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1 0 S  D . J .  t~OSENKRANTz 

Abraham [4] has defined a class of grammars that correspond in generative power 
to programmed grammars which have success fields only and cores which :ere 
context-free with a nonnull r ight-hand side. Peters [5] deals with grammars where 
the productions are arranged cyclicly, and each production may either be applied 
once or as ninny times as possible. Ginsburg and Spanier [6] have considered the 
classes of languages generated from phrase structure grammars by leftmost deriva- 
tions whose production sequences lie in some language. Chomsky [7] has mentioned 
a model of natural languages where the grammar contains context-sensitive pro. 
ductions svhich are applied cyclicly. A group at M I T R E  [8] has written a program 
for analyzing English which utilizes productions of this form as part of its grammar. 

A major advantage of using programmed granmlars is that  the grammar can 
often generate the sentences of a language in a mariner which corresponds to the 
way in which humans would envision the generation. This is particularly true for 
context-sensitive languages where a phrase structure grammar might have t0 
trace out the detailed maneuvers  of a linear-bounded automaton [9, 10]. In writing 
and using a phrase structure grammar  for a particular language, all the productio~s 
must be constantly checked to see if they are applicable at a given point. Writing 
a programmed grammar for ~ given language is sinlilar to writing a program for 
the generation of its sentences. 

Two new classes of languages are introduced which lie between the context free 
and context-sensitive languages. The first new class of langnsges is generated by 
the set of programmed grammars,  called cfpg's, whose cores have a single symbol 
on the left-hand side and a nonnull  string on the right. Cfpg's can handle many 
context-sensitive features of programming languages, often acting in a more natural 
manner than a phrase s t ruc ture  grammar would. The other new class, called 
utcfpg's, is generated by cfpg's with identical success and failure fields. Indexed 
grammars [1t] constitute ano ther  attempt to define a class of languages in this 
region. 

Formal Model 

A phrase structure grammar G = ( Vv, V~-, P, S) consists of a terminal vocabulary 
(V~), a nonterminal vocabulary  (VN), a set of productions (P),  and a sentence 
symbol (S) which is a member  of V~. The productions are of the form ~ -~ ¢ 
where ~ and ¢ can be strings of mixed terminal and nonterminal symbols with 
containing at least one nonterminal  symbol, i f  the left-hand side of every produc- 
tion is a single symbol, the grmnmar is called context-free. If the right-hand side 
of each production has no fewer symbols than the left-hand side, the grammar is 
called context-sensitive. 

In generating a sentence f rom the grammar, one starts with a string consisting 
of the symbol S (possibly surrounded by e~ldrnarkers) as the initial string. At any 
point in the derivation, any occurrence in the intermediate string of the left-hired 
side of some production may  be replaced by the right-hand side of that  production, 
resulting in a new intermediate string. This process is continued until a string is 
produced which consists ent i re ly  of terminal symbols. Such a string is a sentence 
generated by the granmmr. Thus  the language L(G) generated by the gramm~r 
is defined to be the set of all strings of terminal symbols which can be derived 
from the symbol S by successive applications of the productions of G. 
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A word is in order now about the notation which will be used for strings. A strii~g 
~f all terminal symbols will be represented by a lowercase roman letter, all no~- 
terminals by a capital roman letter, and a string which may contain terminals or 
~onterminals by a Greek letter. In addition, single symbols will be represented 
by  letters from the beginning of the alphabet and strings by letters fl'om the middle 
or  end of the alphabet. An exception to this rule is S, which represents a single 
syi~lbol. 

A programm~ed graiIwaar G = ( VT, V~v, J ,  P, S) has, in addition to Vr ,  V~., P, 
~ l d  S, a set of production labels J .  With each r in J there is ~ssociated a mdque 
production (r, ~, ~, V, W). Here ~ and ¢ are strings of mixed termhml and nora 
terminal symbols with ~ contaiIfing at least one nonterminal symbol. V and W 
tare subsets of J. The production is written in the following format: 

(r) ~ - ~ ¢  S(V)F(W) 

"Fhe (',ore of the production, ~ --) ¢, is an ordinary phrase structure productiolt. 
Note that the production format is somewhat similar to the instruction format (*f 
d i e  SNOBOL programming language [12] and of Markov normal algorithms [13]. 
T ~e  illterpretation of the production is also similar. 

Itt applying the production to an iIltermediate string }, } is first scanned to 
see  if it contaitls ~ as a substring. If so, the leftrnost occurrence of ~ in } is replaced 
by  ¢, and the next production to be applied to the ensuing string is selected from 
V. If } does not contMn ~,, then no change is made, and the next productioit is 
selected h'om W. Since the next production is selected from V if the scan is success- 
ful, V is called the success field arid W is called the failure field. If V or W is absent 
from the explicit statement of a rule, the corresponding set of labels is the empty 
set.  If at any point in a derivation the next production label must be selected h'om 
the  empty set, the derivation comes to a halt. 

The language generated by the grammar is defitmd to be the set of all termin:d 
strings which can be obtained by starting with the string consisting of S, applying 
a,~y applicable production, and then continuitlg to apply productions as directed 
b y  the success mid failure fields until a terminal string is produced. Since the success 
~t~d failure fields can contain several production labels, and different choices from 

field can lead to different sentences, a grammar is capable of generating an infinite 
number of sentences. 

Some additional notation wilt now be i~ttrodueed. If $ and w are strings over 
IT r U VN, r and p are rule labels, and rule r is 

(r) ~-~,¢ S(V)F(W), 

we write (~, r) --~ (co, p) if either of the following two conditions are met:  
(1) rule r succeeds on ~, producing co, and p ~ V; or 
(2) rule r fails on }, co = ~ , a n d p  ~ W. 
If ~0 consists entirely of terminal symbols, we cm~ also write (}, r) ~ oo: In addi- 

Li()n if production r applied to } produces the string ~o, but the set of labels from 
which the next production is to be selected is empty, we write (}, r) --~ co. 

Now (}, r) ~ (oo, p) if there is a chain such that 

(~,r)  = ($ , , r , )  ~ ( (~ , r : )  ~ . . . . .  ~ , ( ( ~ , r , )  = (w,p) .  

~'he language generated by the grammar is the set of ternfiual strings x such that 
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(S, r) ~ x where r is a rule which has S on the left-hand side of its core. In the 
ease of productions with cores which are not context-free, # can be used as an 
endmarker, and L ( G )  is the set of terminal strings x not containing # such that 
(#S#, r) ~ #x# for an r which is applicable to #S#. 

Example 1. The following is an example of a programmed grammar where 
Vr = (a, b, c) and V~ = (S, A, B, C). The language generated is the set of se- 
quences of the form a~b~c" with n >_ 1. This is a context-sensitive language which 

by any context-free phrase structure grammar. 
ABC S(2, 5) 

cannot be generated 
(1)  S - ~  
(2) A ~ aA S(3) 
(3) B --~ bB S(4)  
(4) C --, cC S(2, 5) 
(5) A --~ a S(6) 
(6) B -~ b S(7) 
(7) C --~ c 

Example 2. Another example of a pg is the %llowing, which generates sentences 
of the form nha n where n is a nonnegative integer expressed as a binary number. 
A typical sentence is 101haaaaa. This language is a sort of pseudo Hollerith field 
specification since a could have been a nonterminal symbol which was later ex- 
panded into a single, ~rbitrary terminal symbol. 

