
Scheduling Parallel Computations

RAYMOND REITER*

University of Michigan,t Ann Arbor, Michigan

ABSTRACT. A model for parallel computations is given as a directed graph in which nodes
represent elementary operations, and branches, data channels. The problem considered
is the determination of an admissible schedule for such a computation; i.e. for each node
determine a sequence of times at which the node initiates its operation. These times must be
such that each node, upon initiation, is assured of having the necessary data upon which to
operate. Necessary and sufficient conditions that a schedule be admissible are given. The
computation rate of a given admissible schedule is defined and is shown to have a limiting
value 1/zr where ~- is a parameter dependent upon the cycles in the graph. Thus, the computa-
tion camiot proceed at. a rate exceeding 1/~-. For v > ~-, the class of all periodic admissible
schedules with period 7 is characterized by the solution space of a certain system of linear
inequMities. In particular, then, the maximum computation rate of 1/~r is attainable under a
periodic admissible schedule with period 7r. A class of all-integer admissible schedules is given.
Finally, an algorithm is given for the determination of the number of initiations of each node
in the graph defining a parallel computation.

An example for a system of difference equations is given in detail.

K E Y W O R D S A N D P H R A S E S : parallel computation, parallel algorithms, iterative algorithms,
directed graph representation, multiple processors, processor initiation multiplicity, sched-
uling processor initiations, periodic initiation times, maximum computation rate, integer
schedules

C R C A T E G O R I E S : 5.9

1. Introduction

Virtually all models for parallel computat ions which have appeared in the literature
represent the calculation as a directed graph in which nodes and branches repre-
sent, respectively, processing units (e lementary operations) and da ta channels
(precedence constraints) (see, e.g., [1-5]). I t is of interest to determine a schedule
for the execution of such a parallel algorithm, i.e. for each processor, to determine
a sequence of times at which the processor initiates its operation. These times must
be such tha t a given processor, upon initiation, is assured of having the necessary
da ta upon which to operate. Such a schedule thus provides a very simple control
of the parallel compu ta t i on - -mere ly signal each processor to begin a t its appro-
pr iate times, quite independently of wha t the remaining processors in the system
are doing.

The above-mentioned models for parallel computat ions m a y be distinguished
according as they do (see [1, 3, 4]) or do not (see [2, 5]) allow branching, i.e. nodes

,° orm decision in

* Present address: The Inst i tute of Computer Science, University of London, London,
i

England.
? Systems Engineering Laboratory, Department of Electrical Engineering. This research was
supported by Air Force contract AF 30(602)-3546.

Journal of the Assocmtlon for Computing Machinery, Vol, 15. No. 4, October 1968, pp. 590-599,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321479.321485&domain=pdf&date_stamp=1968-10-01

~chedul ing Parallel Computat ions 591

I n the case that branching is permitted, it is clear that no ~ priori schedule can be
determined, since this is necessarily dependent on the initial data. Otherwise,
such a schedule does exist. In this case, if tile graph defining the computation is
t~cyclic (see [2]), the determination of such a schedule is trivial. However, if the
computation is iterative, i.e. the corresponding graph has cycles, the determina-
t ion of a schedule is no longer obvious. Karp and 5iiller [5] have formulated a model
for this class of parallel computations (i.e. which do not involve branching), in
this paper scheduling processor initiations are considered for a special case of their
r~odel.

For our purposes, then, a parallel algorithm is specified by a directed graph G
called a computat ion graph. G is given by

(i) ~ node set N = ln, , n2 , . . . , n~},

(ii) branches d~, d2, • -. , dr, where any given branch dp = (n~, n~.) is directed
from a specified node n~ to a specified node n j ,

' T (iii) two nonnegative integers Ao-, ~;o, where U~j C {0, 1}, and a positive real
number ~'o', associated with each br~mch dp = (n~-, nj).

A node of G represents an operation in the computation or, equivalently, a proc-
essor assigned to perform that operation. Each branch d~ = (n~, n~.) represents a
queue of data directed from the processor assigned to n~ to the processor associated
with n~.. Thus the processor at n~ places the results of its calculations onto branch
dp and the queue of data on dp is avail.~ble as input to the processor at nj.. The
parameters in (iii) are to be interpreted as follows:

A o" = the initial number of data words on branch d, ;
U~j = the number of data words placed on dp upon the termination of the

operation associated with n~ ;
~ . = the time required by node n~ to place the result of its operation on

branch (n~, n~.). If n~ initiates at time t, then at time t q- Ti~', n~
places Uij data words on branch (n~, ni) .

