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ABSTRACT. A model for parsllel computations is given as a directed graph in which nodes
represent elementary operstions, and branches, data channels. The problem cousidered
is the determination of an admissible sechedule for such a computation; iLe. for each node
determine a sequence of times at which the node initiates its operation. These times must be
such that each node, upon initiation, is assured of having the necessary data upon which to
operate. Necessary and sufficient conditions that a schedule be admissible are given. The
computation rate of a given admissible schedule is defined and is shown to have a limiting
value 1/7 where = is  parameter dependent upon the cycles in the graph. Thus, the computa-
tion eannot proceed at o rate exceeding 1/r. For 4 2 r, the elass of all periodic admissible
schedules with period v is characterized by the solution space of a certain system of linear
inequalities. Tn particular, then, the maximum computation rate of 1/7 is attainable under a
periodic admissible sehedule with period 7. A class of all-integer admissible schedules is given,
Yinally, an algorithm is given for the determination of the number of initiations of ¢ach nede
in the graph defining a parallel computation.
An example for & system of difference equations is given in detail.
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1. Introduction

Virtually all models for parallel computations which have appeared in the literature
represent the calculation as a directed graph in which nodes and branches repre-
sent, respectively, processing units (elementary operations) and data channels
{precedence constraints) (see, e.g., [1-5]). It is of interest to determine a schedule
for the execution of such a parallel algorithm, i.e. for each processor, to determine
a sequence of times at which the processor initiates its operation, These times must
be such that a given processor, upon initiation, is assured of having the necessary
data upon which to operate. Such a schedule thus provides a very simple control
of the parallel computation—merely signal each processor to begin at its appro-
priate times, quite independently of what the remaining processors in the system
are doing.

The above-mentioned models for parallel computations may be distinguished
according as they do (see {1, 3, 4]) or do not (see [2, 5]) allow branching, i.e. nodes
which perform a decision as to which successor nodes take part in the calculation.
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In the case that branching is permitted, it is clear that no a priori schedule can be
determined, since this is necessarily dependent on the initial data. Otherwise,
such a schedule does exist. In this case, if the graph defining the computation is
acyclic (see [2]), the determination of such a schedule is trivial. However, if the
computation is iterative, i.e. the corresponding graph has cycles, the determina-
tion of a schedule is no longer obvious, Karp and Miller [5] have formulated a model
for this class of parallel computations (i.e. which do not involve branching). In
this paper scheduling proeessor initiations are considered for a special case of their
model.

For our purposes, then, a parallel algorithm is specified by a directed graph @
called a computation graph. @ is given by

(i) anodeset N = {ni,ny, -+, 0},
(ii) branchesd:,d,, --- ,d,, where any given branch d, = (n;, n;) is directed
from a specified node n; to a specified node n;,

(ili) two nonnegative integers 4;;, U,;, where Uy; € {0, 1}, and a positive real

number 7;; , associated with each branch d, = (n;, nj).

A node of @ represents an operation in the computation or, equivalently, a proc-
essor assigned to perform that operation. Each branch d, = (n., n;) represents a
queue of data directed from the processor assigned to n,; to the processor associated
with n;. Thus the processor at n; places the results of its caleulations onto branch
d, and the queue of data on d, is available as input to the processor at n;. The
parameters in (iii) are to be interpreted as follows:

A;; = the initial number of data words on branch d, ;

U;; = the number of data words placed on d, upon the termination of the
operation associated with n; ;

ri; = the time required by node n; to place the result of its operation on
branch (n;, n;). If n; initiates at time ¢, then at time ¢ 4+ =5, ns;
places U,; data words on branch (n,, n;).

Dynamically, a computation graph G functions as follows. Whenever every input
branch to node n; contains at least one data item, n; becomes eligible for initiation.
72, is not required to initiate the moment that it becomes eligible; if at that time it
does not initiate, then it must do so at some future time. Upon initiation, say at
time ¢, n; removes one data item from each of its input branches; if d, = (n;, n;)
is an output branch from n;, then at time ¢ + r;;, n; places U,; data items upon
d, . The computation defined by G terminates if there exists a time 7" such that for
all ¢t > T, no node of G is capable of initiating. Otherwise, ¢ is nonterminating.
These conditions are formalized in [5]; we give a different characterization in Section
3 when we define an admissible schedule.

