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ABSTRACT. A model for parallel computations is given as a directed graph in which nodes 
represent elementary operations, and branches, data channels. The problem considered 
is the determination of an admissible schedule for such a computation; i.e. for each node 
determine a sequence of times at which the node initiates its operation. These times must be 
such that each node, upon initiation, is assured of having the necessary data upon which to 
operate. Necessary and sufficient conditions that a schedule be admissible are given. The 
computation rate of a given admissible schedule is defined and is shown to have a limiting 
value 1/zr where ~- is a parameter dependent upon the cycles in the graph. Thus, the computa- 
tion camiot proceed at. a rate exceeding 1/~-. For v > ~-, the class of all periodic admissible 
schedules with period 7 is characterized by the solution space of a certain system of linear 
inequMities. In particular, then, the maximum computation rate of 1/~r is attainable under a 
periodic admissible schedule with period 7r. A class of all-integer admissible schedules is given. 
Finally, an algorithm is given for the determination of the number of initiations of each node 
in the graph defining a parallel computation. 

An example for a system of difference equations is given in detail. 

K E Y  W O R D S  A N D  P H R A S E S :  parallel computation, parallel algorithms, iterative algorithms, 
directed graph representation, multiple processors, processor initiation multiplicity, sched- 
uling processor initiations, periodic initiation times, maximum computation rate, integer 
schedules 

C R  C A T E G O R I E S :  5.9 

1. Introduction 

Virtually all models for parallel computat ions  which have  appeared in the literature 
represent  the calculation as a directed graph  in which nodes and branches repre- 
sent, respectively, processing units (e lementary  operations) and da ta  channels 
(precedence constraints) (see, e.g., [1-5]). I t  is of interest  to determine a schedule 
for the execution of such a parallel algorithm, i.e. for each processor, to determine 
a sequence of times at  which the processor initiates its operation.  These times must 
be  such tha t  a given processor, upon initiation, is assured of having the necessary 
da ta  upon which to operate.  Such a schedule thus provides a very  simple control 
of the parallel compu ta t i on - -mere ly  signal each processor to begin a t  its appro- 
pr iate  times, quite independently of wha t  the remaining processors in the system 
are doing. 

The  above-mentioned models for parallel computat ions  m a y  be distinguished 
according as they  do (see [1, 3, 4]) or do not (see [2, 5]) allow branching,  i.e. nodes 
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I n  the case that  branching is permitted, it is clear that  no ~ priori schedule can be 
determined, since this is necessarily dependent on the initial data. Otherwise, 
such a schedule does exist. In this case, if tile graph defining the computation is 
t~cyclic (see [2]), the determination of such a schedule is trivial. However, if the 
computation is iterative, i.e. the corresponding graph has cycles, the determina- 
t ion of a schedule is no longer obvious. Karp and 5iiller [5] have formulated a model 
for this class of parallel computations (i.e. which do not involve branching), in 
this paper scheduling processor initiations are considered for a special case of their 
r~odel. 

For our purposes, then, a parallel algorithm is specified by  a directed graph G 
called a computat ion graph. G is given by 

(i) ~ node set N = ln,  , n2 , . . .  , n~}, 

(ii) branches d~, d2, • -. , dr,  where any given branch dp = (n~, n~.) is directed 
from a specified node n~ to a specified node n j ,  

' T (iii) two nonnegative integers Ao-, ~;o, where U~j C {0, 1}, and a positive real 
number ~'o', associated with each br~mch dp = (n~-, nj).  

A node of G represents an operation in the computation or, equivalently, a proc- 
essor assigned to perform that operation. Each branch d~ = (n~, n~.) represents a 
queue of data directed from the processor assigned to n~ to the processor associated 
with n~.. Thus the processor at n~ places the results of its calculations onto branch 
dp and the queue of data on dp is avail.~ble as input to the processor at nj.. The 
parameters in (iii) are to be interpreted as follows: 

A o" = the initial number of data words on branch d, ; 
U~j = the number of data words placed on dp upon the termination of the 

operation associated with n~ ; 
~ .  = the time required by node n~ to place the result of its operation on 

branch (n~, n~.). If  n~ initiates at time t, then at time t q- Ti~', n~ 
places Uij data  words on branch (n~, ni) .  