Dynamically, a computation graph G functions as follows. Whenever every input
branch to node n~ contains at least one data item, n~ becomes eligible for initiation.
n~ is not required to initiate the moment that it becomes eligible; if at that time it
does not initiate, then it must do so at some future time. Upon initiation, say at
t ime t, n~ removes one data item from each of its input branches; if d~ = (n~, nj)
is an output branch from n~, then at time t -b r~', n~ places U~. data items upon
d~. The computation defined by G terminates if there exists a time T such that for
sdl t > T, no node of G is capable of initiating. Otherwise, G is nonterminating.
These conditions are formalized in [5]; we give a different characterization in Section
3 when we define an admissible schedule.

Denote by X~ the number of initiations of n~ during the computation defined by
G. Thus 0 <: X~ <: oo. In Section 2 a simple algorithm is provided for determining
these numbers. In Section 3 the class of all admissible schedules is characterized,
und a maximum computation rate periodic schedule for G is provided.

2. Determining {X~}

V/e assume that each node of G initiates at least once, i.e. X~ >__ 1 for each n~ of G.
This assumption is equivalent [5] to the requirement

Journal of tbe Association for Computing Machinery, Vol. 15, No. 4, October 1968

~ 9 2 RNTFJIOND I ~ I T E R

A,.; _> 1 (2.1)
(nl ,n i) ~ C

for each directed cycle C of G.
T ~ o e ~ a 2.1. SupposeX~ > l f o reaehnoden~o fgand thag{A~ l U~s - 0} # ¢ .

Withou~ loss of generality, suppose A~ = min~.~ {A~I U4~ = 0}. Then X1 = A~I.
Paoo~. Clearly, X, <_ A.,.~. For an arbi t rary node n~, define o~ =

min~ {A~ I U~ = 0} if this set is nonempty , o~ = o~ otherwise. Then, in particular,
~, = A ~ . t n general,

X~ = min{a.~, rain {X~ + A ~ I U~ = 1}}.
i

Suppose, cont rary to the s ta tement of Theorem 2.1, tha t X~ < A~I = ~ . Then

X~ = min {X~ + A~ I U~ = 1},
i

= Xj l + A ~ , say.

Since X~ < oo, X h < ~ . We prove tha t X h ~ cw~--for otherwise X~.~ = c~ h =
A~ h for some i. Bu t ~henX1 = Xj~ + A j~ = A~ h + Ah~ > Ah~ > A,.~, contradict-
ing the assumption X, < A~,. I t follows ~hat

X h = rain {X~ + A~h I U~h = 1},
i

i.e.

: X h + A h h , say,

XI : X h + A h h + Ah l >__ X¢2,

and a similar a rgument shows tha t X h # oj2. We can repeat this process, obtaining
a sequence of nodes ni, , , nj,,,_l, • . . , ni~, ni0 = n~ with

X~' i = Xj~_~ + A~i,3"~_~, i = 1 ,2 , - . . ,m . (2.2)

Eventua l ly some node mus t repeat, yielding a cycle C of G. If we add those equa-
tions of (2.2) corresponding to the branches of C, we obtain ~-~(-,.,i)ec Ai~. = 0,
contradict ing (2.1).

COROLLARY 2.1. The following algorithm yields { X ~ l i = 1, 2, . . . , l} when
X i > . t, i = 1 , 2 , . . . , / .

1. I f {Aii I Uii = 0} = q~, then each X i = o~. This follows from the results in [5].
2. Otherwise, let nj be such that A,.i = min~,k {A~k [U~k = 0}.

Put X j = A r] . I f (n j , nk) is a branch of G, add a branch (nk, nk) with Uk~ = 0
and initial data Akk = A ~e + X j . Remove ni and all of its input and output branches.
I f the resulting graph is the null graph, we are through. I f the resulting graph H has no
branch (n~ , n~) with U~j = O, put Xk = ~ for all nodes nk of H. Otherwise, retw~'~ to
(1) with H.

