Properties of Programs and the First-Order Predicate
bl

Check for
Updates

Calculus

ZOHAR MANNA®

Carnegie-Mellon University,T Piilsburgh, Pennsylvanio

aBsTRacT. This paper is concerned with the relationship of the termination problem for
programs and abstract programs to the validity of certain formulas in the first-order predica e
caleulus. By exploiting this relationship, subclasses of abstract programs for which the terrmxi-
nation problem is decidable can be isolated. Morsover, known proof procedures for the first-
order predicate caleulus (e.g. resolution) can be applied to prove the termination of hoth
programs and abstract programs. The correctness and equivalence problems of abstract pro-
grams are shown to be reducible to the termination problemn.

KEY WORDS AND PHRASES: terminalion, correctness, equivalence, programs, abstract pro-
grams, predicate caleulus, unsatisfiability, validity

CR CATEGORIES: 5.20

Inlraduction

An abstract program (program schema) is a program, but with function, predicate,
and eonstant symbols instead of specified functions, predicates, and econstants.
Thus an abstract program 4P may be thought of as representing a family of (real}
programs. By speeifying an interpretation ¢ for the symbols of AL, a programm
(AP, g) of this family is obtained. The program contains a set of input varisbles.
Each assignment of values to the input variables defines a (unique) exeeution of
the program. Recent papers on abstract programs include those of Tanov (see
Rutledge [16]); Luckham, Park, and Paterson [10]; Paterson [14]; Engeler [6];
and Kaplan [9].

In this paper we are concerned with the termination problem of programs and
abstract programs. A program (AL, 4) is said to terminate if all possible executions
of the program terminate. An abstract program A P is said to terminate if for every
interpretation 4, the program (AP, §) terminates. :

Given an abstract program AP, an algorithm is described to construet a well-
formed formula W 4p of the first-order predicate calculus such that AP terminates
if and only if W 4 is unsatisfiable, L.e. ~W 4p is valid. This implies that conclusions
about the termination of abstract programs can be obtained by applying well-
known results in logie. A corresponding result for programs is presented.

The relation between termination of computations and the validity of well-formed
formulas of the predicate caleulus has also been considered in the classical paper by
Turing [17] which shows that the decision problem for the predicate caleulus is
* Present address: Computer Seience Department, Stanford University, Stanford, California.
 Computer Science Department. This work is based on the author’s Ph.ID, Fhesis 11 The

work was supported by the Advanced Research Projects Agency of the Office of the Secrclary
of Defense (SD-146).

Journal of the Association for Computing Machinery, Vol. 16, No, 2, April 1989, pp. 244-255.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321510.321516&domain=pdf&date_stamp=1969-04-01

‘ Programs and the First-Order Predicate Caleulus 245

wunsolvable (see also Blehi [2]). The technigue we ave using Is a aatural extension
of Floyd’s method [7] for proving the correctness of programs.

An abstract program AL is sald to be correct If for every interpretation ¢ the
program { AP, 4) ter}minm,es and yiclds the desired final resudt. Two ahstract
programs A7 and AP are said Lo be equivalent if for every interpretation 9 hoth
Programs (AP, 9] and (4 P, 8) terminate, and for the same input values they
wield the same final values,

Both the correctness and the eguivalence problerms of abstract programs are
shown to he reducible to the termination problem.

Certain extensions of these results, with examples and applications, can be
found in Manna [11, 12], Manna and Pruell [13], and Cooper [4].

1. Mathematical Backgrownd

t.l. Tup (Fesr-Oroes) Previcats Cavconvs. In this seetion we partially
follow the exposition of Davis and Putnam [5].