Dynamically, a computation graph G functions as follows. Whenever every input 
branch to node n~ contains at least one data item, n~ becomes eligible for initiation. 
n~ is not required to initiate the moment that it becomes eligible; if at that time it 
does not initiate, then it must do so at some future time. Upon initiation, say at 
t ime t, n~ removes one data item from each of its input branches; if d~ = (n~, nj) 
is an output  branch from n~, then at time t -b r~', n~ places U~. data items upon 
d~. The computation defined by G terminates if there exists a time T such that for 
sdl t > T, no node of G is capable of initiating. Otherwise, G is nonterminating. 
These conditions are formalized in [5]; we give a different characterization in Section 
3 when we define an admissible schedule. 

Denote by X~ the number of initiations of n~ during the computation defined by 
G. Thus 0 <: X~ <: oo. In Section 2 a simple algorithm is provided for determining 
these numbers. In Section 3 the class of all admissible schedules is characterized, 
und a maximum computation rate periodic schedule for G is provided. 

2.  Determining {X~} 

V/e assume that each node of G initiates at least once, i.e. X~ >__ 1 for each n~ of G. 
This assumption is equivalent [5] to the requirement 
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A,.; _> 1 (2.1) 
(nl ,n i) ~ C 

for each directed cycle C of G. 
T ~ o e ~ a  2.1. SupposeX~ > l f o reaehnoden~o fgand thag{A~ l  U~s - 0} # ¢ .  

Withou~ loss of generality, suppose A~ = min~.~ {A~I U4~ = 0}. Then X1 = A~I. 
Paoo~.  Clearly, X,  <_ A.,.~. For an arbi t rary  node n~, define o~ = 

min~ {A~ I U~ = 0} if this set is nonempty ,  o~ = o~ otherwise. Then,  in particular, 
~, = A ~ .  t n  general, 

X~ = min{a.~, rain {X~ + A ~  I U~ = 1}}. 
i 

Suppose, cont rary  to the s ta tement  of Theorem 2.1, tha t  X~ < A~I = ~ . Then  

X~ = min {X~ + A~  I U~ = 1}, 
i 

= Xj l  + A ~ ,  say. 

Since X~ < oo, X h < ~ .  We prove tha t  X h ~ cw~--for otherwise X~.~ = c~ h = 
A~ h for some i. Bu t  ~henX1 = Xj~ + A j~ = A~ h + Ah~ > Ah~ > A,.~, contradict- 
ing the assumption X,  < A~,. I t  follows ~hat 

X h = rain {X~ + A~h I U~h = 1}, 
i 

i.e. 

: X h  + A h h ,  say, 

XI  : X h  + A h h  + Ah l  >__ X¢2, 

and a similar a rgument  shows tha t  X h # oj2. We can repeat this process, obtaining 
a sequence of nodes ni, , ,  nj,,,_l, • . .  , ni~, ni0 = n~ with 

X~' i = Xj~_~ + A~i,3"~_~, i = 1 ,2 ,  - . .  ,m .  (2.2) 

Eventua l ly  some node mus t  repeat, yielding a cycle C of G. If  we add those equa- 
tions of (2.2) corresponding to the  branches of C, we obtain ~-~(-,.,i)ec Ai~. = 0, 
contradict ing (2.1). 

COROLLARY 2.1. The following algorithm yields { X ~ l i  = 1, 2, . . .  , l} when 
X i > .  t, i =  1 , 2 , . . . , / .  

1. I f  {Aii I Uii = 0} = q~, then each X i  = o~. This follows from the results in [5]. 
2. Otherwise, let nj be such that A,.i = min~,k {A~k [ U~k = 0}. 

Put X j  = A r ] .  I f  (n j ,  nk) is a branch of G, add a branch (nk, nk) with Uk~ = 0 
and initial data Akk = A ~e + X j . Remove ni  and all of its input and output branches. 
I f  the resulting graph is the null graph, we are through. I f  the resulting graph H has no 
branch (n~ , n~) with U~j = O, put Xk = ~ for all nodes nk of H. Otherwise, retw~'~ to 
(1) with H. 