Denote by X; the number of initiations of n; during the computation defined by
G. Thus 0 < X; < . In Section 2 a simple algorithm is provided for determining
these numbers. In Section 3 the class of all admissible schedules is characterized,
and a maximum computation rate periodic schedule for G is provided.

2. Determining { X}

We assume that each node of G initiates at least once, i.e. X; > 1 for each n; of G.
"This assumption is equivalent [5] to the requirement
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(n,-,%ec As21 (2.1)
for each directed cycle € of G,
TuroreM 2.1.  Suppose X, > 1 for each node ni of G and that {A; | Us; = 0} 5 ¢,
Without loss of generality, suppose Ay = ming ;{4 | Uy = 0}, Then X\ = 4,,.
Proor. Clearly, X, < 4,. For an arbitrary node m;, define o, =
ming {4 | Un = 0} if this set is nonempty, o = o« otherwise. Then, in particular,
oy = A, . In general,

X = win{ay, min {X; + Ao | Us = 1}

Suppose, contrary to the statement of Theorem 2.1, that X, < 4,1 = a . Then
X} = m}'n {X@ "}‘ A'ill Uil = 1}’

= }(J'l -+ Aixlz say.

Since X; < o, X; < ».We prove that X;, # «;—for otherwise X;, = o;, =
Ay, forsome <. But then Xy = Xy, 4 A = Ay, + 4,0 2> A 2> A, contradict-
ing the assumption X; < A, . It follows that

Xy = min {X; + A4, [ Uy, = 1},

= Xiz + AJ’M'U say,
ie.
X1 = ng + A;/'zh + Ajﬂ Z ij’

and a similar argument shows that X;, # o, . We can repeat this process, obtaining
a sequence of nodes n,,, Rj,_,, By, Njg = Ny With

X=X+ 4445, =12 - ,m (2.2)

Eventually some node must repeat, yielding a eycle C of G. If we add those equa-
tions of (2.2) corresponding to the branches of C, we obtain Z("i."j)éc Ay =0,
contradicting (2.1).
Cororrary 2.1.  The following dlgorithm yields {X;|7 = 1, 2, ---, §} when

Xi2 1, 2=1,2,---,L

1. If{A:;1 Uij= O} = ¢, then each X; = . This follows from the results in [5].

2. Otherwise, let nj be such that A,; = min;, {Au | Us = O}.
Put X; = A.;. If (nj, m) is a branch of G, add a branch (ny , ni) with Uy = 0
and initial data Ay, = A + X ;. Remove n; and all of its input and output branches.
If the resulting graph s the null graph, we are through. If the resulting graph H has no
branch (n:, n;) with Uy = 0, put Xy = « for all nodes ni of H. Otherwise, return {0
(1) with H.

3. Scheduling

We formalize the notion of “valid node initiation times” given in Section 1. As

before, we assume that X, >1 for each node n; of G. A schedule is a set ¢ =
{o1, 05, -+ , o1}, where each o is a function o; : {1,2, --- , Xi} — R such that for
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1 <k<r <X, oi(k) <oir). Here R is the set of real numbers. With each
node n; we assoclate a function z; 1 £ — {0, 1, - | X}

zi(t) = 0 if and only if ¢ < o3(1);

ity =k forl <k < X;ifand onlyif ou(k) < ¢t < oi(k + 1);

(1) = Xyif and only f o.( X)) < 8.
For every branch (n;, n;) define

bii(8) = Ay + Uiws(t — 745) — [2:(2) = e;(D)],

where

e;(1) = 1if there exists k, 1 <k < X, such that ¢,;,(k) =,

ei(t) = 0 otherwise.
A schedule o is called an admissible schedule if, forj = 1,2, -+ , 1, o;(k) = {imples
B7;{t) > 1 for all branches (n;, n;) into n;, and forallk, 1 <k < X;.

