Programmed Grammars and Classes of Formal Languages

DANIEL J. ROSENKRANTZ

) al Electric Research and Development Center, Schenectady, New York
Check for
Updates

ABSTRACT. Programmed grammars are a generalization of phrase structure grammars where
each production has u label, a core consisting of an ordinary phrase structure production, and
two associated sets of production labels. If a production can be applied to an intermediate
string in a derivation, it is applied as far to the left as possible, and the next production to
be used is selected from the first set of labels. If the production cannot be applied to the inter-
mediate string, the next production is selected from the other set of labels.

The properties of programmed grammars with various types of production cores are investi-
gated. Two new classes of grammars are defined which lie between the context-free and context-
sensitive grammars in their generative power. The first class consists of programmed grammars
whose cores have a single symbol on the left-hand side and a nonnull string on the right. The
other class consists of grammars of the above type for which the associated sets of labels act
like an unconditional transfer.

KEY WORDS AND PHRASES: programmed grammar, formal language, phrase structure grammar,
context-free, context-sensitive, Turing machines

CR CATEGORIES: 4.29, 5.22, 5.23

Introduction

Phrase structure grammars (1, 2} have been the most widely studied means of
generating formal languages, and context-free phrase structure grammars in particu-
lar have been the mest widely used in applications to programming languages.
This paper deals with the properties of another device, called programmed gram-
mars [3] (pg’s), which is a generalization of phrase structure grammars. Programmed
grammars have the property that after applying a production of s programmed
grammar to an intermediate string in a derivation, one is restricted as to which
production may be applied next. Specifically, each production has a label, a core
consisting of a regular phrase structure production, and two associated “go-to”
fields. If possible, the production is applied (as far to the left as possible) to the
intermediate string in a derivation, and the next production to be used is selected
from the first go-to field, which is called the success field. If the production cannot
be applied to the string, the next production is selected from the other go-to field.

The aim in selecting the model chosen for programmed grammars was to find a
way to permit specifications within the grammar as to the order in which produc-
tions can be used in generating a sentence. Several authors have considered gram-
mars that contain some specification of the order in which the productions may
be used, but the specification is of a more restricted form than that considered here.

The research described in this report was done at Columbia University under a National
Science Foundation Cooperative Graduate Fellowship, at the General Electric Research and
Development Center, and at Bell Telephone Laboratories. An extended abstract of this paper
was presented at the Eighth Annual Symposium on Switching and Automata Theory, Austin,
Texas, 1967.

Journal of the Association for Computing Machinery, Vol. 18, No. 1, January 1969, pp. 107-131.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321495.321504&domain=pdf&date_stamp=1969-01-01

108 p. J. ROSENKRAY/;

Abraham [4] has defined u class of graminars that correspond in generative power
to programmed grammars which have success fields only and eores which g
context-free with a nonmull right-hand side. Peters [5] deals with grammars where
the productions are arranged eyelicly, and each production may either be apphied
once or as many times as possible. Ginsburg and Spanier 6] have considered the
classes of languages generated from phrase structure grammars by leftmost deviva.
tions whose production sequences lie in some Ianguage. Chomsky [7] has mentioned
a model of natural languages where the granunar contains context-sensitive pro.
ductions which are applied cyclicly. A group at MITRE [8] has written a program
for analyzing English which utilizes productions of this form zs part of its grammar,

A major advantage of using programmed grammars is that the grammar e
often generate the sentences of a language in a manner which corresponds to the
way in which humans would envision the generation. This is particularly true for
context-sensitive languages where a phrase structure grammar might have to
trace out the detailed maneuvers of a linear-bounded automaton (9, 10f. In writing
and using a phrase strueture grammar for o particular language, all the productions
must be constantly checked to see if they ure upplicable at a given point. Writing
a programmed grammar for a given language is similar to writing a program for
the generation of its sentences,

Two new classes of languages are mtroduced which lie between the context-free
and context-sensitive languages. The first new class of languages is generated by
the set of programmed grammars, eailed cfpg’s, whose cores have a single symbol
on the left-hand side and a nonnull string on the right. Cfpg’s can handle many
context-sensitive features of programming languages, often acting in a more natual
manner than a phrase structure grammar would. The other new class, called
utefpg’s, is generated by cfpg’s with identical success and failure fields.. Indexed
grammars [11] eonstitute another attempt to define a class of languages in this
region.

Formal Model

A phrase structure grammar & = (Ve Vv, £, 8) consists ol a terminal vocabulary
(Vy), a nonterminal vocabulary (VN), a set of productions (P), and a sentence
symbol (8) which is a member of V. The productions are of the form ¢ — ¢
where ¢ and ¥ can be strings of mixed terminal and nonterminal symbols with ¢
containing at least one nonterminal symbol. If the left-hand side of every produc
tion is a single symbol, the grammar is called context-free. Tf the right-hand side
of each production has no fewer symbols than the left-hand side, the grammar i
called context-gsensitive.

In generating a sentenee from the wmnuu(u oue starts. With a string consisting
of the symbol 8 (possibly surrounded by endmarkers) as the initial string. At any
point in the derivation, any occurrence in the infermediate string of the left-hand
side of some production may be replaced by the right-hand side of that produetion,
resulting in a new intermediate string. This process is continued until a string i
produced which consists entirely of terminal symbols. Such a string is a sentence
genemted by the grammar. Thus the language L((}) generated by the grammur
is defined to be the set of all strings of terminal symbols which can be derived
from the symbol S by suceessive applications of the productions of G.

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

programmed Grammars and Classes of Formal Languages 104

A word is in order now about the notation which will be used for strings. A string
of all terminal symbols will be represented by a lowercase roman letter, all non-
serminals by a eapital roman lettér, and a string which may contain terminals or
ponterminals by a Greek letter. In addition, single symbuols will be represented
py letters from the beginning of the alphabet and strings by letters from the middle
or eud of the ulphabet. An exception to this rule iz 8, which represents a single
syrbol. ,

A programimed gramumar G = (Vo , Ve, J, £, 8) hag, in addition to Vo, Vy, P,
and S, a set of production labels J. With cach i in J there is associated a unigue
production (v, o, ¢, V, W). Here ¢ and ¢ are strings of mixed terminal and non-
termingl symbols with ¢ containing at least one nonterminal svmbol. ¥V oand W
are subsets of J. The production is written in the following formut:

(r) ¢—y¢ S(MFW)

The core of the production, ¢ — ¥, 15 an ordinary phrase structure production.
MNote that the produetion format is somewhat similar to the instruction format of
the Svopon programming language [12] and of Markov normal algorithms (13}
T'he interpretation of the production is also similar,

In upplying the produetion to an intermediate string £ ¢ is fivst scanned to
sewe i 1t containg ¢ as a substring. If so, the leftmost occurrence of ¢ in £ is replaced
by ¢, and the next production to be applied to the ensuing string is selected {rom
V. Il £ does not contain ¢, then no change 1s made, and the next production is
selected from W. Sinee the next production is selecled from 7 if the sean 18 success-
ful 17 is ealled the suceess field and B is called the failure field. 11 V or W is absent
from the explicit statement of a rule, the corresponding set of labels is the empty
get. If at any point in a derivation the next produetion label must be selected from
the empty set, the derivation comes to a halt.

The language generated by the grammar is defined to be the set of all terminal
strings which can be obtained by starting with the string consisting of 8, applying
any applicable production, and then eontinuing to apply productions as directed
by the success and failure Gelds until a terminal string is produeced. Since the suceess
anu failure fields can contain several production labels, and different choices from
a field can lead to different sentences, a grammar is capable of generating an infinite
oumber of sentences.

Some additional notation will now be introduced. If & and « are strings over
V.U Vs, rand pare rule labels, and rule 7 is ‘

{(r) e— S(VF(W),

we write (£) — {w, p) if either of the following two conditions are met:

(1) rule r suceeeds on £, producing w, and p € ¥; or

2) rulerfailson &, o= § andp ¢ W.

If w consigts entively of terminal symbols, we can also write (£, 1) — w. In addi-
tion if produetion » applied to £ produces the string w, but the set of labels from
which the next produetion is to be selected is empty, we write (£, 7) — w.

Now (£, #) == (w, p) if there is a chain such that

(7)) = (B,) = (&,r) = (&, 7',.).“—“‘ {w,).

The language generated by the grammar is the set of terminal strings 2 such that

Journal of the Assceintion for Computing Machinery, Vol. 16, No. 1, January 1968

110 D. J. ROSENKEANT,

(S, r) = & where v is a rule which has S on the left-hand side of its core. In ti
case of productions with cores which are not context-free, # ean he used us ap
endmarker, and L(G) is the set of terminal strings 2 not containing # such thys
(#S#, r) = #z# for an r which is applicable to #S#.

