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ABSTRACT. This paper is concerned with the relationship of the t e r mi na t i on  problem f o r  
programs and abstract programs to the validity of certain formulas in the f i rs t -order  predica t,e 
calculus. By exploiting this relationship, subclasses of abstract programs for which  the termi- 
nation problem is decidable can be isolated. Mmaover, known proof procedures  for the firs v- 
order predicate calculus (e.g. resolution) can be applied ~o prove the t e r mi na t i on  of b o t h  
programs and abstract program~. The correctness and equivalence problems of abstracl p r o -  
grams are shown to be reducible to tim termination problem. 
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Introduction 

An abstract p~vgram (program schema) is a program, but with funct ion ,  predicate. 
and constant symbols instead of specified functions, predicates, a n d  constants. 
Thus an abstract program AP may be thought of as representing a fami ly  of (real) 
programs. By specifying an interpretation 9 for the symbols of A P ,  a progrsLnl 
(AP, ~) of this family is obtained. The program contains a set of i n p u t  variables. 
Each assignment of values to the input variables defines a (un ique)  execution o f  
the program. Recent papers on abstract programs include those of Ianov ~see 
Rutledge [16]); Luckham, Park, and Paterson [10]; Paterson [14]; Engeler [61; 
and Kaplan [9]. 

In this paper we are concerned with the termination problem of programs a n d  
abstract programs. A program (AP, ~) is said to terminate if all poss ible  exeeuti()r~s 
of the program terminate. An abstract program AP is said to t e rmina te  if for every 
interpretation ~, the program (AP, ~) terminates. 

Given an abstract program AP, an algorithm is described to  cons t ruc t  a well- 
formed formula WAp of the first-order predicate calculus such that  A P  terminates 
if and only if W~p is unsatisfiable, i.e. ~-~WAp is valid. This implies t h a t  conclusiorLs 
about the termination of abstract programs can be obtained b y  applying well- 
known results in logic. A corresponding result for programs is p resen ted .  

The relation between termination of computations and the val idi ty of well-formed 
formulas of the predicate calculus has also been considered in the classical paper b y  
Turing [17] which shows that the decision problem for the p red ica te  calculus i s  
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unsolvable (see also) B(ichi [2]). The technique we are using is a natural extensioa 
o f  Ii%yd's method [71 for proving the correc|mess of programs. 

An abstract program A/" is said t.o be correct if for every interpretation .q tile 
Orogram (AI', ~) l;erminates and yields the desired final result. Two abstract 
programs A P and A I / ~-tre said t,() be equiv:~lent it' for every ir~terpretation ,,/both 
Drograms (AP, g) and (A] / ,  ~) termin~te,  and for the same input values they 
5zield the same finai -wdues. 

Both the correctness and the equivalence problems of' abstract programs are 
shown to be reducible to/,he termination problem. 

Certain ext, ensions of these resuli~s, wi th  examples and applications, ean be 
found in Manna [11, 12], Manna  and l 'nueli  [t3], and Cooper [4]. 

1. Mathematical Background 

1.1, THE (FmsT-()tmE~¢) PREDICATE CALCULUS. In this section we partially 
follow the exposition of Davis and P u t n a m  [5]. 

The symbols from which our formulas are constructed are: 
(a) Improper symbols: 

punctuation marks , ( ) 
logical symbols ~ D ^ v ~ 3 
primitive constants T F 

(b) Constants: 
n-adic function constants f{' (i > 1, n > 0) 

(f0 are called individual constants], 
n-adic predicate constants p~  (i > 1, n > 0) 

[pl ° are called proposilional constants] 
(c) Variables: 

Individual variables xi ( i  > 1) 
n-adic predicate var iab les  q/~ (i >_ 1, n > O) 

[qi ~ are called propositional variables] ~ 
We define recursively three classes of expressions as follows: 
{a) Terms 

1. Each individual variable x~ trod each individual constantf~ ° is a term. 
2. If t, ,  t : ,  • .. , t,~ (n ~> 1) are terms,  then so i s l e ' (6 ,  t2, .-" , &). 
3. The terms consist exactly of these expressions generated by 1 and 2. 

