Check for
Updates

The Time Required for Group Multiplication
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ipsrracT, Winograd has considered the time necessary to perform numeriecal addition and
multiplieation and to perform group multiplieation hy means of logical cireuits congisting of
elements each having a limited number of input Hpes and unit delay in eomputing their out-
puts. Tu this paper the same model as he employed is adopted, but a new lower bound is derived
for group multiplication—the same as Winograd’s for an Abelian group but in general stronger.
Also a cireuit is given to compute the multiplication which, in contrast to Winograd®s, can be
used for non-Abelian groups, When the group of interest iz Abelian the circuit is at least as
fast as his. By paralleling his method of application of his Abelian group vireuit, it is possible
also to lower the time necessary for numerical addition and multiplication,
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1. The Madel

The model we adopt is basically that of Winograd [1, 2]. We consider logical circuits
composed of elements each having at most » input lines, one splittable output line.
and unit delay in computing their outputs. Each hine carries values from the set
Za=1{0,1, --- ,d — 1}, The input lines are partitioned into »n sets with . ; the
set of possible configurations onthejth (7 = 1,2, --- ,n). Ois the set of possible
configurations. Such a cireuit is called a (d, r) circuit.

Defindtion 1.1, Let ¢: X; X Xo X --- X X, — ¥ be a [unction on finite sets.
A circuit ¢ is said to eompute ¢ in time = if there are maps ¢;:X; — fes (j =
1,2, .-+, n) and a one-one function A: ¥ — O, such that if C receives constant in-
put {gi{20), + v+, gu(2a)] from time O through time  — 1, then the output at time =
willbe (g2, -+, x.)).

2, The Basic Lemma

We now derive a general lower hound on the time for a (d, #) circuit to compute a
given finife function ¢. It makes explicit the method underlying the results of
Winograd. It is dependent upon the output code k introduced in Section 1, and makes
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use of & new coneept we introduce—that of separable sets. First, some preli s inary
definitions are necessary.

Definitfon 2.1, Let [a] be the smallest integer greater than or equal t<¢@ &3 let
iz] be the largest integer less than or equal %0 23 let | S be the cardinality” of the
set S.

Defirdtion 2.2.  For a (d, r) cireuit let 2,(y) be the value on the jth out >t line
when the overall output configuration is A{y).

Defination 2.3, Tet¢: X, X - X Xp — Y and let € compute . Then & — X
is called an hj-separable set for ¢ in the mth argument of ¢ if whenever S1 and s

are distinet elements of S we can find @, @2, -« , Ty, Bpgn, -+ , 2, with T2 € Xy
such that
hj(qs(ml:”'lzm—I:Slrmm+ly”'71;7'5)) h’h]'(¢(m1;”' ;xmﬂ,b‘z,wm.,.)_, AR :ﬂn))-

Lemma 2.1, Ina (d, r) circuil the oulpul of an element af time 1 can depaﬂd LGN
at most v input lines.

Puroor.  Just consider the fan-in with modules having » input lines to the height
of 7. | _
This obsecrvation, first made by Winograd, plus the concept of separalb>le sets,
suffices to prove:

Lemma 2.2 (The basic lemma).  Let C be a (d, v) circwit which compules ¢ F7¢ Leme
r. Then

v 2> mazx {{log, {([loga] Si(F)1 + - + [loga! Sa(5} | D],

where 8:(7) is an hi-separable set for C in the j-th argument of ¢. _

Proor. The jth output line at time = must depend upon at least [loge | S0 7) |]
input lines from I¢.; or else there would be (wo elements of S;(j) which were not
hj-separable. Thus the jth output depends upon at least [log.| Sy} |1 + - -+ 4
Nlogs| 8.(7) |} input lines and this number is at most 7", |

With Lemma 2.2 we expose the methodology implicit in Winograd’s treatment
of the times required for addition and multiplication. By making it explicit wwe not
only quickly obtain some of Winograd’s results in the rest of this section bt also
shall give a deeper analysis of other concepts and shall treat a much wider class of
functions in the sequel. S