Laample 1. The following is an example of a programmed grammar wherg
Ve = {a b ¢) and Vi = (8, 4, B, C). The language generated is the set of se.
quences of the form a"b"" with » > 1. This is a context-sensitive language which
eannot be generated by any context-free phrase strueture grammar.

(1) 8 — ABC 8(2, 5)
{2) A — ad S(3)

(3) R -— BB S(4)
(4) € —C S(2, 5)
5 A->a S(6)
(6) B —b S(7)
(7) C - ¢

Example 2, Another example of a pg is the following, which generates sentences
of the form nha™ where n Is a nonnegative integer expressed as a binary number.
A typical sentence is 101hgaaan. This language is o sort of pseudo Hollerith field
specification sinee a eould have been a nonterminal symhbol which was later ex-
panded into a single, arbitrary terminal symbol.

(1) 8 — 18B 8(3)
(2) S — 08 833
(3) 4 — BB 8(3) I'(4)

{(4) B - A S(4) F(1,2,5)
(&) 8 s f 8(6)
(6) A —a S(6)

Note that when in o derivation by this grammar a choice must be made between
several productions which can be applied next, the choice is between produetions
1, 2, and 5. However each of these productions hag an § on the left-hand side of its
core and a distinet terminal symbol beginning the string on the right-hand side.
Murthermore S is always the left-hand nonterminal symbol in an intermediate
string of a derivation. Thus if we wish to parse a string according to this grammar,
we can start penerating a sentence, and whenever a choice must be made between
rules 1, 2, and 5, we can look at the corresponding terminal symbol of the fest
string and, depending on whether it is 1, 0, or A, know which choice must be made
if the derivation is to produce the test string. This property of grammars permits
sentences to be parsed in an amount of time proportional to the length of their
derivation [3].

Erampls 3. The following grammar generates the language {a” | p is a primef.

(1) 8 — 8C S(1, 2)

(2) 8 — AA 8(3)

(3) A— B S(4) F(5)

(4) ¢ —D S8(3) F(7)

(5 C¢—C 86

(6) B — A S(6) F(3)

(7 B— A S(7) FP(8)

(8) D— A S(9) F(10)

Journal of the Asseciation for Computing Machinery, Val. 16, No. 1, January 1969

Pprogrammed Grammars and Classes of Formal Languages il

(9 D—C S(9) Fi3)
(10) A —a S(10)

After applying rule 2 the intermediate string is of the form A "7, For an inter-
mediate string of the form A"C” ", the grammar, beginning with rule 3, tests to
seeif p — nisa multiple of n. If n does divide p — n, rule 5 will eventually fail
and the grammar will stop without having produced a terminal string. If n does
pot divide p — 7, rule 4 will fail, rule 8 will increment n by 1, and n + 1 will be
tested. If rule 8 fails, then n = p, so that p is o prime, and rule 10 converts the
A’s to terminal symbols.

Effect of Cores on Generative Power

This paper is primarily concerned with placing the sets of languages generated
by programmed grammars with various types of production cores within the stand-
ard hierarchy of phrase structure languages. These results are summarized below.

Tueorem 1. The set of languages generated by programmed grammars whaose
rules have cores which are all right linear or terminating (or all left linear or termi-
nating) 1s identical lo the set of finite-state languages.

TuroreM 2. The set of languages generated by programmed graminars all of
whose rules have cores which are linear or terminating is identical (o the sel of linear.
contert-free languages.

Tueorem 3. The set of languages generaled by programmed grammars all of
whose rules have cores which are context-sensitive is identical lo the set of context-sensi-
twe languages.

TueorEM 4. The set of languages generated by cfpg’s | programmed grammars
all of whose rules have cores with a single symbol on the left-hand side and a non-
null string on the right-hand side) properly contains the set of conlext-free lanquagyes
and s properly contained within the set of context-sensilive languages.

TueoneM 5. The set of languages generaled by programmed grammars with
arbitrary coves s tdentical to the set of recursively enumeratle languages.

TueorEM 6. The set of languages generaled by programmed grammars all of
whose rules have cores with a single symbol on the left-hand side and an arburary
(posstbly null) string on the right-hand side is identical to the set of recursively enumera-
ble languages. :

TueorEM 7. The set of languages generated by utcfpg’s (cfpg’s with tdentical
success and failure fields) properly contains the set of contexl-free languages and 1s
properly contained within the set of cfpg languages.

PG’s for Finile-State and Context-Free Languages

A production of a phrase structure grammar is called right linear if it is of the
form A — Bz, terminating if of the form A — 7, and linear if of the form 4 — zBy.
Here z and y are terminal strings. A gramumar is called linear if all its productions
are linear or terminating. It is called one-sided linear if its productions are either
all right linear or terminating, or all left linear or terminating. Every one-sided
linear phrase structure grammar generates a finite-state language [2], i.e. one which
can be recognized by a finite state machine.

This section will first show that a pg whose cores are one-sided linear {or termi-

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1968

112 . D. J. ROSENKRAN7,

nating) generates & {inile slale language, and a pg whose cores are all linear (or
terminating) generates a linear language (a language generated by u linear phryg,
structure grammar). Thus the additional machinery of pg’s does not add any
power if the cores are of this form. We proceed with the proof of Theorem 1,

Proor. First it 1s clear that by putting the set of all productions into the go.t,
fields, a one-sided linear phrase structure grammar can be converted into g g
which generates the same language. Now assume that G is a pg with one-sideg
linear cores. A one-sided linear phrase structure grammar &', which generates the
same language as @, can be constructed.

& has a nonterminal symbol for every production of G. Assume that G is right
linear (the same procedure applies to a left lincar grammar). Then a typical (the
ith) production of &7 is:

Ty 11{ — X B S(V)F(Wt)

The corresponding nonterminal of G will be ()

Now define B, as the set of rules of 2 wluch can be reached through a string of
failure fields after successfully applying rule ; and which have 13, , the nonterminal
on the right-hand side of 1., as the left-hand side of their cores. More precisely,

R, = [r; | there exists », -, 7, with m > 1, Yo = f,
Tyl € T/wz; ryJ:+1 & Wryk for k£ = 1J ey Mmo— 1,
A; = B;, and A #= B for k=1, ,m -1

Thus after suceessfully applying production r., the next production which ean
be successfully applied to the resulting string (which has B; as its only nonterminal)
is a wember of R,

Now corresponding to the single rule #, of &, @ will have the sct of rules

re—sars torall v, € Re.

For a terminating rule of (7,

r; Ay g S(VAF(W,) _
& will have the single rule »; — »,. The sentence symbol of & will be §'". Tor every
production of G whose left-hand side (4,) is equal to 8 (the sentence symbol of
&), ¢ will have the production & —» r; .

¢’ is thus a onesided linear phrase structure grammar which gencrates the
same language as G.

The proof of Theorem 2 is identical to that given above except that every appear-
ance of A, — 2B should be replaced by 4; — @By .

1t should be noted in passing that there are pg’s with metalinear cores which
gencrate languages which are not even context-free. For instance, the language
a"b"" can be generated by a pg with metalinear cores, as is shown in Example I

Tt is quite elear that efpg’s generate all context- free languages. A context-iree
grammar can be converted to a programmed grammmar which generates the same
languages by giving each produetion a label and putting the set of all labels jnte
both go-to fields of every production.

Another approach is to group all rules with the same left-hand side togethef
These groups can be placed in some arbitrary linear order, but with the group of

Tournal of the Associntion for Computing Machinery, Vol. 16, No. 1, January. 1969

Programaned Grammars and Classes of Formal Languages 113

Loules {rules with S on the left-hand side) first. The suecess field of each rule in
a group would contain the labels of the members of its group. The failure field
seotild contain the labels of the next group, with the failure field of the lust group
contaiming the labels of the members of the first group.

Note that such & grammar generates sentences in depth rather than from left
to right. Tt eycles through the nonterminals removing all occurrences (in the
intermediate string) of a nonterminal before going on to the next nonterminal.
With thiz procedure for obtaining the programmed grammar, if the original con-
text-free grammar is unambiguous, then each sentence in the language has only
one derivation in the new grammar, since for every tree produced by the context-
free grammar there is only one derivation produced by the corresponding pro-
grammed gramnar,

Programimed Grammaors With Contewt-Sensttive Cores

This section deals with cspg’s (programmed grammars with context-sensitive
cores). It will first be shown thal (he use of endmarkers does not increase the
power of ¢spg’s, a result similar to a corresponding theorem [9] about confext-
sensitive grammars. A espg without endmarkers is one for which none of the cores
of the productions contain an endmarker. A cspg with endmarkers is one for which
the cores can have endmarkers in their strings,

Lemma 1. The set of languages generated by cspg’s with endmarkers is identical
to the set of languages generated by cspg’s without endmarkers.

