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aBsTRact. The inversion of nonsingular matrices is considered. A method is developed which
starts with an arbitrary partitioning of the given matrix, The saparate submatrices are grouped
into sets determined by the nonzero entries of some appropriate group, @, of permutation
matrices, The group structure of & then establishes a sequence of operations on these sets of
submatrices from which the corresponding representation of the inverse is obtained.

Whether the method described is to be preferred to, say, Gauss’s algorithm will depend on
the capabilitics that are required by other parts of the algorithm that is to be implemented
in the special-purpose parallel computer. The basic spesd, measured by the count. of parallel
multiplications and divisions, is comparable to that obtained with Gauss’s algorithm and is
slightly better under cerlain condilions. The principal difference is that this method uses
primarily matrix multiplication, whereas Gauss’s algorithm uses primarily row comlbrinations,
When the special-purpose computer under design must supply this capability anyway, the
method developed here should be considered,

Application of the process is limited to matrices for which we can set up a partitioning such
that we can guarantee, a priori, that certain of the submatriees are nonsingular. Hence the
methed is not useful for arbitrary nonsingular matrices, Flowever, it can be applied to certain
important classes of matrices, notably those that are “dominated by the diagonal.’” Nuise
covariance matrices are of this type; therefore the method ean be applied to them. The in-
vergion of a noise covariance matrix is required in some problems of optimal prediction and
control. It is for applications of this sort that the method seems particularly attractive.
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Introduction

In this paper the inversion of matrices by the method of partitioning is deseribed
and discussed. The method has practical significance in eertain types of parallel
processors and special-purpose computers.

The work originated in a study of how to design a special purpose parallel com-
puter for application to certain control problems. The eontrol algorithm considered
involved maioly matrix multiplication, but did include the inversion of a noise
covariance matrix. Gauss’s algorithm (1, 2] proved to be quite awkward sinee it
required data transfers and manipulations that did not mesh at all well with those
required elsewhere in the algorithm. Hence we were lead to consider what other
methods might be more convenient.

The method deseribed here is a generalization of the well- known method based
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on a twofold partition, This method uses the formula'

~ A By AT ~ BIFICA — ATBD YL — CABD )1
m = (C D) = (*D“CA”“(I — BDICAY DI — CABDY )L ): LV
where A, B, C, I} are submatrices into which M is partitioned. It is implied thai A
and D are square, but they need not be of the same dimensionalitics. If not, then B
and C are rectangular. As an extreme example, if I is I X 1, we obtain the basic
formula, the eascaded application of which becomes the method of bordering [3].

The formula is inapplicable if either A or I is singular. (The nonsingulavity of A
and D, together with that of M, implies the nonsingularity of (I — BD7'CA™)
and (I — CAT'BD™).) In this case, we can consiruct an alternative procedure
based on the nonsingularity, if true, of B and C. This is a special case of the possi-
bility of using what we later call “block pivoting.” However, for a given partition-
ing, the nonsingularity of M does not guarantee the possibility of solution even with
block pivoting.

To apply eq. (1), or the generalizations of it that we develop, we need a priori
information which will assure the applicability of the methods. In the original
application this was provided by the fact that the matrix being inverted was a noise
covariance matrix and hence is, in a suitable sense, dominated by the diagonal
elements. In what follows we assume that this, or some equivalent condition, is
known to apply.

In the following sections we consider various generalizations of the twofold par-
titioning discussed above. We consider, in particular, an r-fold partitioning, and
show that it can be handled conveniently through the use of some group of order r.
Later we make a count of the operations needed in certain attractive-looking cases,
and thus obtain an estimate of their speed for parallel computation,

Greneral Theory

sonsider a matrix, M, partitioned in an r~fold way into

(N[u My - er)
M=1f: ) @)
M, M, --- M,
where the submatrices, M;;, on the diagonal are square. The dimensionalities of
the different M,; need not be the same, in which case some or all of the off -diagonal
submatrices will be rectangular. This, however, does not interfere. Unless M has
some special structure which can be exploited by such an irregular partitioning, it
will usually be advantageous to make all dimensionalities the same, or as similar
as possible,