These definitions are to be interpreted as follows:
ci(k) = ¢ means that node n; begins its kth initiation at time ¢ under the

schedule o.

x:(t) is the number of initiations of node n; , up to and including time ¢,
under the schedule o. )

bi; (1) is thus the number of data items on branch (n., n;) at time ¢ under

the schedule o.
An admissible schedule specifies those node initiation times corresponding to the
presence of at least one data item on each of the node input branches. Thus 7,
initiates at time ¢ (o;(k) = tforsomek, 1 <k < X;) only if each branch (n,, n;)
directed into n; contains at least one data item (b3;(¢) > 1).

A branch (n;, n;) is essential if X; > A4y . Otherwise it is enessential. In particu-
lar, every branch (n;,n;) with {/;; = 0 is inessential. The following theorem charac-
terizes the class of admissible schedules for @,

Tarorem 3.1. A schedule o is admissible if and only if for each essential branch
(ni, ny) of G,

oi(r) + 1 Soi(r + Ay), =12 Xy — Ay

Proor. Sufficiency. The proof is by contradiction. Let o be admissible and sup-
pose there exists an essential braneh (n,, n;) and an integer 7, 1 <r < X; — 445,
such that

acil{r) -+ 155 > oi(r -+ A, (3.1)
Let t = o;(r + 44) so that ;(t) = » + A, . Then
bii(t) = Ay + Uswe(t — 745) — [i(8) — 1],
=1 -7 + Uij.’l,'q;(t - ’l‘,;j).
Since (nq, ny) is essential, Us; = 1. Moreover, by (3.1), { — 7,; < os(r)s0 that
®,(t — r45) < r. Hence b;(t) < 1, which contradicts the admissibility of ¢.

Necessity, We must prove, for any node n; of G and fork = 1,2, ..., X;, that
b%i(o;(k)) > 1 for every branch (n;, n;) directed into n;. If (n., n;) is inessential
this remark is valid. Otherwise k = r + A forsomer, 1 < »r < X; — 44 . Put

)

¢ = ¢;(k). Then by assumption ¢ — 7;; > a:(7). Thus z:(¢ — 74) > 7. Hence
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b3i(1) = Ao+ vt — 705) — [2,(t) = U= Aij + 0 — [r + 4y ~ 1],
= ]

which establishes the theorem.

A. Periopic ApmissiBLE ScHEpULES. The actual implementation of the
algorithm defined by a computation graph requires some central control unit whose
function will be to signal, at appropriate times, the various processor initiations,
The simplest possible control unit would signal these initiations at periodic intervals,
the period being the same for each processor. To that end, we make the following
definition: An admissible schedule ¢ is periodic with period ¥ > 0 if there exist real
numbers ¢; such that os(k) = t: 4+ (b — 1)y, k= 1,2, .., X,.

As an immediate corollary to Theorem 3.1 we have

CororLrary 3.1. G has an admissible periodic schedule with period v if and only
if there exist real numbers t;, ©+ = 1,2, --+, I, which satisfy

by —ti 2 1i5 — v4yj (3.2)

for every essential branch (n;, n;) of G.

In particular, if G has an admissible periodic schedule with period v, then v >
max {7/ Ay}, the max taken over all essential branches of the form (n:, n:). Let
G’ be the graph obtained from G by removing all inessential branches, all essential
branches of the form (n;, 7;), and all the resulting (if any) isolated nodes (i.e.
nodes without input and output branches). Suppose G has m nodes 7y, ny, +- -,
nm and n branches dy, dy, ---, da. Let 4" = (ay) be the edge-node incidence
matrix of G

arn = 1 if branch d, is directed into n, ;

are = —1 if branch d, is directed out from n, ;
ae = 0 otherwise.
Let t be a column vector with 7th component t;, 7= 1,2, ---,m, and leta bea

column vector with 7th component a, = 7,; — vA,;, where d. = (n;, n;). Then by
Corollary 3.1 and the above remarks, the following can be stated:
@ has a periodic admissible schedule with period « if and only if
(1) Y _>__ maX;‘{T,'i/Au}, and
(ii) there exists t such that

A't > a. (3.3)
By [6, Cor. 1, p. 157], (3.3) has a solution if and only if, for every eycle C' of &,

2 ¢ a; < 0, with summation over the branches d; of C. Thus (3.3) has a solution
if and only if

Tij
v > max {&EmeC 4
ce@’ Z Aij
(nim)€C
Let us define the mazimum cycle ratio of G,
Tij
7 = max | PeneC 4
2. Ay
(nim) €C
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the max over all eyeles C of G (including cycles of the form (n:, 7:)) consisting of
easential branches. We then have

CoroLLARY 3.2. G has a pertodic admissible schedule with period v if and only if
(1) G has no cycles consisting of essential branches and v > 0, or (ii) @ has at least one
cycle consisting of essential branches and v > .