(b) Atomic formulas 
1. T, F. p o, and q0 are atomic formulas.  
2. I f  t , ,  t ~ , .  • • , t ,  (n > 1) are terms, then the expressions p i n ( f 1  , 12 , " " " , I n )  

and qi"( 6 , G, "'" , t,,) are a tomic  formulas. 
3. The atomic formulas consist exact ly  of those expressions generated by I 

and 2. 
( c ) Well-formed Jbrmulas ( wff s ) 

I. An atomic formula is a well-formed formula (wff). 
2. I fR is a wff, then so are ,~R, (x~)R (x~ is said to be universally quantified), 

and ( 3 x 0  R (xi is said to be existentially quantified). 

In the fol lowing we a lso  use  y~ as individual variables and ai as individual constants. 
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3. If R and S are wffs, then so are (I2 ~ ~),  (R ^ S), (R v S), 

and (R ~ S). 
4. The wffs consist exactly of those expressions generated by I, 2, and 3. 

Parentheses, subscripts, and superscripts are omitted whenever their omission 

causes no confusion. 
An occurrence of x¢ in a wff R is a bound occurrence if it is in a part of R which 

is a wff of the form (xdS or (3x¢)S. An occurrence of x¢ which is not bound is 
called a free occurrence, x~ is fl'ee in R if it has at least one free occurrence in R. 

Those wffs which are logically valid can be singled out either by specifying axioms 
and rules of inference or by referring to "interpretations" of the wffs of the system; 
by G6del's Completeness Theorem, both of these procedures lead to the same class 
of formulas. I t  is most convenient here to use the latter formulation employing 

"interpretation." 
An interpretation ~ for a wff W consists of a nonempty set of elements De (called 

the domain of the interpretation) and the fo]lowing assignments to the constants of 

W: 
1. To each function constant f n which occurs in W, we assign a total function 

mapping (De) ~' into De • (If n = 0, the individual constant f~ ° is assigned some 

fixed element of D~ .) 
2. To each predicate constant p~' which occurs in W, we assign a total function 

mapping (De) ~ into {T, F}. (If n = 0, the propositional constant p0 is assigned 

the value T or F.) 
Given a wff W and an interpretation g for W (notation: ( W, ~J) ), an assignment 

r for (W, ~) consists of the following assignments to the variables of W: 
1. To each free individuM variable x~ in W, we assign some fixed element of D~. 
2. To each predicate variable q~ which occurs in W, we assign a total function 

mapping (D~) n into {T, F}. (If n = 0, the propositional variable q0 is as- 
signed the value T or F.) 

Let W be a wff. Then given an interpretation 9 for W and an assignment I" for 
(W, ~) (notation: (W, ~, r ) ) ,  the value T or F will be assigned to (W, ~, r). 
This value is obtained simply by using the assignments of g and F, interpreting F 
as falsehood and T as truth, using the usual t ru th  tables for --~, ^ ,  v ,  D, and =-, 
and interpreting the universally and existentially quantified variables in the 
standard way. 

(W, ~) is said to be: 
(1) valid if for every assignment I', (W, g, F) has the value T; 
(2) satisfiable if (W, g, F) has the value T for some assignment r;  or 
(3) unsatisfiable if it is not satisfiable. 

Clearly, (W, ~) is valid if and only if (~--~W, ~) is unsatisfiable. 
A wff W is said to be: 
(1) valid if for every interpretation 9, (W, 9) is valid; 
(2) satisfiable if (W, g) is satisfiable for some interpretation 9; or 
(3) unsatisfiable if it is not satisfiable. 

Clearly, W is valid if and only if ~ W  is unsatisfiable. 
A wff is called quantifier-free if it contains no occurrence of (x~) or (21xi). 
A wff is in prenex normal form if it begins with a sequence of quantifiers (x~) and 

(3xl) in which no variable occurs more than once (called the prefix), aM if the 
sequence is followed by a quantifier-free wff (called the matrix). 
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Let W be a wff in prenex normal form. Then the functional form of W is defined as 

follows. 
Let the variables in the prefix of W (in order of occurrence) be x~, x2, . . .  , x~.  