3. Scheduling 

We formalize the  notion of "val id node initiation t imes"  given in Section 1. As 
before, we assume tha t  X~ >__ 1 for each node n~ of G. A schedule is a set ¢ = 
{¢1, ~ ,  " ' "  , ¢~}, where each ¢i is a function ¢i :{1, 2, . . .  , X~} --~ R such that  for 
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1 -< /c < r < X~, ¢~(/c) < ¢~(r). Here  t~ is the set of real numbers .  With  each 
taode  ~ we associate a function :c~ : t~ --~ {0, 1, ..  • , X;}. 

z~(t) = 0 if and only i f t  < ~ ( 1 ) ;  

:r~(t) = ]c for 1 < ]~ < X ~ i f a n d  o n l y i f  ¢~(/c) < ~ < c~4(/c -t- 1); 

z~(t) = Xi  if and only if ¢~(X~) < t. 

t¢or  every  branch  ( rq ,  r@ define 

%r ~le r e 

• y(t) = 1 if there exists k, t < /c < X j ,  such t h a t  ¢~.(/;:) = t, 
~j(t) = 0 otherwise. 

A schedule c~ is ealled an admi~dbZe ache&de if, f o r j  = 1,2,  .. • , Z, Cj(/c) = t implies 
t b ~ (  ) >_ 1 for all branches (n~, 'n~) int.() n j ,  and for all l~, 1 < /c < X j .  

These definitions are to be in terpre ted  as follows: 
~i(/c) = t means  t h a t  node rr~ begins its kth init iation a t  t ime  t under the 

schedule or. 
:c~(t) is the  n u m b e r  of initiations of node 'n~, up to and  including t ime t, 

under  the  schedule ~. 
b~i(t) is thus  the  number  of da t a  i tems on branch (n~, ~b) a t  t ime t under  

the  schedule ~. 
A n  admissible schedule specifies those node init iat ion t imes corresponding to the 
presence  of at  least one da ta  i tem on each of the node input  branches° Thus  %. 
ini t ia tes  a t  t ime t (c~(/~) = t for some/c, 1 < 1~ < X~)  only if each branch  (n~, r@ 
direc ted  into n~. contains at  least one da ta  i tem (b{i(t) > 1), 

A branch (n~, n~) is essentiag if X~ > A ~ .  Otherwise it is inessen t ia l  tn  part icu-  
h r, every branch (n4, n~) with U i~ = 0 is inessential. T h e  following theorem charac- 
ter izes  the  class of admissible schedules for G. 

[[?HFOR~ 3.1. A sched~de ~ is admissible i f  and only i f  for  each esse'r~tial branch 
( n~ ,  n~) of  G, 

~.~(r) + r~ _< ~ / r  + A~s),  r = 1, 2, . . .  , X ~  - -  A ~ .  

PaOOF. Su~iciencg. The  proof is by  contradiction.  Let  ~ be admissible and sap-  
pose  there exists an essential  branch ( n , ,  n~) and an integer ~,', 1 < r < X~ - A .~ ,  
such  tha t  

~ ( r )  Jr r~j 2> o-i(r-F A4~). (3.1) 

L e t  t = ~j('r + A ~ )  so t h a t  :r~(t) = r + A~a'. Then  

b~i(t) = A ~  + U ~ / q ( t -  r~i) - [z~(t) - 1], 

= 1 - r + U~z~(t  - r~ ) .  

Since (n~, n~) is essential, U~i = 1. Moreover ,  by (3.1),  t - r~i < ~r~(r)so t ha t  
:tq(t - r~')  < r. H e n c e  b { i ( t )  < 1, w h i c h  contradicts  the admissibi l i ty  of ~. 

Necessity. We mus t  prove,  for any  node n~. of G and for k = 1, 2, • ..  , X j ,  t ha t  
5~i (z i (k) )  > 1 for every  branch (n~, h i )  directed into h i .  I f  (n., ,  n~.) is inessential 
th is  r emark  is valid. Otherwise lc = r + Ao' for some r, 1 < r < X~ - A, ' i .  P u t  
t = ~ ( k ) .  Then  by  assumpt ion  t - ri~ >_ ~x(r). Thus  z~(t - r~ )  > r. Hence  
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b~i(t) = A~j + x~(t - r~j) - [ x / t )  

= ] ,  

which establishes the theorem. 