3. Scheduling

We formalize the notion of "val id node initiation t imes" given in Section 1. As
before, we assume tha t X~ >__ 1 for each node n~ of G. A schedule is a set ¢ =
{¢1, ~ , " ' " , ¢~}, where each ¢i is a function ¢i :{1, 2, . . . , X~} --~ R such that for

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

~Sche&di'ng Paralgd Comp~tat ions 593

1 -< /c < r < X~, ¢~(/c) < ¢~(r). Here t~ is the set of real numbers . With each
taode ~ we associate a function :c~ : t~ --~ {0, 1, .. • , X;}.

z~(t) = 0 if and only i f t < ~ (1) ;

:r~(t) =]c for 1 <]~ < X ~ i f a n d o n l y i f ¢~(/c) < ~ < c~4(/c -t- 1);

z~(t) = Xi if and only if ¢~(X~) < t.

t¢or every branch (rq , r@ define

%r ~le r e

• y(t) = 1 if there exists k, t < /c < X j , such t h a t ¢~.(/;:) = t,
~j(t) = 0 otherwise.

A schedule c~ is ealled an admi~dbZe ache&de if, f o r j = 1,2, .. • , Z, Cj(/c) = t implies
t b ~ () >_ 1 for all branches (n~, 'n~) int.() n j , and for all l~, 1 < /c < X j .

These definitions are to be in terpre ted as follows:
~i(/c) = t means t h a t node rr~ begins its kth init iation a t t ime t under the

schedule or.
:c~(t) is the n u m b e r of initiations of node 'n~, up to and including t ime t,

under the schedule ~.
b~i(t) is thus the number of da t a i tems on branch (n~, ~b) a t t ime t under

the schedule ~.
A n admissible schedule specifies those node init iat ion t imes corresponding to the
presence of at least one da ta i tem on each of the node input branches° Thus %.
ini t ia tes a t t ime t (c~(/~) = t for some/c, 1 < 1~ < X~) only if each branch (n~, r@
direc ted into n~. contains at least one da ta i tem (b{i(t) > 1),

A branch (n~, n~) is essentiag if X~ > A ~ . Otherwise it is inessen t ia l tn part icu-
h r, every branch (n4, n~) with U i~ = 0 is inessential. T h e following theorem charac-
ter izes the class of admissible schedules for G.

[[?HFOR~ 3.1. A sched~de ~ is admissible i f and only i f for each esse'r~tial branch
(n~ , n~) of G,

~.~(r) + r~ _< ~ / r + A~s), r = 1, 2, . . . , X ~ - - A ~ .

PaOOF. Su~iciencg. The proof is by contradiction. Let ~ be admissible and sap-
pose there exists an essential branch (n , , n~) and an integer ~,', 1 < r < X~ - A .~ ,
such tha t

~ (r) Jr r~j 2> o-i(r-F A4~). (3.1)

L e t t = ~j('r + A ~) so t h a t :r~(t) = r + A~a'. Then

b~i(t) = A ~ + U ~ / q (t - r~i) - [z~(t) - 1],

= 1 - r + U~z~(t - r~) .

Since (n~, n~) is essential, U~i = 1. Moreover , by (3.1), t - r~i < ~r~(r)so t ha t
:tq(t - r~') < r. H e n c e b { i (t) < 1, w h i c h contradicts the admissibi l i ty of ~.

Necessity. We mus t prove, for any node n~. of G and for k = 1, 2, • .. , X j , t ha t
5~i (z i (k)) > 1 for every branch (n~, h i) directed into h i . I f (n., , n~.) is inessential
th is r emark is valid. Otherwise lc = r + Ao' for some r, 1 < r < X~ - A, ' i . P u t
t = ~ (k) . Then by assumpt ion t - ri~ >_ ~x(r). Thus z~(t - r~) > r. Hence

Journal of the Association for Computing NIachinery, VoL 15, No. 4, Oe[ober 1968

594

b~i(t) = A~j + x~(t - r~j) - [x / t)

=] ,

which establishes the theorem.

A. PERIODIC ADMfSSIBLE SCItEDULES. The actual implementa t ion of the
a lgor i thm defined by a computa t ion graph requires some central control unit whose
function will be to signal, a t appropr ia te times, the var ious processor initiations.
T h e simplest possible control unit would signal these initiations a t periodic intervals,
the period being the same for each processor. To tha t end, we make the following
definition: An admissible schedule z is periodic with period 7 > 0 if there exist real
numbers t ~ s u c h t h a t ~(lc) = t~ + (k - 1)7, k = 1,2, . . . , X ~ .