Cororrany 2.1, Let¢:Zy X Zy — {0, 1} be

g a <y,
45(27;?/)—{0 1_:)(- x>y‘

Then if (' is a (d, v) circwit to compute ¢ i time v, we have v > llog: 2 loga [N- HI]_
Proor. Pick j such that h;{0) < k;(1). Then Zy is an h;-separable set. fop ¢ in

both the first and the second arguments of ¢ since, if z > v, ¢(x, ) = .;B('y, o)

and ¢(z, §) # ¢(x, ). | I
CorotraRry 2.2. Lel ¢p:Zx X Zy — Zy be

P21, 22) = l-xrsz'

N

Then, if C computes ¢ in time v, 7 > {log, 2 [loga IN .

Proor. Pick j such that h;(0) ¢ hi(1). Let m = |N*). Then 11,2, - . 'm;k i
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an - scpambie set for € in both arguments of ¢, since for each 2 < y with z, ¥ €

(1,2, ---, mj we may chose w € Zn such that 2.0 < N < y-w < 2N to yield

o(, w) = 0, ¢y, w) = 1. By symmetry this holds [or the second argument as
well and Lemma 2.2 yields the resull. |

We close this section with an example which shows that the size of separable sets
can be strongly dependent upon the outpub eode of the eircuit which computes a
given ¢.

Ezample 2.1, Let ¢:Zy X Zy > Zuwe be numerical multiplication with N = 2%
Consider an output code in which if the output value is M then the 4th line carries
the 7th bit in the binary expansion for M. Then there are sixtcen output lines. Pick
any ¢ # y with z, y € Zy . Then their binary expausions differ in at least one place,
say the kth, Choose z = 2" Then A;(¢(y, #)) ?f hig(z, 2)) and hi(e(z, y)) #
hi(¢(z, x) ). So there is an thbepalable set of size 2° in both arguments of ¢.

Now consider the same ¢ but let the output eode for z be the binary representa-
tion of the exponents in its prime decornposition. Let the first six output lines code
the exponent of two in the result. Pick #, ¥ € Zy such that 2 and y do not have
the same power of two in their prime decomposition, the powers differing in, say,
the kth place of their binary expansion. Then, letting z = 257 hy(p(x, 2)) #
h(e(, 2)) and hy(p(z, ©)) 5% ha($(2, u) ). Thus, since an element of Zy can have
eight different exponents of two in its prime decomposition, there is an hy-separable
set of size 8 in both arguments of ¢. One easily sees that this is the maximal size of
any separable set, since two is the smallest prime. Note, however, that this output
code requires thirty-nine output lines,

3. Review of Previous Resulls

Several authors have investigated the eomputation time necessary for a (d, r) cir-
cuit to add modulo N. Ofman [3] gave a circuit for the special case N = 27, Signifi-
cant results were obtained by Winograd [1, 2]. He derived a lower bound which we
review, and a (d, r) circuit with computation time near the lower bound. Since
any finite Abelian group is the direct product of eyelic groups [4, p. 40], his results
are applicable to Abelian group multiplication as well.

Definition 3.1, Let H be a group. Say H has property P and write P(H) =
in eage there is an element o € H with a — e such that every nontrivial subgroup of
H contains a. This is denoted by #(a, H) = 1. Let «((#) be the maximal order of
H < @ such that P(H) =

Lemma 3.1 (Winograd [1]).  If G 2s Abelian, o @) is the mazimal order of a prime
power cyclic subgroup contained in (3.

Proor. See [1, p. 280]. |

We now give a complete characterization of a(@).

