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ABSTRACT. The ii~version of nonsingular matrices is considered. A method is developed which 
star ts  with an arbi trary parti t ioning of the given matrix. The separate submatrices a r e  grouped 
into sets determined by the nonzero entries of some appropriate group, G, of permutation 
matrices. The group structure of G then establishes a sequence of operations on these  sets of 
submatrices from which the corresponding representation of the inverse is obta ined.  

Whether the method described is to be preferred to, say, Gauss's algorithm will  depend on 
the capabilities that  are required by other parts of the algorithm that  is to be implemented 
in the special-purpose parMlel computer. The basic speed, measured by the couI~t of parallel 
multiplications and divisions, is comparable to that obtained with Gauss's a lgor i thm and is 
sl ightly better under certain conditions. The principal difference is that this method uses 
primari ly matrix multiplication, whereas Gauss's algorithm uses primarily row combinations. 
When the special-purpose computer under design must supply this capabil i ty anyway,  the 
method developed here should be considered. 

Application of the process is limited to matrices for which we can set up a par t i t ioning  such 
that  we can guarantee, a priori, that  certain of the submatrices are nonsingular. Hence the 
method is not useful for arbitrary nonsingular matrices. However, it can be applied to certain 
important  classes of matrices, notably those that  are "dominated by the d iagonal . "  Noise 
covariance matrices are of this type; therefore the method can be applied to them.  The in- 
version of a noise covariance matrix is required in some problems of optimal predic t ion  and 
control. I t  is for applications of this sort that  the method seems particularly a t t rac t ive .  
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Introduction 

I n  th i s  p a p e r  t he  invers ion  of ma t r i ce s  b y  the  m e t h o d  of p a r t i t i o n i n g  is descr ibed 
and  discussed.  T h e  m e t h o d  has  p rac t i ca l  s ignif icance in  ce r ta in  t y p e s  o f  parallel  

processors  and  spec ia l -purpose  compute r s .  
T h e  work  o r ig ina t ed  in a s t u d y  of how to des ign a special  pu rpose  p a r a l l e l  com- 

p u t e r  for a p p l i c a t i o n  to  ce r t a in  con t ro l  p roblems.  T h e  cont ro l  a l g o r i t h m  cons idered  
i n v o l v e d  m a i n l y  m a t r i x  mu l t i p l i ca t ion ,  b u t  d id  inc lude  the  i nve r s ion  o f  a noise 
covar i ance  mat r ix .  Gauss ' s  a l g o r i t h m  [1, 2] p roved  to  be qui te  a w k w a r d  since it 
r equ i r ed  d a t a  t rans fe rs  and  m a n i p u l a t i o n s  t h a t  d id  no t  mesh  a t  al l  we l l  w i t h  those 
r equ i r ed  elsewhere in the  a lgor i thm.  Hence  we were  lead to  cons ide r  w h a t  other 

m e t h o d s  migh t  be  more  convenien t .  
T h e  m e t h o d  descr ibed  here  is a gene ra l i za t ion  of the  we l l -known m e t h o d  based 
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on a twofold partition. This method uses the formula ~ 

= \ _ D _ t C A _ i (  I _ BD-~CA-,)-~ D_~( 1 _ CA_tBD_9_ t ] ,  (1) 

where A, B, C, D are submatrices into which M is partitioned. I t  is implied that, A 
and D are square, but  they need not be of the same dimensionalities. If not, then B 
and C are rectangular. As an extreme example, if D is 1 × 1, we obtain the basic 
fornmla, the cascaded application of which becomes the method of bordering [3]. 

The formula is inapplicable if either A or D is singular. (The nonsingularity of A 
and D, together with that of M, implies the nonsingularity of (I  - BD-~CA -1) 
and (I - CA-1BD-t).)  In this case, we can construct an alternative procedure 
based on the nonsingularity, if true, of B and C. This is a special ease of the possi- 
bility of using what we later call "block pivoting." However, for a given partition- 
ing, the nonsingularity of M does not guarantee the possibility of solution even with 
block pivoting. 