The proof of this lemma will only be outlined. First note that every espg without
endmarkers is trivially one with endmarkers. Now given a cspg ¢ with endmarkers,
we can obtain another espg & without endmarkers, which generates the same
language. The new grammar will permit a symbol to be tagged with indicators as
to whether or not it is the first or last svmbol in an intermediate string. Productions
can be written to make ¢ simulate @, Corresponding to productions in ¢ which
wvolve an endmarker, ¢ will huve productions which involve tagged symbols.
The go-to fields of &" can be arranged so that for each applieation of a produetion
of G, only one of the corresponding productions of G is applied, and it is applied
a5 far to the left as possible. Since 7 always applies a produetion of @ as far to the
teft as possible, it generates the same language as G.

Levva 20 The set of languages generaled by espy’s is contotned within the set
of context-sensitive grammars.

Proor. Let G be an arbitrary espg. We will assume that the cores of (7 do not
contain endmarkers. If not, the procedure of the previous lemma can be used to
rewrite @ so that this condition is met. A procedure will now be described for
obtaining a context-sensitive phrase structure grammar @’ that generates the same
language as . & will be a grammar with endmarkers and will eorrespond to a
lincar-bounded automats which simulates the operation of G.

At each stage in the derivation of a sentence from &, except the first and the
last, the intermediale string will contain a marker. The bymbols which can serve
s markers will be doubly subscripted and of the form m; . or i« . The first sub-
seript, %, will correspond to the label of a rule of ¢ which the grammar is currently
frving to apply to the intermediate string, and the second subseript will indicate
the first symbol in the intermediate string of the derivation being simulated. The

Journal uf the Asscciation for Computing Machinery, Vol. 18, No. 1, January: 1968

14 D. J. ROSENKRANT:

reason that the marker earries the first symbol along as a subscript is that the mije.
of &, being context-sensitive, must not be length-decreasing, so that when w.
want to liquidate the marker at the end of a derivation, we can convert it into <}
first symbol of the desired sentence.

The starting symbol of @' is §. ¢’ has a set of rules of the form

!
S —mig

where S is the starting symbol of @ and r; is an S-rule of . Thus & starts off wiz},
B8 # and replaces it with #m, gf.

Letr; ¢ —¢ S(VIF(W,) be a typical rule of G. A symbol of the {orm 7,
will serve us a marker which runs through an intermediate string and searches fi.
. If it finds ¢ it replaces it by ¢ and changes to an unprimed marker for a rule fro;
V.. If it cannot find an oceurrence of ¢, it changes to a marker {or a rule from W,
The m; « symbol moves to the beginning of a sentence and then changes to m L
if ¢ does not occur at the beginning of the string. This is done because the scur
for ¢ must start from the left sinee the leftmost occurrence of ¢ should be replaces
by ¢. If o oceurs at the beginning of the intermediate string being simulated, thes
r; is applied to the marker and the adjacent symbols which form ¢. At any tina:
the marker is at the beginning of a sentence, a production can be applied thaut
changes it to ¢ and ends the derivation.

Since there is only one marker in an intermediate string at a time and evers
production of & (exeept the first) involves a marker in its left-hand side, w derivs-
tion by @ simulates a derivation by 7 and therefore produces a sentence of .
Similarly for every derivation of & sentence by &, there is a corresponding deriva
tion by @'. Thus @& generates the same language as G.

The following eorollary should be noted.

CoroLtARY 1. The sel of lunguages generated by ofpg’s @s contained wathin (ke
set of context-sensitive languages.

THEOREM 3. The seb of languages generaled by cspy's 4s tdentical to the st of
conlext-sensitive languages.

Proor. Lemma 2 states that espg languages are all context-sensitive languags
A procedure will now be described which given a context-sensitive grammar o
will produce a espg G' which generates the same language.

For a rule ¢ — & of G where ¢ containg an endmarker, @' will have the rule

(ro) ey SOIFD)

where T is the set of al] rules of G

This simple tactic will not work if ¢ does not contain an endmarker, since 3
gencrating sentences from & it must be possible to replace any occurrence vf «
(not just the leftmost one) by - To get around this difficulty, @ will have th rat
rules corresponding to a rule of & which does not involve endmarkers. Let ¢ = py
and let 8 be a new nonterminal symbol. Then the rules of G corresponding ¢

¢ — ¢ will be
(ra) B-—8 B(ra,te) ra)
(i) ¢ ¥ S(ra) F(ri)
(7:3) g —8 S(ra) F(T)
Now G generates the same language as .

Journal of the Association for Computing Muchinery, Vol. 18, No. |, Junuary 1963

Programmed Grammars and Classes of Formal Languages 115

Py's With Coniext-Free Cores and No Nullifying Rules

[t has been shown that every context-free language can be generated by a cfpg,
and examples have been given to show that there are cfpg’s which generate lan-
uages which are not context-free, so that the set of cfpg languages (languages
generated by ¢fpg’s) properly contains the set of context-free languages. Also,
from Theorem 3, every ¢fpg generates n language which is context-sensitive, In
this section it is shown that the set of efpg languages is properly contained within
the set of context-sensitive languages. We begin with some definitions.

Let L1 be a language over vocabulary V. We say that L is language L, with
adls if Ly is a language over Vr U ¢, d}, where ¢ and d are new symbols, whose
sentences are of the form zde™ where z € L, and m depends on z. Thus
Iy = {z | ade™ € I for some m}, and each sentence of I, is a sentence of L, followed
hy a tail consisting of & d and a number of ¢’s. Forz € I let m(z) be the minimum
value of 7 such that zde’ € L, . Now let # be a computable, nondecreasing function
defined over the nonnegative integers, and let | 2 | denote the length of =, We will
say that Ls has tail growth function less than or equal to F if for all but a finite
mmber of sentences of Ly, m(x) < F(lz]).

Let G = (Vr, Vu, J, P, 8) be a cfpg with ¢ nonterminal symbois. First place
the nonterminals of G in some arbitrary linear order. The nonterminal map, by , is
a funetion from strings over Vo U V into the set of g-tuples of natural numbers.
We define dx(¢) = v where »; (the 7th component of) is equal to the number of
times the ¥th nonterminal ceeurs in ¢, dw(p) will be called the nonterminal vector
corresponcling to ¢. As an example, if the nonterminals ave 8, A, B, €, D, then
dv(aDAabCSAdVDaA) = (1, 3,0, 1, 2).

Lesma 3. Let Ly be o recursively enumerable language over a vocabulary which
does nol include ¢ or d. Let G be a ¢fpg such that L(G) 18 L, with tails ond kas a tail
growth function less than or equal to F. Then there exists o context-sensitive grammar
G such that L(G") ds Ly with tails and has o ladl growth funclion less than or equal to
allog ' - 1) where q is the number of nonterminals in G.

{Throughout this section logarithms will be to the base 2.)

Proor. First it should be observed that if some sequence of rules of G converts
o Into ade™ where zde” comes from ¢, and a string of ¢'s from ¢, , then the same
sequence of rules applied to s whore x{gs) = dx(g2) Will also convert ¢ into
zde” and g; into a string of ¢’s. Therefore the nonterminal veetor corresponding to
a substring which will eventually form the tail of a sentence provides all the in-
formation required to determine its behavior during a derivation.

If ¢ is a string of length n, then each component of its nonterminal vector is
less than or equal to » and can be stored as & binary number in a space less than or
equal to log n. The entire vector plus ¢ symbols which serve as separators between
components of the vector can be stored in space ¢ log n.

A description is now given of a nondeterministic Turing machine, M, which
never erases and which generates language Ly with tail growth less than or equal to
jlog F + 1). Since M is nonerasing, its actions ean be described by a context-
sensitive grammar, G, which generates the same language as M. An intermediate
string in. a derivation by & always has one symbol marked to indicate the state of
M and the location of its head. By shifting the marked symbol, ¢’ car simulate

the operation of M.

Journal of the Associstion for Computing Machinery, Vol, 16, No. 1, January 1989

116 D. J. ROSENKRANTZ

M simulates the operation of G. However it stores an intermediate string in g
derivation as gv where ¢ is the substring which will eventually form the head of 3
sentence and v is the vector corresponding to the substring which will form the
tail., M operates as follows. o

1. It starts simulating the operation of @ in generating a sentence, storing the
intermediate string in its entirety.

2. At some point, in a nondeterministic manner, it places a marker in the cell
to the right of the intermediate string. Let n + 1 be the number of cells (symbols)
to the left of the marker.

3. M continues to simulate G, storing the first % 4+ 1 symbols of an intermediate
string in the first n + 1 cells of its tape and storing the vector corresponding to
the remainder of the string on the space to the right of the marked square. In
simulating a production whose core is A — ¢, M behaves as follows.