(~) s ~ l S B  S(3)  
(2) S ~ OS S(3)  
(3) A -~ BB S(3) F(4) 
(4) B ~ A S(4) F(1,  2, ;5) 
(5) S --~ h S(6) 
(6) A ~ a S(6) 

Note that  when in a derivation by this grammar a choice must be made between 
several productions which can be applied next, the choice is between productions 
1, 2, and 5. However  each of these productions has an S on the left-hand side of its 
core and a distinct terminal symbol beginning the string on the right-hand side. 
Furthermore S is always the left-hand nonterminal symbol in an intermediate 
string of a derivation. Thus if we wish to parse a string according to this grammar, 
we can start  generating a sentence, and whenever a choice must be made between 
rules 1, 2, and 5, we can look at the corresponding terminal symbol of the test 
string and, depending on whether it is 1, 0, or h, know which choice must be made 
if the derivation is to produce the test string. This property of grammars permits 
sentences to be parsed in an anmunt of time proportional to the length of their 
derivation [3]. 

Example 3. 
(1) 
(2) S ~ A A  S(3) 
(3) A ~ B S(4) F(5)  
(4) C ~ n S(3) F(7)  
(5) C ~ C S(6) 
(6) B --~ A S(6) F(3)  
(7) B ~ A S(7) F(8)  
(8) D--~  A S(9) F(10) 

The  following grammar generates the language {a ~ [p is a prime} 
S ~ SC S(1, 2) 
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nating) generates a finite state language, and a pg whose cores are all linear (or 
terminating) generates a linear language (a language generated by a linear Phrase 
structure grammar).  Thus the additional machinery of pg's does not add any 
power if the cores are of this form. We proceed with the proof of Theorem 1. 

PROOF. First it is clear that  by  put t ing the set of all productions into the go-to 
fields, a one-sided linear phrase s t ructure  grammar can be converted into a pg 
which generates the same language. Now assume that  G is a pg with one-sided 
linear cores. A one-sided linear phrase  structure grammar G', which generates the 
same language as G, can be constructed.  

G' has a nonterminal symbol for every  production of G. Assume that  G is right 
linear (the same procedure applies to  a left linear grammar).  Then a typical (the 
i th) production of G is: 

rl .A~ ~ x~B~ S ( V ~ ) F ( W i )  

The corresponding nonterminal of G'  will be (r~}. 
Now define R~ as the set of rules (ff (; which can be reached through a string of 

failure fields after successfully applying rule r~ and which have B i ,  the nontermina~ 
on the right-hand side of r,z, as the left-hand side of their cores. More precisely, 

R~ = lr~ i there exists v~, . . .  , ~,,, with m > 1, v,, j~ 

r~ C V, ,  r%+~ C W~ for k = 1 , . . . , m  - 1, 

Aj = B~ ,  and A,  ~ B i  for k = 1 , . . . , m -  tl. 
k 

Thus after successfully applying production r~, the next production which can 
be suecessfully applied to the resulting string (which has B~ as its only nonterminal) 
is a member of R~. 

Now corresponding to the si~lgle rule r~ of G, G' will have the set of rules 

• r i - - ~ x ~ r  for all rj C R~. 

For :~, terminating rule of G, 

ri A~ - - ,  x~ S ( V ~ ) F ( W i )  

G' will have the single rule r~ -+ x~. ".['tie sentence symbol of G' will be S' .  For every 
production of G whose left-hand side (A~) is equal to S (the sentence symbol of 
G), G' will have the production S '  --~ r l .  

G' is thus a one-sided linear phrase structure grammar which generates the 
same language as G. 

The proof of Theorem 2 is identical to that given above except that  every appear- 
ance of A i --~ x i B i  should be replaced by A i --) x iB~y l .  

I t  should be noted in passing t h a t  there are pg's with metalinear cores which 
generate languages which are not  even context-free. For instance, the language 
a~b'~c ~ can be generated by a pg wi th  metalinear cores, as is shown ii1 Example 1. 

I t  is quite clear tha t  cfpg's generate  all context-free languages. A context-free 
grammar can be converted to a programmed grammar which generates the same 
languages by giving each product ion a label and putting the set of all labels into 
both go-to fields of every production. 

Another approach is to group all rules with the same left-hand side together. 
These groups can be placed in some arbitrary linear order, but  with the group of 

Journal of the  .Association for Computing Machinery,  VoL 16, No. I, January  1969 



t)~.og~.ammed G~'ammars and Classes of Formal Languages 113 

5;-rules (rules with S on the left-hand side) first. The success field of each rule in 
s group would contain the labels of the members of its group. The failure field 
~-ould contain the labels of the next group, with the failure field of the last group 
containing the labels of the members of the first group. 

Note that  such a grammar generates sentences in depth rather than fl'om left 
to right. I t  cycles through the nonternfinals removing all occurrences (in the 
intermediate string) of a nonterminal before going on to the next nonterufiual. 
~Vith this procedure for obtaining the programmed grammar, if the original con- 
text-free grammar is unambiguous, then each sentence in the language has only 
one derivation in the new grammar, since for every tree produced by the context- 
free grammar there is only one derivation produced by the corresponding pro- 
grammed grammar. 

Programmed (;rammars With Context-Sensitive Cores 

This section deals with cspg's (programmed grammars with context-sensitive 
cores). I t  will first be shown that the use of endmarkers does not increase tile 
power of cspg's, a result similar to a corresponding theorem [9] about context- 
sensitive grammars. A cspg without endmarkers is one for which none of the cores 
of the productions contain an endmarker. A cspg with endmarkers is one for which 
t.he cores can have endmarkers in their strings. 

LEM~IA 1. The set of languages generated by cspg's with endmad~:ers "is identical 
~o the set of languages generated by cspg's without endmarkers. 

The proof of this lemma will only be outlined. First note that every cspg without 
endmarkers is trivially one with endmarkers. Now given a cspg G with endmarkers, 
we can obtain another cspg G' without endmarkers, which generates the same 
language. The new grammar will perlnit a symbol to be tagged with indicators as 
t0 whether or not it is the first or last symbol in an intermediate string. Productions 
can be written to make G' simulate G. Corresponding to productions in G which 
involve an endmarker, G' will have productions which involve tagged symbols. 
The go-to fields of G' can be arranged so that for each application of a production 
of G, only one of the corresponding productions of G' is applied, and it is applied 
as far to the left as possible. Since G' always applies a production of G as far to the 
teft as possible, it generates the salne language as G. 

].EMMA 2. The set of languages generated by cspg's is contained within the set 
of context-sensitive grammars. 

Pr¢ooF. Let G be an arbitrary cspg. We will assume that the cores of G do not 
contain endmarkers. If not, the procedure of the previous lemma can be used to 
rewrite G so that this condition is met. A procedure will now be described for 
obtaining a context-sensitive phrase structure grammar G' that  generates the same 
language as G. G' will be a grammar with endmarkers and will correspond to a 
linear-bounded automata which simulates the operation of G. 

