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1. Introduction 

The impact of new device technologies on computers has been felt through an 
orders-of-magnitude increase in computer speed and complexity in the last decade. 
The impact of large scale integrated technology has not yet been felt, but it is 
likely that it will bring another order-of-magnitude increase in speed and complexity. 
To realize the potential of the present and newly emerging device technologies, it 
has become increasingly important to use the power of present generation computers 
for the automated design and construction of the next generation of machines. A 
problem is treated here that is associated with automated methods for the imple- 
mentation of logic designs with modular components. 

Although the problem is stated in the context of implementation of digital logic, 
the problem is a special case of the more general cutting-stock problem that has been 
treated elsewhere [1, 2, 3]. Also related are the knapsack problem [4] and the ma- 
chine-sequencing problem [5]. The algorithm derived in the present paper, however, 
is believed to be new in the sense that it cannot be obtained directly from the al- 
gorithms for the more general problems by specializing those algorithms to the 
restricted context. 

2. Background 

Prior to the emergence of large and medium scale integrated circuits, logic designs 
were implemented largely with modular components. In this way, a relatively small 
variety of modules can be used to realize logic designs. Logic modules normally 
contain a number of identical gates, and all connections to gates are accessible out- 
side the module. For example, a module might contain 20 NANDS, 10 trigger flip- 
flops, or 8 set/reset flip-flops. Although the costs of large scale integrated circuits 
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make it attractive to dispense with modular techniques at the device level and move 
toward the use of "functional" modules, the design and manufacture of functional, 
large scale integrated circuits rests heavily on the use of modular-design techniques 
within the integrated package. Thus methods for automating modular design are 
important for current technology and will undoubtedly continue to be important  to 
support the manufacture of newer functional devices as large scale integration 
advances in development. 

Automatic modular implementation techniques have historically followed a 
three-step process--partitioning, placement, and conductor interconnection. Parti-  
tioning is the process of assigning logic elements to modules. Placement is the process 
of positioning modules in a physical environment, such as on a backplane or a 
printed-circuit board. The process of conductor interconnection refers to the calcu- 
lation of masks for printed wiring, or sequencing and routing for discrete conductor 
wiring. Of the three processes, we concentrate only on partitioning here. 

The problem that  we a t tempt  to solve is characterized as follows. A logic design is 
specified in terms of a number of different primitive components and the intercon- 
nections between them. The design is to be implemented with homogeneous modules; 
i.e. they each contain only one type of primitive component, and for each type of 
component there is a fixed number of components per module. A partitioning al- 
gorithm must determine an assignment of components in the logic design to modules; 
the assignment should tend to use as few modules as possible, yet  also tend to lead to 
short interconnections. 1 An assignment with the minimum number of modules may 
require excessively long interconnections between modules, while an assignment that  
results in relatively short interconnections may be too lavish in the use of modules. 
A good partitioning algorithm is one that  achieves a balance between the two 
criteria. 

The absolute minimum number of modules required for an implementation can 
be determined easily from the number of components of each type that  are used in 
the design and the maximum number of components of each type that  are available 
in a single module. In  fact, if there are n components of a given type, and at most 
m components of this type can be placed in a single module, then (n/m) modules of 
this type are required, and there are approximately n!/(m!)<n/,n> different assign- 
ments that  achieve the minimum. 2 This is simply the number of different ways of 
selecting (n/m} subsets, each corltaining m objects, from a set of n objects. 

Since we are interested in short interconnections as well as a minimum or near 
minimum number of modules, it is necessary to consider connectivity of components 
in a partitioning algorithm. We do not consider the connectivity of components of 
different types, for these components must necessarily be placed in different modules, 
and it is the function of a module placement algorithm to arrange for short inter- 
connections between these components. On the other hand, it is a desirable charac- 
teristic of a partitioning algorithm to place two connected components of the same 
type in the same module. This characteristic implies that  a connected cluster of 
identical components should be placed in a single module, provided that  the cluster 
size does not exceed the size of a module. The problem, then, can be stated as fol- 

1 The partitioning problem for which modules need not be homogeneous has been treated by 
Lawler [7], who showed the problem can be formulated as an integer linear program. Lawler, 
Levitt, and Turner [8] have recently proposed a graph-theoretical approach to partitioning. 

<x> denotes the smallest integer not less than x. 
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lows. Find a partitioning algorithm tha t  assigns connected clusters of identical 
components to the same module and that  requires as few modules as possible. As 
stated here, the sets of components of each different type cast be t reated inde- 
pendently by the partitioning algorithm. Other formulations are possible in which 
the interdependence of the different types of components is an important  factor, but 
these are not considered herc. 