(a) It first scans the string to the left of the marker for an occurrence of an A.
If any are present, the leftmost A is replaced by ¥ and the substring to the right
of the replacement is shifted right if |¢| > 1. Only the first n + 1 symbols of
the resulting string are retained; any nonterminals in the remainder are added to
the appropriate components of the vector while terminals in the remainder are
deleted. The next production to be used is then nondeterministically chosen from
the success field.

(b) If A does not oceur in ¢, but the component of the veetor ¢orresponding to
4 1s nonzero, the production is applied to the vector. The 4 component 1s decre-
mented by 1, and then 6y(y) is added to the resulting vector. In changing the
vector no symbol is ever erased, but symbols can be overprinted by a ¢, which will
represent a blank; thus blanking with ¢’s is used instead of erasing. When more
space is needed, several components and their separators are shifted right. The
next production is then taken from the success field.

(¢) If A does not occur in ¢ and its component in the vector is zero, both ¢
and the vector are Jeft changed, and the next production is selected from the failure
field.

4. After applying each production of G, the machine M determines whetlicr
the string ¢ contains all terminal symbols and whether all the components of the
vector are equal to zero. If not, M continues to simulate G, If so, the derivation
by G has produced a terminal string. M now checks whether or not it put the marker
In the right place by seeing if the string to the left of the marker is of the form .d
where z is a string over V. If not, M will halt without producing a terminal string.
If 50, M takes all the symbols ever used in recording the vector and converts them,
to ¢’s.

The context-sensitive grammar G” which simulates M now has the desired prop-
erties. It generates the sentences of L(Q) but with shorter tails.

ToEOREM. There exist context-sensitine languages which canmnot be generaled by
any cfpg.

Proor. This proof is based on the theory of tupe complexity classes of machines
[14]. Let F be a computable function defined over the nonnegative integers. A
deterministic off-line Turing machine which always halts is said to operate within
tape F if the amount of storage tape used for an input of length 7 is less than or
equal to F(n). A language is F-tape-recognizable if there exists a Turing machine
which operates within tape F and which for any input string determines whether

Journal of the Associstion for Computing Machinery, Vol. 16, No. 1, Junuary 1969

Programined Grammars and Classes of Formal Longuages 117

or not it is in the language. It bas been shown [14] that if a language is F-tape-
recognizable, ¢ is any positive constant, and [¢F] denotes the smallest integer greater
than or equal to ¢f', then the language is also lck|-tape recognizable. Therefore
it is only the limiting behavior of F for large values of » which is of importance,
Tt has also been shown that if there exists a Turing machine which operates within
tape £ and which for each n actually uses F(n) storage tape cells for some iuput
of lengih n; then there is a language which is F-tape-recognizable but which cannot
be recognized with essentially less tape, Specifically if P(n) is a function such that
infx(FP(n)/F{n)) = 0, then this language eannot be recognized by any P{n)-
tape-bounded Turing machine.

Now let M; be a deterministic off-line Turing machine which recognizes some
language L, while operating within tape ¢ where L, cannot be recognized within
an essentially lesser amount of tape and where @(n) = 2% Such a machine exists,
for instance for Q(n) = 2% since a Turing machine ean be described which uses
exactly that much tape. »

Let us assume that every context-seusilive language can be generated by u cipg.
We can then construct the sequence of grammars shown in Figure 1.

From the description of M, , we can obtain a context-sensitive grammar, G,
whose language, Ly, is I, with tails where the tail growth function is @. G .corve-
sponds to a nonerasing Turing machine which first generates an arbitrary string,
x, and then simulates M, given x as its input, using the squares to the right of »
as the storage tape and writing ¢'s instead of erasing. If M, accepts z, then (.
prints ¢’s on the squares to the right of x and produces a terminal string of the
form xde™. If M, rejects @, then (y halts without producing a terminal string.

Under the assumption that every context-sensitive language is senerated by
some ofpg, there exists u efpg, ¢;, which generates Ly, From Lemma 3 there then exists
a context-sensitive grammar, G¢ , which generates the senfences of I, with shorter
tails, specifically with tail growth function ¢(log @ -+ 1) where ¢ is & constant.
Since we are only interested in the behavior of the tails for large values of n, the
tail growth function ean be taken to be less than or equal to 2glog @. Let Ly be
the language generated by @, .

The tails can be further shortened by repeating the above procedure. Again
under the assumption that cvery context-sensitive language is generated by some
ofpg, there exists a efpg, 5, which generates L,. Applying the Lemma to G,

Ly M, fape Q
i
Lz Gp cs tails Q
4 .
L2 G3 cfpg lails @
‘LL .
La th cs tails log @
1 '
Lq Gs tfpg laifs feg Q
)
Lg Ge s) tails log fog Q
\;'L .
Lg My ' exponentic! tope
W+ N p’
Ly Ms tape [log @}

Fra. 1. Sequence of grammars used to obtein new machine

Journal of the Assceiation for Computing Machinery, Vol. 16, No. 1, Junuary 1964

118 D. J. ROSENKRANTZ

there exists a context-sensitive grammar, Gs , which generates L, with shorter tails.
Its language is Ly , which has tail growth function less than or equal to

r(log(2qlog @) + 1) = rloglog @ + rlog2g +

where r is the number of nonterminals in Lg . Since r log log Q plus a constant is
Jess than or equal to 2r log log Q for large n, we can take the tail growth function
of L to be less than or equal to 2r log log Q.

1t will now be shown that every context-sensitive language can be recognized by
an F(n) = k» tape-bounded deterministic Turing machine where k is a constant
which depends on the language. The maximum length of a noncycling derivation
of a sentence of length n by a context-sensitive grammar is bounded by k" where
k is the size of the vocabulary plus 1, and every sentence has a noncycling deriva-
tion. A k*-tape-bounded Turing machine could store a string of length < k™ formed
from a set of symbols, each of which corresponds to a particular production. The
machine could run through the set of all sequences of length k™ or less, and for each
sequence determine whether the corresponding sequence of productions generates
the input string. Therefore the machine can deterministically determine for a
sample sentence whether or not it is generated by the grammar.

Thus there exists a Turing machine M; which recognizes Le within tape &’ where
7 is the length of the input string to M, . From this machine we construct another
machine M which recognizes L, within tape [log Q(n))” where p’ is a constant.
My, operates by taking an input string z of length n and successively attaching
tails to produce strings of the form zde» for 0 < m < 2r log log Q(n). Note that
My is deterministic.

Since r is a member of L, if and only if there is some m in this range for which
rdc™ € Ls, Ms will simulate M, with each such string as its input. Since the
length of the longest such string is n + 2r log log Q(n), the maximum space re-
quired by M-, and therefore Ms , to do the required processing is less than or equal
to Jm+2r log log @) Since Q > 22, n < log log Q(n) and n + 2r log log Q(n) <
(2r 4+ 1) log log Q(n). Letting p = ¥*~*' and p' = log p, we note that the amount
of tape used by My is less than or equal to J@r+D) log log @(n) = plog log &AM =
(log Q(n))es » = (log Q(n))*'. Therefore Ms operates within tape (log Q(n))*', and
Ly is (log Q(n))? -tape-recognizable. However, L, was chosen as a language which
could not be recognized by any machine which operates within less than @(n) tape.
But

 (log Q(n))
=gy =%

and My , if it existed, would violate this property of L, . Therefore M cannot exist
and at least one of the steps in Figure 1 is invalid. Therefore either G; does not exist,
so that L. is a context-sensitive language which cannot be generated by any c{pg
or if G, does exist, G5 does not, and Ly is a context-sensitive language which cannot
be generated by any cfpg. In either case there exists a context-sensitive language
which cannot be generated by any cfpg.

The results which have becn obtained thus far about the generative power of
efpg’s can be combined to give Theorem 4.

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

Programmed Grammars and Classes of Formal Languages 19

PGs For Recursively Enumergble Languages

This section 1s primarily occupied with a proof that all recursively enumerable
languages can be generated by pg's whose eores have a single symbol on the Jeft-
hand side. But firss the following result is noted.

TaroreM 5. The set of languages generated by pg’s with arbitrary cores is identival
1o the sel of recursively enumerable languages.

Proor. Lvery recursively enumerable language is generated by an arbitrary

{ type 0) phrase structurc grammar. Let G be an arbitrary phrase structure gram-
mat. Lot @ be the pg obtained from @ by glvmg each production of & a lubel and
applying the procedure of Theorem 3. Then L(G) = L(@).

Now let (/ be a pgwith arbitrary cores. It is obvious that a "Turing machine can
simulate the behavior of &, and so L({) is recursively enumerable.

Tueorem 6. The sel of languages generaled by pg’s oll of whose rules have cores
with a single symbol an the left-hand side and an arbitrary (possibly nuil) string on
the vight-hand side 1s tdentical to the sel of recursively enumerable languages.

Proor. et & = (VT, v W P, 8) be an arbitrary phrase structure graminar,
Apg, & = (Vy, V', J, P8, will be constructed such that L@) = L(3).

