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ABSTRACT* Winograd has considered the t ime necessary to perform numerical addition and 
raultiplication and to perform group mul t ip l ica t ion  by :means of logical circuits consisting of 
elements each having a limited number of inpu t  lines and unit delay in computing their out- 
puts. In this paper the same model as he e m p l o y e d  is adopted, but a new lower bound is derived 
for group multiplication--the same as Winog rad ' s  for an Abelian group but in general stronger. 
Also a circuit is given to compute the multSplic~tion which, in contrast to Winograd's, can be 
used for non-Abelian groups. When the g r o u p  of interest is Abelian the circuit is at least as 
fast as his. By paralleling his method of app l i ca t ion  of his Abelian group circuit, it is possible 
also to lower the time necessary for numerical  addition and multiplication. 
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1. The Model 

The model we a d o p t  is bas ica l ly  t h a t  o f  W i n o g r a d  [1, 2]. We consider  logical circuits  
composed of e lements  each hav ing  ~tt m o s t  r inpu t  lines, one sp l i t t ab le  ou tpu t  line. 
and unit  delay in c o m p u t i n g  the i r  o u t p u t s .  Each  l ine carries values  from the set, 
Z~ = {0, 1, . . -  , d - -  1}. The  i n p u t  l i n e s  a re  pa r t i t ioned  into  n sets  with I c . i  the  
set of possible conf igura t ions  on t h e j t h  ( j  = 1, 2, . .  • , n ) .  0 c  is t he  set of possible 
configurations. Such a c i rcui t  is c a l i e d  n (d,  r)  circuit .  

Definition 1.1. Le t  ¢ :  X1 X X2 X • .  • X X,, ~ Y be a funct ion on finite sets. 
£ circuit C is said to  compu te  (k in t i m e  r if there  a re  maps  gj:X~ ~ Ic.s ( j  = 
1, 2, • . .  , n )  and  a one-one func t ion  h :  Y --~ Oc such t h a t  if C receives cons tan t  in- 
put [g~(x~), • • • , gn(Xn)] f rom t ime 0 t h r o u g h  t ime r - 1, then  the ou tpu t  a t  t ime 
will be h(¢(x~,  . .  • , Xn)). 

2. The Basic Lemma 

We now derive a genera l  lower b o u n d  o n  t h e  t ime for a (d, r)  c ircui t  to compu te  a 
given finite funct ion  ¢. I t  makes  e x p l i c i t  the  me thod  ur lder lying the resul ts  of 
Winograd. I t  is dependen t  upon  the  o u t p u t  code h in t roduced in Sect ion 1, and  makes  
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use of a new concept we introduce--that of separable sets. First, some p r e l i  r r l i ~ r Y  
definitions are necessary. 

Definition 2.1. Let [x] be the smallest integer greater than or equ~l t~o  ~ ;  l e t  
[x] be the largest integer less than or equal to x; let I S I be the c a r d i n ~ l i t y  o f  - the  
set S. 

Definition 2.2. For a (d, r) circuit let hi (y)  be the value on the j th  ou t~pt~ l t~  I i i l e  
when the overall output configuration is h(y) .  

Definition 2.3. Let ¢:X~ X -. • X X,  --~ Y and let C compute ¢. Then  ~ ~ X m  
is called an hi-separable set for C in the ruth argument of ~ if whenever s ~  ~ a ~ c l  se 
are distinct elements of S we can find x~, x2, • • • , xm-~, Xm+~, • • • , Xn w i t h  m ~  ~ X~  
such that  

h ~ ( ¢ ( x , , . . . , X m _ , , s , , x m + j , . . . , x n ) )  " h ~ ( ~ ( x l , . . .  , X m _ , , S 2 , X m + , ,  "" " , : C . r , ) ) .  

LEM~A 2.1. I n  a (d, r) circuit the output qf an element at time r can d e p ~ n ( g  u p o n  
at most r ~ input lines. 

