDF parameters has been addressed by [5]. Starting from a user-
provided guess of the parameters for the target model, a nonlinear
optimization algorithm tries to find a set of parameters to minimize
a L2 metric. Unlike [5], our framework does not require an initial
guess of the target parameters, enabling the use as a “black-box”.
Moreover, the GA allows us to set the desired resolution for the
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parameters involved in the remapping, and to employmore complex
error metrics.

2 PROPOSED FRAMEWORK
We aim at BRDF models defined as a sum of a diffuse and a specular
terms, the most common analytical models [2].

The core of our solution is a GA, with access to a renderer im-
plementing the target BRDF model. GAs can be used when no
information is available about the gradient of the function, which
does not need to be continuous nor differentiable and provide good
results even when the function has several local minima.

The input to our system is a set of High Dynamic Range (HDR)
renderings of a reference scene, along with the list of parameters
used for them. The GA starts from a random guess about the param-
eters of the target model and requests to the target renderer a set of
renderings with these parameters; driven by the Fitness Function,
which measures the visual difference between the source and tar-
get renderings, the optimization requests a new set of parameters
to test, and a new set of renderings is produced; this process is
repeated until the best mapping is found.

The fitness function computes aL2 metric in image space, and it is
tunable by means of additional parameters, to better address human
perception and account for edges and gradient information; in the
basic configuration it is equivalent to the ∆E76 color difference.

To derive a monotonically non-decreasing remapping, given a
set ofm−tuples of source parameters to be remapped towards a set
of n − tuples in the target space, the GA is constrained to explore
variations in only one source parameter at a time, in amonotonically
increasing fashion. The starting point of the search in the target
parameter space makes use of previously remapped parameters,
when available. The whole source parameter space is sampled, and
fittingmodule takes care of finding a smooth, analytical relationship
between the source and the remapped parameters.

The reference scene used to learn the mapping is illuminated
by an ad-hoc environment map, designed to allow a clear analysis
of the surface response to the lighting at different color bands,
improving the estimation of roughness, specularity and anisotropy.

3 EXPERIMENTS AND RESULTS
We discuss the remapping between two very different models,
from the Ward BRDF (source) to the BRDF component of the GGX
model [7] (target). Such a case study is relevant also in the Human
Vision and Perception field, where empirical models are widely
used [1, 6].

The Fresnel effect has a great impact on the appearance of a
dielectric, in particular at grazing angles. It implies that source and
target renderings tend to differ towards the objects’ contours, since
the source model lacks the Fresnel effect. Hence, in this case the
mapping is learned by weighting less the objects’ contour areas.

For a set of test scenes with complex geometry (see Figure 1
(a-b) and (c-d) for some examples), we compared the original source
renderings with our remapped ones. The resulting Normalized Root
Mean Square Deviation is, on the average, below 2.7%.

We conducted a set of user studies, aimed to establish whether
the participants can distinguish between our remapped renderings
from the original source ones. The participant’s age ranges between

14 and 71 years old and their expertise in graphics and arts varies
from no expertise to professional (15 subjects in total).

The outcome of the user studies was tested for statistical signif-
icance using the one-tailed Welch’s t − test , showing that, for a
large portion of the parameter space, the observers were not able
to distinguish between source and remapped renderings.

To complete the evaluation, we conducted a set of psychometric
scaling experiments, using the Psychophysics Toolbox V3 [3], again
covering the parameter space and using natural environment light
probes. The first experiment provided an assessment that, from
a perceptual point of view, our remapping is the best possible.
Ten subjects were presented with a source rendering on the right
side of the screen and nine renderings on the left side, in random
order (Figure 1(e)). Only one rendering out of the 9 was given
by our remapped parameters, whereas the others were rendered
using parameters in its reflectance neighborhood, defined in the
target parameter space. The task of the observers was to rank the
renderings on the left side side of the screen, from the closest one
in terms of reflectance properties to the source rendering, to the
most different. Each session lasted 2~3 hours, covering the whole
parameter space. Results show that in the majority of cases the
observers ranked the renderings produced by our technique as the
most similar to the source ones, confirming the perceptual accuracy
of our technique.

An additional scaling experiment confirmed that when observers
were able to distinguish source and target renderings, the Fresnel
effect was used as a cue, and this effect is visible mainly on shiny,
smooth objects towards their silhouette. There was no perceivable
difference in the remaining areas of the objects.
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