The symbols from which our formulas are constructed are:

{a) Improper symbols:

punctuation marks L {00)
logical symbols ~D AV =4
primitive constants T F
(b} Congstants:
n-adic function constants >, n > 0)
(7 are called individual constants),
n-adie predicate constants p" izl n=0)

[p." are ealled propositional canstants)
{c¢) Variables:
Individual variables wgliz 1)
n-adie predieate variables " (121, n=20)
(g:" are called propesitional variables)
We define recursively three classes of expressions as follows:
{a) Terms
1. Each individual variable 2; and each individual constant f;° is a term.
2. I8,y - L1 (2 1) are terms, thensols f"(6 &b, -+ L o).
3. The terms consist exactly of these expressions generated by 1 and 2.
(b} Atomic formulas
L T, F, ., and ¢;° are atomie farmulas.
2.1t 4y, - -+ ,t, (n = 1) are terms, then the expressions p"(4 ,tz, -+« , 1)
and ¢;"(#; , &y, -+ , t,) are atomic formulas.
3. The atomie formulas eonsist exactly of those expressions generated by I
and 2.
(¢} Wellfarmed formulas (wffs)
1. An atomie formula is a well-formed formula {wit).
2. MR is a wit, then so ave ~R, (x;) R {xr; is said t0 be universally quantified),
and (Ji,) R (x; is said to be existentially quantified).

Luthe following we also use yi a¢ individual variables and ¢ as individual constants,

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1069

246 ZOHAR MANNY

3. If £ and 8 are wifs, then so wre (B 2 8), (R A 8), (R v 5),
and (B = 8).
4. The wils consist exactly of those expressions generated by [, 2, and 3.

Parentheses, subscripts, and superseripts arc omitted whenever their omissioy
causes no confusion.

An oceurrence of z; in a wit R is a bound occurrence if it 15 in a part of B which
is a wif of the form (z:)S or ()8, An occlrrence of w; which is not bound i
called & free occurrence. &: is free in £ if it has at least one free occurrence in R.

Those wifs which are logically valid can be singled out either by speeifying axioms
and rules of inference or by referring to “interpretations™ of the wifs of the system;
by Godel’s Completeness Theorem, both of these procedures lead to the same class
of formulas. It is most convenient here to use the latter formulation employing
“interpretation.”

An inlerpretation 9 for a wif W consists of a nonempty seb of elements D, {called
the domain of the inlerpretotion) and the following assignments to the constants of
w:

1. To each function constant f;" which oceurs in W, we assign a total funetion
mapping (D) “into O, . (Ifn = 0, the individual constant 7 is assigned some
fixed element of Dy .)

2, To each predicate constant p:" which occurs in W, we assign u total funeiion
mapping (D,)" inta {T, T}. (Il n = 0, the propositional constant p;;o is assigned
the value T or F.)

Given a wif W and an interpretation 9 for W (notation: (W, 4)), an assignmen!

T for (W, g) consists of the following assignments o the variobles of W:

1. "T'o each free individual variable x; in W, we assign some fixed element of D, .

2. To each predicate variable g;" which oceurs in W, we assign a total function
mapping (D,}" into | T, ¥}. (Il » = 0, the propositional variable g s as
signed the value T or F.) _

Let W be a wif. Then given an interpretation ¢ for W and an assignment I' for
(W, 4) (notation: (W, 4, T)), the value T or F will be assigned to (W, 4, T).
This value is obtained simply by using the assignments of 4 and T, interpreting F
as falsehood and T as truth, using the usual truth tables for ~, A, v, 2, and =,
and interpreting the universally and existentially quantified variables in the
standard way.

(W, 9) is said to be:

(1) valid if for every assignment I', (W, 4, I') has the value T';

(2) satisfiable if (W, g, T'} has the value T for some assignment I'; or

(3) unsatisfiable if it is not satisfiable.

Clearly, (W, 4) 4s valid if and only if (~W, d) is unsatisfiable.

A wif W is said to be:

(1) valid if for every interpretation ¢, (W, 4) is valid;

(2) satisfiable if (W, 4) is satisfiable for some interpretation 4; or

(3) unsaiisfiable if 1t is not satisfiable.

Clearly, W is valid if and only if ~W is unsalisfiable.

A wit is called quantifier-free if it contains no oceurrence of (@) of (dws)-

A wit is in prerex normal form if it begins with a sequence of quantifiers (:!h") and
(3z;) in which no variable occurs more than once (called the prefi), and if the
sequenee is followed by a quantifier-free wif (called the matriz).