PROOF. Just consider the fan-in with modules having r input lines to t h e  h e i g h t .  
of~. I 

This observation, first made by Winograd, plus the concept of s e p ~ r a ~ b l e  s e t s ,  
suffices to prove: 

LEMMA 2.2 (The basic lemma). Let C be a ( d, r) circuit which computes  ¢ ,  ~7~  t d m e  
r. Then 

T >__ max {[log, ([/og~] S~(j)]] + . . .  + [logdl S~(.i) ])l}, 
i 

where S i ( j )  is an h¢-separable set for C in the j- th argument of 4~. 
PROOF. T he j t h  output line at time r must depend upon at least [logs I S ~ ( j )  ]] 

input lines from Ic.i or else there would be two elements of S i ( j )  which w e r e  n o t  
hi-separable. Thus the j th  output depends upon at least [logd S i ( j )  ] q -  - - - q -  
[logd ] S,~(j) ]] input lines and this number is a t  most r ~. [ 

With Lemma 2.2 we expose the methodology implicit in Winograd's t r e a t ,  m e r i t  
of the times required for addition and multiplication. By making it e x p l i c i t  w e  n o t  
only quickly obtain some of Winograd's results in the rest of this section b u t  ~ l s o  
shall give a deeper analysis of other concepts and shall treat a much w i d e r  c l a s s  o f  
functions in the sequel. 

COROLLARY 2.1. Le t¢ :ZN  X Z~--~ {0, 1} be 

4~(x,y) = i f  x > y. 

Then i f  C is a ( d, r) circuit to compute 4~ in time T, we have r >_ [log~ 2 [ log~ I N  ]~]. 
PI~OOF. P ick j  such that hi(0) ~ h~.(1). Then Z~ is an hj-separable s e t  f o u r  C in  

both the first and the second arguments of 4~ since, if x > y, ¢(x, y) ~ ~ ( y ,  y ) 
and ¢(x, y) ~ ~(x, z). I 

COROLLARY 2.2. Let ¢:Z~ X Z~ ~ ZN be 

Then, i f  C computes ~ in t i u  T, ~ >_ llog, 2 [/Ogd lY~Jl]. 
PROOF. P i c k j  such that hi(0) ~ hs(1 ). Let m = INtl. Then {1, 2, • o . 

" ~ }  i s  
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an hi-separable set for C in both a r g u i n e n t s  of 6, since for each x ~ y with x, y C 
{1,2, . - ' , m }  w e m ~ , y c h o s e w  (= ZN such t h a t x . w  < N < y .w < 2 N t o y i e l d  
¢(x, w) = 0, ¢(y, w) = 1. By s y m m e t r y  this holds for the second argument as 
well and Lemma 2.2 yields the result .  ] 

We close this section with an example  which shows that the size of separable sets 
can be strongly dependent upon t h e  out, put  code of the circuit which computes a 
given ~b. 

Example 2.1. Let ¢:ZN X ZN ~ Z~2 be numerical multiplication with N = 2 s. 
Consider an output code in which if t h e  output  value is M then the ith line carries 
the ith bit in the binary expansion fo r  M .  Then there are sixteen output lines. Pick 
any x # y with x, y C ZN. Then t h e i r  b ina ry  expansions differ in at least one place, 
say the kth. Choose z = 2 s-k. Then  h j ( ¢ ( y ,  z)) ~ hj(¢(x, z)) and hj(¢(z, y)) 
hi(¢(z, x) ). So there is an hs-separable se t  of size 2 s in both arguments of~b. 

Now consider the same ¢ but let t h e  output  code for z be the binary representa- 
tion of the exponents irk its prime decomposit ion.  Let the first six output lines code 
the exponent of two in the result.. P i c k  x, y C ZN such that  x and y do not have 
the same power of two in their p r ime  decomposition, the powers differing in, say, 
the kth place of their binary expansion.  Then, letting z = 23-k, h3(q~(x, z)) 
h3(¢(y, z)) and h3(q~(z, x)) rs h3(¢(z, y ) ) .  Thus, since an element of Z~. can have 
eight different exponents of two in i t s  p r ime  decomposition, there is ark h3-separable 
set of size 8 irk both arguments of 4~. O n e  easily sees that this is the maximal size of 
any separable set, since two is the sma l l e s t  prime. Note, however, that this output 
code requires thirty-nine output l ines.  

3. Review of Previous Results 

Several authors have investigated t h e  computat ion time necessary for a (d, r) cir- 
cuit to add modulo N. Ofman [3] g a v e  a circuit for the special case N = 2 n. Signifi- 
cant results were obtained by W i n o g r a d  [1, 2]. He derived a lower bound which we 
review, and a (d, r) circuit with compu ta t i on  time near the lower bound. Since 
any finite Abelian group is the direct  product  of cyclic groups [4, p. 40], his results 
are applicable to Abelian group mul t ip l ica t ion  as well. 