Let the existentially quantified variables in the prefix be x~,  x~ ,  . . -  , X~M. Then 
for every j, 1 < j ~ M, (1) the quantifier (3xi j)  is to be deleted from the prefix; 
and (2) each occurrence of x~j in the matrix of W is to be replaced by an occurrence 
of the term f~j (xk~, xk~, " " ,  xk~), where (x~,), (xk2), . . . ,  (xk~), q > 0, are all 
the universal quantifiers which precede (Bxi~) in the prefix of W, and f~j is the 
first q-adic function constant which does not occur in W and has not been used 
previously in this process. 

We use the following known result: W is satisfiable if and only if its functional 
form is satisfiable. 

1.2. T~E VALIDITY PROBLEih{ OF THE PREDICATE CALCULUS. The validity 
problem of the predicate calculus is undecidable. That  is, there can be no algorithm 
which takes as input any wff and in all cases terminates with a decision as to whether 
the wff is valid or not. But  the validity problem of the predicate calculus is semidecid- 
able. That is, there are algorithms, called semideci~ion p~vcedures, which take as 
input any wff, and (1) if the wff is valid the algorithm will stop and say so; or (2) if 
the wff is not valid the algorithm will never stop. The algorithms have undergone 
successive reductions so that  by now they have a simple structure. Many recent 
algorithms are based on the resolution principle (Robinson [15J). Furthermore, 
there exist classes of wffs for which the problem is decidable. For example, the 
validity problem is decidable for the following three classes :2 

1. W, = { W I W is a wff in prenex normal form without function constants and 
with prefix of the form Y .. • Y3  . . .  3}, 

2. W~ = { W I W is a wff in prenex normal form without function constants and 
with prefix of the form V . . .  V 3 Y  . . .  Y}, 

3. W3 = { W ] W is a wff in prenex normal form without function constants and 
with prefix of the form V . . .  Y~t~Y . . .  Y}. 

2. Definitions 

2.1. ABSTRACT PROGRAMS. 

sists of: 
1. 

An abstract program (or program schema) AP con- 

A finite directed graph s <V, L, A ) such that 
(a) there exists exactly one vertex S E V with in-degree 0 (i.e. with no arcs 

leading to S), called the start vertex; 
(b) there exists exactly one vertex H E V with out-degree 0 (i.e. with no arcs 

leading from H), called the halt vertex; and 
(c) every vertex v E V is oil some path that joins S and H. 

2. (a) A set of m (m > 0) distinct individual variables $ = (y l ,  y2, • • • , ym), 
called input variables; and 

(b) a set of n (n > 1) distinct individual variables 2 = (x~, x2, " "  , x~), 
called program variables. 

3. With each arc a = (v, l, v') C A there is associated 

2 See Ackermann [1] or Church  [3, Sec. 46]. 
3 I.e. V (vertices), L (labels), and  A (arcs) are nonempty  finite sets. A _~ V X L X V. 
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p(x) p(x) 

I I)(x) 

~i(x) ~ x..,-f(x) 

(7) 

FIG. 1. The abstract program AP* 

(a)  a quantifier-free wff ~ ,  called the  test predicate of c~; and  
' ( " )  , t~ °))  (b)  an n- tuple  t ,  = (t~ "), ~ • • • of t e rms  cal led the  assignment.func- 

tion 4 of a. 
The  wff ¢ ,  does not  conta in  any pred ica te  var iables .  I n  addi t ion ,  the  wff ~ ,  and 

the te rms t (") do not  conta in  individual  var iables  o ther  t h a n  .~ and  2. I f  v = S 
(i.e. a is an arc leading f rom the s t a r t  ve r t ex ) ,  the  wff ¢ ,  and  the  t e rms  t~" do not 
conta in  the  p rogram var iables  2. 5 

In  addit ion,  an abs t rac t  p rogram should sat isfy  the  fol lowing res t r ic t ion :  
4. Fo r  every  ver tex v (v ~ H ) ,  if a l ,  c~2, . . .  , a2¢ is t he  set  of all ares leading 

from v, the  set of the  tes t  predicates  ¢ -1 ,  ~P-~, " " • , ¢-~¢ is 
(a)  complete, i.e. ( 2 ) ( ~ )  [~,1 v ~-2 v . . .  v ~,~] is val id ,  and  
(b) mutually exclusive, 8 i.e. ( 3 2 ) ( ~ )  [~,~ ^ ~,~] is unsa t i s f iab le  for every 

p a i r ( i , j ) ,  1 ~ i ~ j _ < N .  