Journal of the Assoeintion for Computing Machinery, Vol. 16, No. 9, April 1969

Programs and the Farsl-Order Predicale Coleulus 27

Let W be a wif in prenex normal form. Then ike functional form of W is defined as
follows.

Let the variables in the prefix of W (in order of vecurrence) be @, | zy, -+ -, ax .
Let the existentially quantified variables in the prefix be Tipy Lay , » vy Ty - Théu
torevery j, 1 = 7 < M, (1) the quantifier (Ha:,) is to be deleted from the prefix;
and (2) each 0CCUITence of z;; in the matrix of W is to be replaced by an occurrencei
of the term fi, (%u,, Tuy, -+, %a,), Where (we), (), -+, (@), ¢ = 0, are all
the universal quantifiers which precede (FHu;;) in the prefix of W, and fi. is the
first g-udic function constant which does not oceur in W and has not beén used
previously in this process.

We use the following known result: W is satisfiable of and only if its functional
Jorm is salisfiable.

1.2. Tuw Vawpity ProBrEM OF tHE Preprcate Csvcvius. The wvolidity
problem of the predicate caleulus is undecidable. That is, there can be no a,lgoriblu;l
which takes as inpul any wit and in all cases terminates with a decision as to whether
the wil is valid or not. But the validity problem of the predicote caleulus is semidecid-
ghle. That is, there are algorithms, called semidecision procedures, which take as
input any wif, and (1) if the wif is valid the algorithm will stop and say so; or (2) if
the wif is not valid the algorithm will never stop. The algorithms have undergone
suecessive reduetions so that by now they have a simple structure. Many recent
algorithms are based on the resolution principle (Robinson [15]). Furtbermore,
there exist classes of wifs for which the problem is decidable. For example, the
validity problem is decidable for the following three classes:*

1. Wy = [W| W is a wil in prenex normal form without function constants and

with prefix of the form ¥ --- V3 .- 3},

2. Wy = {W| W is a wif in prenex normal form without [unction constants and

with prefix of the form ¥V --- VAV - . ¥},

3. Wy = {W| W is a wif in prenex normal form without function constants and

with prefix of the form V --- YH3Y .- v},

2. Definitions

2.1. ABsTRACT PROGRAMS. An absiract program (or program schema) AL con-
sists of: : :
'1. A finite directed graph® (V, L, A) such that
(a) there exists exactly one vertex S € V with in-degree 0 (i.c. with no ares
leading t0 S), called the start vertex;
(b) there exists exactly one vertex H ¢ V with out-degree O (1.c. with no ares
leading from H), called the halt vertex; and
(e) cvery vertex v € V is on some path that joins S and H.

2. (a) Aset of m (m > 0) distinet individual variables § = (g1, 42, "+ Ym)
called input variables; and '
(b) aset of n (n > 1) distinet individual variables 2 = (&, %2, =+~ 5 %),
called program variables.
3. With each arc « = (v, {, ') € A there is associated

*Bee Ackermann [1] or Church [3, Sce. 48].
“Le. V (vertices), L (Iabels), and A (arcs) are nonemply finitesets. ACV X LX V.

Journalof the Asscciation for Computing Machinery, Vol. 16, No. 2, April {969

248 ZOHAR MANNA

Ko) / RN
.
v AN

3 \‘\63

nix)

s H
A
iy \“\\\
> /v/(m
e
pix}
) xa- X}
%
Fic. 1. The abstraet program AP*

(a) aquantifier-free wif ¢, called the fest predicate of ; and

b) an ntuple I, = (K%, 6% .., 15*7) of terms called the assignment func-
p s

tion® of «.