Definition 3.1. Let  H be a group. S a y  H has property P and write P ( H )  = 1, 
in case there is an element a C H w i t h  a -~ e such that every nontrivial subgroup of 
H contains a. This is denoted by P ( a ,  H )  = 1. Let a(G) be the maximal order of 
H < G such that  P ( H )  = 1. 

LEMMA 3.1 (Winograd [1]). I f  G is  Abelian, a( G) is the maximal order of a prime 
power cyclic subgroup contained in G. 

PROOF. See [1, p. 280]. I 
We now give a complete charac te r iza t ion  of a(G). 
Definition 3.2. The generalized qua t e rn ion  group Qn is the group of order 2 '~ 

with two generators a and b sa t i s fy ing  

2n - 1 b 2 2n-- 2 a = e; = a ; ba = a-lb. 

THEOREM 3.1. A p-group contains a unique subgroup of order p iff it is cyclic or a 
generalized quaternion group. ( I t  must  be cyclic "if p is odd.) 

PROOF. See Hall [4, p. 189], ] 
COROLLARY 3.1. Let G be any f in i te  group. Then a( G) is either the order of the 
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largest cyclic p-subgroup of G or the order qf the largest generalized quatern~o~t  U r ' °up  
contained in G, whichever is larger. 

P~OOF. Let H be any subgroup of G. I f P ( I i )  = 1then I II I = p~for  solWxe~ p r i m e  
p, for if not there would be another prime q dividing I H{ and c o n s e q u e l a t t . l Y  t~here  
would be elements u and v in H with o(u) = p ~nd o(v) = q. But t h e n  <~t~) ~ <v} 
would contain only the identity. Assume[ H I = p~'. 2dhen every n o n t r i ~ i ~ I  s u b -  
group of H contains a subgroup of order p. Thus P ( H )  = 1 iff H eontaSns  ~ t ~ n i q u e  
subgroup of order p, i.e. iff H is cyclic or a generalized quaternion group.  | 

The quantity a(G) is critical to Winograd's lower bound time for g r o u p  l n c ~ t l l t i p l L  
cation, which we now state. In Section 4 we give a new lower bound w - h i e h  i s  in 
general higher but is the same as his if the group of interest is Abelian. 

THEOREM 3.2 (Win ograd [1]). Let G be any finite group. Let C be a ( d ,  ~" ) c i r c u i t  
which computes ¢:G X G --~ G where ¢(a, b) = ab. Then C requires c o m p u t a t i o n  t ime  
r where T > [lOgr 2 [loge a(G)]]. 

PRooF. See Winograd [1]. I 
Winograd also gives a procedure for constructing a circuit ~o m u l t i p l y  i n  an 

Abelian group G with computation time 

which is valid for r > 3 and d >_ 2. We glve a completely different i n e t h o d  f o r  con- 
strutting circuits, which is valid for r > 2 and d > 2 and which works  ~ v h e t . h e r  or 
not the group is Abelian. Furthermore. for a given Abelian group a n d  o~ g i v e n  d 
and r, our computation time underbounds Winograd's. 

4. The Lower Bound 

In this section we give a new lower bound for the time required for a (c~, r )  c i r c u i t  
to perform group multiplication and compare it to Winograd's b o u n d .  L e t  G be 
any finite group and let ~:G × G --~ G be group multiplication. Let C b e  a, ( d ,  r) 
circuit which computes 4. Let hi(g) be the value on t h e j t h  output  line o f  (~7 w h e n  the 
output is h(g). 

Definition 4.1. Let x, y C G. Then we say tha t  x and y are R ~ - e q ~ t l i v a . l e n t  if 
hj(gx) = hj(gy) for all g C G and that  they are L~-equivalent if h A x g )  ~ h j ( y g ~  
for all g C G. Then clearly R~ and Lj  are equivalence relationships a r t d  w ~  wr i t e  
Rj(g) for the Rj-equivalence class of g and L / g )  for the L j -equiva lence  e [ ~ s s  o f  g. 

LEMMA 4.1. Rj = R / e )  and Lj = Lj(e) are groups for all output l i n e s  o f  C .  Fur- 
thermore, for any g E G, R / g )  = Rig and Lj(g) = gLj .  