Consider a transitive group, @, of order r, with & representation as a set of # X 7

Permutation matrices [4]. (Such a representalion always exists.) For example, if
7 = 3, wo can use the cyelic group of order 3, represented by the matrices gen-

erated by
010
S=(0 0 1]}. 3)
100
* Bold-face capilal letters are used to indicate matrices and submatrices.
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The whole group, then, is represented by {1, 8, &% with 8 = I as the only definiyyg
relation. {1n this section, this group is used us a running example.) -

We pick out from the partitioned M those submatrices which correspond to the
I’s in the group representation. In the example cited, for instance, we define

My, 0 0 0 M, 0
My = 0 DB [V M, = [¢] 1] Moz }; {4y
0 0 M By 0 0 ]

0 0 My,
My = | My O ol
0 M. O

We call the set, Mg, M, , and My, companents of M, They form a mulliplicative
semigroup, i.e. MM, is of the form of M. and MM, and MM, are both of the form
of My . It is this property thai makes them of value, and that is the significance of
the original speecification of a group.

If now we have two matrices, A and B, so expressed, it is easy to see that the com-
ponents of their product are given by

(AB); = AB¢ 4+ AB, + A.B;,
(AB); = A;B, - A By + A:B:, (5
(AB), = A B, + AB, + A:B;.

Similar expressions ean be written for any group & used in the definition of the

components.
Tor the inversion of M, it is necessary to find an X such that

(MX )y = 1; (MX); =0, i=0 (6)

Using eq. (5), we ean write og. (6) so as to look like a vector equation in the

components
M, M. M, Xa 1
M1 M() Mg X; = 0 . (7)
M: M, M, X 0

The “vectors” cal (X, X,, X;) and col (I, 0, 0) have mutrix-valued coeflicients.
Technically, they are clements in a module.”

Equation (7) can now be written as the Kronecker produet of the componcints
and the elements of G:

(Mo X T4+ M, XS+ M XSHX =K, (8)

where X = col (Xy, Xu, X2} and, in this case, K = col (1, 0, 0}.

Equation (8) can be regarded as expressing M, as it acls on X, in terms of its
components, each acting along the basis elements ( X 1), ( XS), and (X8,

Tn the more general ease of an arbitrary group, G, the analogue of eq. (8) is:

(22 M: XgX = K, (9

where g, is an element of the group and, in general, the sum is over all elements of
the group.

2 A module isan entity which obeys weaker conditions than does a vector space. Specifically, its
coefficients are only required to be elements of a ring, rather than of a field.
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Iney. (7), the matrix on the left is 3n X 3n, if M isn X #. Tt will be found that
we do not ever deal with an actual matrix that is more than n X n. Equation (7),
then, is uselul only as it gives the appropriate multiplication 1*1.1[@13———0(}. {5). Since
the multiplication rules are algo coutained iv the abstract group, eq. (9) has been
written in terms of the set {g.], which can be viewed as the abstract operators of G.
The multiplication sign can, then, be considered as indieating the Cartesian produet
of the various M, with the corresponding member of the abstraet group.

In the eyelic group in general, as typified in eq. (8), the order in which the M,
oecurs, i “naturally” defined, is inverse to the powers of 8. In a general group,
there is no “natural” ordering of the group elements, and we ean index the M, so
as to obtain the form of eq. (97,

The problem, now, is to solve eq. {8) or (9) [or X.. Note that the condition on M
that it be dominated by the diagonal implies the nonsingularity of My . Hence we
can premultiply eq. (8), or eq. (9), by My* X L Since the produet of Kronecker
products is the Kronecker product of the products, (A X B)(€C X D) = (AC) X
(BD), we obtain

(I X T+ MM, XS + My'M, X $HX = (My? X DK, (10)
or, in the general case,
(IXe+ ; My*M: X 90X = (M;' X e)K, (11}
where € i the group identity.