The wif ¢, does not contain any predicate variables. In addition, the wit ¢, and
the terms £ do not contain individual variables other than 4 and & If ¢ = §
{i.c. o i3 an arc leading from the start vertex), the wif ¢, and the terms ¢, do not
contain the program variables £.°

In addition, an abstract program should satisfy the following restriction:

4. For every vertex v (v » H), if a1, ap, +-+, ay i8 the set of all ares leading
from », the set of the test predicates vu, , €ag» ', Cay 18
(a) complete, 1.e. (E)(F) feay ¥V @az ¥ -+ V¥ @ay] is valid, and

(b) mutually exclusive,® ie. (AE)(AF) lpa;, A ®a;] 18 unsatisfiable for every
pair (4,7), 1 <7 <7 <N,

Example. TFigure 1 represents an abstract program. We refer later to this ab-
stract program as A P*, Here, a is an individual constant, f is & monadic funetion
eonstant, p is a monadic predicate eonstant, y is an input variable, and x is a pro-
gram variable,

2.2. Procrams. An inlerprefation 9 of an abstract program AP consists of &
nonempty set of elements D, (called the domain of the interprelation) and assign-
ments to the constants of AP: :

1. To each function constant f;" which occurs in AP we assign a total function

mapping (D,)" inte D, .
* The intended interpretation is: o: if ¢, then [replace simultaneously each variable z: by
t; * and go to o],
* We have restricted o, to be a quantifier-free wif. However, the theorems presented in this
work still hold in the case when ¢, is any wff that does not contain free individual variables
other than 7 and i. .
9 Le. under each interpretation and each assignment exactly one of the tost predicates is true. |

Journal of the Association for Computing Machinery, Vol. 16, No_ 2, April 106¢

Programs and the I'irst-Order Predicate Caleulus 249

Irra. 2. The program (A P*, 9%)

2. To each predicate constant p;" which occurs in AP we assign a total function
~ mapping (D,)" into {'T, F}.

Let AP be an abstract program and ¢ an interpretation of AP, The pair (AP, 9)
is called a program.

Ezample. Consider the abstract program AP* of Section 2.1. Let 8™ be the
following interpretation of AP*: D is I (the integers), f(z) isx + I, p(z) is z = 0,
‘and @ is — 1. Then the program (A P%, §*) can be represented by Figure 2.

In order to give a rough idea of what follows in Section 2.3, let us only mention
that the “ALGoL” meaning of Figure 2 is:

START: if 3 = 0 then [x « y; go to 8] else [z — —1; go to 1];
L: if # =0 then [z + #x; go to 3] else [z « z -+ 1; go to 2];
2: if z =0 then [z — —1; go to 3] olse [z « x; HALT};
3: if » =0 then [z + z HALT| else [z — = + 1; go to 3.

2.3, INTErPRETED Procrams. Let (AP, ¢) be a program. Then the result
obtained by assigning values 7, %€ (D)™, for the input variables 7 of the program is
called the inferpreted program® (AP 9).

Emample By assigning the value 1 to the input variable y of the program
(AP* 'g*) of Section 2.2, we obtain the interpreted program (AP*, 4% 1) repre-
sented by Figure 3.

The interpreted program (AP, 4, 7) defines an evecution sequence (AP, 4, %)
which is a (finite or infinite) sequence of triples

. -) (3 (8
(9,6 2y, d9,e®, 5, (19,07,37),

where: :
L (19 % g9 ¢ 1, X V X (D,)" forevery j, j = 1.

" Programs with no input variables (i.e. m = 0) willbe congidered as interpreted programs.

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1469

250 ZOHAR MANNA

S~ [CH Koo =] &)

Fie. 3. The interpreted program (AP*, 9%, 1)

2. (I, ¢, 2% is the first triple in the sequence if and only if there exists an are
a = (8,1 ") € A such that®* ¢ (§) = T and 2 = 1.(%).

3. (19,07, &7y and (19, 09 297V are two successive Lrlpleb i the sequence
1fa=nd0nly if there exists an arc & = (7, 1" 9y € 4 5. t Ye#V, 51 =T
and 27 = 1,09, 5). :

4. The sequence is finite, of length £ > 1, if and only if o™ = H. In this case
9 is called the value of the ('xecutzon sequence (AP, 4, -y} and is denoted by val
(AP g9, %)

In other wurds, execution always starts at the start vertex. On execution of the
Jth step, j = 1, control moves along the arc o = (U(M), 19 o'y where o™ = 8§,
and ¢, represents the condition that this arc is entered. The value of each program
variable x; is replaced in the jth step by the current value of #"', simultancously.
8o & represents the current value of the program variables # after executing the
jth step. Execution stops whenever eontrol I‘eJ.ChEb the halt vertex.