In simulating @, the mtermedmte strings generated hy & will be coded as num-
ers. Lot q = | VTE + [Vl + 1. ({X]is the number of elements in X if X
is a seb and the number of symbols in X if X is a string.) Now define an arbitrary
one-one mapping

f V'!'UVN"_’er2:”'JQ’—1}'

An invertible mapping g from the strings over ¥V, U ¥y into the nonnegative
integers is defined. If the string is ¢ = o - -+ @, , then g(e) is defined to be

gle) = flan) X @7+ flaw) X g"F 4 - 4 flad) X" 4 o 4 fle).

Thus ¢ is considered to be a number written in base g. The empty string is mupped
into zero. Since no symbol of Vi U Ty represents the digit 0, the mapping is unique.

Letw € L((7). Then x has a derivation of the form 8 = §— 4 — -+ —§ = 1.

“E 2 Eiy” means that & = s £ = wnfws where ; and w. can be null, and
¢ — ¢ is a production of G. &' will simulate the derivations of ¢ but will work with
the codings of the strings rather than with the strings themselves,

The effeet of the operation of the grammar of G can be deseribed by the flow-
chart in Figure 2. The arrows mean that the go-to field of the last production of a
box contains the label of the first production of the box to which the arrow points.

The second box acts nondeterministically in that the division into w, , ©1, and
w; Call DCCUT N any way.

If sfter executing the last box, ¢ contains any nonterminals, then the grammar
has not produced a sentence. If £ is a terminal string, then it is & member of L{G).

These blocks will now be broken down into simpler blocks which perform maore
primitive operations. In designating arithmetic operations, [n/q] will be used for
the quotient, of » divided by g and R(n/q) for the remainder. Also A will be used
to denote the null string.

Note that the order in which the nonterminals (other than F) of G appear in
any intermediate string does not matter sinee these nonterminals will be wiped
out in the end. To simplify the details of the grammar, the order of the nonterminals

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

120 D. J. ROSENKRANTZ

|
s—ra? - ! ‘,
— A" A"E
I
2 Ag(fLAg(w,) p9(#)cglwy) - 1
where { = w, $w, A" AI/gJpR (n/q)
2C
3 gl paiy) p"elc™XE!
where ¢ — Y is o production of G
l ZDEI_,quf
4 w]
20 (w.)BgW)Cg(wz)_’Ag(wW 2 1 ;
2
B (le) =
FA’ ¢ |
Fi6. 2. Procedure for simulating an Fi1G. 3. Flowchart for break-
arbitrary phrase structure grammar ing up a string

in the intermediate string will occasionally differ from that indicated by the block
dingram,

Block 1 consists of a single production.

Block 2 consists of two subblocks, which perform the following operations:
Ao(E) N Aa(ux’)Cu(wz); and then Aﬂ(m’) - Ay(wx)Bo(v) wheref = w;'wg and wx’ = we.
Since these two operations are similar, it is only necessary to indicate how to do
one of them. The flowchart of Figure 3 indicates how 4°® — 4°“1”(0°“? is per-
formed.

The basis of the method used is the identity g(ww) = g(w) X ¢'“*' + g(w).
In particular, for a single symbol @, g(wa) = g(w) X ¢ + g(e) with g(a) < ¢.
The loop in the flow diagram successively picks a simple symbol off the right end
of w,” and adds it to we . At each stage the loop is entered at box 2B with the string

A a(ua)Ca(v)qu l'I.
Box 2B converts this to
A"(")C"(")Dﬂ(“)Eqm
since g(u) = [g(pa)/q) and g(a) = R(g(pa)/g). Box 2C converts this to
Au(u)ca(m')ElIl"!
since
glav) = g(a) X ¢"" + g(v).

Box 2D converts E""! into E/""'. Box 2A creates a single E since initially | v| = 0-
The direct path from 2A to 2E is present because it should be possible for w. to be
null.

RBloek 4 will now be deseribed since it is similar to bloek 2. The flowchart of

Journal of the Association for Computing Muchinery, Vol. 16, No. 1, January 1969

rogrammed Grammars and Classes of Formal Languages 121

ol

‘ 4h E\'n . Bn DnE
=

4B _ R

Any D's present [EA e £l /a] R (/)

AL
l 4Con_, /g

Pen. o |

4E ANgm_ nxm
5D -
F—~Fg (m)
| 4F UL o E —
l ‘ " Feg (m)
Fra, 4. Flowchart for re Fre. 5. Flowehart for decoding strings.
combining strings TDouble arrows indicate multiple paths

Figure 4 will perform the operation A*“YB*Y — A°@¥ T4 is this coding of the
concatenation of strings which is the essence of block 4.

Sinee gla) = glan) X ¢¥' 4 g(¥), the trick is to ealculate ¢"¥". This is done
ksy the loop formed by blocks 4B, 4C, and 4D which records this value as the num-
ber of B’s; i.e. on entering 4E we have A°“YBE"Y' Box 4B can be implemented
&8 4 production whose core is D — D with 4C and 4F in the suecess and failure
fields, respectively.

Block 5, FA°Y — ¢, is implemented as shown in Tigure 5.

Block 5A is always entered with a string of the form F£'4° @ where £ = Eat”
and o is a single symbol. Block 5A converts this string to F£"A"® B, Blocks
5B, 5C, and 5D produce Fog” A%, These blocks will be further described by giving
their component productions. Block 513, whose first production is b, containg
the following ¢ productions.

(b)) B S(bs)
(b,) B — S} F (i) fort=2,---,q—1
b B Flow)

Block 5B is entered with a string containing j B’s where 1 £ § £ ¢ — 1 since
J = g{a) for some single symbol e, so that the failure ficld of production by, will
be taken. Production ¢; will then be executed, and « will be printed out after deter-
Inining if there are any A’s remaining in the string.

Journal of the-Association for Computing Machinery, Vol. 18, Ne. 1, January 1969

122 D, J. ROSENKRANY

Block 5C consists of the following ¢ — 1 rules, which test for the presence of y,

A while retaining the value of jfory = 1,---, ¢ — L
(e;) A— A S(d;)F(e;)
Block 5D consists of the following ¢ — 1 rules for j = 1, -+, ¢ — 1, whes

success fields contain the label of the first production of hiock 5A.
{d;) P —Fg(G) s(54)

Block 5L onds the derivation, and consists of the following ¢ — 1 rul
forj = 1,--+,¢— L

(es) F->g7())

The same procedure which was used for 5B will be used for block 3. This block
performs B°® — B*™ where ¢ — ¢ is a production of G.
For each production ¢ — ¥ of G, @' will have a production

(p) D — B°W S(h)

where h is the label of the first production of block 4 and the label p is different
for each production.

Let r be the maximum integer such that g~'(r) is the left-hand side of a produ:tion
of . For cach integer ¢ between 1 and 7 let P(3) be the set of labels of produetions
of ¢ corresponding to productions of G which have g=i(¢) on their left-hand side.
TFor some values of ¢, P() may be null,

Block 3 consists of the following productions:

() B—D Ss)
(8:) B—) Sea)F(P(Z — 1)) for =2 ... r
(1) B-—-X F(P(r))
as well as the set of productions
() D—BY Sk

corresponding to the productions of &,

If block 2 selects a subsequence: ¢ which is the left-hand side of a produetion of
@, block 3 will make an appropriate replacement. If the selected subsequence does
not correspond to any production of @, block 3 will halt the derivation without
having produced & sentence.

To complete the proof it only remains to show how to do the arithmetic ealled
for in some of the subblocks. Since the order of the symbols in the intermediate
string daes not matter, the following simple programmed grammars will suffice.

For multiplieation, the following grammar converts A™B” into A™B"C™":

(1) A—A4'A" S(HF2)

(2) A" —>2 S(3)F(5)
(3) B—BC S(3)F(4)
(4) B —B S(4)F(2)
(57 A >4 8(5)F(out)

Journal of the Associntion for Computing Machinery, Vol. 16, No. 1, Japuary 1868

programmed Grammars and Classes of Formal Languages 123

For division by g, the following program converts A" into AP/9¢*/2.

(1 A=A S2)F

(1) A= B+ DFig+i—1, i=2-,g9—1
() A=\ S(DF(2¢ — 1)

(g+1t A" 8, i=1---,9—1

(29) A" A 82 F(out)

Properties of CFPG’s

In this section some of the properties of ofpg’s are given. First it is noted without
proof that the set of ofpg languages is closed under some of the standard operations
on languages.

TueorEM. The set of ¢fpg languages 1s closed under union, concalenation, and
K leene closure.