To apply eq. (1), or the generalizations of it that  we develop, we need a priori 
information which will assure the applicability of the methods. In the original 
application this was provided by the fact that  the matrix being inverted was a noise 
covarianee matrix and hence is, in a suitable sense, dominated by the diagonal 
elements. In what follows we assume that  this, or some equivalent condition, is 
known to apply. 

In the following sections we consider various generalizations of the twofold par- 
titioning discussed above. We consider, in particular, an r-fold partitioning, and 
show that it can be handled conveniently through the use of some group of order r. 
Later we make a count of the operations needed in certain attractive-looking cases, 
~nd thus obtain an estimate of their speed for parallel computation. 

General Theory 

Consider a matrix, M, partitioned in an r4old way into 

M . . .  

where the submatrices, M . ,  oil the  diagonal are square. The dimensionalities of 
the different M .  need not be the same, in which case some or all of the off-diagonal 
submatrices will be rectangular. This, however, does not, interfere. Unless M has 
some special structure which can be exploited by such an irregular partitioning, it 
will usually be advantageous to make all dimensionalities the same, or as similar 
as possible. 

Consider a transitive group, G, of order r, with a representation as a set of r × r 
pernmtation matrices [4]. (Such a representation always exists.) For example, if 
r = 3, we can use the cyclic group of order 3, represented by the matrices gen- 
erated by 

s = 0 . ( 3 )  

0 

Bold-face capital  l e t t e r s  are used to indicate  matr ices  and submat r ices .  
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The whole group, then, is represented by {I, S, S 2} with S :~ = I as the only definbi~ 
relation. ( In  this section, this group is used as a running example.) 

We pick out from the partitioned M those submt~triees which correspond to the  
l 's  in the group representation. In the example cited, for instance, we define 

0 M3:~ M:~ 0 

M ~ =  ~ 0 . 

(4) 

We call the set, M0, M , ,  and M2, components of M. They form a multiplicative 
scmigroup, i.e. MoMi is of the form of M i and M1M2 and MuM~ are both of the form 
of M0. I t  is this property that  makes them of value, and that is the significance of 
the original specification of a group. 

If now we have two matrices, A and B, so expressed, it is easy to see that  the com- 
ponents of their product are given by 

(AB)ii = AoB0 + A1B2 + A2B1, 

(AB)~ = AoB~ -4- AiB0 -4- A2B2, (5)  

(AB)2 = AoB2 + A1Bi + A2Bo. 

Similar expressions can be written for any group G used in the definition of t he  
components. 

For the inversion of M, it is necessary to find an X such that  

(MX)0 = I ;  ( M X ) i  = 0, i -# 0. (6)  

Using eq. (5), we can write eq. (6) so as to look like a vector equation in the  
components (M) (x0) M0 iVl2 

M Mo M2 Xl  = • (7)  
\ M i  MI M0 X~ 

The "vectors"  col (X0, X~, X2) and col (I ,  0, 0) have matrix-valued coefficients. 
Technically, they are elements in a module. 2 

Equation (7) can now be written as the Kroneeker product of the componmts  
and the elements of G: 

(M0 X I + M2 X S  + M~ X S2)X = K, (8)  

where X = col (Xo, X~, X2) and, in this case, K = col (I ,  0, 0). 
Equation (8) can be regarded as expressing M, as it acts on X, in terms of i t s  

components, each acting along the basis elements ( × I ) ,  ( × S ) ,  and (×$2) .  
In  the more general case of an arbi trary group, G, the analogue of eq. (8) is: 

( ~  Mi X g~)X = K, (9)  

where g~ is an element of the group and, in general, the sum is over all elements of 
the group. 

A module is an entity which obeys weaker conditions than does a vector space. Specifically, its 
coefficients are only required to be elements of a ring, rather than of a field. 