At each stage in the derivation of a sentence from G', except the first and the 
last, the intermediate string will contain a marker. The symbols which can serve 

? 
as markers will be doubly subscripted and of the form rot,, or i t . , .  The first sub- 
script, i, will correspond to the label of a rule of G which the grammar is currently 
trying to apply to the intermediate string, and the second subscript will indicate 
the first symbol in the intermediate string of the derivation being simulated. The 
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reason that the marker carries the first symbol along as a subscript is that the rl~:i~, 
of G, being context-sensitive, must  not be length-decreasing, so that  whe~ ~,~:~, 
want to liquidate the marker at the end of a derivation, we carl convert it intc~ tt~, 
first symbol of the desired sentence. 

The starting symbol of G' is S'. G' has a set of rules of the form 

S t - - *  m i , s  

where S is the starting symbol of G and r,. is an S-rule of G. Thus G' starts off ~vi~ 
#S'/~ and replaces it with #me,s#. 

Let r~ ~ ~ ,¢ S ( V i ) F ( W i )  be a typical rule of G. A symbol of the form ~: 
will serve as a marker which runs through an intermediate string and searches i~  
¢. If it finds ¢ it replaces it by g, and changes to an uuprimed marker for a rule fr¢~,~; 
V~. If it cannot find an occurrence of ¢, it changes to a marker for a rule from W~ 
The rot., symbol moves to the beginning of a sentence and then changes to y~: 
if ¢ does not occur at the beginning of the string. This is done because the sea:, 
fl)r ~ must start  from the left since the leftmost occurrence of ~ should be replac~:~ 
by ~b. If ¢ occurs at the beginning of the intermediate string being simulated, tl~.: 
r~ is applied to the marker and the adjacent symbols which form ¢. At any t i~ ,  
the marker is at the beginmng of a sentence, n production can be applied t~:~. 
changes it to ~ and ends the derivation. 

Since there is only one marker in an intermediate string at a time and ev~)  
production of G' (except the first) involves a marker in its left-hand side, a deriv: 
tion by G r simulates a derivation by G and therefore produces a sentence of ~; 
Similarly for every derivation of a sentence by G, there is a corresponding derN~ 
tion by G'. Thus G' generates the same language as G. 

The following corollary should be noted. 
COROLLARY 1. The set qf languages generated by cfpg's is contained within ~ 

set of context-sensitive languages. 
'Ik-rEOREM 3. The set of languages generated by cspg's is identical to lhe ,~,I 

context-sensitive languages. 
Pi~ooF. Lemma 2 states tha t  cspg hmguages :tre all context-sensitive langu:~ :- 

A procedure will now be described which given a context-sensitive grammar 
will produce a cspg G' which generates the same language. 

For a rule ~ -~ ~ of G where ~ contains an cndmarker, G' will have the rule 

(r~) ~ -~ ~t ~(  ~')F(~') 

where F is the set of all rules of G'. 
This simple tactic will not work if ~ does not contain an endmarker, since i: 

generating sentences from G it must be possible to replace any occurrence (~f ~; 
(not just the leftmost one) by ,¢. To get around this difficulty, G' will have t.hr~ 
rules corresponding to a rule of G which does not involve endmarkers. Let ~ = ~;~ 
and let fi' be a new nonterminal symbol. The~ the rules of G correspondi~g ~: 

--~ ¢ will be 

(ri,) f~ ~ / 2 '  8(ri~ , r¢~) F(r,.~) 

(ri~) ~ --~ ¢ S(ri~) F(r~) 

(r~) ~' ~ fl S(r~a) F(F)  

Now G' generates the same language as G. 
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Fg's With Context-Free Cores and No Nullifying Rules 

It has been shown that  every context-free language can be generated by a cfpg, 
and examples have been given to show that there are cfpg's which generate lan- 
guages which are not context-free, so that  the set of cfpg languages (languages 
generated by cfpg's) properly contains the set of context-free languages. Also, 
from Theorem 3, every cfpg generates a language which is context-sensitive. In 
this section it is shown that  the set of cfpg languages is properly contained within 
the set of context-sensitive languages. We begin with some definitions. 

Let L1 be a language over vocabulary VT. We say that L: is language L1 with 
tails if L2 is a language over VT (J {c, d}, where c and d are new symbols, whose 
sentences are of the form xdc" where x E L1 and m depends on x. Thus 
L~ = {x [ xdc m C L3 for some m}, and each sentence of L: is a sentence of Li followed 
by a tail consisting of a d and a number of c's. For x C Li let re(x) be the minimum 
value of j such that  xdc j E L~. Now let F be a computable, nondecreasing function 
defined over the nonnegative integers, and let [ x [ denote the length of x. We will 
say that L~ has tail growth function less than or equal to F if for all but a finite 
mlmber of sentences of L1, m(x)  ~ F( Ix ] ). 

Let G = ( V r ,  VN, J ,  P, S) be ~t cfpg with q nonterminal symbols. First place 
the nonterminals of G in some arbitrary linear order. The nonterminnal map, ~ ,  is 
~ fimction from strings over Vr U V~ into the set of q-tuples of natural numbers. 
We define ~¢(¢) = v where v~ (the i th component of v) is equal to the number of 
times the ith nontcrminal occurs in ~. ~¢(¢) will be called the nonterminal vector 
corresponding to ¢. As an example, if the nonterminals are S, A, B, C, D, then 
~(aDAabCSAdbDaA) = (1, 3, 0, 1, 2). 

LEMM.~ 3. Let LI be a recursively enumerable language over a vocabulary which 
does not include c or d. Let G be a cfpg such that L( G) is L~ with tails and has a tail 
growth function less than or equal to F. Then there exists a context-sensitive grammar 
G' such that L( G ~) is L~ with tails and has a tail growth function less than or equal to 
q(log F + 1) where q is the number of nonterminals in G. 

(Throughout this section logarithms will be to the base 2.) 
t)ROOF. First it should be observed that  if some sequence of rules of G converts 

~¢2 into xdc "~ where xdc n comes from ~ and a string of c's from q~2, then the same 
sequence of rules applied to ~ 3  where ~N(¢3) = ~(¢2)  will also convert ¢~ into 
xdc p and ¢3 into a string of c's. Therefore the nonterr~final vector corresponding to 
~t substring which will eventually form the tail of a sentence provides all the in- 
formation required to determine its behavior during a derivation. 

If ¢ is a string of length n, then each component of its nonterminal vector is 
Iess than or equal to n and can be stored as a binary number in a space less than or 
equal to log n. The entire vector plus q symbols which serve as separators between 
coraponents of the vector can be stored in space q log n. 

h description is now given of a nondeterministic Turing machine, M, which 
never erases and which generates language L~ with tail growth less than or equal to 
q(log F + 1). Since M is nonerasing, its actions can be described by a context- 
sensitive grammar, G ~, which generates the same language as M. An intermediate 
string in a derivation by  G ~ always has one symbol marked to indicate the state of 
M and the location of its head. By shifting the marked symbol, G ~ ca~ simulate 
the operation of M. 
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or not it is in the language. It, has been shown [14] that  if a language is F-tape- 
recognizable, e is any positive constant, and [cF] denotes the smallest integer greater 
than or equal to cF, then the language is also [cF]-tape-reeognizable. Therefore 
i t  is only the limiting behavior of F for large values of n which is of importance. 
I t  has also been shown that  if there exists a Turing machine which operates within 
~ape F and whieh for each n actually uses F(n) storage tape cells for some input 
.of length n, then there is a language which is F-tape-reeog~fizable but which cannot 
be recognized with essentially less tape. Specifically if P(n) is a functiotl such that 
inf,o=(P(n)/F(n)) = 0, then this language cannot be recognized by any p(n)_ 
tape-bounded Turing machine. 