Defindtion. 3.2. The generalized cuaternion group €, is the group of order 2
with two generators a and b satisfying

gh—1 o . — -1
=e b =g ; ba=ab

TEEOREM 3.1, A p-group contains a mﬁque subgroup of order p £ff it iscyclicora
generalized quaternion group. (It must be cyelic if p is odd.)
Proor. See Hall [4, p. 189]. |

COROLLARY 3.1. Let G be any findte gwﬁup. Then al(?) is either the orvder of the
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largest eyclic p-subgroup of G or the order of the lurgest generalized quaterneo?® o roup
contatned i &, whichever is larger, .

Proor. Let IT be any subgroup of &, If () = Lthen| H| = p” for soine p‘]“lm@
p, for if not there would be another prime ¢ dividing | #| and consequerrtly” there
would be elements w and v in H with a(w) = p and o(v) = ¢ But then <267 M &)
would contain only the idenlity. Assume | H| = p”". Then every nontrivial §ub-
group of H eontains a subgroup of order p. Thus P(H) = 1iff # contains @ ANIGUE
subgroup of order p, i.e. if H is eyclic or a generalized quaternion group. | .

The quantity «(G) is eritical to Winograd's lower bound time for group mu”%lpll'
cation, which we now state. In Section 4 we give a new lower bound whiclh 18 1n
general higher but is the same as his if the group of interest is Abelian. _

Trrorem 3.2 (Winograd {11).  Let G be any finile group. Tei C be o (d, ) (;1}."6"“1'“
which computes ¢: G X G — G where p(a, 0) = ab. Then € requires computatZort t1rme
r where = 2 llog, 2 {loga a( GH. .

Proor. See Winograd (1. | :

Winograd also gives a procedure for coustructing a circuit to multipply - im an
Abelian greup G with computation time .

1
;o= 2 + [lﬂgl(r+1)/ﬂj [[;72] [logd a(G)‘l’]“ 3

which is valid for » > 3 and d > 2. We give a completely different method for con-
structing cireuits, which is valid for » > 2 and d > 2 and which works whether or
not the group is Abelian. Furthermore, for a given Abelian group and = given d
and 7, our computation time underhounds Winograd’s.

4. The Lower Bound

In this section we give a new lower bound for the time required for a (df, +) cireuit
to perform group multiplication and compare it to Winograd’s bound.' Tiet & he
any finite group and let ¢:¢ X G — & be group multiplication. et ¥ be a; (d, 7
circuit which computes ¢. Let ;(g) be the value on the jih output lice of €Y when the
output is h(g). : :
Defindtion 4.1. Let @, y € G. Then we say that = and y are Eregquiivalent i
hilge) = hi{gy) for allg € @ and that they are Ljequivalent if A, {wg) = P ag)
for all ¢ € (. Then clearly £; and L; are equivalence relationships ancl  wwe “wri.te
R4(g) for the £ ;-equivalence class of g and L;(g) for the L-equivalencer: ol ass of g -
Lemma 4.1, R; = R;(e) and L; = Lj(e) are groups for oll outpul lines OF Y. Fap
thermare, for any 9 € G, Rjlg) = Rygand Liy) = gLy, - :
Proor. Say ¢, b € R;. Let ¢ € 6. Then hi{ab ') = hi{(bb'c) = Ri(e). so :
ab™ € Rjanditis a group. Now pick any g € G. Thend € Ry(g) iff hJ(,%c) o
hi(ge) for all ¢ € G. But this is true iff h;(dg~c) = hile), ie. it dg * & po The
other half of the lemma follows dually. | ' S »
Maximal separable sets are determined by
Lemma 4.2. A mazimal size hj-separable set in the first argument of ¢ e, Fesists of
exactly one representative from each lefi cosel of R; in G. [ thus hos size | ¢y | ’,.«t [} _ }‘ '
A dual resull is true for separable sets tn the second argument. : e L TR
Proor. Direct from Lemma 4.1 and the definition of separable sets . |

dourna] of the Association for Computing Machinery, Val. 16, No. 2, April 1969
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We now have all the pleces we need for a lower bound on group multiplieation
which 1s output cede dependent.
Lemma 4.3, Lel O bea (d, v) cirewdd to mulliply tn G in time 7. Then

T > mc}q;c {(ﬂogr ([Zogd l‘“}%] + Pogd I—E‘gfl‘l)‘l} :

Proor. Direct from Leramas 2.2 and 4.2, |

A bound over all output codes is derived by maximizing the minimal size of K
and L; for a given group.