We can, now, eliminate the ferm involving any group element in eq. (11), for
example g, , by premultiplying eq. (11) by (I X ¢ — My "M, X 7).

Doing this in eq. (10), for cxample, we premultiply by (I X T — Mg*M, X S)
and get
(0 — Mo MM ‘M) X T4 (M'™, — M MM ML) X 83X "
= (Mg X I — Mq'MM;' X S)K. (12)

The component of (XI) on the left side of eq. (12) is (I ~ Mg M.M;'M,), which
differs from the identity only by terms that are quadratic in the coefficients of
M, which are off-diagonal in M. Hence this component is dominated by the
diagonal and consequently invertible. We can therefore renormalize eq. (12) by
premultiplying by (I - MEIMQMEINL) X I so that the leading term is I X L
Writing the result as

(IXI+ M X8)X =K, (13)
we need to eliminate the term in { XS?).
If now we premultiply by (I X I — M," X 8%), the term in { XS} is eliminated,
but a term in ( XS) is reestablished. If, however, we premultiply instead by
(IXT+MXS—M X8, (14)
we eliminate the ( XS*) term without reintroducing a ( XS) term, and obtain
(I+MDH XDX = IXI+M'XS— M, XSK. (15)

Again the (XI) component is at least quadratic in the off-diagonal term and
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cun be inverted. Henee we ean renormalize, and so obtain X explicitly:
IXDX =X ={(IT+MH"' XTI+ (0+MH™M?x8
— (L+ M5 ™M, x 8% K.

In the general problem of continuing the reduction of eq. (9) for an arbitrary
group, &, it does not appear to be possible to write a general procedure. (The
problem seems to be linked to that of finding the simplest defining relations for
an arbitrary group, which is known to be an uncomputable problem, i.c. there
exists no linite and finitely deseribable general algorithm.) Therefore, two special
types of groups which are of practical importance are considered below, and then
one general class of groups is discussed briefly.

(18)

Cyelie Group

In the running example used above we used the cyclic group of order 3. We now
generalize this procedure to the eyelic group of order », where r need not be prime,
(If it is not prime, however, it will generally be advantageous to use the normal
subgroups set up by the faetors of . This can be done by the principles discussed
later.) Let 8 be the representation of the generator of @, and let the analogue of
eq. (8) be

(Mo X T4+ M_ XS+ M.oXS+ - +M X85 HX = K. (17)

We proceed initially as before. We normalize by premultiplying by (Mg X I)’
and then eliminate the term in ( X8) by premultiplying by (I X I — M, X S)

We now define the succeeding steps inductively. Suppose we have eliminated the
terms up to, but not including, that in ( %8*), and have renormalized to

(IX1+ P XS 4P, XS4+ P XS HX = H (18)
We premultiply by
IXT+QaXS+QaeXSF+ - +qXS" P X8

% g
= (I x1I)+ (; Qe X Si> — (P X S9). (19)

This eliminates the term in ( XS%). To prevent the reestablishment of terms
in { XS, 1< i<k, the Q; must satisfy the recursion formula

h—1

Q=P — ; Q.Pi_:. {20}
This ean be solved successively:
Q1 = Pr—kpl, .
Qy = Pop(P2 — P, (21)

s = PrAk(Ps - P1P2 —_ PgPl "{— P]s), ete. thl‘ough kal .

In the later stages of solution, not all the indicated P, exist in eq. (18}, The miss-

ing ones are interpreted as being null. _
As a general description of eq. (21), Q is the product of P,_; times the sum of
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Inversion of Matrices by Partitioning 307

all terms of the form

(_"lynanhPi': T P‘Em )

where the sets of coefficients (4, , 4, -+, #a) arc taken over all ordered partitions
of h—i.e. all ordered sequences of paositive integers such that 4 4 % + - -+ 4+ 4, = h.
The leading term in the result, i.e. the component along ( X1), is
A1

(I - P._P. + Z_:l QiF) XL

Its eocfficient again differs from the identity by terms that are at least quadratic
in the cff-diagonal terms of M, and so, under our assumptions, can be inverted.
Hence we can renormalize and continue the process.