Journal of the Association :for Computing Machinery, Vol. 16, No. 2, April 1969 



Inversion of Matrices by Pm'titioning 305 

In eq. (7), the matrix on the left is 3n X 3n, if M is n X n. It. will be found theft 
we do not ever deal with an actual matrix that is more than n X n. Equation (7),  
then, is useful only as it gives the appropriate multiplication rules--eq. (5). Since 
the multiplication rules are also contained in the abstract group, eq. (9) has beet: 
written in terms of the set {gd, which ca:t be viewed as the abst, raet operators of G. 
The multiplication sign can, then, be considered as indicating the Cartesian product 
of the various Mi with the corresponding member of the abstract group. 

In the cyclic group in general, as typified in eq. (8), the order its which the M~ 
occurs, if "natural ly" defined, is inverse to the powers of S. In a general group, 
there is no "natural" ordering of the group elements, and we can index the M~ so 
as to obtain the form of eq. (9). 

The problem, now, is to solve eq. (8) or (9) for X. Note that  the condition on M 
that it be dominated by the diagonal implies the nonsingularity of M0. Hence we 
can premultiply eq. (8), or eq. (9), by M{ 1 X I. Since the product of Kronecker 
products is the Kronecker product of the products, (A X B) (C  X D) = (AC) X 
(BI)), we obtain 

( I  X [ + M~M2 X S + M;:M, X S~)X = (M~-' X I )K,  (10) 

or, in the general case, 

(I X e + ~ M~-~M~ X g~)X = (M;: X e)K, (11) 

where e is the group identity. 
We can, now, eliminate the term i~wolving any group element in eq. (11), for 

example gl, by premultiplying eq. (11) by (I X e - M71M1 X g:). 
Doing this in eq. (10), for example, we premultiply by (I  X I - M~*M2 X S) 

and get 

{(I - M~:M~Mg:M:) × I + (M~~M: - M;1M2MgLM2) × S2}X 
(12) 

= (Mo I X I - M;-'M2M~' X S)K. 

The component of (XI )  on the left side of eq. (12) is (I - M~~M2M~:M~), which 
differs from the identity only by terms that are quadratic in the coefficients of 
M~, which are off-diagonM in M. Hence this component is dominated by the 
diagonal and consequently invertible. We can therefore renormalize eq. (12) by 
premultiplying by (I - M~IM2M~:M~) X I so that  the leading term is I X I. 
Writing the result as 

(I  X I + M:' X S~)X = K', (13) 

we need to eliminate the term in (×$2) .  
If now we premultiply by (I  X I - M/  × $2), the term in ( XS 2) is eliminated, 

but a term in (XS)  is reestablished. If, however, we premultiply instead by 

(I X I + M ~  2 X S -  M:' XS2), (14) 

we eliminate the ( XS 2) term without reintroducing a (XS)  term, and obtain 

{( I  + M ~  3) X I } X  = (I  X I  + M~ 2 X S -  M,' XS2)K t. (15) 

Again the ( × I )  component is at least quadratic in the off-diagonal term and 
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can be inverted. Hence we can renormalize, and so obtain X explicitly: 

( I  X I ) X  = X = { ( I  + M ; a )  -1 X I -~- ( [  + M ; 3 ) - I M ;  2 X S 

-- (I + M~a)-IM~' X S 2} K'. (16) 

In the general problem of continuing the reduction of eq. (9) for an  arbitrary 
group, G, it does not appear to be possible to write a general procedure.  (The 
problem seems to be linked to that  of finding the simplest defining relations for 
an arbitrary group, which is known to be an uncomputable problem, i.e. there 
exists no finite and finitely describable general algorithm.) Therefore, two special 
types of groups which are of practical importance are considered below,  and then 
one general class of groups is discussed briefly. 