In  Section 3 we reformulate the modular-design problem abstract ly and cast it as 
an integer linear program. Following that ,  in Section 4 we consider a set of tech- 
niques for reducing the integer program in order to decrease the computation 
requircd. Although standard techniques exist for the solution of integer linear 
programs, it appears more at t ract ive in the case at hand to use branch-and-bound 
techniques; this is discussed in Section 5. Some concluding observations are pre- 
sented in Section 6. 

3. Formula t ion  of the Part i t ioning Problem as an Integer L inear  Program 

Given a logic design composed of components of several different types, we partition 
the components into homogeneous modules by considering each set of components 
of a single type as a separate problem. The subproblems are formulated by parti- 
tioning a logic network into disjoint subnetworks such tha t  each subnetwork con- 
tains elements of only one type and there is one subnetwork for each element type. 
Each subnetuork  is then parti t ioned into disjoint collections of components such 
tha t  each set in the refined parti t ion can be assigned to a single module. To obtain 
the refined parti t ion for each component  type, one essentially solves an integer 
program. In  the following discussion, the prototype program is developed. 

The subnetworks obtained in the coarse parti t ion are generally not connected in 
the graph-theoretical sense. A cluster of connected components in a subnetwork is 
called an atom, and the number of components in the cluster is called the size of the 
atom. For example, let the subnetwork consist of the trigger flip-flops in the logic 
design. Then, an a tom of size 1 is a single trigger flip-flop that  is isolated from all 
other similar flip-flops, and an a tom of size 3 is a collection of three trigger flip-flops 
tha t  are interconnected in some way but  are otherwise isolated from all other flip- 
flops of the same type. A given subnetwork is characterized by the vectors n = 
(n~ , n2,  . . . ,  n t )  and s = ( s~ , s2, " ' ,  s t) ,  where the subnetwork contains n~ atoms 
of size s~. The problem is to parti t ion the collection of atoms into the fewest possible 
sets, each containing atoms whose total  size is no greater than m. By assumption, 
s ..... < m where s ..... is the size of the largest atom. If  any a tom is found to have a 
size larger than m, then the a tom must be divided into two or more smaller a toms so 
that  no atomic size after division is larger than  m. The problem of dividing atoms is 
not treated in this paper  because such algorithms necessarily depend on the con- 
straints of the technology in which the design is implemented. 

A set of a toms is said to be admissible if the sum of sizes of the atoms in the 
set is less than m and the set contains n~ or fewer atoms of size s~. The number 
of admissible sets is a function of m, s, and n, and it is finite since m, s, and n 
are finite. Let the number  of admissible sets be  denoted by k, and let A = [aii] 
be a matrix of dimension t X /~ that  is a natural  representat ion of the admissible 
sets. Tha t  is, a~j is equal to the number  of atoms of size s~ in the j t h  admissible set. 
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The partitioning problem can now be formulated as the following integer linear 
program. Minimiz'e 

k 

xi (1) 
i=1  

subject to 

Ax T > n r (2) 

where x = (x l ,  x2, . - -  , xk) and each xi is a nonnegative integer. In  eq. (2), 
both x and n are t reated as column vectors. The components of x correspond to 
the admissible sets of a toms tha t  form a parti t ion of the logic subnetwork. The 
value of xi in the final solution is the number  of logic modules which have atoms 
whose sizes ark distributed as specified by t h e j t h  admissible set. 

It  is noteworthy tha t  this problem is a special ease of the cutting-stock problem 
for one-dimensional stock tha t  has been studied by Gilmore and Gomory [1, 2]. 
The key difference between their approach and tile approach taken here is tha t  
the special character of the logic partitioning problem leads to possible reductions 
that it may not be possible to make in the more general ease. Gilmore and Gomory  
have studied the relationship of the cutting-stock problem to the knapsack problem 
[2, 4] and have developed algorithms for it that  are similar but not identical to the 
algorithm presented here. I t  is also noteworthy that  the machine-sequencing 
problem studied by Held and Karp  [5] is identical to the problem at hand if there 
are no precedence constraints. In  tha t  problem, one is given a set of jobs to perform 
where n~ instances of the i th task nmst  be performed and it takes t~ time units to 
perform each instance at a machine station. I f  the entire set of tasks must be per- 
formed in m units of time, then the problem is to lind the minimum number  of 
machine stations tha t  can be used to assure completion of the tasks within the 
allotted time. 

The inequality in eq. (2) can be treated as an equality because of a property of 
admissible sets. Given any x tha t  minimizes eq. (1) and does not satisfy eq. (2) 
with equality, we can find another  solution x' by the following process. Because 
x fails to satisfy" eq. (2) with equality, there must be at least one component of A x r, 
say tile i th component, which is greater than n~. This means that  the selection of 
sets corresponding to x results in the selection of too many of the i th atoms. To 
obtain the desired solution, one must find any selected set that  contains the i th 
atom and delete at least one occurrence of that  a tom from the set. The resulting 
subset is also admissible. 