These formulas solve the problem for & the eyelie group of order », where r is any
integer.

The Growp Cs X Cy X -+ X (%

We consider next the group Cy"—i.e. the direct produet of m copies of 'y, the ro-
flection group. Alse, this group illustrates the use of a decomposition of & into a
sequence of normal subgroups.

Set
01
S = (1 0) ; {22)
(s can be represented by [and 8, and €™ by the collection of matrices
S; = 8% X 8" %K ... X8 (23)

where each a; has the value either 0 or 1, and the set is over all sets of a; .
As an example, we represent Oy X Cy as

601 0} (0100
¢ 0o . 1t oo o0
Si=IXS8= ] o of 0 Si=SXI= ]u 00 11’
o1 0 0 0 o1 0
[0 001 (24)
o aaww (0010
S=8X8 =151 0 o
Ll 00 0
with 8, being the 4 X 4 identity.
The equation to be solved, then, is
w1
(MOXI+_ZIM1-><S,- X = K, (25)

where n = 2™,

Again we can normalize with My" X I and climinate any term, say that in ( XS,),
by premultiplying by {I X T — M, X S} obtaining, after renormalization, the form
IXI4+ 2773 M X8)X =K.

The set, (I, 8,) is a normal subgroup. Hence its quotient set, or the set of its
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cosets, is a group. One such cuset, for example, is (S2, 83) = (I, 8)) So. (14 does
not matter which coset we use.) If we premultiply by

(I X =M X8 — M X8, (26)

this has the effect of moving that coset down into the subgroup itself. This recstab.
lishes a term in { X8,) but eliminates the two terms in ( XS,) and (X8;). (It is @
consequence of the [acl that the quotient set is 2 group—which is due to the nor.
mality of the subgroup—that terms in XS, and X8, are not reestablished else.
where 1n the product.) In particular, we get, in this case,

(I — Ms® = M3 x 1 — (M/M, + M,/M,) X8,

(27
+ (termsin XS:,i > 31 X = K7,

Renormalizing gives
I XTI M7 X8 + (termsin X8, 7> 3)} X = K”. (2%)

Premultiplying eq. (28) by (1 X 1 — MY X 8,), we eliminate the terms in
X8, . The remaining terms are in cosets of (I, Sy) other than (8, ,S;), so that terms
in X8, and X8, are not reestablished.

We have, then, eliminated all terms in X8y, X8;, and XS, . But again (I, S, ,
S., 8,) is & normal subgroup of . We repeat the process, moving one of its cosets
down into the subgroup. For example, to eliminate the coset (84, S5, Sq, 51},
we premultiply by I X T minus the terms in ( X8:), (X8;), (XS;), and ( XS;}.
The same arguments as before show that there terms are not reestablished by other
products in the multiplication. Also, we can now repeat the process of eliminating
first the term in (X8,), then those in ( X8,;) and (X5;), and then (X8,) again
without reintroducing the coset. This completes the elimination of all terms in
(XS:), 1 <7 <7.The process can be continued until all elements except that in
{ X1) have been eliminated, and the equation is solved for X.