Now let, M, be a deterministic off-line Turing machine which recognizes some 
language L, while operating within tape Q where L, cannot be recognized within 
an essentially lesser amount of tape and where Q(n) > 2 ~'. Such a machine exists, 
for instance for Q(n) = 2 2", since a Turing machine can be described which uses 
exactly that much tape. 

Let us assume that every context-sensitive language can be generated by a efpg. 
~Ve can then construct the sequence of grammars shown in Figure I. 

From the description of M,, we can obtain a context-sensitive grammar, (;2, 
whose language, L2, is L~ with tails where the tail growth function is Q. G= corre- 
sponds to a nonerasing Turing machine which first generates an arbitrary string, 
x, and then simulates M~ given x as its input, using the squares to the right of x 
as the storage tape and writing c's instead of erasing. If M~ accepts x, then G~ 
prints c's on the squares to the right, of x and produces a terminal string of the 
form xdc'. If M~ rejects x, then G~ halts without producing a terminal string. 

Under the assumption that every context-sensitive language is generated by 
some efpg, there exists a efpg, G3, which generates L~. From Letmna 3 there then exists 
a context-sensitive grammar, G4, which generates the sentences of Lt with shorter 
tails, specifically with tail growth function q(log Q -F 1) where q is a constant. 
Since we are only interested in the behavior of the tails for large values of n, the 
tail growth function can be taken to be less than or equal to 2qlog Q. Let L4 be 
the language generated by G4. 

The tails can be further shortened by repeating the above procedure. Again 
under the assumption tha t  every context-sensitive language is generated by some 
cfpg, there exists a efpg, G5, which generates L4. Applying the Lemma to C:,, 

L 1 M I tope Q 
LL 

L 2 G z c$ toils 0 
4~ 

L2 G$ cfpg tails O 

L 4 G 4 cs toils log Q 

L 4 G 5 cfpq lolls log Q 

L s G 6 cs toils log log q 

L6 M 7 exponenliol tope 

L I M s tope [log ol p 

:FIG. 1. Sequence of  g rammars  used to o b t a i n  new mach ine  
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PG's For Recursively Enumerable Languages 

This section is primarily occupied with a proof that all rccursively enumerable 
languages can be generated by pg's whose corks have a single symbol on the left- 
ham side. But first the following result is noted. 

THEOREM 5. The set of languages generated by pg' s with arbitrary co~s is identical 
tv the set of recursively enumerable languages. 

PROOF. Every recursively emlmerable language is generated by all arbitrary 
(type 0) phrase structure grarmnar. Let G be an arbitrary phrase structure granl- 
mar. Let G' be the pg obtained from G by giving each production of G a label and 
applying the procedure of Theorem 3. Then L(G') = L(G). 

Now let G be a pg with arbitrary cores. I t  is obvious that a Turing machine can 
simulate the behavior of G, and so L(G) is recursively enumerable. 

THEOREM 6. The set oJ" languages generaled by pg's all of whose rules have cores 
with a single symbol on the left-hand side and an arbitrary (possibly null) string on 
t:Ae r~ht-hand side is identical to the set of recursively enumerable languages. 

PROOF. Let G = ( V r ,  VN, P, S) be an arbitrary phrase structure grammar. 
Apg, G' = (V~,, VN', J ,  P ' ,  S ' ) ,  will be constructed such that L(G') = L(G). 

In simulating G, the intermediate strings generated by G will be coded as num- 
bers. Le tq  = [ V r l  + IVNI + 1. ( I X  I is the number of elements i n X i f X  
is a set and the number of symbols in X if X is a string.) Now define an arbitrary 
one-one mapping 

f: V ~ U V N ~ { i ,  2 , . . . , q -  ~}. 

An invertible mapping g from the strings over Vr U VN into the nonnegative 
integers is defined. If the string is ~ = ala2 " -  ~,~, then g(~o) is defined to be 

g(¢) = f(cn) X q"-~ -~ f(c~2) X q~-2 + . . .  + f (~,)  X q"-' + . . .  -b f(c~,~). 

Thus ~ is considered to be a number written in base q. The empty string is mapped 
into zero. Since no symbol of VT U Vn represents the digit 0, the mapping is unique. 

Let x E L(G). Then x has a derivation of the form S = $0 ~ ~ ~ • . .  --~ $~ = x. 
"}i ~ }i+~" means that  }i = ¢0~2,  ~i+~ = ~ where ~ and ~2 can be null, and 
.~ ~ ~ is a production of G. G' will simulate the derivations of G but will work with 
the codings of the strings rather than with the strings themselves. 

The effect of the operation of the grammar of G' can be described by the flow- 
chart in Figure 2. The arrows mean that  the go-to field of the last production of a 
box contains tile label of the first production of the box to which the arrow points. 

The second box acts nondeterministicMly in that the division into ~ ,  ~ ,  and 
~2 can occur in any way. 

If after executing the last box, ~ contahls any nonterminals, then the grammar 
has not produced a sentence. If  } is a terminal string, then it is a member of L(G). 

These blocks will now be broken down into simpler blocks which perform more 
primitive operations. In designating arithmetic operations, In~q] will be used for 
the quotient of n divided by q and R(n/q)  for the remainder. Also X will be used 
to denote the null string. 

Note that  the order in which the nonterminMs (other than F)  of G' appear in 
ally intermediate string does not  mat ter  sitice these nonterminals will be wiped 
out in the end. To simplify the details of the grammar, the order of the nontcrminMs 
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Fro. 5. F l o w c h a r t  for decod ing  s t r ings .  
Double  a r rows ind ica te  mul t ip le  pa ths  

Figure 4 will perform tile operation A~<~I)B g(~ -~ A g(~¢). It is this coding of the 
concatenation of strings which is the essence of block 4. 

Since g(~ab) = g(¢01) X ql¢I -t- g(~), the trick is to calculate qlCf. This is done 
by the loop formed by blocks 4B, 4C, and 4D which records this value as the num- 
ber of E's; i.e. on entering 4E we have A~(~I)Bg(~)Eq'~t. Box 4B can be implemented 
as a production whose core is D -~ D with 4C and 4E in the success and failure 
:fields, respectively. 

Block 5, FA °(~) -~ ~, is implemented as shown ia Figure 5. 
Block 5A is always entered with a string of the form F~"A g(e`) where ~ = $'a~" 

and a is a single symbol. Block 5A converts this string to F~"A~(~')Ba(~). Blocks 
5B, 5C, and 5D produce Fo4"A g(~'). These blocks will be further described by giving 
their component productions. Block 5B, whose first production is b~, contains 
the following q productions. 

(b~) B --, X S(b~) 

(b~) B --~ X S(b~+~)F(c~_~) for i = 2, . - .  , q - 1 

(bq) B ~ X F(cq_,) 

Block 5B is entered with a string containing j B's where 1 < j < q - 1 since 
J = g(a) for some single symbol a, so that  the failure field of production b~+~ will 
be taken. Production cj will then be executed, and a wilI be printed out after deter- 
raining if there are any A's remaining in the string. 
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Block 5C consists of the following q - 1 rules, which test  for the presence of an 
A while retaining the value of j for j = 1, • • • , q --  1. 