We may repeat the process of deleting atoms from selected sets until we have 
precisely ni a toms of size s, for all i. The collection of subsets that  results corre- 
sponds to tha t  selected by, some vector x' which satisfies the appropriate constraints. 
We have not increased the number  of selected sets, and since x is a minimal solution, 
x' does not reduce the number  of selected sets. The vector x' therefore is a minimal 
solution that  satisfies eq. (2) with equality. 

By way of example, let us consider the problem of partitioning atoms of sizes 
s = (1,3,4,5) with distribution n = (1,1,2,4) into modules of size 11. Admissible 
subsets include {1,3,4}, {1,4,5}, and {1,5,5}, among others, but  {1,1,4,4} is inad- 
missible because there is only one a tom of size 1, and {3,4,5} is inadmissible because 
its size is greater than 11. All together there are 18 admissible subsets, and the A 
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A T O M S  

1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

4 1 1 1 2 1 2 1 2 

5 1 1 1 2 1 !  1 1 2 

A M A T R I X  

FIG. 1. T h e  A m a t r i x  f o r  a s a m p l e  p r o b l e m  

matrix that  corresponds to them is shown in Figure 1. The unique minimal solution 
to eq. (1) that  satisfies eq. (2) with equality corresponds to the selection of sub- 
sets {3,4,4}, {1,5,5}, and {5,5}. This solution corresponds to the case x9 = x13 = 
x~s = 1, where all other x~ = 0. 

3 
Although several methods are available for the solution of integer programs, 

it is quite naive to assume that  the dimensions of the problem are small enough 
to fit into present-day computers. With moderate-sized problems it is likely that the 
A matrix could contain 106 or more columns. In order to reduce the size of the 
problem and the amount of computation, it is both necessary and desirable to 
make use of information that  is pcculiar to modular partitioning problems. The 
type of algorithm acceptable for this problem is one which allows us to focus at- 
tention on a small subset of columns of the A matrix. To guard against the possi- 
bility of even this subset exceeding the capacity of the computer, we develop a 
method for generating each column of the subset one-at-a-time when needed. The 
reduction techniques are described in Section 4. 

4. Reduction Techniques 

Reduction techniques in integer programs involve operations oil the rows or col- 
umns of the A matrix that  reduce its size, and are usually accompanied by the 
determination of values for one or more components of the solution vector x. 
In  our case, the reductions take the form of the deletion of columns and rows of the 
A matrix. Suppose, for example, that  it carl be determined that  the value of xj is c. 
Then the j th  column of A can be deleted and n can be replaced by n '  where ~n 'T = 

T n -- c A e j .  If  any component of n '  is 0, then all atoms of the corresponding 
size have been assigned to sets, and a row of the A matrix can be deleted. All col- 
umns with nonzero entries in the row to be deleted correspond to sets that  cannot 
be selected in the reduced problem. Hence these columns can also be deleted. 

Figure 2 contains an example that  serves to clarify the explanation of the re- 
duction techniques. Figure 2(a) shows an A matrix, a n vector appearing as 
column to the left of the A matrix, and the solution vector x appearing as a row 
above the matrix. Examination of Figure 2(a) shows that  we must select the 
fourth set five times in a minimal solution, because no other set contains the first 
atom. Then 5 is added to the present value of x4, and n is reduced by 5 times 
the fourth column of A. The 0 in the first coordinate of n permits us to delete the 
first row from the matrix as well as all columns with nonzero entries in the first 

See Lawler and Wood [6] for a survey of integer programming techniques. 
4 e~ is the unit column vector with a 1 in the jth coordinate and O's elsewhere. 
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FIG.  2. A s e q u e n c e  of r e d u c t i o n s  a p p l i e d  t o  a s a m p l e  p a r t i t i o n i n g  p r o b l e m  

row. This is shown symbolically in Figure 2(b) by the lines passing through row 1 
and column 4. Figures 2(c) and 2(d) show the results of two more reductions, and 
since the matrix in this example can be reduced completely, a minimal solution is 
x = ( 1 , 1 , 1 , 5 ) .  

For the remainder of this section we concentrate oil rules for reductions. The 
example points out a trivial case. 

Reduction 1. If  all atoms of a particular size carl be assigned to one and only 
one subset, then a minimal solution must contain enough copies of the subset to 
account for all the atoms of that  size. In  matrix terms, if the ith row of A contains 
a single nonzero entry, say in the j t h  column, then the value of xj must be at least 
ni/aij. (The value of xj is actually exactly ni/a,v, and moreover, a,v]ni, because 
we can always satisfy eq. (2) with equality.) 