As an immedia te corollary to Theorem 3.1 we have
COt~OL5AICY 3.1. G has an admissible periodic schedule with period 7 i f and only

i f there exist real numbers t~ , i = 1, 2, • • • , l, which satisfy

t~. -- t~ >_ r~j -- 7A~" (3 .2)

for every essential branch (n~ , hi) of G.
In part icular , if G has an '~dmissible periodic schedule with period 7, then 7 >_

max { . r , / A , } , the max t aken over all essential branches of the form (n l , ni) . Let
G t be the graph obtained from G by removing all inessential branches, all essential
branches of the form (n~, n~), and all the resulting (if any) isolated nodes (i.e.
nodes wi thout input and output branches) . Suppose G' has m nodes n~, n~, . . .
n~ and n branches d~, d.2, . . . , d , . Le t A t = (c~,) be the edge-node incidence

of G : matr ix ' '
a~, = 1 if branch d~ is directed into n, ;
a~, = - 1 if branch d~ is directed out from n~ ;
a,~ = 0 otherwise.

Le t t be a column vector wi th r th component t~, i = 1, 2, • • • , m, and let a be a
column vec tor with r th component a~ = T~j - 7 A ~ , where d~ = (n~, n j). Then by
Corol lary 3.1 and the above remarks, the following can be s ta ted:

G has a periodic admissible schedule wi th period 7 if and only if
(i) 7 >- maxi { r , / A , } , and

(ii) there exists t such t ha t

A ' t > a. (3.3)

B y [6, Cor. 1, p. 157], (3.3) has a solution if and only if, for every cycle C of d ,
~-~c a~ < 0, with summat ion over the branches dl of C. Thus (3.3) has a solution
if and only if

7 > max " " .
- - c ~ G ' A~ i

Let us define the max i mum cycle ratio of G,

"/r = m a x . (m E(;'

(m,n~)~C Aq~ '

RiYMOND REITER

- 1] > A ~ j + r - [r + A ~ j - 1],

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

Ncheduling Parallel Computations 595

t h e max over all cycles C of G (including cycles of the form (n~, n~)) consisting of
essential branches. We then have

COROLLARY 3.2. G has a periodic admissible schedule with period 7 i f and only i f
(i) G has no cycles consisting of essential branches and 7 > O, or (ii) G has at least one
cycle consisting of essential branches and 7 >_ ~r.

Case (i) would not often be encountered, at least not in the context of parallel
computation, since, under these conditions, a node is permitted to initiate before it
h a s terminated its previous initiation. The usual situation is to require termination
before the next initiation. Such a constraint corresponds to computation graphs G
fo r which each node ni has (implicitly) a branch (h i , n~) with A , = U , = 1 and
~-~ = max {rij'}, the max taken over all branches (h i , nj) out from n~.

thus emerges as the minimum possible period of any periodic admissible sched-
ule. Define the computation rate of a node n~, under an admissible schedule ~, to be

o, = o-,(X~) - o-,(1) if X , < oo,

t
= l i m , - - if X~--- o~

t + + o ' i (t)

and this limit exists. In particular, under a periodic admissible schedule z', with
period ~r,

p~ = - • (3.4)
7g

L e t n~ be a node which lies on a cycle C:n~, n~, . • • , n~, with maximum cycle ratio
~r. Let ~ be any admissible schedule for G where without loss of generality we assume
tha ta~(1) = 0. Finally, suppose that X~ =]ca + v, /~ > 1, 0 g ~ _< c ~ - 1,
where a = ~ (~ . ~) e c A ~.. Then by Theorem 3.1 the following inequalities hold:

z,(v) + r,2 _< z2(, + A~:),

,~2(v + A,2) + r23 _< ,~3(v + A~2 + A23),

a,(p + A~2 + . . . + Ar_~.~) + r,,~ < a~(v + a) ,

a~(v + a) + r,2 <: ~ (~ + a + A12),

ar(v + (k - 1)a + A12 + "" + Ar-l,r) + Tr,1 ~ O'I(P -~- ~o/).

Adding these inequalities yields

~(~) + k Z : r,+ < ~(X~),
(n~,ni)6C

i.e.

k ~ r, j _< ~1(X1).
(nl,ni)Ee

Using the relation ~(~,~; l~e r~i = 7ra, we obtain

Journal of the Association for Computing Machinery, Vol. 15, No. 4, October 1968

596 R A Y M O N D R E I T E R

Comparing with (3.4), we see that asymptotically (i.e. X1 --~ oo),

a a t 1
Pi ~'~ __ < Pi ~ - .