(cy) A --~ A S(di)F(e~) 

Block 5D consists of the following q - 1 rules for j = 1, . . .  , q - 1, whose 
success fields contain the label of the first production of block 5A. 

( d3) F --~ Fg-~(j) s(5A) 

Block 5E ends the derivation, and consists of the following q - 1 rules 
f o r j  = 1 , . . . , q -  1. 

(ej) F -~ g-IU) 

The same procedure which was used for 5B will be used for block 3. This block 
performs B g(~) --~ B ~(~) where ~ -~ ~b is a production of G. 

For  each production ¢ --~ ~b of G, G' will have a production 

(p) D --~ B °(¢) S(h) 

where h is the label of the first production of block 4 and the label p is different 
for each production. 

Let  r be the maximum integer such tha t  g-~(r) is the left-hand side of a produ~ti0n 
of G. For  each integer i between 1 and r let P(i) be the  set of labels of productions 
of G' corresponding to productions of G which have  g-~(i) on their  left-hand side, 
For some values of i, P(i)  may be null. 

Block 3 consists of the following productions: 

(s,) B ~ D  Z(s~) 

(s~) B-~ .X  S ( s i+ , )F(P( i  - 1)) for i = 2, . . -  , r 

(s,+,) B --~ X F ( P ( r ) )  

as well as the set of productions 

(p) D ~ B a(~) S(h) 

corresponding to the productions of G. 
If  block 2 selects a subsequence ~ which is the left-hand side of a production of 

G, block 3 will make an appropriate replacement. I f  the selected subsequence does 
not correspond to any production of G, block 3 will halt  the derivation without 
having produced ~ sentence. 

To complete the proof it only remains to show how to do the arithmetic called 
for in some of the subblocks. Since the order of the symbols in the intermediate 
string does not matter ,  the followiIlg simple programmed grammars  will suffice. 

For multiplication, the following grammar  converts Arab '~ into A~B'~C~×n: 

(1) A --~ A'A" S(1)F(2) 

(2) A" --~ h S(3)F(5) 

(3) B -~ B'C S(:~)F(4) 

(4) B' ~ B S(4)F(2) 

(5) A'  ~ A S (5 )F (ou t )  
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For division by q, the following program converts A '~ into At"/qlCa(~/~): 

(1) A ~ A' 

(i) A --~k 

(q) A ~ k 

(q + i) A' ~ C ~ 

(2q) A t --~ A 

S(2)F(2q) 

S ( i +  1 ) F ( q + i -  1), i =  2 , . - -  , q -  

S(1)F(2q - 1) 

S(2q), i = 1, . - .  , q - 1 

S(2q)F(out) 

123 

properties of CFPG's 

tn  this section some of the properties of cfpg's are given. First it is noted without 
proof that the set of cfpg languages is closed under some of the standard operations 
on languages. 

THEOREM. The set of cfpg languages is closed under union, concatenation, and 
IKl~ene closure. 

THEOREM. Every recursively enumerable language can be generated with tails by a 
cfpg. 

Pl~oo~'. Let G~ be an arbitrary phrase structure grammar which generates a 
recursively enumerable language L~ over vocabulary V r .  By using the procedure 
of Theorem 6, we can obt~dn apg ,  G2, which generates L~ and for which the left- 
ha~d side of each core consists of a single nonterminal symbol, although the right- 
hand side could be the null string. Let c and d be new symbols which are not in VT. 
Go can now be modified to produce a cfpg G3 with terminal vocabulary Vr U {c, d} 
whose language L3 is L1 with tails. G3 differs from G~ in that  block 1 of Figure 2 is 
changed to S' ~ FdA °(s), and every core of the form A -~ ~ is replaced by A ---~ c. 
Ga thus operates like G2, but  it generates c's instead of erasing. Note that  the only 
productioi~s of G3 which have a member of VT on the right-hand side of their cores 
arc the F-rules of blocks 5D and 5E of Figure 5. Since F is the leftmost symbol in 
an  intermediate string, the occurrences of members of Vr must be to the left of the 
d i a  a sentence of L3. Therefore L3 = {xdc ~ ix ~ L~ and the set of allowable m 
depends on x}, and L3 is L~ with tails. 

A string homomorphism is a function h mapping strings into strings which has the 
property that  for any two strings x and y, h(xy) = h(x)h(y). Thus a homomorphism 
is a symbol translation of a string. I t  follows from the previous theorem that  every 
recursively enumerable language is the homomorphic image of a cfpg language. 

Thus far when a pg has generated a sentence, the productions have been applied 
as far to the left as possible; i.e. the leftmost occurrence in the intermediate string 
of the left-hand side of the core is replaced by the right-hand side of the core. The 
grammar can be said to be operating under the leflmost interpretation. A p g  operating 
under the rightmost interpretation is one for which every production is applied as 
far to the right as possible. A pg operating under the free interpretation is one for 
which any occurrence in the intermediate string of the left-hand side of the core can 
be replaced by the right-hand side. 

THEOREM. The set off languages generated by cfpg's operating under the rightmost 
interpretation is identical to the set of languages generated by cfpg's operating under the 
teflmost interpretation. 
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PRoof. Let G be a ofpg which generates language L while operating under tts: : 
rightmost interpretation, another efpg, G', is described which geaerates L ,vhi~ 
operating under the leftmost interpretation. Let a production of G be 

(r) A --+ ~ S(V)  F(W) 

The grmnmar G' has the following set of productions which have the same eff,:,~ 
as r: they replace the rightmost occurrence of A in the intermediate string by ¢. 

( r )  A ~ A'  S(r2) F(W) 

(r~) A ~ A'  S(ra) F(r4) 

(ra) A' --> A" S(r2) 

(u) A' ~ ¢ S(r~) 

(r~) A" ~ A S(r~) F(V)  

]f there are any A's present in the intermediate string, r4 will be applied to ti~ 
rightmost one and the next rule will be selected from V (the success field). 

A similar procedure can be applied to a cfpg operating under the leftmost inter- 
pretation to obtain another cfpg which generates the same language when operati>4 
under the rightm0st interpretation. 

It follows from the above theorem that the set of cfpg languages is closed unde 
reversal. 

THI*JOR]EM. 5['he set of languages gerwraled by cfpg's operating under the leflmo:~,~ 
interpretation contains the sel of languages generated by cfpg's operating under g~' 
free interpretatio n . 

PnOOF. Let G be a cfpg which generates language L under the free interpr~>ta. 
tion. Another cfpg, G', is described which generates L under the leftmost interpret::~ 
ti0n. 

I,et a typical production of G be the following. 

(r) A -.~ ~ S (V)~ ' (W)  

g ' will have the following four rules which will correspond to this rule of G. 

(r) A ~ A'  S(r, r,,)li'(r:,) 

(r~) A' A S(r~)F(W) 

(r~) A '  ~ A ,S(r~)F(V) 

These four rules when operating under the leftmost interpretation have the egeei 
of permitting any occurrence of A in the intermediate string to be replaced by ~, 
thereby simulating the original rule when it operates under the free interpret~ti0~ 
Since the above procedure is  applied to every rule of G, G' generates L under the ~ 
leftmost interpretation. 