Cyclic Group 

In the running example used above we used the cyclic group of order  3. We now 
generalize this procedure to the cyclic group of order r, where r need n o t  be prime. 
(If it is not prime, however, it will generMly be advantageous to use  the normal 
subgroups set up by the factors of r. This can be done by the principles discussed 
later.) Let S be the representation of the generator of G, and let the  analogue of 
eq. (8) be 

(M0 × I + M,_, X S 4- M,._2 N S 2 + " "  + M: X Sr-:)X = K .  (17) 

We proceed initially as before. We normalize by premultiplying b y  (M~ -1 × I)' 
and then eliminate the term in ( × S )  by premultiplying by (I × I -- M,_: × S)" 

We  now define the succeeding steps inductively. Suppose we have el iminated the 
terms up to, but not including, that  in (XSk), and have renormalized to  

(I  X I + P,-k × S k -4- P,-k-, X S k+l + .." -4- P, X S'-~)X = H .  (18) 

We premultiply by 

(I X I +Qk_~ X S +Qk_~ X S 2 + " '"  + Q 1  X S k - ' -  P,-k X S k) 

= ( I  X I ) +  ( ~ Q k - ~  X S~) - (Pr-e X 
(19) 

Sk). 
\ i=1 / 

This eliminates the term in (×Sk) .  To prevent the reestablishment of terms 
in (XS~), 1 _< i < k, the Q~ must satisfy the recursion formula 

h--1 

Qh = P~-kPh - ~ Q~Ph-~. (20) 
i=1 

This can be solved successively: 

Q1 = P~-kPi , 

Q2 = Pr-k(P~ -- p z), (21) 

Q3 = P~-k(P3 - P~P2 - P~P~ + P~*), etc. through Qk-~ . 

In the later stages of solution, not all the indicated P~ exist in eq. (18) .  The miss- 
ing ones are interpreted as being null. 

As a general description of eq. (21), Qh is the product of P,-k t imes  the sum of 
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all terms of the form 

(--1~ .... lp. p . . . .  Pi,,, 

where the sets of coefficients (i~, i2, • . .  , i , ,)  are taken over all ordered partit ions 
of h~i.e,  all ordered sequences of positive integers such that  i~ + i~ + • • • + i m  = h. 

The leading term in the result, i.e. the component  along ( × I ) ,  is 
k--1 

(I -- P~_,P,: + ~ Q,P,_,) × I. 
i=1 

Its coefficient again differs from the identi ty by terms that  are at  least quadratic 
in the off-diagonal terms of M, and so, under our assumptions, can be inverted. 
Hence we can renormalize and continue the process. 
These formulas solve the problem for G the cyclic group of order r, where r is any 

integer. 

The Group C2 X C2 × . . .  × C2 

We consider next the group C~"--i.e. the direct product of m copies of C2, the re- 
flection group. Also, this group illustrates the use of a decomposition of G into a 
sequence of normal subgroups. 

Set 

C2 can be represented by I and S, and C: '~ by  the collection of matrices 

S~ = S a~ X S  a2 X . . .  X S  am , (23) 

where each ai has the value either 0 or 1, and the set is over all sets of a i .  
As all example, we represent C2 X C~ as li0101  x°i/ 

Sl = I X S = 0 0 0 0 0 
0 0 0 I '  $2= S X  I = 0 0 ' 
1 0 0) [0 0 1 

S~ = S X  S = 10 1 0 ' 

0 0 oj 

with So being the 4 X 4 identity. 
The equation to be solved, then, is 

( ) M0 × I  + ~ M ~ X S i  X = K, (25) 

where n = 2". 

Again we can normalize with M~ ~ X I and eliminate any term, say that  in (XS~), 
by premultiplying by  {I X I - M~ X S~} obtaining, after renormalization, the form 
( I x I +  ~ £ ' ~ M /  X S ~ ) X  = K' .  

The set ( I ,  S~) is a normal subgroup. Hence its quotient set, or the set of its 
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eosets, is a group. One such coset, for example, is ($2, Sa) = (I, S1) $2. (It  does 
not matter  which coset we use.) If' we premultiply by 

(IXl M,' - ~ X S ~ -  543 XS~), (26) 

this has the effect of moving that coset down into the subgroup itself. This reestab. 
lishes a term in (XS~) but eliminates the two terms in (XS~) and (XSa). (It is a 
consequence of tile fact that the quotient set is a group--which is due to the i~or- 
reality of the subgroup--that  terms in MS2 and XS3 are not reestablished else- 
where iu the t)roduct.) In particular, we get, in this ease, 

{(I  - M ?  - M?)  X I - (M2'~4~' + M~'IU~') X S, 
(27) 

+ (terms in ×S~, i > 3)} X = K". 