Brample. The interpreted program (AF*, ¥, 1) defines the execution sequence
(AP*, g% 1): (1,1, —1), (3,2, 0), (5,3, —1), (750) (8, H,0).

Let (AP, 9, %) be an interpreted program, and let v € V be any vertex of AP
Let 8 be a specified total predicate from (D,)" into | T, I'}. Then

(1) &is called a volid predicaie of v for (AP, 9, %) if VE E € (D))" (33 € L)
(({,», &) ocowrs in (AP, 9, %) = 8(F) = T; and

(2) & is called the menimal valid 'predwate of vfm (AP 4, %) if VE, £ € (D,;
(Al & L)L, v, &) oceurs in (AP, 9, 7)] = 8(}) =

Ezxgmple, The predicate 2 < (is a valid predicate; the predicate » = —1 is
the minimal valid predieate of the vertex 1 for the interpreted program (AP g, 1)

® ve(7) and %(3) stand for the result of substituting 5 for 7in g, and I, .
? e (B9, 5} and L(39, 5) stand for Lhe result of substituting 9 for 7 and 5 for y gy a,nd la

Journal of the Association for Coroputing Machinery, Vol. 18, Na. 2, April 1989

Programs and the Ferst-Ovder Predicate Colenlus 251

3. Terminalron of Programs and Abstract Programs

1. Tep ArcoritaM 1o ConstrRUCT Wi In this seetion we describe an
algorithm to construct from a given abstract program AP a wif W,, . In Section
3.3 we state results about the relationship between AP and Wap .

Arcorrriv 1. Let AP be any abstract program with programm variables

i= (@1, @, 0, %), v 2 1, andinput variables § = (y, 3, - . Cy Yw), m > 0O,
Assoclate with every vertex v; of AP a distinet n-adic predicate variable i
For each arc & = (v;, {, v;), define W, as

(ql(f) A Qou) - qj(za>'
However, if v; = S (i.e. »; is the start vertex of AF), replace the oeeurrence of
@) in Waby T, andif v; = H (i v;is the halt vertex of AP), replace the ocvur-

rente of q/(1e) in W, by F.
Let ou, @z, - -+, an be the set of all the ares of AP Then define W, as:™®

(@) Wa A Way Ao A Wy,

Ezample. The wit W.iex of the abstract program AFP* of Seetion 2.1 is
(2)(A3 T5), where:

Wi: T A ~ply) D aqla) Wsi galz) A plz) D gia)

We: T Ap(y) D aly) Wi qu(z) A ~p(z) DF

Wy gz) A ~p(z) D g(f(x)) Wai: glz) A ~p(z) D gf(z))
Wi q(z) » p(x) D gs(x) Ws: gu(z) Aplz) D F

3.2, TERMINATION OF PROGRAMS

Definition 1. The program (A7, 4) is said to terminale it W5, 5 € (D,)", the
execution sequence (4L, d, %) is finite.

We are ready now to state the main result.

Tarorem 1. The program (AL, 9) terminates iff (Wip, §) is unsatisfiable (or
equivalently, (~W 4y , 8} is valid).

Proor. We prove that the program (AP, g) does not terminate iff (Wap, 9)
is satisfiable.

(1) I (4P, 9) does not terminate then (W 4 , 9) is satisfiable.

It the program (AP, g) does not terminate, there exists a 5, ¥ € (D)™, such
that the exceution sequence (AL, 9, %) is infinite.

Let us assign (o each predicate variable g; in W, the minimal valid predicate
of the vertex v; for the interpreted program (AP, 4,%).

Note that since the execution sequence (AP, ¢, ¥) is infinite, i.e. control never
teaches the halt vertex, it follows that the predicate F is the minimal valid predicate
of the vertex I/ for the interpreted program (4P, 4, 7).
~ Let T consist of the above assignments for the g;'s, with ¥ assigned to g. Fallowing
Fhe construetion of W, , it is clear that the value of (Wyp, 9,) is T;ie. (Wap, 9)
1 sabisfiable; this completes the proof in one direction.