Defindtion 42, If G = {e} lot 3(G) = 1. Otherwise let 6(c) be the maximal order
of any subgroup of & not containing ¢ and let 5( ) = mince i [8(e)}.

Since we are only dealing with finite groups §( @) is always well delined and finite.
Note that if Pla, &) = 1 then 8{a) = 1| 5o that 6(F) = 1. Note also that if ¢ is
nontrivial and FP{G) »* 1 then §{G) > I always. A simple lemma needed in the
sequel is:

Lemua 4.4, Lel H and K be subgroups of a finite group (f such that H N K =
le}. Then |H| K| < |G

Proor. Lebt by, hy € H and k1, k. € K such that hk, = hoks. Then hhs® =
k' € HNK, Hence by = hound ky = ks . Thus| (Al:h ¢ H k¢ K} > |H[|K].
But it is also & subset of G. |

The erucial property of §{ () is:

Levma 4.5, For any findle group @, «(G)(G) < G.

Proor. If 8(G) = 1 the lemma is true, so assume not. Pick A < ¢ and e
u € H with Plg, H) = land | H| = (). Choose K < Gwitha ¢ K and K| =
8(a). Then, since H N K is a subgroup of # not containing ¢, H N K = [e}.
Hence, by Lemma 4.3 and the fact that 8(¢} € 8(a), «(GGF) < alP)é(a) =
H||K] <{G]. ]

The universal lower hound for any (d, #) cireuit to compute multiplication in a
fintte group G can now be stated.

TueoreMm 4.1, Let (' be a finile group, ¢:G X G — G be group weultiplication, and
Clea(d,r) circuit to compule ¢ for d = 2 andr > 2. Then, 1 C has computolion lime

N ’_Zogr 2 I-Zogd Bl_(%")' -H .

Proor, Assume 8(G) > 1 and choose ¢ € ¢ such that §(¢) = §(@). There must
be an output line of €, say the jth, such that A;(e} = h;(a). But then both &; and
I; are subgroups of & which do not contain a. They hence have order at most
8((r). Thus, the result follows from Theorem 4.1. If §(G) = 1 then either ¢ =
{e} or | @] = a(@). In the former case the theorem is true trivially. In the latter
casc choose g € ¢ such that P(g, ¢) = 1 and pick an output line, say the ith,
such that A;(e) o= k,(g). Then B; = L; = {¢} and the result follows from Theorem
41,

Lemma 4.5 implies that this lower bound is no weaker than Winograd's result
given in Theorem 3.2; and, indeed, the following example shows that it is stronger,

Example 4.1. Let p he an add prime. Then there is a group with three generators
a, b, and ¢ and defining relations [4, p. 52]

3
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@@ =b =" =6 ab = bac ca = qc; b = 0C,

which has no element of order p*. 1t is easy to show that any subgrouip of Urde_r P
must contain e. Thus §(G) = 8(c) = p. But, clearly, «(G) = p. Thus a(G)B(G) <
@|. In one important case, however, the two bounds are the same.
LimMa 4.6, Lel G be a finite Abelian group. Then o(G)8(G) = |G- N
Proor. By the deconrposition theorem for Abelian groups [4, p- 40], G = Z: X
.- X Zn, where each 7, is a cyclic p-group, say | Z,| = pi'; and, with no loss
ol generality,