Renormalizing gives 

{I X I + Ml" .X $1 -1- (terms in XS~, i > 3)} X = K". (28) 

Premultiplying eq. (28) by (I X I - M/ '  X S~), we eliminate the terms in 
NSt .  The remaiIfing terms are in eosets of (I, St) other than ($2, S.~), so that terms 
in XS2 and XS3 are not reestablished. 

We have, then, eliminated all terms in XS , ,  XS2, and XS3. But  again (I, S~, 
$2, Sa) is a normal subgroup of G. We repeat the process, moving one of its cosets 
down into the subgroup. For example, to eliminate the eoset ($4, $5, $6, $7), 
we premultiply by I X I minus the terms in (XS4),  (XSs),  (XS6), and (XST). 
The same arguments as before show that there terms are not reestablished by other 
produets in the multiplication. Also, we can now repeat the process of eliminating 
first the term in (XS~), then those in (XS2) attd (XSa),  and then (XS~) agai~ 
without reintroducing the eoset. This completes the elimination of all terms ill 
(XS~), 1 < i < 7. The proeess can be continued until all elements except that i~ 
( X I )  have been eliminated, and the equation is solved for X. 

The process as described depends on the existence of what is known as a prh~ 
eipal series such that each factor group is C2. That  is, we can establish a sequence 
of subgroups 

G = Go ~ G ~  ~ G 2 . . .  ~ G m  (29) 

such that  G~ is a normal subgroup of all Gj ,  j < i, and such that 

Gi-1/G~ = C2. (30)  

A Class  o f  Groups  

We now consider, very briefly, a special but  important, class of groups. Consider a 
group, G, with two generators, a and b, of order r and s, respectively, 

a r = b ~ = e, (31) 

and which has a defining relation of the form 

ab = ba t. (32) 

The class includes all bigenerated Abelian groups, the dihedral groups, and 
the quaternion and generalized quaternion groups. 
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From eq. (32), it follows that the cyclic subgroup (e, a, . . .  , a ~-1) is a normal 
subgroup of G. We use the procedure given above to eliminate it. We eliminate the 

• : r - - I  

coset (b, ba, . . . ,  ba ) as before, using (I X c - ~ 2 ~  M~ X ba~), which reestab- 
lishes terms in the subgroup. Because of the defining relation assumed, we can 
reeliminate the subgroup without reestablishing the coset. 

if, now, b ~ is not already disposed o[ (in tile quaternion group, for example, the 
problem has already been carried to completion), then what remains carl be written 
in the form 

I X e + ~ 0 X ba ~: + ~ Ai X b2a i -~- . . .  (33) 
i = O  i = O  ' 

where we explicitly exhibit the eliminated terms with null components. Premulti- 
plying by 

we eliminate the terms in (Xb~a~). Each term, Ui Y ba i, appears as itself when 
multiplied by I X e. Also, since the  multiplicand has null terms in (XaJ), each 
Ui X ba ~ is nonnull only in the single term ( Xba ~) of the set of terms of this form. 
This permits us to solve for each U~ so as to prevent tile reestablishment of terms 
in this coset. In this process, the terms are reestablished in (Xa<), but these can 
subsequently be reeliminated. 

We can, then, by similar means, continue with the cosets generated by successively 
higher powers of b until the entire group is reduced to the identity. (Equation 
(32) assures that all elements of G can be written as b~a y for some x and y.) 

Note the role played by the defining relations. We have used eq. (32) in the choice 
of cq. (34) to assure that there is no interaction of the U~ in the ( Xba ~) terms of 
the product of eqs. (34) and (33). This permits us to solve directly for the U ~ 
that we need. 