7V

Thus, asymptotically, nl cannot achieve a computation rate grealer than that attained
under a periodic admissible schedule or' with period 7r. Moreover, this m a x i m u m compu-
tation rate is 1/~r. I n this sense then, ~' provides a best admissible schedule for G, with
respect to both computation speed and ease of processor control.

B. SOLUTIONS OF A' t > a. Define

the max taken over all paths p(i , j) from n~ to n3' of G'. d(i , j) = - ~ if no such
pa th exists, d(i , j) is thus the maximum path length from n~ to n j .

A node n~ is a source if there exists a path from n~ to every other node of G'. It
follows [6, 9.5, p. 182] that if G' has a source n , , say, then a solution of this system
when ~ >_ ~r is given by

t, = 0, t~= d(1, i) , i = 2, . . . , m .

A node n~ is a sink if there exists a path from every other node of G' to n~. Dually,
if n~ is a sink, a solution of this system is given by

T I = O, T ~ = - d (i , 1), i = 2, . . . , m .

The condition ~-'~drec ar _< 0 for every cycle C of G', i.e. the condition ~' > 7r, pro-
vides an efficient algorithm for determining t~ or T~ [6, 9.4, p. 180]. An algorithm for
determining the parameter ~r is given in [7]. For solutions in the case of more general
graphs G', and a more extensive analysis of the solution space of A't >_ a, the reader
is referred to [8].

C. INTEGER ADMISSIBLE SCHEDULES. Suppose that the node initiation times
of G are to be governed by a clock signal. Then these times are constrained to be
integer multiples of the clock period. Thus, it is of interest to determine an integer
admissible schedule for G, i.e. an admissible schedule ¢ such that z~(k) is an integer
i - - 1,2, . . . , l , k = 1,2, . . . , X ~ . T o t h a t e n d , we assume that r~j is a positive
integer for each branch (n~, nj) of G. We also assume that no node of G is permitted
to initiate until it has terminated its previous initiation; i.e. if z is an admissible
schedule, t h e n z i (r) + r i_< zi(r + 1), i = 1,2, . . . , 1 , r = 1,2, . . . , X i - , ,
where r~ = max {r~j}, the max taken over all branches (h i , nj) out from n~. In
particular, then,

r~,(r)7 < r~(r + i) 7, (3.5)

where for any real number x we write rx7 to be the smallest integer containing x.
CORObLARY 3.3. Let o- be an admissible schedule for G. Then ~' defined by z ' i (r) =

ro-~(r)n, i = 1, 2, . . " , l, r = 1, 2, . . • , X i , is an integer admissible schedule.
] .

PROOF. By (3.5), z is a schedule. We prove it is admissible. To that end, sup-
pose that (n~, nj) is an essential branch of G and consider, for r = 1, 2, . " ,

Xj. - Ai j ,

Journa l of the Association for Comput ing Machinery, Vol. 15, No. 4, October 1968

Schedul ing Paral le l Computa t ions 597

f / (r) + r ~ = % (r) ~ + T i j ,

= rf~(r) + ~ s 7 since to' is an integer,

_< r f / r + Aij) 7 by Theorem 3.1,
t

= fj (r + A~.) .

Hence, by Theorem 3.1, f ' is an admissible schedule.
Note that f and f ' of Corollary 3.3 yield the same asymptotic node computation

rates for G. Let us consider the form of f ' when f is the periodic admissible schedule
of subsection 3-A. Clearly, if ~, is an integer, ~' assumes the form

cr, '(k) = rt,7 + (k - 1)% k--- 1,2, . . . ,X~,

which is still periodic. If y is not an integer, but rational, say ~, = },/s with t , s
positive integers, it is easy to see that

! !
f ~ (k s + 5) = k x + # ~ (~) , 5 = o , 1 , . . . , ~ - 1, l _ < k s + 5 _ < x ~ ,

where each f~'(f~) is an integer satisfying

~/(o) < f , ' (1) < . . . < f , ' (~ - 1) < f , ' (o) + x.