P< =l 2l )
It n = 1 the theorem is true since P(G) = 1 and §(G) = 1. Assume 70 > 1 and let
a;generate Z; (1= 1,2, - ,n). Now il we choose any g e,

g = (a’{lr T sa,‘gnn)>

where at least one exponent, say k¢, is nonzero, then

g ¢ (LI Z,-) X e},

J=i

where ¢, is the identity in Z; . It follows that

" 7
sg) = Il 5 = I1 ¥
771 §=2

=i

by (*). Thus
a(@) = [ pi.
i=2

But any subgroup of order greater than [ ]2 p7 must intersect Z; nontrivially and
thus must contain

p 1D
(af*

362:”';67!) qi {31} XZZX net X-Zn-
Thus

: (r,—1) % )
5@ <a (e’ e, e ye) = ol |
=

For the sake of completeness we give some examples of non-Abelian groups G,
each having o (4)8(G;) = |G].

Ezample 4.2, Let p be an odd prime. Let (1 be the group generated by a andb
having relations [4, p. 52} o = p =e; blab = a'™®, Then a(Gh) = p*and any
group of order p° must contain a’. o

Example 4.3. Let Gy be the direct product of two groups 4 and B sueh that
a{A)3(4) = |A|; a(B)§(B) = |B|. Then it is easy to see that _

a(Gy) = max {a(d), a(B)};  #(Gy) = min {{B8(A),|A] §(R)} ;
and thus a(G;)5(G:) = |G,|. In particular, these properties hold if Gy is non-Abe
lian but all of its subgroups are normal 4, p. 190]. '
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5. A Circuat for Growp Multrplication

In this section we give a method to construet a (d, r) cireuit to multiply in any
finite group G which is valid for d > 2 and » > 9. The computation time of the
circuit is at most one unit greater than the lower bound just derived. If ¢ is Abelian
and r > 8 our circuit can be compared to that of Winograd. Tt can be scen that our
computation time underbounds his, and that, in fact, we ean give a group for which
the difference in computation time is arbitrarily large,

Lemma 8.1, Let K be any subgroup of G. Then there is a {d, ) cirewdt to compuie
$:G X G~ [0, 1} in time'

=g [ T

#(a,b) =0 if abC K,
ola,b) =1 i ab ¢ K.

Proor. Let M = |G|/|K|. Pick & eoset representative v, C Ku, for cach
right coset of K in G. Then {Uzll 1s u set of left coset representatives, for 7 'K =
v; K iff s7" € K. Piek 2 map 2 from G to the space of [log; M|-ary vectors over
Zg such that 2:(g:) = #(gs) if Kg, = Kg, and then define another map z; with same
domain and range by 21(g) @ 2:(g™") = 0, where 0 is the all-zero vector and @ is
componentwise addition modulo d. Note that z, maps any two elements in the same
left coset to the same vector. There are[(1/]r/2])[log,M]] similar elements in the first
level of the circuit. If ab is being computed these modules cach sum components
of z21(2) and 2(b) mod d (the lagt adder will sum less than Ir/2] if [7/2] does not
divide ). An element has output 0 if all pairs of input components are congruent
to 0 mod d. If not, its output is 1. Thus all outputs are 0 iff there is some j such
that o € Kv, and b € v; K. The rest of the cireuit is a fan-in of » input elements
having output 0 iff all inputs are 0 and output 1 if at least one input is nongero. This
fan-in has depth [log, [(1/l7/2]) [logs M. Thus the circuit computes ¢ in time

=14 foe [ g

CoROLLARY 5.1.  There s a (d, r) circuil o tell if ob € Kv for any v € G with

the same compulation time.
" Definition 5.1. A complete set of subgroups of a group G is a set {K,} of sub-
groups for which MN; K; = {¢}.

Lemma 5.2. IfK.isa complele sel of subgroups of (t then, for any a € @, knowledge
of the right cosets eontaining o is sufficient to determine a.

Proor. N (Kw) = (NK)a=a. |

. Note that a complete set of subgroups always exists for any @, e.g. the set con-
sisting of { e} alone. Unless P( G)" = 1, there are other complete sets as well.

