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~_nsTgACT. A one-dimensional array of finite-state machines is being considered as a m~de;i 
for sequence replication. The authors consider the initial state of the first k machines in I!:,¢ 
array as representing the sequence of k symbols  to be replicated along the array. A co~struc~ ~c~ 
scheme is developed which allows for such replication to take place. It, is also shown that ~t~ 
speed of replication approaches synchronous  speed. 
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A one,dimensional array of finite-state machines is being used as a model i~-~ 
demonstrating the replication of a sequence of k symbols represented by the s t a ~  
of the first k machines in the array before the array is turned on. 

For a given sequence of length k a field is determined from which the symbols fi:~ 
the sequence are selected. 

The sequence to be replicated undergoes a unique transformation before insertio:~:~ 
into the array, which in turn performs the inverse transformation in the process d 
replicating the original sequence along the array. The construction requireme~t~ 
can be stated as follows. 

Consider a finite (but arbitrarily long), one-dimensional array of identical~ 
finite-state machines. The machines are synchronous, and the state of each machine 
at time t + 1 depends on its own state and that of its two neighbors at time t. 

At t = 0 each of the first k machines is made to assume one of its internal st~tc~ 
thus forming a sequence of states of length k. The rest of the machines are i~ ~, 
single state, the quiescent state. 

I t  is required that the states and transitions of the machines be specified in such 
a way that sometime in the future the terminal state of each machine will be stlch 
that a predetermined sequence of states of length k will be continually represented 
along the array of machines. 

Solut ion.  The solution structure is divided into two phases: ¢~ and ¢~. 
During phase ¢~, at t + 1 each machine will be in a state determined by i~ 

previous state and the state of its left neighbor at the time t; specifically, 

a~ ],+1 ---- ai It + a , - i  It" 

Addition is mod M where M is the size of the field from which the values of a~ were 

selected. 
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Fro.  1. The  repl ica t ion  s cheme  

Thus at each interwd between transitions of states, the array will display a differ- 
e~t sequence of length ]c displaced one machine forward. 

During q~2 the first symbol in each sequence presented will be retained as the 
{erminM state of its left neighbor. Figure 1 displays this scheme pictorially. 

By reversing the rule for addition in ¢~, it is possible to present the propagating 
sequence in a matrix form: 

where 

all a12 ala , - .  ark 

a 2 1  a 2 2  a s s  * • • a 2 k  

a s l  a82  a ~  . . .  a s k  

: : : 

a~l = an -t- a12 

a22 ~ al~l ~ a13 

a2s = a13 ~ ale 

Sotving for entries ht the first column in terms of the entries in the first row, w e  
vbtain: 

Journal of the Association for Computing ~[achinery, Vol. 16, No. 1, January 1969 



180 A. WAZS~A~ 

a l l  ~ a l l  

a21 = a l l  + a12 

a31 = a l l  + 2a1~ + a~a 

a ~  = a n  + 3 a ~  + 3 a ~  + a i r  

In general the entries in the ith column of the matrix will be: 

a l l  = a l i  

a21 = a l i  + al( i+l)  

a ~  = a l i  + 2al(~+l) + a1(i+2) 

Solving for the first nine entries in the i th column in terms of the entries in the first 
row, and putting the coefficients of the entries of the first row as entries in Table L 
we can form the Pascal triangle of binomial coefficients. 

E x a m p l e  1. From Table 1, a41 = all + 3a1(i+1) + 3al(i+~) + a~(i+3) • 

Periodicity of sequences of length lc can be achieved if we restrict the entries in 
the first row of the matrix to a field whose size is M = g.c.d, of the entries of the 
(k + 1)-th row of the Pascal triangle---ignoring first and last entr ies--and addition 
is mod (g.c.d.). This establishes a column period of length k. 

This is true since for every a(~+l)i-th ent ry  in the matrix the only nonzero coeffi- 
cient in the (k + 1)-th row of the Pascal triangle will be 1 for a~i. Thus 

a(k+1)i = ale (rood M) ,  

and periodicity of period ]c of the columns of the matrix is established. 

Example  2. Let/~ = 5. Then the g.c.d, of the sixth row of the Pascal triangle is 

TABLE 1 

a 5  i ' . 

a 6 i  

a s i  ........... 

.o, 

/ 
// 

/ 
J 

// 
/ 

Journal of the Association for Computing Machinery, Vol. 16, No. 1, January  !969 



A Model of Replication 181 

found to be 5. We now choose a sequence of length 5 with entries from a field of 5 
elements (addition is rood 5). 