Pnoo~. Say a, b C Ri .  Let c ~ G. Then hAab-~c) = h/bb-~c) ~ t ~ y ( c ) .  So 
ab -I E R~ and it is agroup.  Now pick a n y g  C G. T h e n d  E Rj(g) i F f  h ~ (  cic)  = 
hj(gc) for all c E G. But this is true iff hj(dg-~c) = hi(c), i.e. iff dg -~ ~ t ~  . The  
other half of the lemma follows dually. [ 

Maximal separable sets are determined by 
LEMMA 4.2. A maximal size h~.-separable set in the first argument o f  q~ c o v t s i s t  s of 

exactly one representative from each left coset of Rj. in G. It  thus has size I ( ~  ~ / .  R j  
A dual result is true for separable sets in the second argument. 

PROOF. Direct from Lemma 4.1 and the definition of separable s e t s .  | 
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We now ihave all the pieces we need for a lower bound on group multiplication 
which is output code dependent. 

LEM~ta 4.3. Let C be a ( d, r) circuit to multiply in G in a:me r. Then 

{F (I [  l)l} 
PROOF. Direct from Lemmas 2.2 and 4.'2. ] 
A bound over all output codes is derived by maximizing the minimal size of Ky 

and Ly for a given group. 
Definition 4.2. If G = {e} let 8(G) = 1. Otherwise let a(c) be the maximal order 

of any subgroup of G not containing c and let it(g) = min< ~-{~1 {a(c)}. 
Since we are only dealing with finite groups a(G) is always well defined and finite. 

Note that, i f P ( a , G )  = l t h e n a ( a )  = l s o t h a t a ( O )  = 1. Note also that i f G i s  
nontrivial and P(G) ~ 1 then a(G) > 1 always. A simple lemma needed in the 
sequel is: 

LEMMA 4.4. Let H and K be subgroups of a finite group g such that H fq K = 
{e}.rhenIH I IK I < [G]. 

Pttoo~'. Let h~, h~ ~ H and/;1,  tc2 E K such that  h~k~ = h=lc2. Then hlh7 ~ = 
k~kT ~ E H OK.  Hence h~ = h~ and k, = lc2. Thus I {htc:h C H, k C K} I > IHI IK I. 
But it is also a subset of G. I 

The crucial property of ~(G) is: 
LEMM~t4.5. For any finite group G, a( G)~( G) < G. 
PROOF. if  8(G) = 1 the lemma is true, so assume not. Pick H < G and e 

a E H w i t h P ( a , H )  = l a n d I H I  = c~(G).ChooseK < G w i t h a ~  K a n d l K l  = 
~(a), Then, since H I"1 K is a subgroup of H not containing a, H fl K = {e}. 
Hence, by Lemma 4.3 and the fact that  ~(G) < ~(a), c~(G)8(O) < c~(G)~(a) = 
IHI [El _< tel.  I 

The universal lower bound for any (d, r) circuit to compute multiplication in a 
finite group G can now be stated. 

THEOREM 4.1. Let G be a finite group, ¢:G × G ~ G be group multiplication, and 
C be a (d, r) circuit to compute C for d > 2 and r > 2. Then, if  C has computation time 
T, 

,o, II - -  ~ " 

PROOF. Assume a(G) > 1 and choose a E G such that 8(a) = a(G). There must 
be an output line of C, say the j th,  such that hy(e) ~ hy(a). But then both Ry and 
Lj are subgroups of G which do not contain a. They hence have order at most 
5(G), Thus, the result follows from Theorem 4.1. If ~(G) = 1 then either G = 
{e} or] G[ = a(G). In the former case the theorem is true trivially. In the latter 
case choose g C G such that  P(g, G) = 1 and pick an output line, say the ith, 
such that hi(e) 7~ h~(g). Then Rj = L~. = {e} and the result follows from Theorem 
41.  ] 

Lemma 4.5 implies that this lower bound is no weaker than Winograd's result 
given in Theorem 3.2; and, indeed, the following example shows that  it is stronger. 

Example 4.1. Let  p be an odd prime. Then there is a group with three generators 
a, b; and c and defining relations [4, p. 52] 
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a ~ = b v = d' = e; ab = bac; ca = ac; cb ~ b c ,  

which has no clement of order p2. It  is easy to show that  any s u b g r o u p  o f  o r d e r  p2 
must contain c. Thus ~(G) = ~(c) = p. But, clearly, ~(G) = p. "Fhl l s  c ~ ( G ) 5 ( G )  < 
I G I. In one important case, however, the two bounds are the same. 