Example. Figure  1 represents  an abs t r ac t  p rogram.  W e  refer  la te r  to  this ab- 
s t rac t  p rogram as AP*. Here,  a is an  ind iv idua l  cons tan t ,  f is a monadic  function 
constant ,  p is a monadic  pred ica te  cons tan t ,  y is an  i n p u t  va r i ab le ,  and  x is a pro- 
g ram variable.  

2.2. PROGRAMS. An  interpretation ~ of an a b s t r a c t  p r o g r a m  A P  consists of a 
nonempty  set of e lements  D~ (called the  domain of the interpretation) and  assign- 
ments  to the  constants  of AP: 

1. To each funct ion cons tan t  f{ '  which occurs in A P  we assign a t o t a l  function 
mapp ing  (D~) ~ into D~.  

4 The intended interpretation is: v: if ¢. then [replace simultaneously each variable xi by 
t~ ~) and go to v']. 
5 We have restricted ~, to be a quantifier-free wff. However, the theorems presented in this 
work still hold in the case when ~. is any wff that  does not contain free individual variables 
other than 9 and ~. 

I.e. under each interpretation and each assignment exactly one of the test predicates is true. 

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969 



Programs and the First-Order Predicate Calculus 249 

y = 0 8 )  

x ~ y ~ ~  X :: 0 

x~O  

(7) 

FIG. 2. The program (AP*, ~*) 

2. To each predicate  constant  p~" which occurs in AP we assign a total function 
mapping (D~)" into {T, FI.  

Let AP be an abs t rac t  p rog ram and ~ an interpretation of AP .  The pair (AP,  ~) 
is called a program. 

Example. Consider  the abs t rac t  program AP* of Section 2.1. Let ~* be the 
following in terpre ta t ion of AP*: D is I ( the  in tegers) , f (x)  is x + 1, p(x) is x = 0, 
and a is - 1. Then  the p rogram (AP*, ~*) can be represented by Figure 2. 

In order to give a rough idea of what  follows in Section 2.3, let us only mention 
that the "ALGOL" meaning of Figure 2 is: 

START: if y = 0 then [x ~-- y; go to 3] else [x e- -1;  go to 1]; 
1: if x = 0  then [x ~ x; go to 3] else [x ,-- x + 1;goto2];  
2: if x = 0 then [x ~-- -1 ;  go to 3] else [x ~ x; HALT]; 
3: if x = 0 then [x ~ x; HALT] else [x ~ x + 1; go to 3]. 

2.3. INTERPRETED PROGRAMS. Let  (AP, ~) be a program. Then the result 
obtained by assigning values ,9, ~ C (D~) ~, for the input variables ,~ of the program is 
called the interpreted program 7 ( A P , ~ , ~ ). 

Example. B y  assigning the value 1 to the input  variable y of the program 
(AP*, ~*) of Section 2.2, we obtain the interpreted program (AP*, ~*, 1) repre- 
sented by Figure 3. 

The interpreted p rogram (AP, ~, ~) defines an execution sequence <AP, ~, ~} 
which is a (finite or infinite) sequence of triples 

(1(1), V(1) •(1)), (l(~), v(~), ~(2)), (l(3), v(~), 2(3)), . . .  

where: 

1. (l(J),v(~), ~(~)) E L X V X (D~)"foreveryj ,  J ~- 1. 