It seems apparent that a similar process can be worked out for any group. Since, 
however, we cannot specify the form of the defining relations in any general way, 
there does not seem to be any general way of specifying the process. 

Block Pivoting 

We conclude the abstract discussion by describing the technique we call "block 
pivoting." Putting it in general terms, suppose, at some stage, we have reduced tile 
equation to 

(n0 X e -+- ~ A~ X gi)X = H, (35) 

where the sum is over those elements of G not already eliminated. If A0 is singular, 
the procedure given is blocked. However, if some Ak among those remaining is 
nonsingular, we can premultiply eq. (35) by I X g[1. This has the effect of shifting 
the terms around so as to put Ak in the leading position. The other terms are also 
shifted, but their number is unaffected. 

We can, of course, combine the block pivoting operation with the subsequent 
renormalization by premultiplying eq. (35) by (A[ 1 X g[~). 

While block pivoting is a valid operation, it is not sufficient to assure solvability 
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in the general case. Given a predetermined partitioning of !V[, the nonsingularity 
of M is not a sufficient condition to guarantee that  there is, in eq. (35), any Ai 

that is nonsingular. However, block pivoting is useful in that it does extend the 
class of matrices that  can be inverted by a given procedure with a fixed partition. 
ing. 

App l i ca t ion  to Paral le l  Process ing 

The formalism used above may be confusing. We therefore consider two specific 
examples--the inversion of a 9 × 9 matrix and of an 8 N 8 matrix. 

In considering a parallel processor, it is necessary to be precise about the parallel 
capabilities assumed. In the examples we consider, we assume the capability of 
doing 81 and 64, respectively, multiplications in parallel--one for each coefficient 
of the matrix--which does not seem urlreasonable. If different capabilities were 
assumed, the discussions tha t  follow would have to be modified appropriately. 

9 X 9 CASE. In the 9 X 9 case, we partition M into nine 3 × 3 matrices, 
and use the cyclic group of order 3. Thus M0, M1, and M2 are defined as in eq. 
(4). 

We need to be able to invert 54o and other matrices which are quasidiagonal 
with 3 X 3 blocks. We could do this by the same procedure--in effect, partitioning 
it into 1 X 1 matr ices--but  this proves to be inefficient. Instead we use Laplace's 
expansion of the inverse: 

/a l l  aL2 a l ~  -~ /a22a33--a23a32 a~a~2--a~2a~3 a~2a2~--a~3a22~ 
AA - 1 =  A ~a21 a22 a2 3 /  = ~a23asl--a21a33 alla~3--alsa31 a21a13--alla23}. (36) 

\as~ ass as3 \ae~a32--a22as~ a~2as~--a~tas2 aHa22--a~2a2~/ 

To obtain zX, we compute, for example, 

A = aH(a2:aa3 - -  ae3az2) + a12(a2aa31 --  a21a33) -4- a13(a~,a32 --  anat , ) .  

The inverse is obtained by reciprocating A, and multiplying each term of eq. (36) 
by A -~. The completely parallel inversion of a 3 × 3 matrix requires three multi- 
plicative steps and one inversion. The parallel requirement is set by eq. (36), 
where we need, arid can use, the capacity for 18 simultaneous multiplications. 

To invert M0, which is quasidiagonal with three 3 × 3 submatrices, we need a 
capacity for 54 simultaneous multiplications, which is within the capability as- 
sumed. 

We require the solution to eq. (8).  We can obtain it by the following procedure: 

1. Invert M0. 

2, 3. ComputeM~M: = M:' and M~M1 = M~'. Each operation involves the formation of the 
product of three pairs of 3 X 3 matrices, which fills the assumed capacity. Hence two multi- 
plicative steps are involved. These steps complete the normalization of eq. (8). 

4, 5, 6. Compute (M2'M~'), (M2')-', - (M2'M~~). These three steps complete the elimination 
of the (×S) term in eq. (8). LetM0" = (I - M~'M~'),  M~" = (M~' - M~2), K~ = M ~  ~, 
K2 = - M ~ ' M ~  "~. 