LEMMA 4.6. Let G be a finite Abelian group. Then a(  G)~( G) = ] G I.  
PROOF. By the decomposition theorem for Abelian groups [4, p .  4 0 ] ,  G -~ Z~ X 

• .- X Z~, where each Z~ is a cyclic p-group, say 1 Z~I = P~; ~ n d ,  w i t h  n o  loss 

of generality, 

i < j ~ p~ ~ p~. (*) 

I f n  = l the theorem is true since P(  G) = l a n d ~ ( G )  = 1. A s s u m e  n > i ~ n d  let 
al generate Z~ ( i  = 1, 2, • • • , n). Now if we choose any g ~ e, 

g (a~l, , k 
. . . .  a:), 

where at least one exponent, say k~, is nonzero, then 

\ 3 ~ z  

where el is the identity in Zi .  I t  follows that  

j ~ i  J=2 
j=i  

by (*). Thus 

~(G) > IXp~ j . 
j = 2  

But any subgroup of order greater than IIJ~2 p~.i must intersect Z~ n o n t r i v i M l y  and 

thus must contain 

(a~ '<~'-'),e_,~ . . .  ,e~) ~ {e~} X Z2 X --" X Z~ 

Thus 

a~ I(rI-I) = 1~I ~(G)  _< ~ ( (  , e~, . . .  , en))  J=~ p~i. I 

For the sake of completeness we give some examples of n o n - A b e l i ~ n  g r o u p s  Gi,  
each having a( Gi)6( Gi) = [Gil. 

Example 4.2. Let  p be an odd prime. Let  G1 be the group g e n e r a t e d  b y  a a n d  b 
having relations [4, p. 52] a p~ = b p = e; b-lab = a I+p. Then a(G~ ) -~ p2  a n d  any 
group of order p2 must contain a p. 

Example  4.3. Let  G2 be the direct product of two groups A a n d  B s u c h  that  
a ( A ) ~ ( A )  = IA];  a ( B ) 6 ( B )  = [B]. Then it is easy to see t h a t  

a(G2) = m a x  { a ( A ) , a ( B ) } ;  ~(G2) = m i n  {]B[ ~ ( A ) ,  [ A  1 ~ ( B ) }  ; 

and thus a(G2)~(G2) = [G~I. In particular, these properties hold i f  Gu i s  n o n - A b e -  
lian but  all of its subgroups are normal [4, p. 190]. 
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5. A Circuit jbr Group Multiplication 

In this section we give ~ method to construct a (d, r) circuit to multiply in any 
finite group G which is valid for d > 2 and r > 2. The computation time of the 
circuit is at most one unit greater than the lower bound just derived. If G is Abelian 
and r ~_ 3 our circuit can be compared to that of Winograd. It  can be seen that our 
computation time underbounds his, and that, in fact, we can give a group for which 
the difference in computation time is arbitrarily large. 

LEMMA 5.1. Let K be any subgroup of G. Then there is a (d, r) circuit to compute 
¢:G X G--,  {0, 1} int ime 1 

= 1 + Z o g ,  l o g S l K i / / / ,  

where  

¢ ( a , b )  = 0 i f  ab C K, 

¢ ( a , b )  = 1 if ab ~ K. 

PROOF. Let  M = ]G I/IK[.  Pick a coset representative vi C Kvl for each 
right coset of K in G. Then -1 {vl } is a set of left coset representatives, for vT~K = 
v~lK iff vsv71 C K. Pick a map zl from G to the space of [logd M]-ary vectors over 
Zd such that  zl(gl) = zl(g2) iff Kgl = Kg2 and then define another map z2 with same 

--1 
domain and range by  z~(g) @ z2(g ) = O, where 0 is the all-zero vector and $ is 
componentwise addition modulo d. Note that z2 maps any two elements in the same 
left coset to the same vector. There are [(1/[r/2]) [logdM]] similar elements in the first 
level of the circuit. If  ab is being computed these modules each sum components 
of zl(a) and z2(b) mod d (the last adder will sum less than [r/2] if Jr~2] does not 
divide M). An element has output  0 if all pairs of input components are congruent 
to 0 mod d. If not, its output  is 1. Thus all outputs are 0 iff there is some j such 
that a C Kvj and b E v71K. The rest of the circuit is a fan-in of r input elements 
having output 0 iff all inputs are 0 and output 1 if at least one input is nonzero. This 
fan-in has depth [logr [(1/[r/2]) [lbg~ M]]]. Thus the circuit computes ¢ in time 

COROLLARY 5.1. There is a (d' r )  circuit to tell if  ab E Kv for any v E G with 
the same computation time. 

Definition 5.1. A complete set of subgroups of a group G is a set {Ki} of sub- 
groups for which N i Ks = { e}, 

LEMMA 5.2. I f  K i is a complete set of subgroups of G then, for any a C G, knowledge 
of the right cosets containing a is su~cient to determine a. 