7 Programs with no input variables (i.e. m = 0) will be considered as interpreted programs. 
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i ~ 0 (i) × I -- 

"•:•• 
0 ~  ~ ° 

:5) ~ ~  

/ 

(7) 

FIG. 3. The interpreted program (AP*, 9", 1) 

2. (l (1), v (~), ~(~)) is the first triple in the  sequence if and only  if there  exists an arc 
c~ = (S,  / (1), v (1)) E A such that8 ~ , (~ )  = T and 2 (1) = l~(~). 

3. (1 (j), v (j), 2 (~)) and (l (j+~), v (j+~), 2(J+~) ) are two successive triples in the sequence 
if and only if there exists an a r e a  = (v (~), l (~+~), v (j+~)) E A s.t. 9 ~ , (2  (j), ~) = T 
and 2 (i+~) = ~,(2 (~'), ,~). 

4. The  sequence is finite, of length k >_ 1, if and only if v (k) = H.  In this case 
~(k) is called the value o] the execution sequence tAP. 9, ~) and is denoted by val 
(AP, ~, ~). 

In  other  words, execution always starts  at  the start  vertex.  On execution of the 
j t h  step, j > 1, control moves along the arc a = (v (j-l), l (j), v (~)) where v (°) = S, 
and ~ ,  represents the condition tha t  this arc is entered. T he  value  of each program 
variable x~ is replaced in the j t h  step by  the current  value of t~ "), simultaneously. 
So 2(~) represents the current  value of the program variables 2 af ter  executing the 
j t h  step. Execution stops whenever control  reaches the  halt  vertex.  

Example. The interpreted program (AP*, ~*, 1) defines the  execution sequence 
<AP*, tO*, 1): (1, 1, - 1 ) ,  (3, 2, 0),  (5, a, - 1 ) ,  (7, 3, 0) ,  (8, H,  0).  

Let  (AP, ~, .~) be an interpreted program, and let v E V be any vertex of AP. 
Let ~ be a specified total  predicate from (D~) ~ into {T, F}. T h e n  

(1) ~is called a valid predicate of v for (AP, ~, $) if V~, ~ ~ (Da)~ : (3 l  E L) 
[(l, v, ~) occurs in (AP, ~, ~)] ~ ~(~) = T; and 

(2) ~ is called the minimal valid predicate of v for (AP, ~, ?) if V~, ~ E (D~) ~: 
(31 (- L)[(I ,  v, ~) occurs in (AP, ~, $)] ¢:~ ~(~) = T. 

Example. The  predicate x ~ 0 is a valid predicate;  the predicate  x = - 1  is 
the minimM valid predicate of the ver tex 1 for the in terpre ted  program (AP*,  ~*, 1). 

s q~.(~) and i,(~) stand for the result of substituting ~ for ~ in~,. and ~.. 
~(Z(i), ~) and [.(5(i), ~) stand for the result of substituting 2(i) for .~ and ~ for ~ ill~a and [.. 
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3. Termination of Programs and Abstract Programs 

3.1. TtlE ALGOt~ITH~,I TO CONSTRUCT WAp, In this section we describe an 
algorithm to construct from a given abstract program AP a wff WAR. In Section 
3.3 we state results about the relationship between A P  and Wap. 

ALGORITHM 1. Let A P  be any abstract program with program variables 
2 = (xl, x ~ , . . . ,  Xn), n ~ 1, and input variables $ = (y~, Y2," • . ,  Ym), m > O. 

Associate with every vertex v~ of A P  a distinct n-adic predicate variable q~. 
For each arc a = (v~ , l, v~), define W~ as 

(q~(~) ^ ~.) ~ q~(L). 

However, if v~ = S (i.e. v~ is the start  vertex of AP) ,  replace the occurrence of 
qd.~) in W, by T, and if v~ = H (i.e. v~ is the halt vertex of AP) ,  replace the occur- 
ren~e of q~(t,) in W, by F. 

Let a~, a~, • • • , aN be the set of all the arcs of AP.  Then define WaR as¢ ° 

(~)[Wo, ^ W.,~ ^ . . .  ^ W.N].  