A. PERIODIC ADMfSSIBLE SCItEDULES. The  actual  implementa t ion  of the 
a lgor i thm defined by  a computa t ion  graph requires some central  control unit  whose 
function will be to signal, a t  appropr ia te  times, the var ious processor initiations. 
T h e  simplest  possible control  unit  would signal these initiations a t  periodic intervals, 
the  period being the same for each processor. To  tha t  end, we make  the following 
definition: An admissible schedule z is periodic with period 7 > 0 if there  exist real 
numbers  t ~ s u c h t h a t  ~(lc) = t~ + (k - 1)7, k = 1,2, . . .  , X ~ .  

As an immedia te  corollary to Theorem 3.1 we have  
COt~OL5AICY 3.1. G has an admissible periodic schedule with period 7 i f  and only 

i f  there exist real numbers t~ , i = 1, 2, • • • , l, which satisfy 

t~. -- t~ >_ r~j -- 7A~" (3 .2)  

for every essential branch ( n~ , hi)  of G. 
In  part icular ,  if G has an '~dmissible periodic schedule with period 7, then  7 >_ 

max  { . r , / A , } ,  the max t aken  over  all essential branches of the form ( n l ,  ni) .  Let 
G t be the  graph  obtained from G by  removing all inessential branches,  all essential 
branches of the  form (n~, n~), and all the resulting (if any)  isolated nodes (i.e. 
nodes wi thout  input  and output  branches) .  Suppose G' has m nodes n~, n~, . . .  
n~ and n branches d~, d.2, . . .  , d , .  Le t  A t = (c~,) be the edge-node incidence 

of G : matr ix  ' ' 
a~, = 1 if branch d~ is directed into n, ; 
a~, = - 1 if branch d~ is directed out  from n~ ; 
a,~ = 0 otherwise. 

Le t  t be a column vector  wi th  r th  component  t~, i = 1, 2, • • • , m, and let a be a 
column vec tor  with r th component  a~ = T~j - 7 A ~ ,  where d~ = (n~, n j). Then by 
Corol lary 3.1 and the above  remarks,  the following can be s ta ted:  

G has a periodic admissible schedule wi th  period 7 if and  only if 
(i) 7 >- maxi  { r , / A , } ,  and 

(ii) there exists t such t ha t  

A ' t  > a. (3.3) 

B y  [6, Cor. 1, p. 157], (3.3) has a solution if and only if, for every  cycle C of d ,  
~-~c a~ < 0, with summat ion  over  the branches  dl of C. Thus  (3.3) has a solution 
if and only if 

7 > max " " . 
- -  c ~ G '  A~ i 

Let  us define the max i mum cycle ratio of G, 

"/r = m a x .  (m E(;' 

(m,n~)~C Aq~  ' 

RiYMOND REITER 

- 1] > A ~ j +  r -  [r + A ~ j -  1], 
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t h e  max over all cycles C of G (including cycles of the form (n~, n~)) consisting of 
essential branches. We then have 

COROLLARY 3.2. G has a periodic admissible schedule with period 7 i f  and only i f  
( i ) G has no cycles consisting of essential branches and 7 > O, or ( ii ) G has at least one 
cycle consisting of essential branches and 7 >_ ~r. 

Case (i) would not often be encountered, at least not in the context of parallel 
computation,  since, under these conditions, a node is permitted to initiate before it 
h a s  terminated its previous initiation. The usual situation is to require termination 
before the next initiation. Such a constraint corresponds to computation graphs G 
fo r  which each node ni has (implicitly) a branch (h i ,  n~) with A ,  = U ,  = 1 and 
~-~ = max {rij'}, the max taken over all branches (h i ,  nj)  out from n~. 