PROOF' ~ (Ksa) = ( [ 1 K s ) a  = a. I 
Note that a complete set of subgroups always exists for any G, e.g. the set con- 

sisting of {e} alone. Unless P(G)  = I, there are other complete sets as well. 
LEMMA 5.3. Let {Ks} be a complete set of subgroups of G. Then there is a (d, r) 

circuit to multiply in G in time 

~The original statement of this lemma had r = 1 + [log~Ilogd( I G I / [ K I )]]. The refinement 
was pointed out to the author by Winograd. 

ii 
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= i + i i i i ]  I | / /  

PROOF. Follows from Lemma 5.1, Corollary 5.1, and Lemma ;5.2. I 
Now we are able to prove 
THEOREM 5.1. Let G be any finite group. Then for any d > 2 and any r > 2 

there is a ( d, r) circuit to multiply ire a finite group G in time 

= 1 + log,. (r log~ +(a) | / l  

Furthermore, the circuit has computation time exceecling the lower bound by at most 
one time unit. 

PROOF. Assume 8(G) > 1. For any g (_ G with g ~ e there is a subgroup K~ 
of order ~(g) not containing g. Thus {Ko:g ~ G - {e}} is a complete set of sub- 
groups with rain { I Kg I:g C G - {e}} = 6(G). If ~(G) = 1 then use the complete 
set consisting of {e}. The second statement of the theorem follows from the fact 
that 

[log~ [[r~2i [logd x ] ] 1  ~ [log~ 2[logd xl[ 

[ f  G is AbeIian or i f  8( G) = 1 there is a ( d, r ) circuit to multiply 
for r > 2. [ 

COROLLARY 5.2. 
in G in time 

As noted, Winograd's circuit for an Abelian group G requires time 

r = 2  + Ilogt(,.+l)m I[r~2] [lOgd a(G) l ] ]  . 

Since 

= .  r > 3  

it follows that our computation time is less than his. 
Example 5.1. Say r = 4 and [log~ a ( G ) l  = 2 :k for some k > 1. Then Winograd's 

time is 2 + 2k and our time is 1 + k, i.e. his circuit requi~s  twice as long. The 
reader can easily construct a myriad of similar examples. 

Winograd [2] has extended his group results to numerical addition and multipli- 
cation by noting that a circuit which can multiply in the cyclic group of order 
2N - 1 can also add two numbers between 0 and N and that numerical multiplica- 
tion can be done by adding the exponents inn the prime decompositions of the two 
factors. Since we are able to lower the time necessary to multiply in cyclic groups. 
we can achieve a corresponding decrease in the time for numerical addition and 
multiplication as well. We present this result in the framework of Winogr~d's 
definitions. The reader interested in the details of the relationship between group 
multiplication and these other two operations is referred to Winograd's original 
paper. 
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Definition 5.2. For  an integer m let Q~,, - l.e.m. { 1, 2, •. • , m} and let T(N)  = 

min{m:Q,,  >- N}. 
Then. paralleling Winograd ' s  appl icat ion of his group multiplication time, we 

employ Corollary 5.2 and obta in  Theorems 5.2 and 5.3. 
TTHEORE~a5.2. L e t o : Z N  X ZN , Z2N_~becb(a,b) = a + b. T h e n t h e r e i s a ( d , r )  

circuit to compute ¢ in time 

v~ = 1 + log~] ~7~ logd~(2N - 1 ) ; r > 2, d > 2. 

THEOREM 5.3. Let ¢ : : 1 ,  2, - . ,  NI X 11, 2, . . . ,  N 1 --~ {1, 2, - . .  , Nut 
be ¢~ a, b) = ab. Then for any r > 2 and any d _> 2 there is a ( d, r) circuit to compute 

¢ in time 

[ [ ' [  Ill ~ = 1 + log~ ~ ]  logd~(2l log~N] - 1)  . 

In closing we note for reference tha t  Winograd has lower bounded ro and r~ 

as follows: 
THEOREM 5.4 (Winograd  [2]). For any d > 2 and any r > 2 then any (d, r) 

circuit to compute ~ requires time To where 

and any ( d, r) circuit which computes ¢ requires time 

The proximity of the results of Theorem 5.2 and Theorem 5.3 to these lower 

bounds is indicated b y  the  fact  tha t  -/(4x) _< 2 + ' r (x) .  
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