TareorREM. [Frery recursively enumerable language can be generaled with toils by a
efpg-

Proor. Leb Gy be an arbitrary phrase structure grammar which generates a
recursively enumerable language L, over vocabulary 1V, . By using the procedure
of Theorem 6, we can obtain a pg, G», which generates I, and for which the left-
hand side of each core consists of a single nonterminal symbol, although the right-
hand side could be the null string. Let ¢ and d be new symbols which are not in ¥ .
(7= can now he modified to produce a efpg G; with terminal vocabulary V. U {¢, d}
whose language Ly is Ly with tails. Gy differs from Gy in that block 1 of Figure 2 is
changed to § — FdA*?, and every eore of the form A — X is replaced by 4 — ¢.
{7, thus operates like Ga , but i generates ¢’s instead of erasing. Note that the only
productions of Gy which have a member of V7 on the right-hand side of their cores
are the F-rules of blocks 5D and 5E of Figure 5. Sinee F i the leftmost symhol in
an intermediate string, the oceurrences of members of V' must be to the left of the
4 in a sentence of Ly . Therefore Ly = {xde™ |z € L, and the set of allowable m
depends on z}, and Ly is I, with tails.

A string homomorphism is a function A mapping strings into strings which has the
property that for any two strings x and y, A(2y) = h(a)R(y). Thus a homomorphism
is a symbol translation of a string. It follows from the previous theorem that every
recursively enumerable language is the homomorphie image of a efpg language.

Thus far when a pg has generated a sentence, the productions have been applied
as far to the left as possible; 1.e. the leftmost oceurrence in the intermediate string
of the left-hand side of the eore is replaced by the right-hand side of the core. The
grammar can be said to be operating under the leftmost tnterpretaiton. A pg operating
uuder the rightmost snierpretation is one for which every production is applied as
far to the right as possible. A pg operating under the free inferpretation is one for
which any oceurrence in the intermediate string of the left-hand side of the core can
be replaced by the right-hand side.

Tarorem. The set of languages generated by cfpg’s operating under the rightmost
Erderpretation is tdentical to the set of lnanguages generafed by cfpg’s operaling under the
leftmast interpretation.

Journal of the Assoeiation for Computing Machinery, Vol. 16, No. 1, January 1963

124 D. T. ROSENKRAwy

. Proor. -' Let @ be a cipg which generates language L while operating under 1,
rightmost, interpretation. Another efpg, &, is described which generates I whi
operating under the leftmost interpretation. Let a production of & be

(r) A—>y¥ - S(V)P(W)

The grammar 7 has the following set of productions which have the same ofis
as r: they replace the rightmost occurrence of 4 in the intermediate string by y.

(r) A4 — A S(ry) F(W)
(rs) A — A S(r3) #(r,)
(rs) A — A" 8(m)
(re) A=y Slrs)
(re) A" — 4 Sirs) F(V)

1t there are any A’s present in the intermediate string, 4 will be applied to 1k
rightmost one and the next rule will be selected from V (the suecess field).

A similar procedure can be applied to a ofpg operating under the leftmost inte:
pretation to obtain another ¢fpg which generates the same language when operating
under the rightmost interpretation.

It follows from the above theorem that the set of efpg languages is closed unde
reversal, ‘ '

Tusorem. The set of languages gererated by cfpg's operating under the lefimed
interpretation contains the sel of languages generaled by ofpg’s operaling under (i
Sree tnterpretation.

Proor. Tet G be a ofpg which generates language L under the free interprete
tion. Another efpg, 6, is described which generates 7, under the leftmost interprets.
tion. _

Tet a typieal production of G be the following.

(r) A= S(VIF{W)
(" will have the following four rules which will correspond to this rale of &
) A — A" S(r, m)(r)
1) A — ¢ S(ra)F(rs)
(1) A - A S(r)F (W)
(ra) 47— A S(r) F{V)

These four rules when operating under the leftmost interpretation have the effed
of permitting any oceurrence of A in the intermediate string to be replaced by ¢
thereby simulating the original rule when it operates under the free interpretation.
Since the above procedure is applied to every rule of @, @ generates L under the
leftmost interpretation. ‘

Since a context-free phrase structure grammar can be effectively converted init s
efpg which generates the same language, the undecidable questions for eontext-fre

grammars are also undecidable for cfpg’s. However some problems which are de-
ciduble for context-free grammars are undecidable for efpg’s.

Tournad of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

Progrmnmed Grammars and Classes of Formal Languages 125

THEOREM. 1l1s undecidable whether or not the language generaled by a cfpy 18 empty.

prooF. Let G be an arbitrary phrase structure grammar, and let G' be the
con-esponding pg constructed by the method given in the proof of Theorem 6.
Then L(@), the language generated by G, is identical to L(G), and the left-hand
side of every core of G consists of a single nonterminal symbol. Now modify G’ by
introducing a new terminal svmbol e and replacing each production core of the form
4 — \ with the new production core A — e. This new grammar, G”, is a cfpg. If
' generates any sentences, G generates that sentence with the e’s removed. Thus
L(@) is empty if and only if L(G) is empty. But since G is an arbitrary phrase
structure grammar, it is undecidable whether or not its language is empty. Hence
it is undecidable if L(G") is empty.

THEOREM. It is undecidable if a ¢cfpg generates a finite or an infinile number of
senlences.

Proor. Let G be a cfpg whose sentence symbol is S. Let @ be G with the follow-
ing production added.

(r) S — aS S(r, or labels of S-rules of G)

Now L(@) is infinite if and only if L(G) is nonempty, which is undecidable from
the previous theorem.

TrrzorEM. It is undecidable if a cfpg generaltes a context-free language.

Proor. Given a cfpg G, we can obtain another cfpg, @', whose language is the
concatenation of L(G) and the language {a"b"c" |n > 1} where a, b, ¢ are new
terminal symbols. If L(G) is nonempty, then L(G”) is also nonempty and is not
context-free. If L(G) is empty, then L(@) is also empty and therefore context-
frec. Thus L(@) is context-free if and only if L(G) is empty, which is undecidable.

Unconditwonal Transfer CF PG’s

An unconditional {ransfer pg is one for whick the success and failure fields of each
rule are identical, so that they act like an unconditional transfer. A utefpg is an
anconditional transfer grammar which is also a cfpg. An example of a utefpg is the
following grammar for generating the language nha”.

(1) S — 1SB S(3)F(3)
(2) S — 08 S(3)F(3)
(3) A — BB S(3,4)F(3, 4)

4 A—-C S(5)F(5)

(5) B—4A S(5, 6)F (5, 6)

6) B —=C 8(1,2, 7)F(1,2,7)
7y S —h S(8)F(8)

8) A—a S(8)F(8)

Note that for this grammar if C is ever written in an intermediate string, the
resulting string cannot be expanded into a terminal string since no production core
has C' on the left-hand side. Therefore whenever rules 4 and 6 are used in the deriva-

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969

126 D. J. ROSENKRANg

tion of an actual sentence, they must fail because if either oue were ever suecessh,]
the resulling intermediate string could not be expanded into a terminal string.

It will be shown that the set of utefpg languages is a proper subset of the ¢f e
languages. But first some additional machinery for dealing with nonterminal Maps
will be provided.

A partial ordering on the n- tuples of natural numbers will be defined by saying
that v > w if cach component of » i greater than or equal to the corresponding
component of . A set of veetors (n- -tuples} is noncomparable if for no v, v in the sy
is 1t true that u > ».

Some additional notation will be introduced. First 0 will represent the 0- veetor,
i.e. the vector all of whose components are 0. Also if v is a vector and 7 is a produs-
tion whose eore is A — ¢, we will say thal r succeeds on v if the 4-component o »
is nonzero. If r succeeds on », then the application of » to v produces the veetor
obtained by subtracting 1 from the A-component of ¢ and then adding 6x(¥) to the
result (the addition being component by eomponent).

Lumma 4. Kvery sef of noncomparable vectors s finite.

The proof of this lemma is given by Ginsburg [13] and can also be obtained from
one of Konig's theorems [16].

Tueorsm. The prefiz property is decidable for wlefpy’s; t.e. it ts decidable for an;
uicfpg, O, and any string, x, whether or not there exists a y such that a2y € L(G).

Proor. A procedure, consisting of the construction of a finite directed graph
based on 2 and G, will be given for deciding if x is a prefix of any sentence in L((.
First rewrite 7, if necessary, so that it eontains only one S-rule whose label s+,
Let 0 = (Vo, Vi, J, P, 8) and n = |2 |. The nodes of the graph will be triples ¢f
the form (o, v, r} where ¢ is a string over V, U Vx of length less than or equal to 1,
v is a vonterminal vector, and r is a rule label. If | ¢ | < 5, then ¢ will be the O-veetor.

let (g, v, r) and (¢, u, ¢) be triples of the asbove type. We say that (o, o, r) —
(¥, w, q) if g is in the go-to field of rule r and if a string of the form ¢ where 8x(¢) =
v is converted by r into the string & with sx(&) = u. More precisely, exactly o
of the following must be true.