Case (i) would not often be encountered, at least not in the context of parallel
computation, since, under these conditions, a node is permitted to initiate before it
has terminated its previous initiation. The usual situation is to require termination
before the next initiation. Such a constraint corresponds to computation graphs G
for which each node 7, has (implicitly) a branch (n;, n;) with A;; = Uy = 1 and
T+ = max {7;;}, the max taken over all branches (n;, n,) out from n: .

« thus emerges as the minimum possible period of any periodic admissible sehed-
ule. Define the computation rate of a node n; , under an admissible schedule o, to be

. X

Xy~ e
¢ .
= | [—— f i == ,
111—{2 o 1(t) ! X *
and this limit exists. In particular, under a periodic admissible schedule o', with
period 7,
o 1 X [
Y L D 4
p - < X = 1) (34)
Let n, be a node which lies on a cycle Cing, nz, - -+ , m, , with maximum eycle ratio

. Let o be any admissible schedule for G where without loss of generality we assume
that 6:(1) = 0. Finally, suppose that X; = ka + », k> 1, 0< » < a ~ 1,
where o = Z(n;-.n,-)ec A ;. Then by Theorem 3.1 the following inequalities hold:

o) + 12 L o2y + Ap),
62(1’ + sz) + 793 < 03(1’ 4+ A+ A23),

............................

W(V + A12 + o+ Ar—-—l,r) -+ Tr S Ul(V + 01),
ov+a) + 12 L v + a+ Ay),

or(v4 (k= Da+ A+ - + 4rr) + 70 S oy + ka).
Adding these inequalities yields
o) + k Z) o7 < ai(X1),

(ngmnj
i.e.
FoY, 15 < (X)),

(ninj)eC

Using the relation Z(,,t.,,.,.)gc 745 = wa, we obtain
1 Xi

Lz .

=7 <X1 - v)
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Comparing with (3.4), we see that asymptotically (i.e. X, — =),
o~ <l o~
(i

Thus, asymplotically, n, cannot achieve a computation rate grealer than that attained
under a periodic admissible schedule ¢’ with period . Moreover, this maximum compu-
tation rale is 1/x. In this sense then, ¢ provides a best admissible schedule for G, with
respect to both computation speed and ease of processor control.

B. Sovrutions or At > a. Define

d(4, j) = max { > akr},
p(i,i) \(npn,)€Ep(ig)
the max taken over all paths p(4, 7) from n; ton; of G'. d(i,j) = — = if no such
path exists. d(7, 7) is thus the maximum path length from n; to n;.
A node n, is a source if there exists a path from n; to every other node of G 1t
follows [6, 9.5, p. 182] that if G has a source n, , say, then a solution of this system
when v > = is given by

=0, ti=d(l,4), i=2 ,m

A node 7, is a sink if there exists a path from every other node of G’ to n;. Dually,
if n, is a sink, a solution of this system is given by

T, = 0, Ti= —d(:,1), i1=2,---,m.

The condition Zdrec a, < 0 for every cycle € of @', i.e. the condition v > , pro-
vides an efficient algorithm for determining ¢; or T'; [6, 9.4, p. 180]. An algorithm for
determining the parameter = is given in [7]. For solutions in the case of more general
graphs G, and a more extensive analysis of the solution space of A't > a, the reader
is referred to [8].