A less obvious reduction can be made when a set contains two atoms whose 
sizes sum to m. 

Reduction 2. If there exists a set, say the j th  set, that  contains precisely two 
atoms whose sizes sum to m, then this set can be selected c times, where c is the 
largest integer such that  n -- c A ei >_ 0. 

PROOF. We have to show that  a solution to the reduced problem contains no 
more modules than a solution to the original problem. Let the atoms in the j th  
set have sizes y~ and y2. Consider any minimal solution to the original problem 
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in which yl and y2 are not paired as frequently as they would be if Reduction 2 
had been performed. Then the minimal solution must  contain at  least one subset 
with a yl a tom and no y2 atom, and a subset with a y2 a tom and no y~ atom. Con- 
sider the a toms associated with Yl in its subset. The sum of their sizes must  be less 
than or equal to y2, because y~ + y~ = m, and the size of any subset is limited 
by m. Then y~ and the associates of y~ can be exchanged in their respective subsets 
to form a new minimal solution in which y~ and y2 are paired together. The process 
can be repeated until all possible pairs of yl and y2 atoms are placed together, but 
this solution is of the form produced by  Reduction 2. Therefore, the minimal 
solution to a program to which Reduction 2 has been applied is also a minimal 
solution to the unreduced program. 

For  the next reduction we introduce the notion of slack. The slack of a set of 
a toms is by definition the difference between m and the sum of the atomic sizes. 
For  m = 5, the slack of the sets [ 1,2} and {2,2} is 2 and 1, respectively. Reduction 
2 generalizes in the following manner.  

Reduction 2'. I f  an admissible set contains two atoms of sizes y~ and y2 whose 
sum is strictly less than  m, and if there is no admissible set containing either yl 
or y2 with less slack than  the slack of the set containing just Yl and y2, then Re- 
duction 2 applies to the set containing y~ and y2 • 

PROOF. The proof follows the proof of Reduction 2. In  any minimal solution, 
either y~ and y2 are paired or they can be paired by interchanging y2 with the 
associates of y~. 

Up to this point, we have consistently assumed tha t  all admissible sets must be 
considered when applying Reductions 1, 2, and 2'. In  fact, this is not true. I t  is 
possible to perform reductions by considering a small subset of the admissible 
sets. To show this we introduce two new definitions. 

A set of a toms A is said to cover a set B if the following conditions hold: 
(a) B can be parti t ioned into disjoint subsets of a toms such tha t  the total size 

of the a toms in each subset is less than  or equal to the size of an a tom of A ; 
(b) each a tom of A covers at most one subset of B for (a)  to hold. 
Intui t ively,  if A covers B then B can be obtained from A by splitting the atoms 

of A and possibly discarding some atoms. The set {3,4} covers the sets {1,2,4}, 
[3,2,2}, and {2,2,2}. I t  does not cover {3,4,1} or {5,2}. Note  tha t  the covering 
property is transitive. 

An admissible set is said to be maximal with respect to the collection of admissible 
sets if it is not covered by another admissible set. 

THEOREM 1. Let y be the size of the largest atom. I f  there exists a unique maximal 
set containing atoms of size y among the collection of maximal sets, then Reduction 1 
can be applied to that set. 

PROOF. Since y is the size of the largest atom, all sets containing atoms of size 
y must  be covered by the unique maximal set containing atoms of size y. Following 
the method of proof of Reduction 2, we see tha t  if in a minimal solution a y atom 
did not appear  in a maximal  set, then its set could be t ransformed into a maximal 
set by a series of exchanges of atoms. This is true because a toms of a nonmaximal 
set can be exchanged with other a toms to form a maximal set. Thus the minimal 
solution of the reduced problem has no more modules than the minimal soluti(m 
of the unrcduccd problem. 

Theorem 1 and Reductions 1, 2, and 2' form the basis of the following algorithm. 
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Step 1. Find all pairs of atoms whose sizes sum to m. Reduction 2 can be applied to the 
doubleton sets containing these atoms. 

Step 2. Find all atoms that cannot be paired with other atoms. Reduction 1 can be applied 
to the singleton sets containing these atoms. 

Step 3. Find the atom of the largest size and generate the maximal sets that contain atoms 
of this size. If there is a unique such set, apply Theorem 1 and Reduction 1. If any reductions 
occur, return to step 2; otherwise, continue. 

Step 4. Generate the doubleton sets, if any, that satisfy Reduction 2' and apply the reduc- 
tion. If any reductions occur, then return to Step 2; otherwise, terminate this part of the 
process. 

I t  is rather interesting to note tha t  all the steps can be carried out without con- 
structing the A matrix. An algorithm for generating the maximal admissible sets 
is given in the Appendix. 