thus emerges as the minimum possible period of any periodic admissible sched- 
ule. Define the computation rate of a node n~, under an admissible schedule ~, to be 

o, = o-,(X~) - o-,(1) if X ,  < oo, 

t 
= l i m , - -  if X~--- o~ 

t + +  o ' i ( t )  

and  this limit exists. In particular, under a periodic admissible schedule z', with 
period ~r, 

p~ = - • (3.4) 
7g 

L e t  n~ be a node which lies on a cycle C:n~,  n~, . • • , n~, with maximum cycle ratio 
~r. Let ~ be any admissible schedule for G where without loss of generality we assume 
tha ta~(1)  = 0. Finally, suppose that  X~ = ]ca + v, /~ > 1, 0 g ~ _< c ~ -  1, 
where a = ~ ( ~ . ~ ) e  c A ~.. Then by Theorem 3.1 the following inequalities hold: 

z,(v) + r,2 _< z2(, + A~:), 

,~2(v + A,2) + r23 _< ,~3(v + A~2 + A23), 

a,(p + A~2 + . . .  + Ar_~.~) + r,,~ < a~(v + a) ,  

a~(v + a) + r,2 <: ~ (~  + a + A12), 

ar(v + (k - 1 )a  + A12 + "" + Ar-l,r) + Tr,1 ~ O'I(P -~- ~o/). 

Adding these inequalities yields 

~(~)  + k Z :  r,+ < ~(X~),  
(n~,ni)6C 

i.e. 

k ~ r, j  _< ~1(X1). 
(nl,ni)Ee 

Using the relation ~(~,~; l~e r~i = 7ra, we obtain 
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Comparing with (3.4), we see that  asymptotically (i.e. X1 --~ oo ), 

a a t 1 
Pi ~'~ __ < Pi ~ - .  

7V 

Thus,  asymptotically, nl cannot achieve a computation rate grealer than that attained 
under a periodic admissible schedule or' with period 7r. Moreover, this m a x i m u m  compu- 
tation rate is 1/~r. I n  this sense then, ~' provides a best admissible schedule for G, with 
respect to both computation speed and ease of processor control. 

B. SOLUTIONS OF A' t  > a. Define 

the max taken over all paths p(i ,  j )  from n~ to n3' of G'. d(i ,  j )  = - ~ if no such 
pa th  exists, d(i ,  j )  is thus the maximum path length from n~ to n j .  

A node n~ is a source if there exists a path from n~ to every other node of G'. It 
follows [6, 9.5, p. 182] that  if G' has a source n , ,  say, then a solution of this system 
when ~ >_ ~r is given by 

t, = 0, t~=  d(1, i) ,  i =  2, . . . , m .  

A node n~ is a sink if there exists a path from every other node of G' to n~. Dually, 
if n~ is a sink, a solution of this system is given by 

T I =  O, T ~ =  - d ( i ,  1), i =  2, . . . , m .  

The  condition ~-'~drec ar _< 0 for every cycle C of G', i.e. the condition ~' > 7r, pro- 
vides an efficient algorithm for determining t~ or T~ [6, 9.4, p. 180]. An algorithm for 
determining the parameter ~r is given in [7]. For solutions in the case of more general 
graphs G', and a more extensive analysis of the solution space of A't  >_ a, the reader 
is referred to [8]. 

C. INTEGER ADMISSIBLE SCHEDULES. Suppose that  the node initiation times 
of G are to be governed by a clock signal. Then these times are constrained to be 
integer multiples of the clock period. Thus, it is of interest to determine an integer 
admissible schedule for G, i.e. an admissible schedule ¢ such that  z~(k) is an integer 
i - -  1,2, . . . , l ,  k = 1,2,  . . . , X ~ . T o t h a t e n d ,  we assume that  r~j is a positive 
integer for each branch (n~, nj) of G. We also assume that  no node of G is permitted 
to initiate until it has terminated its previous initiation; i.e. if z is an admissible 
schedule, t h e n z i ( r )  + r i_< zi(r  + 1), i =  1,2,  . . . , 1 ,  r = 1,2,  . . . , X i - , ,  
where r~ = max {r~j}, the max taken over all branches (h i ,  nj) out from n~. In 
particular, then, 

r~,(r)7 < r~(r + i) 7, (3.5) 

where for any real number x we write rx7 to be the smallest integer containing x. 
CORObLARY 3.3. Let o- be an admissible schedule for G. Then ~' defined by z ' i (r)  = 

ro-~(r)n, i = 1, 2, . . "  , l, r = 1, 2, . .  • , X i ,  is an integer admissible schedule. 
] . 