{1) Rule r fails on ¢ and v, ¢ = ¢, and « = v.

{2) Rule r fails on ¢ but succeeds one, ¢ = ¢, and u equals the vector resulting
from the appheation of r to . ’

(3) Rule r sueceeds on ¢, producing ¢ of length less than or equalton, ¢ =¢.
and 4 = ».

{4) Rule + succeeds op ¢, producing ¢ = ¢ where [@] = 7 and | g] >
¥ o= o ,and u = v 4 Ox(e).

Note that ¢, v, and r uniquely speeify ¥ and «. If the go-to field of r is empty.
then g is a speecial symbol rather than a rule label. We also say that (g, v, 7) =
(¥, u, q) if there is a chain of triples such that (¢, v, #) = (&, we,p)—
(S:,w;,pl) e (Em,wm; pm) = (lp,u,q),OI'if ('pa %fj‘) = (:‘P’U)T)'

The graph used to decide if = is o prefix of L{() will have a tree structure. The
initial node of the graph is the triple (8§, 0, rg) where ry is the label of the S-produc-
tion of @. The graph is constructed by expanding in some arbitrary order the node:
which are already present in the graph. Let (¢, v, #) be a node which is to be e<-
panded. The triples (¥, u, g) such that (¢, v,) ~ (4, u, ¢) are found. Fm' ench
such triple, if there is already a node in the graph of the form (¢, W, ¢) with u
then (¢, u, ¢) is not added to the graph. Otherwise (¢, u, q) is addc\d and an arrow

Jonrnal of the Association for Clomputing Machinery, Vol, 16, No. b, Junuary 1969

seaqrammed, (rammars and Classes of Formal Languages 127
frogra

Jrawn to it from (¢, 2, 7). This procedure is carried out for all nodes in the graph.
\ote that the final form of the graph will depend on the order in which the nodes
yre expanded.

It will now be shown that the graph is finite. For any ¢, » combination
let ¢, 2, - -+ be a list of vectors such that the nodes (¢, v, r) are successively
sdded to the graph. Each time a node is added to the list, its vector cannot be greater
than or equal to that of any of the other nodes having the same ¢ and r which are
aready on the list.

Note that for any vector v, the number of vectors 4 such that « < v is finite,
snce no such w can have a component which is greater than the corresponding
component of 2. Now assume that the list of vectors is infinite. An infinite noncom-
parable subsei of the vectors on the list can then be obtained by the following
procedure. Start with 2y and eross off the list the finite set of vectors which are less
that or equal to vy . Leb v be the next remaining entry on the list. Then o, », ave
poncomparable sinee all the vectors less than or equal to o, have been crossed off
the list and vz cannot be greater than or equal to », as it ocours after », on the list.
Now cross off the list the set of veetors which are less than or equal to v . The result-
ing vy, ma , 13 are noncomparable. By this procedure an infinite noncomparable set
of vectors can be obtained if the original list is infinite. From the preceding lemma
stich an infinite set cannot exist, and the list must contain a finite number of veetors.

Since there are only a [(inite number of strings of length less than or equal to »
and only a finite number of productions, the graph contains only a finite number of
nodes,

It will now be shown that there cxists a (possibly empty) terminal string y such
that (8, r¢) = (ay, r) if and only if the graph containg the node {z, 0, r), Here r
zan be either a rule label or the special symbol which denotes the empty set of
lubels.

First it will be shown that if (¢, 2, r) is a node in the graph, then there exists a
string £ such that (S, ro) = (k, r) and dx(£) = v. Let p be the sequence of Tule
labels (third components) of the chain of nodes beginning with the initial node and
leading to (o, #, r) but omitting the label of the linal node in the chain. Then by
induction on the length of $he chain, applying p to the string S will result in a string
of the form & with 8y(£) = » and with 7 as the next applicable rule, First the result
is irue for the initial node of the graph, (S, 0,), since 74 is an S-rule. Now assume
that the result is true for all chains of length m and that (8, 0, 70) = (@m , Vm 5 Pm) —
{Gmit y Uma1 s Tmes). By the induction hypothesis, there is a string £, such that
{8, r0) = (onfm, Tm) and dx(En) = vm. However since (om, m, Tm) — (on4 ,
Umits Pmt1), APPLYING 71 10 @mém Wil produce a string ¢miiémss such that $x(Eny) =
fuar - Henee (S, 70) = (@ma1bmat , Pmaa) 204 89(Ems1) = paa . Therefore if (z, 0, 7)
appears in the graph, there must be a string £ such that (S,) = (z& r) and, since
By(£) = 0, £ consists solely of terminal symbols.

It will now be shown that if (8, rg) = (gg, v), where | ¢ | = = if £ is nonnull,
then there is a veetor v such that (e, v, r) appears in the graph and » < 8,(%). This
result can be obtained by induction on the length of the derivation of (£, r) from
08, 1), If the length of the derivation is zero, then ¢t = §, and (8, 0, #) is the
mitial node of the graph. Assume that the result is true for all derivations of length
less than or equal to m and that (S, 70) = (omfm,) — (@msrbmts , Tmas). Then
from the induction hypothesis there is a node in the graph of the form (¢m , tm , m)

Journal of the Association for Computing Machinery, Vol. 18, No. 1, January 1969

128 D. T ROSENKR4yy

with v, < .5\(5,,6) Consider the effect of Apph]ilg rule r, to that node
Since (emfm , ’m} - (‘F??b+1$m+1 , 7mll); we have (¢ s Uy 7m) - (‘Pm-H R TR
for sume vector v . Furthermore since 8,(£,.) > ,. , any rule which suoceed\ 0;
Um will JJQO succeed on £ and Sy(Eups) > vy . Because in constructing the g graph,
the node (8, Vo s Tw) must have heen expa nd(‘d at some time, Uhe graph eontaig
node of thf, form (@a4 , vm 41, Tmaz) Where e,,,m L ity - Thus il (8, 70) = (£,)
there is o vectorv < 8y(£) such that (¢, v,) appears in the graph. Henge if { Sre) =
(zy,) where ox(y) = 0, the graph must contain a node of the form (x, 0, 7).

Thus to determine if x iz o prefix of L{G), all we need to do is eonstruct the gw apk
and see if it contains o node of the form (., 0, #}. since 2 is a prefix of L{GY if a
only if the graph contains such a node.

CorouLary 2. Lt 18 decidable whether ar wif the language generaled by an wlefpy i
emply.

Proor. lLet G = (Vo, Jy, J, P, 8) be an utelpg. For each @ € Vg, use the
proeedure of the theorem to determine if o is a prefix of L{G). If for any a, a isy
prefix, then there exists a {possibly null) terminal string y such thatl ay & Lo,
which is therefore nonempty. If no a € Vy is a prefix, then L{G) is empty.

CorouLary 3. For the class of py’s with unconditional transfer ga-lo fields. sing
symbols on (he lefli-hand side of the cores, and arbitrary (possibly null) strings on
right-hand side, 7 is decidable whether or not the language generated by such a gramna

is emply.
Proor. Tet G = (Vo, V ” J, 7, 8) be such a grammar. Choose an g € 1,
and let & = (Vy, Vy,J, P, 8) be the grammar obtained by 1(‘placmg cach cors

of ¢ of tho form A =2 w1‘rh the new core A — a. Then since L(G') is empty i
and only if L(G) is empty, and @ is an utefpg, for which the emptiness problem i
decidable, it is decidable if L{G) is empty.

CoroLrary 4. There exists a ¢fpg whose languuge cannot be gencrated by any
ulefpy.

‘Proor. Let L; be a recursively enumerable language which is not recursive. As
has previously been shown, a clpg, (s , exists which generates ©; with tails; L.

Ly = {z|zde” € L(G:) for some n}.

Now assume that 7.(Gy) can be generated by an utefpg, @, . Then given any string
z, we can deeide if zd is a prefix of L{G:) by using the procedure of the preceding
theorem on G5 and x. But a2d is a prefix of L(G,) if and onldy if & € L, , which is not
decidable because I, is not recursive. Hence no such G exists, and L{G) 15 a epg
language which eannot be generated by any utefpg.

We have now proved Theorem 7, since every utcipg is also a efpg, and a contest:
free grammar can be converted into an utefpg which generates the same langung
by inserting the set of all production labels into the success and failure field of each
praduction.

Further Properties of UTCFP@'s

In. this seetion some additional properties of utefpg's are given, First it should bt
noted that the set of utefpg languages is closed under union, concatenation, and
Kleene closure. Some undecidability properties are now given.

Twrorem. It 4z undecidable if a ¢fpg generates an ulcfpg language.

Journal of the Associntion for Clomputing Maehinery, Vol. 16, No. 1, January 1969

Programmed Grammars and Classes of Formal Languages 129

Proor. Let 7 be a recursively enumerable language which is not reeursive,
and let Gy be a ofpg which generates L, with tails.