The following example illustrates the use of the algorithm above. Suppose that  
we are to partition atoms of size s = (2,4,5,6,7,8,9) into sets of size 9 with n = 
(8,4,5,2,4,3,3). 

We apply step 1 and find that  a minimal solution contains 4 copies of each 
of the doubleton sets {7,2} and {5,4}. The reduction leaves n = (4,0,1,2,0,3,3) 
and only atoms of size 2, 5, 6, 8, and 9 remain. 

Application of step 2 shows that  atoms of size 8 and size 9 must be assigned 
to singleton sets. Therefore, a minimal solution contains three sets with atoms of 
size 8 and three sets with atoms of size 9. After reduction, n = (4,0,1,2,0,0,0). 

Ill step 3 we note that  the largest remaining atoms can be assigned to the unique 
maximal set { 6,2}. We place two copies of this set in the minimal solution and reduce 
again, leaving n = (2,0,1,0,0,0,0) and only atoms of size 2 and 5 remaining. 

Step 3 can be reapplied, since a new atom has maximal size. The second applica- 
tion of step 3 assigns the set {5,2,2} to the minimal solution and the problem is 
complete. 

Although the example does not illustrate the application of step 4 explicitly, the 
mechanics involved are similar to those in steps 1, 2, and 3. 

This completes the development of the reduction algorithm. In  Section 5 we 
consider techniques for solving the reduced program. 

5. Branch-and-Bound Techniques for Solving Reduced Modular 
Partitioning Problems 

In the most general case, it is not possible to solve partitioning problems by reduc- 
tion techniques alone. While it is true that standard linear program techniques can 
be used on the reduced program, the peculiarities of partitioning problems make it 
more attractive to devise special techniques for their solution. 

In the present situation, given a reduced program, we can create a sequence of 
smaller programs such that  a minimal solution of the original program is the 
minimal solution of one program in the sequence. To create a sequence of programs 
we can select an arbitrary variable, say x j ,  and solve the programs that  result from 
setting xs = O, 1, . . .  , up to the largest possible value of x j .  One need not solve 
every program in the sequence in order to find the minimal solution. As each new 
program is created, a lower bound on the number of modules in its solution is cal- 
culated. The programs that  are treated in successive steps are those with the lowest 
lower bounds. 
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Suppose then tha t  we find tha t  the programs with x~ = 0 and 1 have the lowest 
bounds on the minimum number  of modules required. Then to each of these pro- 
grams we apply the algorithm of Section 4 to obtain a further  reduction. I f  the 
reduction results in a complete solution tha t  at tains the lower bound, then we are 
finished. If  a solution is found tha t  at tains a number  higher than  the lowest lower 
bound, then we can ignore all programs whose lower bounds are equal to or greater 
than  this current solution, but  we still must  check those programs with better 
lower bounds. If  a subprogram cannot be reduced completely by the reduction 
algorithm, then its reduction must  be placed in the list of subprograms tha t  require 
further  analysis. 

The branch-and-bound approach described above is well known [6]. For the 
class of modular parti t ioning problems, the interesting aspects of the problem 
concern the calculation of the lower bound and the choice of variable for the branch- 
ing operation. 

As mentioned earlier, a lower bound for a solution to a program is <n/m} where n 
is the sum of the atoms to be assigned and m is the module size. If  in a subprogram 
we select a set c times, and tha t  set has slack v, then a new lower bound 
is ((n -~- cv)/m}. Thus lower bounds are straightforward to compute for reduced 
programs. The problem of selecting a variable for branching is a much more diffi- 
cult problem. 

I t  is wise to proceed along branches tha t  tend to arrive at the minimal solution 
with the least amount  of processing. To do this, select variables tha t  correspond 
to admissible subsets tha t  are very likely to be in the minimal solution. The fol- 
lowing theorem guides us in this choice. 

THEOREM 2. Let y be the atom of maximal size. Then the min imum solution which 
is constrained to place as many y atoms as possible in maximal admissible sets has no 
more sets than the unconstrained minimal solution. 

PROOF. In  any solution in which a y a tom is not placed in a maximal admissible 
set, the atoms associated with y can be exchanged with atoms of other sets so that 
the set containing y becomes maximal. 

The implication of Theorem 2 is tha t  we should branch on variables correspond- 
ing to maximal admissible sets tha t  contain the largest atom. A complete partition- 
ing algorithm, therefore, is composed of the reduction techniques outlined in 
Section 4, the algorithm for generating maximal sets described in the Appendix, 
s tandard branch-and-bound techniques, and a criterion imposed by Theorem 2 
on the selection of the branch variables. 