Since a context-free phrase structure grammar can be effectively converted into 
cfpg which generates the same language, the undecidable questions for context-free 
grammars are also undecidable for cfpg's. However some problems which are &. 
cidable for context-free grammars are undecidable for cfpg's. 
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tion of an actual  sentelme,  t h e y  mus t  fail because if either one were ever successft~ 
the result ing i n t e r m e d i a t e  s t r ing  could not be expanded into a termin~l string. 

I t  will be shown t h a t  the  set  of utcfpg languages is a proper  subset of the ef>g 
languages. Bu t  first s o m e  addi t ional  machinery  for dealing with nonterminal  m > 
will be provided.  

A par t ia l  ordering oil the  n- tuples  of na tura l  numbers  will be defined by say ng 
tha t  v > u if each c o m p o n e n t  of v is greater  than  or equal to t.he correspondir~¢ 
component  of u. A se t  of v e c t o r s  (n- tuples)  is noncomparable if for no u, v in the ~>¢ 
is it t rue  t ha t  u > v. 

Some addit ional  n o t a t i o n  will be introduced. Firs t  0 will represent  the 0-veet0r, 
i.e. the vec tor  all of whose  componen t s  are 0. Also if v is a vector  and r is a produe 
lion whose core is A ~ ~, we will say  tha t  r succeeds on v if the A-component  of 
is nonzero. I f  r succeeds  on  v, then the applicat ion of r to v produces the vector 
obta ined by  s u b t r a c t i n g  1 f r o m  the A-componen t  of v and then adding 6N(~h) t .  t}~ 
result ( the  addi t ion be ing  c o m p o n e n t  by  componen t ) .  

LEMMA 4. Every set of noncomparable vectors is jinile. 
T h e  proof of this l e m m ~  is given b y  Ginsburg  [15] and can also be obtained fr<~ 

one of Konig ' s  t h e o r e m s  [16]. 
TrmOREM. The prefix properly is decidable for ulcfpg's; i.e. it is decidable fl)r a~!; 

ulcfpg, G, and any string, x, whether or not there exists a y such that xy C L( G). 
PROOF. A procedure ,  consist ing of the construct ion of a finite directed grap}~ 

based on x and G, will be  g iven  for deciding if x is a prefix of any  sentence in L(6". 
First  rewrite G, if necessa ry ,  so t ha t  it contains only one S-rule whose label is ~'~ 
Let  G = (Vr,  Vie, J,  P, S)  and  n = [ x I. The  nodes of the graph will be triples ~ 
the fo rm (~o, v, r)  whe re  ~o is a s tr ing over  Vr U V~, of length less t han  or equal to y, 
v is a nontermina l  vec to r ,  and  r is a rule label. If  t ~o t < n, then v will be the 0-veeto> 

Let  (~o, v, r)  and  (~b, u, q) be triples of the above type• We say tha t  (~o, v, r) -. 
(~b, u, q) if q is in the  go- to  field of rule r and if a string of the form ~o$ where 6~e(~) = 
v is conver ted  by  r in to  the  s t r ing ~ '  with ~/~($') = u. More  precisely, exactly 0~ 
of the following m u s t  b e  t rue .  

(1) Rule r fails on ~ and  v, ~b = ¢ , a n d u  = v. 
(2) Rule r fails on ¢ b u t  succeeds on v, ~ = ~o, and u equals the vector  resulti~g 

from the appl icat ion of  r to v. 
(3) Rule r succeeds on ~o, producing  ¢ of length less than  or equal  to n, ¢ = ¢. 

and u = v. 
(4) Rule r succeeds on ~p, producing ~'  = _ = ~ where I '~  ] n and ] ~  I > i 

~k = ~o~, a n d  2, = v + a ~ ( ¢ 2 ) .  
Note  tha t  ¢, v, and  r un ique ly  specify $ and u. I f  the go-to field of r is empty, 

then q is a special s y m b o l  r a t h e r  than  a rule label. We also say t ha t  (¢, v, r) ::~ 
(,k, u, q) if there is a chain  of t r iples  such t h a t  (~o, v, r) = ($0, w0, p0)-~ 
(~t ,  w , ,  p~) -~  . . .  --~ (~= ,  win ,  pro) = (~b, u, q),  or if (~b, u,  q) = ( , ,  v, r ) .  

The  graph used to  decide  if x is a prefix of L(G) will have  a tree structure. It~ 
initial node of the g r a p h  is the  triple (S,  0, r0) where r0 is the  label of the S-produc- 
t ion of G. The  g raph  is construcLed b y  expanding in some a rb i t r a ry  order the nodes 
which are a l ready p r e s e n t  in the  graph.  Let  (~o, v, r)  be a node which is to be ex- 
panded.  The  triples (~b, u, q) such t h a t  (~o, v, r) -~ (~b, u, q) are found. For each 
such triple,  if there  is a l r e a d y  a node in the graph of the form (~b, u ' ,  q) with u'  5 ~. 
then  (¢, u, q) is not  a d d e d  to  the  graph.  Otherwise (~h, u, q) is added and an arrow 
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drawn to it from (~, v, r).  This procedure is carried out for all nodes in the graph. 
Note that the final form of the grapb will depend on the order in which the nodes 
are expanded. 

It will now be shown that  the graph is finite. For any ~o, r eombination 
let vl, ve, • "" be a list of vectors such that  the nodes (¢, v~, r) are sueeessively 
added to the graph. Each time a node is added to the list, i tsveetor cannot be greater 
than or equal to that  of any of the other nodes having the same ~ and r which are 
already on the list. 

Note that  for any vector v, the number of vectors u such that  u < v is finite, 
since no such u can have a component which is greater than the corresponding 
component of v. Now assume that  the list of vectors is infinite. An infinite noncom- 
parable subset of the vectors on the list ean then be obtained by the following 
procedure. Start  with v, and cross off the list the finite set of vectors which are less 
than or equM to v~. Let v2 be the next remaining entry on the list. Then v~, v2 are 
aoneomparable since all the vectors less than or equM to v~ have been crossed off 
the list and v~ cannot be greater than or equal to v~ as it occurs after v~ on the list. 
Now cross off the list the set of vectors which are less than or equal to v2. The result- 
ing v~, v2, v3 are noneomparable. By this procedure an infinite noneomparable set 
of vectors can be obtained if the original list is i~ffinite. From the preceding lemma 
such an infinite set cannot exist, and the list must contain a finite number of vectors. 

Since there are only a finite number of strings of length less than or equal to n 
a~td only a finite number of productions, the graph contains only a finite number of 
nodes. 

It will now be shown that  there exists a (possibly empty)  terminal string y such 
~hat (S, r0) ~ (xy, r) if and only if the graph contains the node (x, 0, r). Here r 
cart be either a rule label or the special symbol which denotes the empty set of 
labels. 