C. INTEGER ADMISSIBLE SCHEDULES. Suppose that the node initiation times
of G are to be governed by a clock signal. Then these times are constrained to be
integer multiples of the clock period. Thus, it is of interest to determine an infeger
admissible schedule for G, i.e. an admissible schedule o such that o;(k) is an integer
t=1,2 --,l, k=1,2,---,X;. To that end, we assume that r;; is a positive
integer for each branch (n;, n;) of G. We also assume that no node of G is permitted
to initiate until it has terminated its previous initiation; i.e. if ¢ is an admissible
schedule, then o5(r) + 7 L os(r + 1), ¢=1,2, -+, r=1,2,.+, X,
where 7; = max {r;;}, the max taken over all branches (n;, n;) out from n;. In
particular, then,

Foi(r)? < Tai(r + 1)7, (3.5)

where for any real number x we write "z to be the smallest integer containing .
COROLLARY 3.3. Let o be an admissible schedule for G. Then o defined by o' i(r) =
Te(r), ¢=1,2,---,1, r=1,2,++,X;,1s an integer admissible schedule.
Proor. By (3.5), ¢ is a schedule. We prove it is admissible. To that end, sup-
pose that (n;, n;) is an essential branch of G and consider, for r = 1, 2, -+
Xi— 4y,
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ol (7)) + 1o = Toi(r) + Tis,
Toi(r) - 7i5" sinee r,; is an integer,
foi(r + Aig)? by Theorem 3.1,
o (r+ 4ij)-
Hence, by Theorem 3.1, ¢ is an admissible schedule.

Note that o and ¢’ of Corollary 3.3 yield the same asymptotic node computation

rates for G. Let us consider the form of " when ¢ is the periodic admissible schedule
of subsection 3-A. Clearly, if v is an integer, ¢ assumes the form

0','/(]6> = rti-|+(k~ 1)77 k= 1’2)"';Xiy

it

I

IA

]

which is still periodic. If v is not an integer, but rational, say ¥ = Ao with ), «
positive integers, it is easy to see that

of(ha +8) = kN +oi(8), B=01 - ,a—1 1<k +8<X;,
where each ¢, (8) is an integer satisfying
e/ (0) < o/(1) € -+ <gila—1) < a/(0) + A

Thus, under ¢, each node of G has a “fundamental period” A, during which it
initiates « times. Clearly, under ¢ every node of G has asymptotic computation
rate 1/v.

D. ExamrrLe. Computation graphs are ideal for representing systems of
difference equations. As an example, consider the system

Tiq1 = Yi&i — Ty, Yiqr = Ixi + yil + zi2:, Zip = T/,

with zg , Yo , 20 given. Suppose the values zy , yn , zv are desired for some fixed N > 1.
A possible computation graph is the following (see Figure 1). All branches have
U = 1 unless otherwise indicated. Branches for which 4 5 0 are labeled with the
appropriate value, e.g. 1(x;) means that the corresponding branch has 4 = 1 and
that initial data item is the value z,. Branches labeled N, U = 0 are dummies
for which 4 = N; their function is to terminate the computation upon depletion
of their queues. Upon termination, the branches (n, , ), (ns, m), and (ng, ns)
contain the values xy, yx, and 2y, respectively.

Assume that the times required by the various node functions are: addition and
subtraction, 1 time unit; absolute value, 2 time units; multiplication, 3 time units;
division, 4 time units. Then 7 = %*, corresponding to the cycles n1, 1y, 77, 75, T
and ng , ng , Ny, N5, nz . Applying Corollary 2.1, we obtain X; = X, = X¢ = X3 =
N, X;=X,= X; = Xz = N 4 1. If we choose n, as a source we obtain, with

Yy=a, h=0, h=3, =0 ta=—3 t=—3% (=3, =~} =4}
If we choose ns as a sink, we obtain a different set of starting times: 7h = —§,
TZ = %, T3 = '—%y T4 = _gy T5 - —-—2];) TG = %; T7 = —'3) TS = 0. Thus’
for example, under this schedule, n; initiates at times —§, 4, %2, 15, ---, —§ +

II{(N — 1)/2. If an all-integer schedule is required with asymptotic computation
rate 1/r, we obtain the two schedules o', ¢’ defined by

ol(r) = w(r = 1)+ &7,  ¢”(r) = w(r—1) + T
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18
Lygy)

1(z0)

l(x0
N,U=0
1(yy)
o4
](z)

Fia. 1

Thus, for example, under ¢”, 7, initiates at times —1, 4, 10, 15, 21, 27, -,
C—24 11(N — 1)/2".
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