Example. The wff WAR* of the abstract program AP* of Section 2.1 is 
(x)( ^ ~=~ W~), where: 

W~ : T ^ "-~p(y) ~ ql(a) W~ : 
W2 : T ^ p(y)  D q~(y) W6 : 
W3: q~(x) ^ ~ p ( x )  D q2(f(x)) WT: 
W~: q~(x) ^ p ( x )  ~ q~(x) W~ : 

3.2. TERMINATION OF PROGRAMS 

q2(x) ^ p(x) D q3(a) 
q2(x) ^ -.up(x) ~ F 
q~(x) ^ ~ p ( x )  ~ qs(f(x)) 
q3(x) ^ p(x) ~ F 

Definition 1. The program (AP,  9) is said to terminate if V~, q C (D¢) m, tile 
execution sequence <AP, t~, q) is finite. 

We are ready now to state the main result. 

THEOREM 1. The program (AP,  ~) terminates iff (WAe , ~) is unsatisfiable (or 
equivalently, ("~W AR , 9) is valid). 

PROOF. We prove that  the program (AP,  9) does not terminate iff (Wae,  ~) 
is satisfiable. 

(1) If (AP, 9) does not terminate then (Wae,  9) is satisfiable. 
If the program (AP,  #) does not terminate, there exists a .~, ~ E (D~) m, such 

that the execution sequence (AP, #, q) is infinite. 
Let us assign to each predicate variable q~ in WAp the minimal valid predicate 

of the vertex vi for the interpreted program (AP,  9, q). 
Note that since the execution sequence (AP, 9, q> is infinite, i.e. control never 

reaches the halt vertex, it  follows that  the predicate F is the minimal valid predicate 
of the vertex H for the interpreted program (AP,  ~, ~). 

Let I' consist of the above assignments for the q~'s, with ~ assigned to ~). Following 
the construction of WAR, it is clear that  the value of (Wae,  9, F) is T; i.e. (WAR, ~) 
is satisfiable; this completes the proof in one direction. 

(2) If (W~p, a) is satisfiable then (AP,  9) does not terminate. 
If (Wa~, 9) is satisfiable, then there exists an assignment F for (WAe, ~) such 

that the value of (WAR, ~, F) is T. F consists of assignments of specified total 

,0 Note that the input variables 9 are free variables in WAR • 

i¢!!i~ ii~i i ~ 
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predicates ~ ,  mapping (D~)" into {T, F}, for the predicate var i~bleS q~ ' ~ n d  ~m 
assignment q, q ~ (DJ" ,  for the free variables ~. 

By the construction of Wae, this implies that each ~.~ is a vLdid p r ec t i c~x t e  of the 
vertex v~ for (AP,  9, q), and therefore that F is a valid predicate of t h e  l a~ l t  vertex 
for (AP,  9, ~). This implies that the execution sequence (AP, 9, ~} i s  i n f i n i t e  (i.e. 
execution does not reach the halt vertex). So (AP,  a) does not terrc~in~te- Q .E .D .  

3.3. TERMINATION OF ABSTRACT PROGRAMS 

Definition 2. An abstract program A P  is said to terminaie if for e v e r y  i n t e r p r e t a -  
tion a the program (AP, ~) terminates. 

The following theorem follows from Theorem 1 and Definition 2. 

THEOaEM 2. An abstract program A P  terminates iff WAp is u n s a t i s f i a b l e  (or 

equivalently, r'~W ae is valid). 

PROOF. A P  terminates iff the program (AP,  9) terminates f o r  e v e r y  inter- 
pretation 9 iff (WAn., ~) is unsatisfiable for every interpretation 9 i f f  W A R  is un- 

satisfiable. Q.E.D. 
Theorem 2 transforms completely the problem of the t e r m i n a t i o n  o f  abs t r ac t  

programs into an equivalent problem in logic. This enables us to o b t a i n  m a n y  re- 
sults about the problem of the termination of abstract programs j u s t  b y  u s i n g  well- 
known results in logic. In the remainder of this section several s u c h  r e s u l t s  are 
presented. 