The process as deseribed depends on the existence of what is known as a prin-
cipal series such that each factor group iz Cy. That is, we ean establish a sequence
of subgroups

G:GDQGEQGZ"”QGm (293
such that G; is & normal subgroup of all &;, 7 < 4, and such that
Gi—l/Gi = C9 . (30 J

A Class of Groups

We now consider, very briefly, a special but important class of groups. Consider &
group, &, with two generators, @ and b, of order » and s, respeetively,

a =b =e, (31}
and which has a defining relation of the form
ab = ba', (32)

The class includes all bigenerated Abelian groups, the dihedral groups, and
the quaternion and generalized quaternion groups.
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Inversion of Matrices by Partitioning 200

Trom eq. (32), it follows that the cveiic subgroup (e, @, - - - 1Y is & normal
subgroup of . We use the procedure given above to eliminate n, Wo ¢liminate the
coset (b, ba, - -, ba” "y as before, using (1 X ¢ — Z,————u M X bo®), which reestub-
lishes terms in the subgroup. Because of the defining relation assumed, we can
reeliminate the subgroup without reestablishing the coset.

1i, now, b" is not already disposed of (in the quaternion group, for example, the
problem has already been carried to eompletion), then what remains can be written
in the form

(pr+20><ba+ZA X bt - > (33)
2 =)

where we explicitly exhibit the elitninated terms with null components. Premulti-

plying by

71 r—1
(I xXe)+ (Z;) U; X bazl) - (Zo A X bz(ll‘), (84)
==t o=
we eliminate the terms in (xb%'). Bach term, U, X be’, appears as itself when
multiplied by I X e. Also, since the multiplicand has null terms in (Xa'), cach
U; X ba' is nonnull only in the single term ( Xba') of the set of terms of this form.
This permits us to solve for each U, so as to prevent the reestablishment of terms
in this coset. In this process, the terms are reestablished in ( Xa'), but these can
subsequently be reeliminated.

We can, then, by similar means, continie with the cosets generated by successively
higher powers of b until the entire group is reduced to the identity. {Eqguation
(32) assures that all elements of ¢ can be written as 0g” for some z and 7.)

Note the role played by the defining relations. We have used eq. {32} in the choice
of eq. (34) to assurc that there is no interaction of the U; in the ( Xba') terms of
the product of eqs. (34) and (33). This permits us to solve directly for the U°
that we need.

It seerns apparent that a similar process can be worked oul for any group. Sinee,
however, we eannot speeily the form of the defining relations in any general way,
there does not seem to he any general way of specifving the process.

Block Pivating

We conelude the abstract diseussion by deseribing the technique we call “block
pivoting.” Putting it in general terms, suppose, at some stage, we have reduced the
equation to

(Ao X e+ 2. A Xg)X =H, (35)

where the sum is over those elements of @ not already climinated. If A, s singular,
the procedure given is blocked. However, if some A, among those remaining is
nonsingular, we can premultiply eq. (35) by I X gi . This has the effect of shifting
the terms around so0 as to put A, in the leading position. The other terms are also
shifted, but their number is unaffected.

We can, of course, eombine the block pwotlng, opemtlon with the subsequent
renormalization by premultlplymg eq. (35) by (AT X g .

While block pivoting is a valid operation, it is not sufficient to assure solvability
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in the general case. Given a predetermined partitioning of M, the nonsingularity
of M is not a sufficient condition to guarantee that there is, in eq. (35), any _A;{
that is nonsingular. However, block pivoting is useful in that it does extend the
class of matrices that can be inverted by a given procedure with a fixed partition.
ing.

Application to Parallel Processing

The formalism used above mav be confusing. We therefore consider two specific
examples-—the inversion of 2 9 X 9 matrix and of an 8§ X & matrix.

In considering a parallel processor, it is neeessary to be precise about the parallel
capahilities assumed. In the examples we consider, we assume the capability of
doing 81 and 64, respectively, multiplications in parallel—one for each coefficient
of the matrix—which does not seem unreasonable. If different eapabilitics were
assumed, the discussions that follow would have to be modified appropriately.

9 X 9 Case. In the 9 X 9 case, we partition M into nine 3 X 3 matrices,
and use the cyclic group of order 3. Thus My, M, and M, are defined as in eq,
(4).