To show how the branch-and-bound algorithm works, consider the following 
example. Let a toms have sizes s = (1,3,4,5,7), n = (1,2,1,4,1), and let m = 13. 
The problem cannot be reduced by  any of the reductions of Section 4; thus it is 
necessary to branch and bound. Since the atomic sizes sum to 38, the initial lower 
bound on the number  of modules is 3. 

To obtain the first branch variable we have to generate the maximal sets that 
contain a toms of size 7. These are found to be the sets {7,3,3} and {7,5,1}. We 
arbitrari ly select the variable corresponding to {7,3,3} to be the first branch variable. 
We can select this set either once or not at  all, so tha t  two new subproblems are 
candidates for solution. In  this case there is no slack in the subset, and therefore 
both  subproblems have the same lower bound for a minimal solution, 3 modules. 

Let  us consider the subproblem in which {7,3,3} is selected once. The n vector 
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for this problem is (1,0,1,4,0). The largest atom has size 5, and it is a member 
of the unique maximal set {5,5,1} We apply Theorem 1 and note that we must 
select {5,5,1}. The problem reduces to a problem with n = (0,0,1,2,0). Further 
reductions apply and force us to select sets {5,5} and {4} for our solution. Since 
there are four modules in this solution and the lower bound on the unchecked branch 
is 3, we must backtrack. 

In the branch with lower bound 3, we do not select set {7,3,3}, which in turn 
forces us to select {7,5,1}, by Theorem 2. Its selection reduces to the problem in 
which n = (0,1,2,3,0). In this problem the largest atomic size is 5, and it is a 
member of the unique maximal set {5,5,3}. We apply Theorem 1 once, reduce, and 
find that the remaining elements form the set {5,4,3}, which satisfies Theorem 1. 
In taking the current branch, we have selected the three sets {5,5,3}, {5,4,3}, and 
{7,5,1} and have found a solution that satisfies the lower bound for a minimal 
solution. This solution is therefore minimal. 

6. Some Final Remarks 

The partitioning process described here is guaranteed to find a minimal solution to 
the modular partitioning problem, but the minimal solution is not necessarily a 
unique minimal solution. In a design-automation environment, the partitioning 
algorithm ought to be used to find a first-order approximation to the assignment 
of gates to modules. The first-order approximation might then be improved by 
algorithms that take into consideration the constraints peculiar to a particular 
technology. If the partition found by the algorithm is to be used as a first-order 
approximation, then it may be worthwhile to produce suboptimal partitions in 
order to decrease computation. One convenient way of finding good suboptimal 
solutions quickly is to apply the algorithm given in this paper with limited back- 
tracking. 

It has been mentioned in passing that the algorithm solves a special case of the 
cutting-stock problem. The algorithm can be applied to one-dimensional cutting- 
stock problems provided that the cost function depends linearly on the waste. An 
important facet of cutting-stock problems is that there may be several stock 
lengths from which to select, whereas we have considered that class in which there 
is only a single length. It may be the case that the algorithm presented here can be 
generalized to solve the multiple-stock-length problem and similar variants of the 
cutting-stock problem with less computation than with presently known algorithms. 
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APPENDIX. An Algorithm for Generating Maximal Admissible Sets 

Let each maximal admissible set be ordered so that si < sj if i < j. Then we can 
define a lexicographic ordering of the maximal admissible sets in one of two natural 
ways, ascending or descending order. The algorithm described in this appendix 
generates the maximal admissible sets in ascending lexicographic order. 
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The algorithm given in the text  of the paper requires the generation of maximal 
admissible sets tha t  contain the largest atom. I f  the largest element has size s t ,  

then a suitable algorithm is one which generates all the maximal admissible sets 
of size m - s t  under the constraint tha t  one fewer a tom of size st is available than 
is available in the original problem. This gives the desired result because all maxi 
mal admissible sets tha t  contain at least one a tom of size st are maximal admissible 
sets of size m - s t  in the reduced problem, and conversely. (Any set tha t  covers a 
set in the reduced problem also covers it in the unreduced problem, and conversely.) 

The technique used to generate the maximal admissible sets is a backtracking 
technique tha t  is similar to the column-generation procedures of Gilmore and 
Gomory  [2]. The method involves generating a maximal admissible set of total 
size r where r < m. Then an a tom of size s < m - r can be added to the set to 
make a maximal admissible set of size r + s if and only if the addition of the 
a tom of size s does not create a subset of a toms whose size is precisely the size of 
an unassigned atom. Special processing is required in the last step of the algorithm 
if the slack is nonzero. 