It is known that the termination problem of abstract programs is u n d e c i d a b l e  (see 
Luckham, Park, and Paterson [10]). But, since the validity p r o b l e m  o f  t h e  pred- 
icate calculus is semidecidable, we have, from Theorem 1, 

COROLLAI~Y 1. The termination problem of abstract programs is sevr~ idec idable .  
Moreover, any known semidecision procedure for solving the v M i d i t y  p r o b l e m  of 

the predicate calculus can be used, together with Algorithm 1, as  a se~nidecis ion  
procedure for solving the termination problem of abstract programs. 

Though the termination problem of abstract programs is u n d e c i d a b l e ,  there 
nevertheless exist subclasses of abstract programs for which t h e  t e r m i n a t i o n  
problem is decidable. 

COROLLA~¢Y 2. The termination problem for the following classes i s  d e c i d a b l e :  
1. C~ = {API A P  is an abstract program without function constants f i n, n ~ 11. 
2. C2 = {AP ] AP  is an abstract program which has only one p r o g r a m  variable 

x (i.e. n = 1), and all the occurrences of function constants in A P  a r e  i n  t e r m s  of the 
form f,° or f,~(x) }. 

3. C3 = {AP [ A P  is an abstract program which has only two p r o g r a m  v a r i a b l e s  x~ 
and x2 (i.e. n = 2), and all the occurrences of function constants in A P a r e  i n  terms 
of the form f ,  ° or f~:(xx, x2)}. 

PaOOF. For each i, 1 _< i _< 3, the decidability of the t e r m i n a t i o n  p r o b l e m  for 
the class C~ follows, by using Theorem 2, from the decidability o f  t h e  val idi ty  
problem for the class W~ (see Section 1.2). 

For example, to prove the decidability of the termination p r o b l e m  f o r  t h e  class 
C2 we use Theorem 2 and the decidability of the validity p rob l em f o r  t h e  class 
W2 = { W [ W is a wff in prenex normal form without function c o n s t a n t s  ~I ld  with 
prefix of the form V . . .  V~W . . .  V}. The proof of the assert ion f o r  t h e  other 
classes is similar. 

If A P  is any member of the class C2, it has only one prograrct v a r i a b l e  x (i.e. 
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n = 1), and all the occurrences o f  funct ion constants in AP are in terms of the form 
o o ~ • J'l~(x) (k , l  > 0) Then WAS is of the form f l , f 2 ,  ' " , J ~ ° a n d f l l ( x ) , f 2  ( x ) ,  " " , - • 

( x ) M  where 11I is a quan t i f i e r - f r ee  wff and all the occurrences of function constants 
, o  o ,, , f ~ ( x ) ,  ' . . . .  ,fz (x). in M are in terms of the form ]~ , f e ,  "' ,fk andfi~(x) 1 

Let  WEe be the  wff (~lw~) " ' "  ( 3 w k ) ( x ) ( 3 z ~ ) . . .  (3z~)M' where M' is the 
result of substituting w~, i -~ l ,  2 ,  • • • , h, i'or each occurrence off~ ~ in M and sub- 

f~ (x) in M;  i.e. contains stituting z~, i = 1, 2, • • • , l, f o r  ench  occurrence of ~ M' 

no function constants. W AP is satisfiable if and only if WAs is satisfiable, since WAp 
• 2 

is the functional form of WAP • ? l! . . / 
tt Let WAp be the wff (wl) • • • ( w k )  (~lx) (z~) . . .  ( z l ) i~M ]; i.e. Was lS Just ~-~W~e. 

Clearly, WEe is valid if and on l y  i f  W~p is unsatisfiable. 
t /  Because WAS is a member o f  W e ,  and the validity problem for the class W2 is 

H 
decidable, it is decidable w h e t h e r  ~VAP is valid or not. Since by  the previous asser- 
tions WEe is valid if and o n l y  i f  A P  terminates, this implies tha t  it is decidable 

whether A P  terminates or no t .  Q . E . D .  
Any decision procedure for  s o l v i n g  the validity problem for the class Wi can be 

used, together with Algor i thm 1 ,  a s  a decision procedure for solving the termination 
problem for the class C~. For  e x a m p l e ,  we can use Friedman's semidecision procedure 
for the predicate calculus [8], w h i c h  is a decision procedure for the classes W~, W~, 

and Wa. 
Note that  the abstract p r o g r a m  A P *  of Section 2.1 belongs to the class C2. 
In Sections 3.4 and 3.5 i t  is  s h o w n  that  the correctness and the equivalence 

problems of abstract p rog rams  c '~n be reduced to the termination problem. 