Let the chosen sequence be 10001; then the generated matrix will be: 

1 0 0 0 1 1 1  
1 0 0 1  
1 0 1 2 1 7 ~ t h e 5  X 5 m a t r i x .  
1 1 3 3  :j 
2 4 1  4 
1 0 0 0 1  
1 0 0 1 1  
1 0 1 2 1  

Note. I t  is a coincidence that  the 5 N 5 matrix generated in Example 2 has 
entries from a field of 5 elements. 

Let the "first transposition column" be defined as 

611 a21 651 • • • akl • 

Let the "second transposition column" be defined as 

bn bn b31 b41 . . -  bkl 

where bll b12 b13 --- b~4 is a generating sequence of a new k X k matrix, and 

bll  = a n  

b12 = ant 

bla = a31 

: : 

blk = a~ l ,  

Accordingly the J t h  transposition column will be the first column of the J t h  matrix 
formed in this fashion. 

This process consists of taking the first column of a k × k matrix and using it as 
the first row of a new matrix. The entire process is repeated J times. 

Solving for the entries in the first column of the second matrix in terms of the 
entries in the first row of the first matrix, we find: 

bn = an 

b21 = bn + bl2 = an + (an A- a12) 

hal = bn + 2612 + bl~ = an + 2(all + a12) + (all + 2a~2 + a18) 

b41 = b~ + 3b~ + 3613 + b~4 = an + 3(an + a~) + 3(an + 2a12 + a~3) 

+ ( a n  + 3a1~ + 3a13 + a14). 

Solving for the first four entries in the first column of the b matrix, we arrive at 
Table 2, which represents the coefficients for bn,  b21, ba ,  and b4~. 

Example 3. b31 = 4an + 4a12 + 4a13 
Solving for the first four entries in the first column of the third matrix, we arrive 

at Table 3. 
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Example 4. c31 = 9a~1 + 6a1~ + a13 
Solving for the first five entries hi the first column of the Jth  matrix, we arrive 

at Table 4. Observe that all entries in the table of coefficients of the Jth cohm~: 
are a product of entries in the Pascal triangle and some power of J.  Thus for J = 0 
(rood M) ,  all entries in Table 4 except j0 will be zero and 

Jll ~ alI 

fl~z = a12 
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J3x ~ a13 

f141 ~- a14 

J k l  ~ a l k .  

Thus a new recursion relationship is established where the original generating 
sequence, the first row of the a-matrix, will appear as the first column of the J th  
matrix (addition is rood M), as displayed in Example 5. 

Example 5. 

Istmatrix S n d m ~ r ~  8 ~ m ~ x  $th ~ d x  g thm~rix  

(~ (b) (~ (~) (a) 

I 0 0 0 1 I 1 1 12 1 2432 1 3 4 2 2  I 4 1 4 2  

1 0 0 1 1 2 2 2 3 2  3 1 2 0 2  4 2 1 4 2  0 0 0 1 2  

1 0 1 2 1  4 4 0 0 2  4 3 2 2 2  1 3 0 1 2  0 0 1 3 2  

1 1 3 3 1  3 4 0 2 2  2 0 4 4 2  4 3 1 3 2  0 1 4 0 2  

2 4 1 4 1  2 4 2 4 2  2 4 3 1 2  2 4 4 0 2  1 0 4 2 2  

fifirstrow ~ [~irstcolumn 7 
first matrix~ = ~fifth matrix..] 

The Design of the Machine 
(1) Let it be desired to repficate a sequence of length k. 
(2) A field size for the sequence symbols is determined by taking the g.c.d, cf 

the entries of the (k % 1)-th row in the Pascal triangle. 
(3) The sequence to be replicated is now constructed with symbols chosen from 

the determined field. 
(4) The constructed sequence is now transformed into a sequence identical to 

the Jth transposition column. 
(5) The transformed sequence is now loaded into the machine array starting 

from the second machine. 

The Machine Code Book. The entries in the tables represent the state of the 
machine at t + 1 for the lksted state and the associated left and right neighbors at 
time t. 

T h e  S t a t e  L i n t  . 