Given an arbitrary cfpg, 7y, we can effectively obtain another ofpg. &, whose
language is the concatenation of L(Gy) aud L(G,).

If L(G5) is empty then L{Gy) is emply and therefore is o ubefpg language. If
LA Gy} is noneinpty, then L{Gy) is nonempty, and @ € L, if and only if @d is a prefix
of L{GY). If there existed an utefpg which generates L(Gy), Ly would be recursive
since the profix property is decidable for utefpg’s. Henee if L(G;) is nonempty, then
F(Gy) is not an ubtefpg language.

Thus L(Gy) is an ubefpg language if and only if L{G.) is empty, which is not
decidable. Therefore sinee 7, can be construetively obtained from @, it is un-
decidable if (7, generates an utefpg language, and it is undecidable if a efpg generates
an utefpg language.

TeronEM. It s undecidable if the languape generated by an ulefpg is confeat-free.

Proor. This proof is based on another proof [17] of a similar theorem.

Let (; be an utefpg whose language Ls over terminal vocabulary V3 is not eontext-
free. L; could, for instance, be the language {a"6"c"}. Let @, be an arbitrary context-
free grammar which generates language L, over a terminal vocabulary, ¥, which
is disjoint from Vs . From G1 and G; an utefpg, Gy, can be effectively obtained such
that G, generates the language Ls = L Vo™ U V"L, . Here V¥ denotes the set of all
nonnull strings over vocabulary V',

Now if Iy = V¥, then Iy = V*V.* and Iy is context-free. If Ly = V,* and L,
iz context-free, then for z € Vi* — Lo, I, Va2V, = zl, is context-free since the
anterseetion of a context-free language and a rogular set is context-free. But then
L 1s context-free sinee it can be obtained from 27, by a homomorphism, and context-
free languages are closed under homomorphisms. Thus if L, # V,", then Iy is not
context-free. Consequently L is context-free if and only if I, = ¥,*, which is un-
decidable [18]. Thus it is undecidable if an utefpg generates a context-free language,

Tugorsm. The set of wiclpe languages s nol closed wnder inlersection.

Proor, This proof is based on a well-known technique for establishing un-
decidability resulls, Let G; = {(Vr, Vu, S, Py) be a phrasestructure grammmar whose
langnage ig not recursive, and let ¢ be a new symbol not in Vi U V. From & we
will obtain twoe context-free grammars, Gz and G, whose languages are of the form
40T -+ - (Tgny: WhETe each 2, is an arbitrary (possibly null) string over Vo U Vi .
L{(%) will have the property that 2.y = 8, and for each I between 1 and n, @y
can be derived from =% by 61 . L(G5) will have the property that z; 18 a terminal
string, and for each % between 1 and n, xe can be derived from 2geyq by Gi . Here
2" denotes the reversal of x.

Gy is of the form (Vo U Vo U {e}, {T, A}, Py, T') where P, contaius the following
productions,

T — AcT
T — 8

A - ada foreacha € Vo U Vy
A = fdepr for each production ¢ — ¥ of Gy
A—e

G; has a similar form.

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 196¢

130 D. J. ROSENERANT

Now consider Ly = L(G:) M L(Gs). I zyezae -+ - cangn € Lo, then Zam =
each ; is derivable from x4, by Gi, and 2, is a terminal string of G, ., Similarly i
z € L(G,}, then corresponding to the derivation of x, there is a sentence in L
which beging with z.c. Thus z¢ € L1 if and only if z,c is a prefix of Ly . But if L
were an utefpg language, then the prefix property would be decidable and L, would
be recursive. Hence L, , the intersection of two utefpg languages, is not an utcfpg
language,

CoroLLARY 5. The set of wlefpg languages 1s nat closed wnder complementalion.

Proor. Since the set of utelpz languages is closed under union and for languages
Liand Ly, L N Ly = L, U Ly, closure under complementation would imply
closure under intersection. From the previous theorem, the utefpg languages sre
not closed under intersection and therefore are not closed under complementation,

Conclustons

The languages generated by pg’s with various types of eores have been investigated,
The additional machinery of pg’s does not add any generative power if the cores are
vne-sided linear, linear, context-sensitive, or arbitrary. A key result is that pg’s
whose cores have a single symbhol on the left-hand side and an arbitrary string on the
right-hand side can generate all recursively enumerable languages,

The cfpg's, however, generate a class of languages which properly contains the
context-free languages and is properly contained within the context-sensitive
languages. Cfpg’s have considerable generative power, and it is often comparatively
easy to write a cfpg for a particular language. However several problems which are
decidable for context-free grammars are undecidable for ofpg’s.

The utefpg languages are properly contained within the cfpg languages sand
properly contain the context-free languages. Utefpg’s seem to be easier to work with
than the ¢fpg’s; e.g. the prefix property is decidable for utefpg's.

ACKNOWLEDGMENT. The author wishes to express his gratitude to Professor S. H.
Unger of Columbia University for his guidance and encouragement. The author algo
gratefully acknowledges several interesting and helpful discussions with Dr. A
Friedes and Dr. J. D. Ullman of Bell Telephone Laboratories and with Dr. D. H.
Younger of the University of Waterloo.

- REFERENCES

1. Cuomsky, N. On certain formal properties of grammars. I'nform. Contr, 2(June 193),
137-167,

Formal properties of grammars. In Handbook of Mathematical Psychology, Vol. 4,
Luce, R.D., Bush, R.R., and Galanter, E. (Eds.), Wiley, New York, 1963.

3. Rosenkrantz, D.J. Programmed grammars—a new device for generating formal las-
guages. Ph.). Thesis, Columbia U., New York, 1067.

4. Anramam, 8. Some questions of phrase strueture grammars I. Comput. Linguist. 4 (1985),
a1-70.

5. PrTErs, 8. A note on ordered phrase structure grammars. Rep. No. NSF-17, Math.
Linguist. and Auto. Trans., Computation Lab., Harvard U., Cambridge, Mass., Aug. 1965

6. (INSBURG, §., AND SpaNiEr, E. H. Control sets on grammars. Doe. No. TM-738/036/00
Bystem Development. Corp., 8anta Moniea, Calif., 1967,

7. CHomsxy, N. Aspects of the Theory of Syntax. M.LT. Press, Cambridge, Mass., 1965,

8. Zwigky, A. M., FareoMan, J., Hans, B. C., avp Warkes, D. E. The MITRE syntactic

2.

Journal of the Asscciation for Computing Machinery, Vel. 16, No. 1, January 1969

Programnied Urammars and Classes of Formal Languages 131

1a.
11-
12,
13-

14.

a

analysis procedure for transformeational grammars. Proe. AFIPS 1965 Fall Joint Comput.
Conf., Vol. 27, Spartan Books, Washisgton, D.C., pp. 317-326.

LaxpweneRr, P. 5. Three theorems on phrase strueture grammars of type 1. faform.
Contr. 6 (June 1963), 131-136.

Rurons, 8. Y. Classes of languages and linear bounded automata. Inform. Conér. 7 (June
1964), 207-223.

Aro, A. V. Indexed grammars—an extension of context free grammars. IEEE Con-
ference Record on Switching and Automata Theory, [ELEE pub. no. 16-C-56, 1967,
Farper, D. J., Grisworo, R. E., anp Poroxsky, I. . Sxorot, a string manipulation
language. J. ACM 17, 1 (Jan. 1464), 21-30,

Markov, A. A. The theory of algorithms. (Russian}, Tr. Math, Inst. Akad. Nauk S38R
98 (1951), (English Trans., Amer. Math. Soe. Lrans., {2}, 15, (1960}, 1-14).

Stearns, B. E., Hakrmanis, J., ano Lewis, P. M. Hierarchies of memory limited compu-
tations. IEEE Conference Record on Switching Cireuit Theory and Logieal Design, IEEE
pub. no. 16-C-13, 1965.

GINSBURG, 8. The Mathematical Theory of Conlex!-Free Languages. MeGraw-IHill, New
York, 1966.

Konie, I, Theorie der endlichen und unendlichen Graphen. Chelsea, New York, 1950.
GinssURG, S., GreiBacH, S. A., aANp Hagrrisoxw, M. A. Onpe-way stack automaia. J.
ACM 14, 2 (Apr. 1967), 389414,

Bar-Hirrer, Y., PeERLES, M., axp Ssamir, E. On formal properties of simple phrase
structure grammars. Z. Phonetih, Sprachwissen. Kommundkationsforsch. 14 (1961), 143
172; also in Y. Bar-HitLer, Language and Information, Addison-Wesley, Reading, Mass.,
1965, pp. 116-150.

RECEIVED MAY, 1968; REVISED JULY, 1068

Journal of the Associntion for Computing Machinery, Vol. 16, No. 1, January 1969