The algorithm requires tha t  there be two vectors N and L of dimension t, where 
t is the number  of distinct atomic sizes. N is a vector whose i th component  N~ 
contains the number  of unassigned atoms of size s l .  The vector  L records in its 
i th position the number  of atoms of size s~ tha t  have been selected. The indices are 
arranged so tha t  s~ < s j  if i < j. Hence the largest atomic size is s t .  A third vector 
P is used to record the sizes of subsets of selected atoms in order to guarantee that 
the size of no subset is exactly equal to tha t  of an unselected item. The sth entry 
of P is set to a positive number  if there is at least one subset of selected atoms 
whose size totals s, and to 0 otherwise. The dimension of P is s t ,  the size of the 
largest atom. 

The algorithm proceeds as follows. 

Step  1. In i t ia l ize  t he  en t r i e s  of L and  P to  0, a n d  se t  t he  v a l u e s  of N to  the  c o m p o n e n t s  
of t h e  v e c t o r n  = ( n l ,  n 2 ,  . . -  , n t ) .  

Se t s  are f o r m e d  b y  a d d i n g  a t o m s  of s u c c e s s i v e l y  s m a l l e r  s izes .  T h e  p a r a m e t e r  i is u sed  to 
i ndex  in d e s c e n d i n g  o rder  t h r o u g h  t h e  a tomic  s izes  s t a r t i n g  w i t h  st and  e n d i n g  w i th  s~. 
T h e  p a r a m e t e r  q r e p r e s e n t s  t h e  a m o u n t  of s l a c k  in  t he  c u r r e n t  a s s i g n m e n t .  I n  genera l ,  af ter  
i n s p e c t i n g  a t o m s  of size sl and  poss ib ly  m a k i n g  an  a s s i g n m e u t  of one or more  a t o m s  of this  
size to  a s u b s e t ,  we c o m p u t e  a new q and  a t t e m p t  to  f ind m a x i m a l  admis s ib l e  a s s i g n m e n t s  
for  a t o m s  of size si_~ or less  to  s u b s e t s  of size q. To  con t ro l  t h i s  p rocess  we in i t ia l ize  i and 
q in  s t e p  2. 

S tep  2. In i t i a l i ze  i to  t he  v a l u e  t, a n d  q to t h e  v a l u e  m. 
S t ep  3. I n  t h i s  s t e p  we g e n e r a t e  new m a x i m a l  admis s ib l e  s e t s  t h a t  c o n t a i n  0, 1, 2 . . .  a toms  

of s ize  s~ , in  a d d i t i o n  to  t he  d i s t r i b u t i o n  of a t o m s  de sc r i bed  b y  t he  p r e s e n t  e n t r i e s  of L. 
T h e  m a x i m u m  n u m b e r  of a t o m s  of size si to  be  a s s i g n e d  is t he  s m a l l e r  of N i  and  [q/si]. 

There are two special cases to be considered. If  q is exactly equal to s~, then at 
most one a tom of size s~ can be assigned to the current maximal admissible set. 
Since this assignment covers all those assignments for which 0 atoms of size s~ 
are added to the current set, it is not necessary to investigate further assignments 
in which 0 atoms of s~ are added to the current set. This case is recognized in step 
3b. 

The second special case occurs when i = 1. For this case the assignment that 
assigns the maximum number  of atoms of size s~ to the subset covers all assignments 
which assign fewer a toms of size s~. Moreover,  the exact slack in the admissible 
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ass ignment  is k n o w n  a t  t h i s  p o i n t  a n d  can  be t a k e n  i n t o  a c c o u n t .  I f  a f t e r  a s s i g n i n g  

atoms of size s , ,  t h e  r e s u l t i n g  se t  is f o u n d  to  be  m a x i m a l ,  i t  is one  of t h e  m a x i m a l  

admissible se t s  to  be  r e p o r t e d  b y  th i s  a l g o r i t h m .  P r o c e s s i n g  fo r  t h e  s e c o n d  spec ia l  

ease occurs in  s t e p s  3 i -3k .  

The expl ic i t  p r o c e s s e s  fo r  s t e p  3 a re  o u t l i n e d  as fo l lows:  

Step 3a. I f i  = 1, then go to s t ep3 i .  
Step 3b. (Generate sets with atoms smaller than s~ .) If q ~ s~ then apply s tep 3 with i 

decreased by 1. In the recursive application implied here we assume that  control returns 
to this point with the value of i unchanged. 

Step 3c. (Test to see if no more atoms of size sl can be added.) I f N i  = 0 or q < s l ,  then 
go to step 3h for backtracking. 

Step 3d. (Add one more atom of size s~ to the current set of atoms.) Increase L~ by l, de- 
crease Ni by 1, and decrease q by sl . Li now contains the number of selected atoms of size 
si ,  and N~ contains the number of unassigned atoms of size s~ . 