Lmxvia 5.3, Let {K.} be o complete set of subgroups of G. Then there is a (d, r)
ctrewit to maultiply in G in time

where

1 The original statement of this lemma had » = 1 + llog.lloga( | G | / [ K )l The refinement
was pointed out to the author by Winograd.

Journal of the Association for Computing Mackinery, Vol. (6, Na. 2, April 1960



242 ' P M. sprga

r= e i [ [ T

Proor. Follows from Lemma 5.1, Corollary 5.4, and Vemma 5.9, |

Now we are able to prove

TagoreMm 5.1, Let G be any finite group. Then for any d > 9 and any v > 9
there is a (d, r) circwit to mullzply in o finite group G in time -

r=14+ !— log, l-lf_;zi !-wgd JS%T” |

Furthermare, the circuit hag computation time exceeding the lower bound by ot myst
one fime und.

Proor. Assume §(¢/) > L. For any g € ¢ with g < ¢ there is a subgroup K,
of order &(¢g) not eonlaining g. Thus {K,ig € G — {e}} iz a complste set of sub-
groups with min{ | K,{:g € & — {e}} = 8(G). If 6(G) = 1 then use the complete
set consisting of {ef. The second statement of the theorem follows from the [act

that
| ' B
lvlogT I—E/Ej [_logd Z _j—” < llog, 2log, V]
forr > 2. |

CoroLLary 5.2, [f G is Abelian or if §(G) = 1there is a (d, #) circuit to mulliply

in G mn fime
1 y
rT=1 + ,-log, [-m I‘Z()gd a((r)]]-] .

As noted, Winograd’s cireuit for an Abelian group ¢/ requires time

T = 2 + | log(4ns I_[;%g*l [lﬂgd “(G)‘I-H- '

l_?'glj<r for r > 3,

it follows that our computation time is less than his.

Ezample 5.1. Buy r = 4 and {logs «(@)] = 2% for some & > 1. Then Winograd's
time is 2 - 2k and our time is 1 + &, ie, his cirenit requires twice as long. The
reader can easily construct a myriad of similar examples. o .

Winograd [2] has extended his group results to numerical addition and multipli-
cation by noting that a circuit which ean multiply in the eyelic group of order
2N ~ 1 can also add two numbers between 0 and N and that nuimerical multiphca-
tion can be done by adding the exponents in the prime decompositions of the two
factors. Sinee we are able to lower the time necessary to multiply in eyelic groups,
we can achieve o corresponding deerease in the time for numerical addition and -
multiplication as well. We present this result in the framework of Winograds -
definitions. The reader interested in the details of the relationship between group
multiplication and these other {wo operations is referred to Winograd's original -
paper.

Since
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Defindtion 3.2. For an integer m let @, = lean. {1, 2, -+ wm} and let 4{N) =
min {m:@n = N}

Then, paralleling Winograd’s applicalion of his group multiplication time, we
employ Corollary 5.2 and obtain Theorems 5.2 and 5.3. '

TrporeM 5.2. Let ¢:7%x X Zy — Zoy.1 be §la, b) = a + b. Then there is a (d, v)
civendt to compute ¢ Tn time

e = 1+ I-loyr ]V[r—}ﬂ (lagd ~(2N — 1 )—H-I; r>2, d> 2

TygorEM 5.3. Lel (1,2, .-+, N} X {1, 2, .-+, N} — {1,2, -, NY
bewla, ) = ab. T hen for any r = 2 and any d = 2 there is a (d, ») circuit lo compule

=1+ [zogr [lel [Zogd (2 llogs N — 1)m.

In closing we note for reference that Winograd has lower bounded r, and ry

y in time

as follows:
TuvorEM 5.4 (Winograd [2]). For any d > 2 and any v > 2 then any (d, r)
circust 1o compule ¢ requires time g where

oo (2]

and any (d, r) circuit which compudes | requires time

oz [ene [ ([ |

The proximity of the results of Theorem 5.2 and T heorem 5.3 to these lower
bounds is indicated by the fact that y(4z) < 2 + y(2).
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