) (Wap, s) is satisfiable then (AP, ¢) does not terminate.

B (Wi, 9) is satisfiable, then there exists an assignment T' for (W, , 9) such
that the value of (Wap, 9, T) is T. T consists of assignments of specified fotal

10
Nute that the Imput variables 7 are free variables in Wae .

Journal of the Association for Computing Machinery, Yeol. 18, No. 2, April 1060

NA
252 ZOHATE MAN

predicates 8; , mapping (D)" into {'T, I}, for the predicate variables ¥+ and an

assignment ¥, 3 € (D,)", for the free variables §.

By the construction of W ., this implies that each & is 2 valid pred
vertex u; for (AP, 9, %), and therefore that I' s a valid predicate of the
for (AP, 9,). This implies that the execution sequence (AP, 4, 7y is i1
execution does not reach the halt vertex), 8o (AP,) does not terminate.

icate of the
halt vertex
fanite (Le
. ED

3.3. TEGMINATION OF ABSTRACT PROGRAMS

Definttion 2. An abstract program AP is sald to lerminaie if for every interpreta
tion g the program (AP, 9) terminates.

The following theorem follows from Theorem 1 and Definition 2.

THEOREM 2. An abstract program AP terminates iff W, s unsatisfiable (or
equivalently, ~W .p is valid).

Proor. AP terminates iff the program (AP, 9} terminates for every inter-
pretation g iff (W, , 9} is unsatisfiable for every interpretation & ifT W oap is un-
satisfiable. Q.F.D.

Theerem 2 transforms completely the problem of the termination of abstract
programs into an equivalent problem in logie. This enables us to obtain many re-
sults about the problem of the termination of abstraet programs just by using well-
known results in logic. In the remainder of this section several such results are
presented.

Tt is known that the termination problem of absiract programs is undecidable (see
Luckham, Park, and Paterson [10]). But, since the validity problem of the pred-
icate ealeulus is semidecidable, we have, from Theorem 1,

ConroLLARY 1. The termination problem of abstract programs is semvidecidable,

Moreover, any known semideeision procedure for solving the validity problem of
the predicate caleulus can be used, together with Algorithm 1, as a semidecision
procedure for solving the termination problem of abstract programs.

Though the termination problem of abstract programs is undeecidable, there
nevertheless exist subelasses of abstracl programs for which the termination
problem is decidable. '

CoroLLARY 2. The termination problem for the following classes s decidable:

1. ¢, = {AP| AP is an abstract program without functior constands £, n = 1}.

2. Cy = {AP| AP is an abstract program which has only one prograre wvariable
z (ie. n = 1), and all the occurrences of function constanis in AP are in terms of the
form £:" or £1(2)}. _

3. Cy = {AP| AP is an abstract program which has only two program variables 1,
and @, (ie. n = 2), and all the occurrences of function constants in AL are 7n terms
of the form £° or f (1,)}, R

Proor. Toreach i, 1 < i < 3, the decidability of the termination problem for
the class C; follows, by using Theorem 2, from the decidability of the validity
problem for the class W; (see Section 1.2). :

Tor example, to prove the decidability of the termination problem for the class
C; we use Theorem 2 and the decidability of the validity problem for the class
W, = {W| W is a wif in prenex normal form without function constants and with
prefix of the form V .- VAY ... V]. The proof of the assertion f and wit

L . prool ot the ion for the other
classes is simlar. o
If AP is any member of the class Cy, it has only one program variahle . (i,e.

Journel af the Assoviation for Computing Machinery, Vol. 16, No. 2, April 1960

Programs and the First-Order Predicale Calculus 253
n = 1), and all the occurrences of fu ﬂ(fﬁ‘(J)ﬁ constants in AL are in terms of the form
AR o B and S (x), f(x) ’-hb(x)_ (k, L = 0). Then W, is of the form
()M where M is a quantifier-free ?’ff and .a}fl the oceurrences of funetion constants
in M are in terms of the formflo} Joo o e and fy (z), fo'(x), -+ fi ().