7. Invert M0". 

8, 9, 10. Multiply (Ms") -~ into Mi", K1, and K~. These steps complete the renormalization. 
Call the resulting coefficients M~ 3), K~', K~'. 
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11, 12, 13. 

14, 15, 16. 

Compute (M~ 3))2, MEn)K1,, M~3)K2, This starts the elimination of the (X S 2) term. 

C o m p u t e  

M~ ', = ~ + (M13))3, 

K J '  = K~' - M i " K : ' ,  

K2" = -Mi"Ki '  + M~'2Ki ', 

KJ '  = Ks' + M['~K1 '. 

This completes the elimination of the (X S~) term. 

17. Invert M0 (4). 

18, 19, 20. Multiply (M~4)) -1 into K~", K~", K3". This renormalizes the expression and gives X, 
the vector of matrix-valued components of M -1. 

Steps 1, 7, and 17 involve the parallel inversion of triples of 3 X 3 matrices.  
Each of these s teps involves one reciprocat ion step and three  multiplications.  
The other steps are all parallel  mul t ip l icat ive  ones. The  tota l  requi rement  is, then;  
3 reciprocation and 26 mult ipl icat ive processes. 

By comparison,  Gauss ' s  a lgori thm, on the  same assumpt ions  regarding capaci ty ,  
requires 9 reciprocat ions and 18 mult ip l icat ive  operat ions [5]. The  speed of the pro- 
cedure developed here is comparab le  to tha t  of Gauss ' s  a lgori thm, the  exact compari -  
son depending on the  relative costs of reciprocat ions versus multiplications.  

8 X 8 CASE. We  now consider the  iavers ion of an 8 X 8 mat r ix  using the group 
C2 × C2 af ter  par t i t ioning M into 16 2 X 2 matrices,  and assuming a capaci ty  
for 64 s imul taneous mult ipl icat ions.  

For the inversion of a 2 X 2 mat r ix  we can use the following subroutines:  

1. C o m p u t e  ar ia22  a n d  a~2a21 .  F o r m  A = a l l a 2 2 - a ~ 2 a 2 ~  • 

2. Invert 2~. 

3. Multiply A -1 into an , a~2, a~:, ae~ • Interchange A-Jan and A-~a2~ and change the signs 
of A-la~2 and ~-~a~. 

This subrout ine takes  one reciprocat ion and two mult ip l icat ive  processes. T h e  
latter involves four mult ipl icat ions.  Hence  as m a n y  as 16 inversions of 2 X 2 ma t -  
rices could be done in parallel. 

We define 

Mo = { 00 M=2 0 0 M1 = 0 0 24 
0 M3~ 0 ' ~ 0 0 ' 

0 0 0 M44/ M42 0 

o Oo/ (! o o 
M2 = M21 0 0 Ma = 0 M23 

~ 0 0 M ~ '  M32 0 ' 
0 M43 0 / M4t 0 0 0 

Equation (25) becomes 

( M 0 × I X I + M ~ X S X I + M 2 X I X S + M 3 × S X S ) X  = K. 

The inversion process can be p r o g r a m m e d  as follows: 

1. Invert M0 . 
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2, 3. Compute  
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Mt ~ = _3¢,t~-1M1 , 

Ms'  = M~-~Ms . 

The  eva lua t ion  of M~M~ , for example, involves the product  of four pairs of 2 X 2 matrices. 
One such pair,  completely parallelized, requires eight mult ipl icat ions.  The  computat ion of 
M~IM~ then  requires 32 mult ipl icat ions .  Assuming capaci ty for 64 s imul taneous  multiplicatior~% 
two steps are necessary for the three products.  This  completes the normalizat ion.  

4, 5. Compute  

Also, record t h a t  Ko = M~ ~. 

6. I n v e r t  M0". 

7, 8. Compute  

This  completes renormal izat ion.  

