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ABSTRACT. A one-dimensional array of finite-state machines is being considerad as a mods
for sequence replication. The authors consider the initial state of the first & machines in '
array as representing the sequence of k symbols to be replicated along the array. A constriciing
scheme is developed which allows for such replication to take place. It is also shown thas ike
speed of replication approaches synchronous speed.
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. A one-dimensional array of finite-state machines is being used as a inodel in
demonstrating the replication of a sequenee of k symbols represented by the states
of the first k machines in the array before the array is turned on.

For a given sequence of length & & field is determined from which the symbols fog
the sequence are selected,

The sequence to be replicated undergoes a unique transformation before insertion
into the array, which in turn performs the inverse transformation in the process o
replicating the original sequence along the array, The construction requiremenis
can be stated as follows,

Consider 2 finite (but arbitrarily long), onc-dimensional array of identical,
finite-state machines. The machines are synchronous, and the state of each machine
at time ¢ + 1 depends on its own state and that of its two neighbors at time 2.

At ¢ = 0 each of the first k machines is made to assume one of its internal states,
thus forming a sequence of states of length . The rest of the machines are in @
single state, the quiescent state.

It is required that the states and transitions of the machines be specified in sueh
a way that sometime in the future the terminal state of each machine will be such
that a predetermined sequence of states of length /& will be continually reprezentesd
along the array of machines.

Solution. The solution structure is divided into two phases: ¢ and ¢2 - 3
During phase ¢1, at ¢ + 1 each machine will be in a state determined by it#
previous state and the state of its left neighbor at the time ¢; specifieally,

15 |x+1 = & fl + @i Il .

Addition j& mod M where M is the size of the field from which the values of g, were
selected.
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Fia. 1. The replication scheme

Thus at each interval between transitions of states, the array will display a differ-
ent sequence of length & displaced one machine forward.

During ¢; the first svmbol in each sequence presented will be retained as the
terminal state of its left neighbor. Figure 1 displays this scheme pictorially.

By reversing the rule for addition in ¢, , it is possible to present the propagating
sequence 1n a malrix form: '

Qi Caz Qg ot Ok
Qn Qag Qg o Qak
dn dygz dgm vt Mgk

where

an = on + 011
Gz = Qg -+ iz
an = G -F dig

. . +

Solving for entries in the first column in terms of the entries in the first Iow, we
obtain:
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Ay = 6L T s
tgr = an 4 2o4e + diz

au = au -+ 3tz T Baus b e

In general the entries in the ith eolumn of the matrix will be:
g = 4
e = Qs + Qg
a43; = ay + 2000 + e

Gae = (s + 3dapisny + Bgen + Qe

Solving for the first nine entries in the 4th eolumn in terms of the entries in the first
row, and putting the coefficients of the entries of the first row as entries in Table L,
we can form the Pascal triangle of binomial coefficients.

Erample 1. From Table 1, Ay = + 3@1(~;+1) + 30:1(1-.,.2) + Aiigs) -

Periodicity of sequences of length k can be achieved if we restriet the cntries in
the first row of the matrix to a field whose size is M = g.e.d. of the entries of the
(k -+ 1)-th row of the Pascal triangle—ignoring first and last entries—and addition
is mod (g.c.d.). This establishes a column period of length k.

This is true since for every aq.-th entry in the matrix the only nonzero coeffi
cient in the (¥ + 1)-th row of the Pascal triangle will be 1 for ay; . Thus

Qe = @z (mod M),

and periodicity of period & of the eolumns of the matrix is egtablished.
Ezample 2. Let k = 5. Then the g.c.d. of the sixth row of the Pascal triangle is

TABLE 1
_- = — - ~ - =
el
- = - - - = = -
o «© ] o o o ] -]

: A ))

VAVAVAVA )
VAVAVAVAVA

B3 /1/2/
a6 /1/5/10/10/5/1
//}/72/0/1/5/}/)//
ag; /1/8/é8/55/7o/56/28/8/1
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found to be 5. We now choose a sequence of length 5 with entries from a field of 5
elements (addition is mod 5),
Let the chosen sequence be 10001; then the generated matrix will be:

10001}
10011
1 01 2 1y — thebd X 5 matrix.
11331
24141
1000 1
1001 1
10121

Note. 1t 13 a coincidence that the 5 X 5 matrix generated in Example 2 has
entries from a field of 5 elements.
Let the “first transposition column” be defined as

Gy Q21 Ay **° O -
Let the ““second transposition column” be defined as

bu b21 b:'.l bn et bkl

where by bio bua - - - by iz a generating sequence of a new k X k matrix, and
bu = au
b = aa
bi: = an
bue = am .