Step 3c. (Update P vector.)  Scan the P vector s ta r t ing  at position st - si , indexing down- 
ward to si + 1. If a nonzero ent ry  is encountered at index j ,  then some subset  of previously 
selected atoms has total size j.  Since we have added an atom of size s~ , there is a new sub- 
set of atoms of size j + si . To reflect this fact,  inspect Pj+~i and set it nonzero if it is 0. 
To simplify the backtracking process, the quant i ty  entered in P~+.~ is the number " + i . "  
After completing the scan of the P vector, " + i "  is entered at P~  if L~ = l, to reflect that 
a singleton set of size s~ has been created for the first time. 

At the completion of this s tep  there is a nonzero quant i ty  in Pi  for sl G j < st if and 
only if a subset of selected atoms has total size j.  

Step 3f. (Guarantee tha t  current  subset is maximal.) If some subset of atoms has been 
created that  is precisely equal in total  size to the size of an unassigned atom, then the cur 
rent assignment is not maximal. To check this condition, scan the N vector from N~+i to 
N~. If Ni  is greater than  0 for some j, check Psi • If it is nonzero, then go to s tep 3h for 
backtracking. The reason is tha t  there is a subset  of atoms of total size si and at least one 
unassigned atom of size s~ . Hence, the current subset  is not maximal. 

Step 3g. If q = 0, a maximal set  with 0 slack has been found. In  this case, go to step 3k. 
Otherwise, go to s tep 3b. 

Step3h. (Backtrack.) I f i  = t then terminate.  S e t N ,  t o n i +  L ~ . S e t  q t o q +  L~.S~ .Se t  
L~ to 0. Scan the P vector from s; to I. If P i i s  " + i , "  set P i  to 0. This returns P to its s tate  
prior to the selection of atoms of size si . Increase the index of i and return control to the 
point from which step 3 was applied. 

Step 3i. (Process for i = 1.) Set L~ to the minimum of N~ and [q/si]. Set N~ to N~ - L~ . 
Set q to q -- Lt .s ,  . We have now assigned L~ atoms of size s~ to the current set. 

Step 3j. (Guarantee tha t  subset  is maximal.) The current assignment is maximal if and 
only if there is no subset of atoms whose total  size is equal to the size of an unassigned 
atom or is no more than q units less than the size of an unassigned atom, To determine this 
condition we update the P vector. First  we scan P backwards from P~t-.~ to P~,+~ . If I)j ~ 0 
then for 1 < k < L~, examine Pi+k.,~ and set each one to 1 if it is 0. After scanning the P 
vector, examine Pk.~i for 1 < k < L~ and set Pk.~ to 1 if it is 0. 
Now scan the N vector from N2 to Nt searching for nonzero entries. For each nonzero N i 

in the N vector, check the entries P~i_k, 1 ~ k < q. If there exists a P,i_~ tha t  is nonzero, 
then there is an unassigned atoin of size si that  covers the subset of size P~i-~ within the al- 
lowed slack q. If this is the case, go to s tep 3h for backtracking, since the current subset is 
not maximal. 
Step 3k. Output  the current  s ta te  of the vector L. It is a maximal assignment. (Io to s tep 

3h. (This completes the algorithm.) 

T h e  use of t h e  a l g o r i t h m  is i l l u s t r a t e d  by  a n  e x a m p l e  f r o m  t h e  t ex t .  H e r e  we 

have  s = (1 ,3 ,4 ,5 ,7 ) ,  n = (1 ,2 ,1 ,4 ,1 ) ,  a n d  m = 13. T h e  p r o b l e m  is to  g e n e r a t e  

all m a x i m a l  s u b s e t s  t h a t  c o n t a i n  a t  l eas t  one  a t o m  of size 7. T o  so lve  t h e  p r o b l e m  
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0 
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FIG. 3. The decision tree resulting from the application of the maximal admissible algorithm 

we generate the maximal sets of size 6 using s = (1,3,4,5) and n = (1,2,1,4). 
In steps 1 and 2 of the algorithm we initialize P to (0,0,0,0,0) and L to (0,0,0,0). 

The decision tree that results from followiag the algorithm is shown in Figure 3. 
It is worthwhile to remark on the efficiency of the maximal subset algorithm. 

The backtrack nature of the algorithm leads to a natural upper bound on the 
computational complexity of the algorithm. This bound is exponential in the 
number of atomic sizes. In spite of the pessimistic upper bound, the algorithm 
can lead to efficient implementations for two reasons. First, the pruning charac- 
teristic of backtrack algorithms often leads to substantially less computation than 
is indicated by the overly pessimistic bounds. Second, for the modular partitioning 
application, the problem parameters are sufficiently small that the exponential 
upper bound on complexity is not a serious matter. This is particularly true when 
the atomic sizes are nearly as large as the module size. In the cutting-stock situation, 
quite the opposite may be true because the problems become much larger, and the 
exponential nature of the algorithm is a severe obstacle to practical implementation. 
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