We need to be able to invert My and other matrices which are quasidiagonal
with 3 X 3 blocks, We ¢ould do this by the same procedure—in effect, partitioning
it into 1 3 1 matrices—but this proves to be inefficient. Instead we use Laplace’s
expansion of the inverse:

4 e g\l Q3333 dzaligs  yslyy— G12yy  Gazduz— disilez
AA"Y = Al dey ane Aa = | dutar—Galas Q- Qutn  Indi—0uds |. (36)
(g (g2 3z Qa1lge-— Gotiar  G120a— Qs  Andey— el

To obtain A, we compute, for example,

A = (s ~ Gglaz) + GGty — Uudn) + AulGunoey — Gmls).

The inverse is obtained by reciprocating A, and multiplying each term of eq. (36)
by A7\, The completely parallel inversion of a 3 X 3 matrix requires three multi-
plicative steps and onc inversion. The parallel requirement is set by eq. (36),
where we need, and can use, the capacity for 18 simultaneous multiplications.

To invert My, which is quasidiagonal with three 3 X 3 submatrices, we need a
eapacity for 54 simultancous multiplications, which is within the capability as-
sumed.

We require the solution to eq. (8). We can obtain it by the following procedure:

1. Invert Mo .

2, 3. Compute My, = M,’ and My'M, = M,". Each operation involves the formation of the
produet of three pairs of 3 X 3 matrices, which fills the assumed capacity. Hence two multi-
plicative steps are involved. These steps complete the normalization of eq. (8).

4, 5, 6. Compute (Ms™;"), (M.')%, — {Ms'M; ). These three steps complete,the eliminatigan
of the (XS) term in eq. (8). Let My = (I — MoM/), M = (M) — My'), Ky =M,
K, = —M,/M;"

7. Invert My”.

8,9, 10. Multiply (Mo”)~! into My”, K, , and Ko . These steps complete the renormalization.
Call the resulting coefficients M{”’, Ky, Ky
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11,12, 13. Compute (Mi™ )2, Mi”K/’, Mi"Ky’. This starts the elimination of the (X$?) term.
i, 15, 36, Compute

Mo = 1+ ),

Ko = K — MKy,

Ly —M/K + MUK,

K, = K + MK,
This completes the elimination of the (82} term.
17. Invert M

18,19, 20. Multiply (M§™)~*into K.*, K", Ko”. This renormalizes the expression and gives X,
the vector of matrix-valued components of M1,

Steps 1, 7, and 17 involve the parallel inversion of triples of 3 X 3 matrices.
Euch of these steps involves one reciprocation step and three multiplications.
The other steps are all parallel multiplicative ones. The total requirement is, then;
3 reciprocation and 26 multiplicative processes.

By comparison, Gauss’s algorithm, on the same assumptions regarding capacity,
requires § reciproeations and 18 multiplicative operations [5]. The speed of the pro-
cedure developed here is comparable to that of Gauss’s algorithm, the exact compari-
sont depending on the relative costs of reciprocations versus multiplieations.

§ X 8 CasE. We now consider the inversion of an 8 X 8 matrix using the group
Uy X Cy after partitioning M into 16 2 X 2 matrices, and assuming » capacity
for 64 simultaneous multiplications.

For the inversion of a 2 X 2 matrix we ean use the following subroutines:

l. Compute ayzass and apen . Form A = a0~ .
2. Invert A.
3. Multiply A~'into @, @n, o2, @ . Interchange A™'a; and A™%s: and change the signs
of A™1gyp and A™igy .

This subroutine takes one reciprocation and two multiplicative processes. The
latter involves four multiplications. Henee as many as 16 inversions of 2 X 2 mat-
rices could be done in parallel.