PROOF. By (3.5), z is a schedule. We prove it is admissible. To that  end, sup- 
pose that  (n~, nj) is an essential branch of G and consider, for r = 1, 2, . " ,  

Xj. - Ai j ,  
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f / ( r )  + r ~  = % ( r )  ~ + T i j ,  

= rf~(r) + ~ s  7 since to' is an integer, 

_< r f / r  + Aij) 7 by  Theorem 3.1, 
t 

= fj  (r + A~.) .  

Hence, by Theorem 3.1, f '  is an admissible schedule. 
Note that  f and f '  of Corollary 3.3 yield the same asymptotic node computation 

rates for G. Let us consider the form of f '  when f is the periodic admissible schedule 
of subsection 3-A. Clearly, if ~, is an integer, ~' assumes the form 

cr, '(k) = rt,7 + (k  - 1)% k--- 1,2,  . . .  ,X~,  

which is still periodic. If y is not an integer, but rational, say ~, = },/s with t ,  s 
positive integers, it is easy to see that  

! ! 
f ~ ( k s + 5 )  = k x + # ~ ( ~ ) ,  5 = o ,  1 , . . . , ~ -  1, l _ < k s + 5 _ < x ~ ,  

where each f~'(f~) is an integer satisfying 

~/(o)  < f , ' (1)  < . . .  < f , ' (~ - 1) < f , ' (o)  + x. 

Thus, under f ' ,  each node of G has a "fundamental  period" X, during which it 
initiates s times. Clearly, under ¢' every node of G has asymptotic computation 
rate 1/% 

D. EXAMPLE. Computation graphs are ideal for representing systems of 
difference equations. As an example, consider the system 

x~+l = yiz~ - x l ,  y~+l = I x i  + y~ I + x i z i ,  zi+l = xly~/z~,  

with x0, y0, z0 given. Suppose the values x~,  y~,  zN are desired for some fixed N > 1. 
A possible computation graph is the following (see Figure 1). All branches have 
U = 1 unless otherwise indicated. Branches for which A # 0 are labeled with the 
appropriate value, e.g. l(x0) means that  the corresponding branch has A = 1 and 
that initial data item is the value x0. Branches labeled N, U = 0 are dummies 
for which A = N;  their function is to terminate the computation upon depletion 
of their queues. Upon termination, the branches (n~, n2), (n6, n~), and (ns, ns) 
contain the values x~,  y~,  and z~, respectively. 

Assume that the times required by the various node functions are: addition and 
subtraction, 1 time unit; absolute value, 2 time units; multiplication, 3 time units; 
division, 4 time units. Then ~r = 4~, corresponding to the cycles n~, n~, nT, ns, n~ 
and n3, m ,  nT, ns,  m • Applying Corollary 2.1, we obtain X~ = X~ = X6 = X8 = 
N, Xa = X4 = X6 = X7 = N + 1. If we choose n~ as a source we obtain, with 
~,=~r ,  t, = O, t ~ = 3 ,  t~= O, t ~ = - - ~ ,  t ~ = - - ½ ,  t~= 3, t7 = - - ~ ,  ts = ~. 
If we choose ns as a sink, we obtain a different set of starting times: T~ = -~ ,  
T~= ~, T ~ = - ~ ,  T ~ - - - ] ,  T ~ = - ½ ,  T~ = ], T7 = - 3 ,  Ts = 0. Thus, 
for example, under this schedule, n~ initiates at times -~ ,  4, 4]-, 15, . . .  , - ~  + 
l l (N  - 1)/2. If an all-integer schedule is required with asymptotic computation 

! f i l l  ~ t e  1/~-, we obtain the two schedules ~ ,  defined by  

f ( ( r )  = %(r  -- 1) + t~ ~, a~"(r) = % @  --  1) + Ti ~. 
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1(z o) 

18 

1(y o) 

P N,U =0 

l(x O) 

~) l(Y0) 

1(x 

FIG. 1 

Thus, for example, under a", nl initiates at times - 1 ,  4, 10, 15, 21, 27, . . ' ,  
r _ ~ _  l l ( N  - 1)/27 . 
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