Let Wi, be the wif (Bw.) - {(Hw)(x)(Az) - - (ﬂzg)M' where M’ is the
result of substituting ws, 7 = 1, 2> """ k, for each occurrence of £’ in M and sub-
stituting 2,7 = 1, 2, <+ , 1, for each ocourrence of f(z) in M; i.e. M contains
16 function constants, W1y te satisfiable if and only of Wy us satisfiable, sinee W ap
is the funetional form of Wip - ,

Let W' p be the wif (w,) -+« - (wx) (3}')(21) oo (2DI~ M Le. Wpis just ~W p
Clearly, W'to ds valid if and only if W sp 15 unsatisfiable.

Because Whe is o member of W= ;) and the validity problem for the class W, is
decidable, it is decidable whether 3. is valid or not. Since by the previous asser-
tions Wep is valid if and only if AP terminates, this implies that it is decidable
whether AP terminates or not. Q.1.D.

Any decision procedure for solving the validity problem for the class W; can be
used, together with Algorithm 1, as a decision procedure for solving the termination
problem for the class C; . For example, we can use Friedman’s semidecision procedure
for the predieate caleulus [8], which is a decision procedure for the classes W, , W, ,
and W.g .

Note that the abstract program AF" of Section 2.1 belongs to the class (.

In Sections 3.4 and 3.5 it is shown that the correctness and the equivalence
problems of abstract programs can be reduced to the termination problem.

3.4. CORHECTNESS OF ABSTRACT PrOGRAMS

Definttion 3. A triple (AP, @,) is said to be compatible if AP is an abstract
program with program variables £ and input variables 7, ®(7} is a wif with no free
individual variables other than &, and ¢(#, £) is a wil with no free individual varia-
bles other than 7 and & The wifs $(§) and ¥(F, £) do not contain any predicate
variables.

Definition 4. Let (AP, ®, ¥) be a compatible triple. Then the abstract program
AP is said to be correct with respect to ® and if for every interpretation # (that
contains assignments for all the constants that occur in AP, ®, or ¢) and for every ¥
{(such that ®(3) = T), ¥(%, val (AP, 4, %)) = T and the execution sequence
{AP, d,%) is finite. : :

THEOR’EM 3. For every compatible triple (AP, @, ¥) there exvists an absiract pro-
gram AP such that AP is correct with respecl to® and iff AP terminates.

Proor. Consider the abstract program AP represented by Figure 4.

3.5. EQUIVALENCE OF ABSTRACT PROGRAMS

Defimition 5. The triple (AP, AP, &) is said to be compatible if AP and AP
are abstract programs with the same set of program variables & and the same set
of input variables” §. ®(§) is a Wil with no free individual variables other than ¥
and does not contain any predicate variables.

Definition 6. Let (AP, AP", &) be a compatible triple. Then the abstract pro-
1 Note that any two abstract programs 'C,w he considered as satisfying the second condition:

for if the two abstract programs do not have the same sets of input variables, just add to each
program an appropriate set of durmmy input varizbles.

Journil of the Amociution far Computing Machinery, Vol. 16, No. 2, April 1969

254 ZOHAR AMANNA

Pt fJ) D— the absiract progeam AR -

.

Y

Fiis. 4. The abstract program AP’

L4

~%(y

- the
) b abstract
progra

AP

Fra. 5. The abstract program AP”

the
ahstract
prragran

APt

grams AP and AP are said to be equivalent with respect to ® if for every interpreta-
tion 9 (that contains assignments for all the constants that oceur in &, A F?, or
APy and for every # (such that ®#(%) = T) both cxecution sequences (A P, g, F)
and (AT, 9, %) are finite and val (AP, d,%) = val (4 P 4,3).

TuroreMm 4. For every compaitble triple (AP, AP’ @) there exists an abstract
nrogram AP? such that AP and AP are equivalent with vespect to® iff AP” terminates.