Thus, under f ' , each node of G has a "fundamental period" X, during which it
initiates s times. Clearly, under ¢' every node of G has asymptotic computation
rate 1/%

D. EXAMPLE. Computation graphs are ideal for representing systems of
difference equations. As an example, consider the system

x~+l = yiz~ - x l , y~+l = I x i + y~ I + x i z i , zi+l = xly~/z~,

with x0, y0, z0 given. Suppose the values x~, y~, zN are desired for some fixed N > 1.
A possible computation graph is the following (see Figure 1). All branches have
U = 1 unless otherwise indicated. Branches for which A # 0 are labeled with the
appropriate value, e.g. l(x0) means that the corresponding branch has A = 1 and
that initial data item is the value x0. Branches labeled N, U = 0 are dummies
for which A = N; their function is to terminate the computation upon depletion
of their queues. Upon termination, the branches (n~, n2), (n6, n~), and (ns, ns)
contain the values x~, y~, and z~, respectively.

Assume that the times required by the various node functions are: addition and
subtraction, 1 time unit; absolute value, 2 time units; multiplication, 3 time units;
division, 4 time units. Then ~r = 4~, corresponding to the cycles n~, n~, nT, ns, n~
and n3, m , nT, ns, m • Applying Corollary 2.1, we obtain X~ = X~ = X6 = X8 =
N, Xa = X4 = X6 = X7 = N + 1. If we choose n~ as a source we obtain, with
~,=~r , t, = O, t ~ = 3 , t~= O, t ~ = - - ~ , t ~ = - - ½ , t~= 3, t7 = - - ~ , ts = ~.
If we choose ns as a sink, we obtain a different set of starting times: T~ = -~ ,
T~= ~, T ~ = - ~ , T ~ - - -] , T ~ = - ½ , T~ =], T7 = - 3 , Ts = 0. Thus,
for example, under this schedule, n~ initiates at times -~ , 4, 4]-, 15, . . . , - ~ +
l l (N - 1)/2. If an all-integer schedule is required with asymptotic computation

! f i l l ~ t e 1/~-, we obtain the two schedules ~ , defined by

f ((r) = %(r -- 1) + t~ ~, a~"(r) = % @ -- 1) + Ti ~.

Journal of the Association for Compu t ing Machinery, Vol. 15, No. 4, October 1968

5 9 8 R2~YMOND REITER

1(z o)

18

1(y o)

P N,U =0

l(x O)

~) l(Y0)

1(x

FIG. 1

Thus, for example, under a", nl initiates at times - 1 , 4, 10, 15, 21, 27, . . ' ,
r _ ~ _ l l (N - 1)/27 .

ACKNOWLEDGMENT. The author wishes to thank Dr. R. M. Karp of IBM Corpora-
tion for many fruitful discussions connected with this work.

REFERENCES
1. ESTRIN, G., BUSSELL, B., TURN, R., AND BIBB, J. Parallel processing in a restructurable

computer system. IEEE Trans. EC-12 (1963), 747-755.

Journal of tile Association for Computing Machinery, Vol. 15, No. 4, October 1968

~cheduling Parallel Computations 599

2- DORN, W. S., Hsu, N. C., AND I~IVLIN, T . J . Some mathematieM aspects of parallel com-
putation. RC-647, IBM t~esearch Center, Yorktown Heights, N. Y., 1962.

3. HELL~R, J. Sequencing aspects of multiprogr~mming. J. ACM 8, 3 (July 1961), 426-439.
4- SCItWARTZ, E. S. An automatic sequencing procedure with application to parallel pro-

gramming. J. ACM 8, 4 (Oct. 1961), 513-537.
,5. KARP, R. M., AND MILLER, R.E. Properties of a model for parallel computations: Deter-

minacy, termination, queueing. SIAM J. Appl. Malh. 14 (1966), 1390-1411.
{~. BI~]?/[GE, C., AND GHOUILa-HOUaI, A. Programming, Games and Transporlation Nelworks.

Wiley, New York, 1965.
7. DANTZIG, G. B., BLATTNER, W. O., AND]~AO, M.R. Finding a cycle in a graph with min-

imum cost to time ratio with application to a ship routing problem. Tech. Rep. 66-1, Op-
erations Res. House, Stanford U., Stanford, Calif., Nov. 1966.

8. REITER, R. A study of a model for parallel computation. Ph.D. diss., Dep. of Commun.
Sciences, U. of Michigan, Ann Arbor, Mich., June 1967.

RF~CEIVED JANUARY, 1968

Journal of the Association for Computing Maehiaery, Vol. 15, No. 4, October 1968