We define
My, 0 0 O 0 0 Mg O
{0 M 0 0 o 0 0 My
Mi=149 o My, 0 ) M, = My 0 0 07
0 0 0 M,y 0 My 0 0
0 Me 0 0 0 0 0 My
My 0 0 0 w [0 0 Ms 0
M=t 0 0 W) M=l Me 0 o0
0 0 Mg O M, ¢ ¢ 0

Equation {25) becomes
(Mo XIXI4+MXSXI+M XIXS+M XSXS)X =K,
The inversion process can be programmed as follows:

L Invert Mo .
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2, 3. Compute
M, =~ Mg'M,,
L7

™y M.,
B = o B

The evaluation of M, ‘M, , for example, involves the product of four pairs of 2 X 2 matrices,
One such pair, completely parallelized, vequires eight multiplications. The computation ¢f
M, 'M, then requires 32 multiplications. Assuming capacity for 64 simultancous multiplieations,
two steps are necessary for the three produets. This completes the normalization, '

4, 5. Compute

My = — M},

]‘flz” = ]\‘Igr — I\T[‘M:{’ B
My” = Ms' — M/My,
Ky = —M,"M,y.

Also, record that Ko = My
6. Invert M,”.

7, 8. Compute
MY = (M)~ MY,

Jmad
&~
@
i

(Me”) * Ms",
Ky = iMyY) Ky,

4
I

(M) K
This completes renormalization.
9, 10, 11, 12. Compute
MY = (1~ M - M,
M = MY MM,
K/ =~ MUKy + MUK,
K = — (MK + MEYKY),
This shifts the coset on {(XS:), (X S3) onlo the subgroup (X1), (X 8;).
13, Invert Mj",
14, 15, Compute
MY = (Me") MG,
K/ = MK/, i=0,1,2

It

This renormalizes except for K; |

16. Compute
Ks" = (M) Ky,

17, 18, Compute
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Ki = Ky — M{"Ky"

K = K -~ MKy,
KD = K7~ M{"K,",
K = Ky - MUK

The renormalization and the elimination of the term in (X8 X 1) have been overlapped for
efficiency.

14. 1anvert MY,

20,21, Compute (Mém)ﬂ]{fa), = 0,1,2,3 The result is X, the matrix-valued vector repre-
sentation of M~

Steps 1, 6, 13, and 19 are inversions, each of which requires one reciprocation and
two multiplicative processes, The remaining 17 sleps are multiplicative ones. The
whole process, then, takes 4 reciprocations and 25 multiplicative processes.

By comparison, Gauss’'s algorithm takes 8§ reciprocalions and 16 multiplicative
processes. Again the two processes are comparable In speed, and inversion by
partitioning is superior if reciprocation takes more than about the equivalent of
two multiplications.

Conelusions

A method for the inversion of matrices is herein developed which may be usefu
in the design of special-purpose parallel computers. The basie speed of this method,
a8 determined by the number of stages of parallel multiplication and division, is
comparable to that obtained with Gauss’ algorithm and may be somewhat faster if
division is slow. The principal question, then, is which method best fits the com-
putational facilities required by other aspects of the computer’s funetion. If, for
example, the algorithm being implemented puts primary importance on matrix
multiplication—as was the ecase in the control problem that originally motivated
this study-—then inversion by partitioning has a distinet advantage in that it also
depends primarily on matrix multiplieation.

We add, paranthetically, that inversion by this partitioning method does not
seern t0 be useful as an inversion procedure in serial computers. A direet count of
the total reciprocations and multiplications involved indicates that both the @ X 9
and 8 X 8§ procedures would take about twice as long as Gauss’s algorithm. Con-
ceivably it might be useful for some specialized classes of matrices, but it is not
recommended as a general procedure for serial operation.

This method is not completely general. Tt does require & priori knowledge of the
nonsingularity of various submatrices throughout the proeess. {We have pointed
out the possibility of using block pivoting with the method, but this does not com-
pletely generalize its applicability.) However, this condition is met in the applica-
tion that motivated the original search for such a method. We might add that
Gauss’s algorithm, as we currently envision its utilization in such a computer, also
benefits greatly by such an a priori knowledge. To be required to implement a
pivoting procedure in a parallelized machine would greatly eomplicate the program
and the required transfer patterns. This method of inversion by partitioning, then,
does seem to have value in certain important applications.
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