Proor. Consider the abstract program AP’ represented by Figure 5. p is any
predicate constant of » arguments that does not oceur in @, AP, or AP'.

The reader can verify easily that AP and AP are not equwalont with respect to
& if and only if AP” does not terminate. Note that AP and AP are not equivalent
with respect to @ if and only if there exist an mterpretatmn dand 2 %, #(F) = 7,
such that: (1) (AP 4, ¥) is infinite; or (2) (AP 4, 4) 1% infinite; or (3D bgth
(AP, 9, %) and (AP, 9, %) are finite and £ == £ (where = val (AP, 9, %) and
E o= val (AT, g,%)). If for some assignment for p, p(E) = 7T and p(E) = then
£ # F, and conversely, if § = Z then there exists an assignment for » suech th at
p(¥) = Tand p(F) =

ACKNOWLEDGMENTS. I am indebted to Robert Floyd for his help and encourage.
ment throughout this research. Also of great valuc was the help of Alan Porlis,
John MeCarthy, Peter Andrews, Donald Loveland, Martin Davis, David Cﬂﬂper
Richard Waldinger, and James King,

REFERENCES

1. AckerMann, W. Sojvable Cases of the Decision Problem. North-Holland Puhi ishin
Co., Amsterdam, 1954, g

2. BUCHI J. B. Turing machines and the Entscheidungsproblem. Math. Ann. 148 (1962),
201-213

Journal of the Association for Computing Machinery, Vol. 18, No. 2, April 1960

Programs and the First-Order Predicate Calculus 255

16,
7.

Cavkeit, A, Inlroduction to Malhematical Logie, Yol I Princeton U, Press, Prineeton
N.J., 1956,

Cooper, . C. Program scheme equivalences and second order logie, Fourth Ann, Ma.-
chine Intelligence Workshop, U, of Edinburgh, Aug. 1968,

Davis, M., axn Puryay, I A compuoting procedure for quantification theory, J. ACM
7,3 (July 1960, 201-215.

Bwoncenr, B, Algorithmic properties of structures. Mk, Syst. Theory 1, 3 {1867), 183~
185.

Frovp, R. W. Assigning meaning to programs. Proc. Symp. Appl. Math., Amer. Math.
Jo¢., Vol. 19, 1967, 19-32,

Friepmax, J. A semi-decision procedure for the functional caleulus. J. ACMH 16, 1 (Jan.
1963), 1-24.

Karrax, D. M. The formal theoretic analysis of strong equivalence for elemental pro-
grams. Ph.D. Th., Computer Seisnce Dept., Stanford U., Stanford, Calif., June 1968,
Luckram, 1. G, Park, D. M. R, anp PATERSON, M. 8. On formalised computer pro-
grams. Program. Res. Group, Oxiord U., Fngland, Aug. 1967.

Mawwa, Z. Termination of algorithms. Ph.D. Th., Computer Science Dept., Carnegie-
Mellon U., Pittsburgh, Pa., April 1068. -
Manna, Z. Formelization of properties of programs. Memo No. Al-64, Stanford Artificial
Intelligence Rep., Stanford, Calif., July 1968,

MaxNa, Z, axp PyugL, A, Fommalization of properties of recursively defined funetioiis.
Ta be presented at ACM Bymp. on Theory of Computation, Marina del Rey, Calif., May
1969.

Parurson, M. 8. FEquivalence problems in a model of computation. Ph.D, Th., U. of
Cambridge, Cambridge, England, Aug. 1967 . _
Rosryson, J. A, A machine-oriented logic based on the resolution principle. J. ACHM 12,
1 (Jan. 1965}, 2341,

RurLepes, J. D, On Ianov’s programschemata. J. ACM 11,1 (Jan, 1964), 1-9.

7

‘Tuvaixe, A. M. On computable numbers with an application to the Entscheidungspro-

blem. Proe. London Math. Soc.{2], 42 {1936-7), 230-265; correction: 43 (1937), 544~346.

KECEIVED JUNE, 1968; REVISED NOVEMBER, 1968

Journgl of the Associntion for Computing Machinery, Val. 16, No. 2, April 1869