Accordingly the Jth transposition column will be the first column of the Jth matrix
formed in this fashion.

This process consists of taking the first column of a % X k matrix and using it as
the first row of a new matrix. The entire process is repeated J times.

Solving for the entries in the first column of the second matrix in terms of the
entries in the first row of the first matrix, we find:

by = ay

by = by + b = an + (an + ap)

by = by + 2by + by = an + 2(au + an) + (4n + 20 + o)

by = by + 3bp + 8bis + b = an + 3(au + an) + 3(en + 2 + )
+ (an + 3an + 3ais + ou).

Solving for the first four entries in the first column of the b matrix, we arrive at
Table 2, which represents the cocfficients for by , bs , by , and by .

Bzample 3. by = 4an + 4o + 4o
Solving for the first four entries in the first eolumn of the third matrix, we arrive
at Table 3.
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TABLE 2
- o e} o+
] @ o o
l ?
oy
b1 1 1 |
Dyy 2 1 |
b33 4 2 ;
b41 8 / 12 6 1

TABLE 3
= 8 2oz
© g r: ©
14 /1
€21 /3 /1
©31 9 / 5 /1
€4 /27/27 9 1
TABLE 4
= 8 oo oz R

Example 4. ¢35 = 9ay + 6ap + os ' _

Solving for the first five entries in he first column of the Jth matrix, we artive
at Table 4. Observe that all entries in the table of coefficients of the Jth column
are a product of entries in the Pascal triangle and some power of J. Thus for J =0
(mod M), all entries in Table 4 except J* will be zero and

Ju = an

Ju =
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Jn = ap
Ji = ay
Jom = .

Thus a new recursion relationship is established where the original generating
sequence, the first row of the a-matrix, will appear as the first column of the Jth
matrix (addition is mod M), as displayed in Example 5.

Fzample 5.
18t matriz 2nd matriz 3rd matriz 4th matriz Gth mairiz
{a} ® {e) (@) W

10001 11112 12 432 13422 141412

10011 22232 312902 4 2142 00012

10121 4 4 002 43 222 13012 6 0132

113 31 44022 20442 43132 01492

P41 41 2 42 42 2 4312 2 4402 10422
first row } _ first column]
first matrix! fifth matrix

The Destgn of the Machine

(1) Let it be desired to replicate a sequenee of length k.

(2) A field size for the sequence symbols is determined by taking the g.c.d. of
the entries of the (k + 1)-th row in the Pascal triangle.

(3) The sequence to be replicated is now eonstructed with symbols chosen from
the determined fieid.

(4) The constructed sequence is now transformed into a sequence identieal to
the Jth transposition column.

(5) The transformed sequence is now loaded into the machine array starting
from the gecond machine,

The Machine Code Book. The entries in the tables represent the state of the
machine at ¢t 4 1 for the listed state and the associated left and right neighbors at
time £,

The Stale Inst -

¢ = the quiescent state
(P = the transition state
[

iyl
Ty
a1

@y
Ay
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a
R
3 a a; o ! [
3 &
a
3 3
Q Q
3;
R
! I e a; a P
0 - P P -
2ai 23; 2ai - ¢1
a
' a; aj a a b2
. a + ajle; + afa + - 9y
) & ay a ay ¢z
P P P -
3 3 aj aj

Note. @ is an external state representing: no left or right neighbor. Ouce the
machine array is turned on it will remain in ¢, until the transition to state P; frorn

then on it will operate in ¢2 , as illustrated.

Q

T

%

a—

Operation Mode Graph

Ezample 6. Let it be desired to replicate the sequence 10001, It was found i
Example 5 that the fourth transposition column is equal to 14142, which is the om®

loaded into the array. Figure 2 illustrates the sequence of events that take pla

after the array has been turned on.
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e THE ARARAY
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tlajalefr [ fofololv{vfofojatfa{vioiolr o]
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Fra. 2

Time Consideration. If we define a stgnal on the array as being a state of a
mniachineg which propagates from machine to machine in onc direction as time goes
wn, then the fastest a state can propagate, Le. the fastest signal on the array, is a
signal that propagates at synchronous speed, which is the speed at which state
Eransitions on the arr ay take place. It is seen from the state-transistion table, as
well as from Pigure 2, that state P is a stabe that propagates at synchronous speed.
All the machines in the array opposite to the direction of propagation of the state P
@16 static and display a terminal state which ig part of the replicating sequence.