Q ffi the quiescent state 
P = the transition state 

¢'l~aM {°' 
aM 
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Note. • is an external state representing: no left or right neighbor. Once t . he  
machine array is turned on it will remain in ¢~ until the transition to state P;  f ror~  
then on it will operate in ¢2, as illustrated. 

i 
Operation Mode Graph 

Example 6. Let it be desired to replicate the sequence 10001. I t  was found i~: 
Example 5 that  the fourth transposition column is equal to 14142, which is the o ~  '(~" 
loaded into the array. Figure 2 illustrates the sequence of events that take pl~ c~ 
after the array has been turned on. 
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Time Consideration. If we define a signal on the array as being ~ state of a 
machine which propagates from machine to machine in one direction as time goes 
o~, then the fastest a state can propagate, i.e. the fastest signal on the array, is a 
~igaal that  propagates at synchronous speed, which is the speed at which state 
transitions on the array take place. I t  is seen from the state-transistion table, as 
well as from Figure 2, that  state P is a state that  propagates a~ synchronous speed. 
All the machines in the array opposite to the direction of propagat, ion of the state P 
are static and display a terminal state which is part of the replicating sequence. 

Hence we can state that  tile sequence is being replicated at synchronous speed, 
which is as fast as possible. 

Let us consider now the case of an array with sfightly more complicated machines 
which is also capable of performing the initial transformation on the sequence to be 
:replicated. 

All that is necessary in this new array is to load the sequer~ce to be replicated, let 
the array go through a transformation cycle, and then start  the replication as de- 
scribed. 

Clearly the transformation is a finite process and is dependent on the number of 
~rat~spositions J required for each transformation. 

Thus even for this array, for any J ,  tile speed of replication approaches synehro- 
~ous speed for sufficiently loi N arrays. 

The Binary Sequwnces. From the e~ltries of the Pascal triangle it can be seen 
l~;hat all the entries in the 2%h rows (where n is an integer) have a g.e.d, of 2. 

Thus following the previously established rules, all sequences of l en~h  I'~ = 2" 
~'iI1 be binary sequences. 

Further, it is seen that  when these binary sequences assume the form 
2n-t 2n-2 2a.-tt 

0 Ci C1 C1 Ci e l  C2 C2 (32 . . . . .  C n 
% 
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F I G .  

where c~ = 0 or 1, they will generate k × k matrices where 

a l l  -~ a l l  

a21 = a12 

a s i  ---- a l a  

a k l  . ~  a l k  . 

Thus for this case of binary sequences there is no need for transformation before 
loading the sequence into the array. 

Example 7. Let  it  be desired to replicate the sequence 01111001. Loading the 
sequence directly into the machine array, the sequence of events will be as in Fig- 
ure 3. 

APPENDIX 
By the rule udopted for computing the values of the entries in the n X n m~trLx: 

atk+,,,--~(~)a,,,+,,z..o (1) 

where 0 _< k _< n and summation is mod M, and where 

M = g . e . d .  , ' ' " '  n - -  1 " 

Thus 
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~I'~or~5~, I f  the enlries of the Jth transposilion matriiv are computed so thaZ 
j~,~+~) = ( J -  1)(~+m, then 

F~aoo~. 

but 

For the b-matrix, which is the second transposition matrix, 

l)l(k+1) = a(~+~)i 

a(L-+l)l = a l g+ l )  
l=0 

( by definition), 

(from eq. ( 1 ) ), 

so that 

~=0  m=o \ m /  a i (m~i) ,  

~nd we can rewrite eq. (4) in terms of a~(,~+i) as follows: 

Now solving for the general term, 

z~ = ~ = ( k - -  m - -  u)ht! 

Slimming over all m, 0 < m < k, 

The inductive step follows. Assume that 

J(k+l) l  = l~o 

is true. Then by definition, 

so that 

(J'~- 1)(k+1)' = ~ ( ~ )  ~J(Z-'°(ml) .-o 

Rewriting in terms of a~(,.+~), 

÷ . . .  ÷ o -  . (J  + 1)(~m = a1(o+1) z=o 

(4) 

(~) 
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Solving for the general term, 

~=.,~ \~  / m !  ~=m (k  - l).~(1L- m ) !  

= ( : ) ( J  + 

Summing over all m, 0 _< m _< k, 

( J  + l)(k+,), k ( k ~  ( j  + , I(,~+1) = 1 ~ (k-m)a • 
~=0 k i n ~  

This establishes eq. (3) for all J .  
A new recurrence relationship can be established where the ( J  + 1)-th matri>: ~ 

identical to the a-matr ix if we take J = 0 (mod M),  so that  J(*+m = a~(k+~). 
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