First it will be shown that  if (co, v, r) is a node in the graph, then there exists a 
string ~ such that  (S,  ro) ~ (~ ,  r) and 8at(S) = v. Let  p be the sequence of rule 
labels (third components) of the chain of nodes beginning with the initial node and 
leading to (~o, v, r) but omitting the label of the final node in the chain. Then by 
induction on the length of the chain, applying p to the string S will result in a string 
of the form ~o~ with 8N(~) = v and with r as the next applicable rule. First  the result 
is true for the initial node of the graph, (S, 0, r0), since ro is an S-rule. Now assume 
that the result is true for all chains of length m and that  (S, 0, to) ~ (~o=, v=, r=) 
(~m+~, v,,+~, r,,,+t). By the induction hypothesis, there is a string ~= such that  
(S, r0) ~ (e=(~,  rm) and 8n(~=) = v=. However since (e=,  v~, r=) --~ (~o=+l, 
v.,+~, r=+~), applying r,~ to ~ ( m  will produce a string ~o,~+~m+~ such that  ~g(~=+t) = 
v,~+~. Hence (S, to) ~ (~o=+~,,+~, r,a+~) and ~(~,,+,) = v=+~. Therefore if ( , ,  0, r) 
appears in the graph, there must be a string ~ such that  (S, r0) ~ (z~, r)  and, since 
8,.(~) = 0, ( consists solely of terminal symbols. 

It will now be shown that  if (S, to) ~ ( ~ ,  r),  where I~o I = n if ~ is nonnull, 
then there is a vector v such that  (~, v, r) appears in the graph and v < 8n((). This 
result can be obtmrmd by induction on the length of the derivation of (e(, r) from 
(S, to). If the length of the derivation is zero, then ~ = S, and (S, 0, ro) is the 
initial node of the graph. Assume that the result is true for all derivations of length 
less than or equal to m attd that  (S, to) ~ (~,m~, r~) --~ (~,~+~.,+~, rm+~). Then 
fr~,rn the induction hypothesis there is a node in the graph of the form (~,~, v~, r~) 
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with v,,, < &v(~,~). Consider the efiect of applying rule r,~ to that nod< 
Since (~,m~,,, r,,) --, (~m+~,~,+, , rm+l), we have (~m, t'm, rm) ---~ (~,~+~ , V,,+~, r,,<) 
for some vecl,or v,~+,. Fur thermore  since &v(~e,~) > v .... any rule which succeeds 0~ 
vm will also succeed on ~m and ~N(~,,,+~) ~ V,,+~. Because in constructing the graph, 
the node (&,,., v,,, r,,) must  have been expan~led at some tinm, the graph contail~s a 
node of the form (~,,,+1, v=+~, rm+~) where vm÷.~ < vm+~. Thus if (S, to) ~ (~, r), 
there is a vector v < &:(}) such that  (¢,, v, r) appears in tile graph. Hence if (S, r0) ~ 
(xy, r) where ~A,(y) = 0, the  graph must contain a node of the form (x, 0, r). 

Thus to determine if x is a prefix of L(G) ,  all we need to do is construct the graph 
and see if it contains a node of the form (a:, O, r), since x is a prefix of L(G) if a~l(t 
only if the graph contains such a node. 

COUOLLA*~Y 2. It  is decidable whether or' n,t  lhc la~*guwe generated by an utqft~ O, i:~ 
empty. 

PROOF. Let G = (Vv ,  J ~ ,  J , t  7 , S) be an ut;cfpg. For each a ~  Vr ,  usetD 
procedure of the theorem to determine if a is a prefix of L(G).  If  for any a, a is ~ 
prefix, then there exists a (possibly null) terminal string y such that ay ~ L((;), 
which is therefore nonempty.  I f  no a C VT is a prefix, then L(G) is empty.  

COUOLLARY 3. For the class of pg's with unconditional transfer go-to fields, sir~d~ 
symbols on the left-hand side of the cores, and arbitrary (possibly null) strings ou & 
right-hayed side, it is decidable whether or not the language generated by such a gram~ 
is empty. 

P~tOOF. Let G = ( V r ,  Ve¢, J, P, S)  be such a granmnar. Choose an a ~ l'r, 
and let G' = ( V r ,  Vee, J, 17', S)  be the g rammar  obtained by replacing each e0re 
of G of the form A --~ X with the new core A --) a. Then since L(G')  is emptyif 
and only if L(G)  is empty,  and G' is an utcfpg, for which the emptiness problem is 
decidable, it is decidable if L(G)  is empty.  

COROLLARY 4. There exists a cfpg whose language cannot be generated by a~!i 
utqfpg. 

P~moI,'. Let  L~ be a reeursively enumerable language which is not rccursive. A~ 
has previously been shown, a cfpg, (72, exists which generates L~ with tails; i.e. 

L~ = {x ] xde" ~ L(G~) for some n}. 

Now assume that, L(G~) can be gener~ted by an utcfpg, Ga. Then given any string 
x, we can decide if xd is a prefix of L(G~) by using the procedure of the preceding 
theorem on Ga and x. But  xd is a prefix of L(G~) if and only if x { L , ,  which is n0~ 
decidable because L, is not recursive. Hence no such G~ exists, and L(G~) is a e0g 
language which cannot be generated by any utcfpg. 

We have now proved Theorem 7, since every utcfpg is also a cfpg, and a context- 
free g rammar  can be converted into an utcfpg which generates the same language 
by inserting the set of all production labels into the success and failure field of e~& 
production. 

Further Properties of UTCFPG's  

In this section some additional properties of utcfpg's are given. First it should be 
noted tha t  the set of utcfpg languages is closed under union, concatenation, ~md 
Kleene closure. Some undecidabihty properties are now given. 

TgEotmM. It  is undecidable if a cfpg generates an utcfpg language. 
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PROOF. fret Li be a recursively enumerable language which is not recursive, 
~ d  let G2 be a cfpg which generates L1 with tails. 

Given an azbitrary cfpg; Ga, we can effectively obtain another cfpg, G4, whose 
language is tile concatenation of L(G~) and L(Ga). 

If L(Ga) is empty then L(G4) is empty and therefore is a utcfpg language. If 
L(Ga) is nonempty, then L(G~) is nonempty, and a: E L, if and only if xd is a prefix 
of L(G4). If there existed an utcfpg which generates L(G4), L~ would be recursive 
since the prefix property is decidable for utcfpg's. Hence if L(Ga) is nonempty, then 
L(Gt)  is not an utcfpg language. 

Thus L(G4) is an utcfpg language if and only if L(Ga) is empty, which is not 
decidable. Therefore since G4 can be constructively obtained from Ga, it is un- 
decidable if G4 generates art utcfpg language, and it is undecidable if a cfpg generates 
an utcfpg language. 

Tu~oaEM. It  is undecidable if  the language generated by an utcfpg is co,~texg-fl, e. 
PROOF. This proof is based on another proof [17] of a similar theorem. 
Let G= be an utcfpg whose language L= over terminal vocabulary Ve is not context- 

free. L2 could, for instance, be the language {a~b%'}. Let G~ be an arbitrary context- 
free grammar which generates language L1 over a terminal vocabulary, V~, which 
is disjoint from V2. From G~ and G2 an utcfpg, Ga, can be effectively obtained such 
that  G3 generates the language La = L~V2* U V**L2. Here V* denotes the set of all 
nonnull strings over vocabulary V. 

Now if L~ = V~*, then La = V~*V2* and La is context-free. If L, ~ V** and La 
i s  context-free, then for x E V~* - L, , La VI xV2* = xL2 is context-free since the 
intersection of a context-free language and a regular set is context-free. But then 
L= is context-free since it can be obtained from xL2 by a homomorphism, and context- 
free languages are closed under homomorphisms. Thus if L~ 7~ V~*, then L3 is not 
context-free. Consequently La is context-free if and only if L~ = V**, which is un- 
decidable [18]. Thus it is undecidable if an utcfpg generates a context-free language. 