Hence we can state that the sequence is being replicated at synchronous speed,
which is as fast as possible.

Let us eonsider now the case of an array with slightly more complicated machines
which is also eapable of performing the initial transformation on the sequence to be
maplicated.

All that is necessary in this new array is to load the sequence to be replicated, let
the array go through a transformation cycle, and then start the replication as de-
soribed, ,

Clearly the transformation is a finite process and is dependent on the number of
Eranspositions J requived for each transformation.

Thus even for this array, for any J, the speed of replication approaches synchro-
ious speed for sufficiently long arrays.

The Binary Sequences. From the entries of the Pascal triangle it can be seen
Lhat all the entries in the 27th rows {(where » is an integer) have a g.e.d. of 2.

Thus following the previously established rules, all sequences of length b =
will be binary sequences.

Further, it is seen that when these binary sequences assume the forin

n

gl an-1 an-n
P i p——
DepcrerCiCiGaCaye = v v 0 cr
L. - .
2“-
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THE ARRAY wmorim oo
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Fie. 3

where ¢, = 0 or 1, they will generate & X % matrices where
Gy = On
g = O

Qg = Qg

Qg1 = Ay »

Thus for this case of binary sequences there is no need for transformation before
loading the sequence into the array.

Ezample 7. Let it be desired to replicate the sequence 01111001. Loading the
sequence directly into the machine array, the sequence of events will be as in Fig-
ure 3.

APPENDIX
By the rule adopted for computing the values of the entries in the n X » matrix:

LI g"
Ay = ; (Z) i) (”

where 0 < k& £ n and summation is mod M, and where

w=goa.(7),(3), . (, 1))

= /n
Geminy = 2y (k) Qigkid) = G (2)
=

Thus
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TuoorbM. If the eniries of the Jth transpesition malric ure compuied so thai
Jupssh T (J ~ e, then

k
k=i k
J g1 = lZ{;J‘ o (g Fa(i41) - {3)
Proor.  Tor the banatrix, which is the second transposition matrix,
Plasn = Gt {by definition),
hut
5 }; .
Qrp1yr = >: I 21 TeEn g} {from eq. (1)).
I

50 that
¥

Ny EAEN & ,
Diggin = 2 (l) biggyy = IZ; (l) ;:0 (m) BLomsl) 4)

and we can rewrite eq. (4) in terms of Gymen a8 follows:

RN (! ETEN T
b(k+1)1 = Q1041 ;2;“ (1) (0> © o Qlmeel) 1211'—"-2 (Z) (m) Tt

Now solving for the general term,

NyAYa IS 1

5 = X S

m(iﬁ) (m) m! % (k —m — u)hl
_ k! = (k-m) (BT (k —
T (b — m)hm! ; (k —~m —u)ml (m) ,;n U

—_ (k ) 2(k~m) .
m

Summing over allm, 0 <m <k,

%

ey | B Ve
b = 2 27 (m) Al(merl) - {5

me=(

The induetive step follows. Assume that
S
Jpn = IZ%J K (Z) Qi)

18 true. Then by definition,

i k4.
(J + D = 2 Gc) (J + Digsn = ;}G) Jagn

{=0

80 that

% k i —
(J 4+ Dggm = 2, (l) 2 JEm (,i) Qaima1) »

{0 =0

Rﬁwriting in terms of Guma »

ELRNUN E LN TN uem
U+ Dasm = aroin 2, 1 J\o T B ) ] S
=0 {o=m, m
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B
g

Solving for the general term,

k B I
.l{;> (Z ) (L—em) ol R J(f-—rm)
J- —
;;m<l ) m”‘;m(k—l)!(l~m)1
— ]i” k,_,,:" Ju(]ﬁ — 77/))! A k;r‘n /1; —
mi{l — m)! g:‘ﬁ wl(h — m — u)! = (m) P ( u ) g

k Jewary
(m) (J + 1)"™

Summing overallm, 0 <m <k,

I

k

I ‘ _
(J -+ 1)(k+1)1 = n; (?;L) (-I -+ 1)(k m)flumﬂ)-

This establishes eq. (3) for all J.
A new recurrence relationship can be established where the (J -+ 1)-th matrix i
identical to the a-matrix if we take J = 0 (mod M), so that Ja o = digay .
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