3.4. C O R R E C T N E S S  O F  A B S T R A C T  P R O G R A M S  

Definition 3. A triple l A P ,  ~ ,  ~h) is said to be compatible if A P  is an abstract 
program with program va r i ab l e s  ~ a n d  input variables #, ¢(~)) is a wff with no free 
individual variables other t h a n  # ,  a n d  ¢(~, ~) is a wff with no free individual varia- 
bles other than ~ and 2. The  w f f s  ~ ( ~ )  and ¢(#,  ~) do not contain any predicate 

variables. 
Definition 4. Let  lAP, ~b, ~ )  b e  a compatible triple. Then the abstract program 

A P  is said to be correct with re spec t  to • and ¢ if for every interpretation ~¢ ( that  
contains assignments for all t h e  c o n s t a n t s  that  occur in AP, ~, or ¢) and for every~ 
(such that 4~(~) = T),  ¢ (q ,  v a l  lAP,  a, q}) = T and the execution sequence 

lAP, a, ~} is finite. 

THEOREM 3. For every compat ib le  triple lAP,  ~, ¢) there exists an abstract pro- 
gram A P  ~ such that A P  is correct w i t h  respect to • and ¢ iff AP ! terminates. 

PROOF. Consider the a b s t r a c t  p r o g r a m  A P  ! represented by Figure 4. 

3.5. E Q U I V A L E N C E  O F  A B S T R A C T  PROGRAMS 
A Definition 5, The triple ( P ,  A P ,  ~) is said to be compatible if A P  and A P  ! 

are abstract programs with t he  s~Lrne set of program variables ~, and the same set 
of input variables ~ ~). ¢(~)  is a w f f  with no free individual variables other than 
and does not contain any p r e d i c a t e  variables. 

Definition 6. Let  lAP, A P ' ,  ~ )  be  a compatible triple. Then the abstract pro- 

~ Note that any two abstract p r o g r a m s  can be considered as satisfying the second condition, 
for if the two abstract programs do n o t  have the same sets of input variables, just add to each 
program an appropriate set of d u m m y  input  Variables. 
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FIG. 5. The abstract program AP" 

grams AP and AP' are said to be equivalent with respect to • if for every  i n t e r p r e t a -  
tion 9 ( that  contains assignments for all the constants tha t  occur in ~ ,  A P ,  o r  
AP') and for every ~/ (such that ~(~) = T) both execution sequences ( A P ,  ~ ,  -~) 
and (AP', ~, ~) are finite and val (AP, ~, q} = val (AP', 9, ~}. 

THEOREM 4. For every compatible triple (AP, A P  r, ~,) there exists an  a b s t r a c t  
program AP" such that AP  and AP' are equivalent with respect to Ov iff A P "  t e r m i n a t e s .  

PROOF. Consider the abstract program AP" represented by Figure 5. p i s  ~ n y  
predicate constant of n arguments tha t  does not occur in ,I,, AP, or AP' .  

The reader can verify easily that A P  and AP'  are not equivalent w i th  r e s p e c t  t o  
if and only if AP" does not terminate. Note that  A P  and AP' are no t  e q u i v a , l e n t  

with respect to • if and only if there exist an interpretat ion 9 and a q, av(~)  ~ -  ~r,, 
such that:  (1) (AP, 9, ~) is infinite; or (2) (AP', 9, ~} is infinite; or  ( 3 )  b o t h  
(AP, 9, ~} and (AP', a, q} are finite and ~ ~ ~' (where ~ = val (AP,  a,  ,~} ~ r x d  
~' = val (AP', 9, ~)). If for some assignment for p, p(~) = T and p(~ ' )  = F t h e n  

~ ~', and conversely, if ~ ~ ~' then there exists an assignment for p s u c h  t h a t  
p(~) = T and p(~') = F. 
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