9, 10, 11, 12. Compute  

M o "  = I - M~i s, 

M J '  = Ms' - M~tMs' , 

M s "  = M s '  - -  M r ' M s  

Ks = - M i ' M ( .  

M ~  ~) = ( M 0 " )  - I  M s " ,  

M ~  ~) = (M0")  -I M : / ' ,  

K~/ = ( M o " )  - t  K o ,  

K (  = ( M o " )  -1 K s  . 

M ~  4) : ( l  - M ~  s)s - M ? ) ~ ) ,  

M ~  4) = - -  (M~3)M~ s) -4- M ~ S ) M ~ ) ) ,  

K , '  = - -  ( M ~ 3 ) g o  ' + M ~ S ) K ~ ' ) ,  

Ks' = -- (M~)K0 ' + M~S)K~'). 

This  shif ts  tile coset on (XS2), (XS.~) onto the subgroup (XI ) ,  (XSt ) .  

13. Inve r t  M~ 4). 

14, 15. Compute  

M~5)= (M~4))-IM~ 4) ' 

K+" = (M~4)) -1 K / ,  i = 0, 1, 2. 

This  renormalizes except for K s .  

16. Compute  

Ks" = ( M ~ 4 ) ) - l K s  ',  

n o  (') = I -  (M~S)) 2. 

17, 18. Compute  
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K~ ~) = K0" - MI~)K~ ", 

I(l 3~ = K~" - M~)KJ ', 

K~ ~) = K~" - MI~)K0 ", 

K~ 3~ = :K/' - M ~ K / '  

The renorm~liz~tion ,'~nd the elimination of the term in (X S × l) h~ve been overlapped for 
efficiency. 

19. Invert M~ 5). 

20, 21. Compute (M~ 5))-~K~ ~), i = 0, 1,2, 3. The result is X, the matrix-valued vector repre- 
sentation of M -~. 

Steps 1, 6, 13, and 19 are inversions, each of which requires one reciprocation and 
two multiplicative processes. The remaining 17 steps are multiplicative ones. The 
whole process, then, takes 4 reciprocations and 25 multiplicative processes. 

By comparison, Gauss's algorithm takes 8 reciprocations ~md 16 multiplicative 
processes. AgMn the two processes are comparable in speed, and inversion by 
partitioning is superior if reciprocation takes more than about the equivalent of 
two multiplications. 

Conclusions 

A method for the inversion of matrices is herein developed which may be usefu 
in the design of special-purpose parallel computers. The basic speed of this method, 
as determined by the number of stages of parallel multiplication ~nd division, is 
comparable to that  obtained with Gauss' algorithm and may be somewhat faster if 
division is slow. The principal question, then, is which method best fits the com- 
putationM facilities required by other aspects of the computer's function. If, for 
example, the Mgorithm being implemented puts primary importance on m~tri× 
multiplication--as was the case in the control problem that  originally motiw~ted 
this s tudy-- then inversion by partitioning has a distinct advantage in that  it also 
depends primarily on matrix multiplication. 

We add, paranthetically, that  inversion by this partitioning method does not 
seem to be useful as an inversion procedure in serial computers. A direct count of 
the total reciprocations and multiplications involved indicates that  both the 9 X 9 
and 8 X 8 procedures would take about twice as long as Gauss's algorithm. Corn 
eeivably it might be useful for some specialized classes of matrices, but it is not 
recommended as a general procedure for serial operation. 

This method is not completely general. I t  does require a priori knowledge of the 
nonsingularity of various subm~trices throughout the process. (We have pointed 
out the possibility of using block pivoting with the method, but this does not com- 
pletely generalize its applicability.) However, this condition is met in the applica- 
tion that motivated the original search for such a method. We might add that  
Gauss's algorithm, as we currently envision its utilization in such a computer, also 
benefits greatly by such an a priori knowledge. To be required to implement a 
pivoting procedure in a parallelized machine would greatly complicate the program 
and the required transfer patterns. This method of inversion by partitioning, then, 
does seem to have value in certain important applications. 
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