TH~Ot~EM. The set of utcfpg languages is not closed under intersection. 
P~OOF. This proof is based on a well-known technique for establishing un- 

decidability results. Let G~ = ( V~, V~., S, P~) be a phrase structure grammar whose 
language is not recursive, and let c be a new symbol not i** Vr U V~v. From G~ we 
will obtain two context-free grammars, G~ and Ga, whose languages are of the form 
m~eoa~c .. • cx~,+, where each x~ is an arbitrary (possibly null) string over V~ [J g ~ .  
L(G~) will have the property that  x~+~ = S, and for each lc between 1 and n, x~_~ 
can be derived from x~e~ by G~. L(Ga) will have the property that  x~ is a terminal 
string, and for each k between 1 and n, x~ can be derived from x~+~ by G~. Here 
z r denotes the reversal of x. 

G~ is of the form (Vr U V~- U { c}, { T, A }, P~, T) where P~ contains the following 
productions. 

T ~ AcT 
T - - ~ S  

A --~ aAa for each a C Vr U VN 
A ~ CAn r for each production ~, --~ ¢ of G1 
A --~ c 

Ga has a similar form. 
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G~ow consider L4 = L(G2) fl L(G~). If x~cx~c . . .  cx~+~ E L4, then x,+~ = S. 
each x~ is derivable from xi,~ by G~, and x~ is a terminal string of G~. Similarly if 
x~ E L(G~), then corresponding to the derivation of x~ there is a sentence in L4 
which begins with x~c. Thus x~c C L~ if and only if x~e is a prefix of L4. But if L4 
were an utcfpg language, then the prefix property would be decidable and L~ would 
be reeursive. Hence L4, the intersection of two utefpg languages, is not an utcfpg 
language. 

COROL~Rr 5. The set of utcfpg languages is not closed under compleme~tatiou. 
PROOF. Since the set of utcfpg languages is closed under union and for languages 

L~ and L2, L~ fl L~ = L~ U L2, closure under complementation would imply 
closure under intersection. From the previous theorem, the utcfpg languages are 
not closed under intersection and therefore are not closed under complementati0n. 

Conclusions 

The languages generated by pg's with various types of cores have been investigated. 
The additional machinery of pg's does not add any generative power if the cores are 
one-sided linear, linear, context-sensitive, or arbitrary. A key result is that pg's 
whose cores have a single symbol on the left-hand side and an arbitrary string on the 
right-hand side can generate all recursively enumerable languages. 

The cfpg's, however, generate a class of languages which properly contains the 
context-free languages and is properly contained within the context-sensitive 
languages. Cfpg's have considerable generative power, and it is often comparatively 
easy to write a cfpg for a particular language. However several problems which are 
decidable for context-free grammars are undecidable for efpg's. 

The utcfpg languages are properly contained within the cfpg languages and 
properly contain the context-free languages. Utcfpg's seem to be easier to work with 
than the cfpg's; e.g. the prefix property is decidable for utcfpg's. 

ACKNOWLEDGMENT. Tim author wishes to express his gratitude to Professor S. H. 
Unger of Columbia University for his guidance and encouragement. The author also 
gratefully acknowledges several interesting and helpful discussions with Dr. A. 
Friedes and Dr. J. D. Ullman of Bell Telephone Laboratories and with Dr. D. H. 
Younger of the University of Waterloo. 

: R E F E R E N C E S  

1. CHOMSKY, N. On certain formal properties of grammars. Inform. Contr. $(June 19D), 
137-167. 

2. - - .  Formal properties of grammars. In Handbook of Malhemalical Psychology, Vol. 2, 
Luee, R.D., Bush, R.R., and Galanter, E. (Eds.), Wiley, New York, 1963. 

3. ROSENXRANTZ, D- J. Programmed grammars--a new device for generating formal lan- 
guages. Ph.D. Thesis, Columbia U., New York, 1967. 

4. AB~HAM, S. Some questions of phrase structure grammars I. Compui. Linguist. $ (1965), 
61-70. 

5. PETERS, S. A note on ordered phrase structure grammars. Rep. No. NSF-17, Math. 
Linguist. and Auto. Trans., Computation Lab., Harvard U., Cambridge, Mass., Aug. 1966. 

6. G~NSBURG, S., ANn SPANIEa, E.H. Control sets on grammars. Doc. No. TM-738/036/00, 
System Development Corp., Santa Moniea, Calif., 1967. 

7. C~oMsKr, N. Aspeels of the Theory of Syntax. M.I.T. Press, Cambridge, Mass., 1965. 
8. ZWICKY, A. M., FRIED.RAN, J., HALL, B. O., AND WALKErt, D.E. The MITRE syntactic 

Journal of the Association for Computing Machinery, Vol. 16, No. 1. January 1969 



Frogrammed Grammars and Classes of Formal Lang~ages 131 

analysis procedure for transformational grammars. Proc. AFIPS 1965 Fall Joint Comput. 
Conf., Vol. 27, Spartan Books, Washington, D.C., pp. 317-326. 

9~ LANDWEBER, P. S. Three theorems on phrase structure grammars of type 1. I~lform. 
COntT. 6 (June 1963), 131-136. 

10. KtraODA, S.Y. Classes of languages and linear bounded a~itemata. Inform. Contr. 7 (June 
1964), 207-223. 

I1. AHo, A. V. Indexed grammars--an extension of context free grammars. IEEE Con- 
ference Record on Switching and Automata Theory, IEEE pub. no. 16-C-56, 1967. 

12. F~.RBER, D. J., GmSWOLD, R. E., AND POLONSKY, I. 1 ), SNOBOL, ,'Z string ma~lipulation 
language. J. ACM 11, 1 (Jan. 1964), 21-30. 

13. MARKOV, A.A. The theory of algorithms. (Russian), Tr. Math. Inst. Akad. Nauk SSSR 
88 (1951), (English Trans., Amer. Math. Soc. Trans., {2}, 15, (1960), 1-14). 

14. STE*RNS, R. E., HABTMANIS, J., AND LEWIS, P.M. Hierarchies of memory limited compu- 
tations. IEEE Conference Record on Switching Circuit Theory and Logical Design, IEEE 
pub. no. 16-C-13, 1965. 

I5. GINSBURO, S. The Mathematical Theory of Context-Free Languages. McGraw-Hill, New 
York, 1966. 

t6. KoNI~, D. Theorie der endlichen und unendlidten Graphen. Chelsea, New York, 1950. 
17. GINSBURG, S., GR1~IIBACIIt, S. A., AND HARRISON, M. A. One-way stack automata. J.  

ACM I4, 2 (Apr. 1967), 389-414. 
18. BAR-HILbEL, Y., PERLES, M., aND SHAMIR, E. On formal properties of simple phrase 

structure grammars. Z. Phonetik, Sprachwissen. Kommunikationsforsch. 14 (1961), 143- 
172; also in Y. BAR-HILLBL, Language and Information, Addison-Wesley, Reading, Mass., 
1965, pp. 116-150. 

RECEIVED MAY, 1968; REVISED JULY, 1968 

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January 1969 


