
An Algorithm for Modular Partitioning

H A R O L D S. S T O N E *

Stanford Research Institute, Menlo Park, California

ABSTRACT. An a lgor i thm is described for par t i t ion ing the elements of a digital logic design
into physical packages where each package conta ins components of one type and where con-
nected components of the same type are assigned to the same package. The problem is a special
case of the one-dimensional cut t ing-s tock problem.

KEY WORDS AND PHRASES: design automat ion , par t i t ion ing algori thms, cu t t ing-s tock problem,
modular design

CR CATEGORIES: 5.40, 6.0

1. Introduction

The impact of new device technologies on computers has been felt through an
orders-of-magnitude increase in computer speed and complexity in the last decade.
The impact of large scale integrated technology has not yet been felt, but it is
likely that it will bring another order-of-magnitude increase in speed and complexity.
To realize the potential of the present and newly emerging device technologies, it
has become increasingly important to use the power of present generation computers
for the automated design and construction of the next generation of machines. A
problem is treated here that is associated with automated methods for the imple-
mentation of logic designs with modular components.

Although the problem is stated in the context of implementation of digital logic,
the problem is a special case of the more general cutting-stock problem that has been
treated elsewhere [1, 2, 3]. Also related are the knapsack problem [4] and the ma-
chine-sequencing problem [5]. The algorithm derived in the present paper, however,
is believed to be new in the sense that it cannot be obtained directly from the al-
gorithms for the more general problems by specializing those algorithms to the
restricted context.

2. Background

Prior to the emergence of large and medium scale integrated circuits, logic designs
were implemented largely with modular components. In this way, a relatively small
variety of modules can be used to realize logic designs. Logic modules normally
contain a number of identical gates, and all connections to gates are accessible out-
side the module. For example, a module might contain 20 NANDS, 10 trigger flip-
flops, or 8 set/reset flip-flops. Although the costs of large scale integrated circuits

The research reported in this paper was sponsored by, bu t does not necessarily cons t i tu te the
opinion of, the Air Force Cambridge Research Laborator ies , Office of Aerospace Research,
under Con t rac t F19628-68-C-0120.
* On leave at S tanford Univers i ty , 1968-1969.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970, pp. 182-195

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321556.321573&domain=pdf&date_stamp=1970-01-01

An Algorithm for Modular Partitioning 183

make it attractive to dispense with modular techniques at the device level and move
toward the use of "functional" modules, the design and manufacture of functional,
large scale integrated circuits rests heavily on the use of modular-design techniques
within the integrated package. Thus methods for automating modular design are
important for current technology and will undoubtedly continue to be important to
support the manufacture of newer functional devices as large scale integration
advances in development.

Automatic modular implementation techniques have historically followed a
three-step process--partitioning, placement, and conductor interconnection. Parti-
tioning is the process of assigning logic elements to modules. Placement is the process
of positioning modules in a physical environment, such as on a backplane or a
printed-circuit board. The process of conductor interconnection refers to the calcu-
lation of masks for printed wiring, or sequencing and routing for discrete conductor
wiring. Of the three processes, we concentrate only on partitioning here.

The problem that we a t tempt to solve is characterized as follows. A logic design is
specified in terms of a number of different primitive components and the intercon-
nections between them. The design is to be implemented with homogeneous modules;
i.e. they each contain only one type of primitive component, and for each type of
component there is a fixed number of components per module. A partitioning al-
gorithm must determine an assignment of components in the logic design to modules;
the assignment should tend to use as few modules as possible, yet also tend to lead to
short interconnections. 1 An assignment with the minimum number of modules may
require excessively long interconnections between modules, while an assignment that
results in relatively short interconnections may be too lavish in the use of modules.
A good partitioning algorithm is one that achieves a balance between the two
criteria.

The absolute minimum number of modules required for an implementation can
be determined easily from the number of components of each type that are used in
the design and the maximum number of components of each type that are available
in a single module. In fact, if there are n components of a given type, and at most
m components of this type can be placed in a single module, then (n/m) modules of
this type are required, and there are approximately n!/(m!)<n/,n> different assign-
ments that achieve the minimum. 2 This is simply the number of different ways of
selecting (n/m} subsets, each corltaining m objects, from a set of n objects.

Since we are interested in short interconnections as well as a minimum or near
minimum number of modules, it is necessary to consider connectivity of components
in a partitioning algorithm. We do not consider the connectivity of components of
different types, for these components must necessarily be placed in different modules,
and it is the function of a module placement algorithm to arrange for short inter-
connections between these components. On the other hand, it is a desirable charac-
teristic of a partitioning algorithm to place two connected components of the same
type in the same module. This characteristic implies that a connected cluster of
identical components should be placed in a single module, provided that the cluster
size does not exceed the size of a module. The problem, then, can be stated as fol-

1 The partitioning problem for which modules need not be homogeneous has been treated by
Lawler [7], who showed the problem can be formulated as an integer linear program. Lawler,
Levitt, and Turner [8] have recently proposed a graph-theoretical approach to partitioning.

<x> denotes the smallest integer not less than x.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

184 HAROLI) S. STONE

lows. Find a partitioning algorithm tha t assigns connected clusters of identical
components to the same module and that requires as few modules as possible. As
stated here, the sets of components of each different type cast be t reated inde-
pendently by the partitioning algorithm. Other formulations are possible in which
the interdependence of the different types of components is an important factor, but
these are not considered herc.

In Section 3 we reformulate the modular-design problem abstract ly and cast it as
an integer linear program. Following that , in Section 4 we consider a set of tech-
niques for reducing the integer program in order to decrease the computation
requircd. Although standard techniques exist for the solution of integer linear
programs, it appears more at t ract ive in the case at hand to use branch-and-bound
techniques; this is discussed in Section 5. Some concluding observations are pre-
sented in Section 6.

3. Formula t ion of the Part i t ioning Problem as an Integer L inear Program

Given a logic design composed of components of several different types, we partition
the components into homogeneous modules by considering each set of components
of a single type as a separate problem. The subproblems are formulated by parti-
tioning a logic network into disjoint subnetworks such tha t each subnetwork con-
tains elements of only one type and there is one subnetwork for each element type.
Each subnetuork is then parti t ioned into disjoint collections of components such
tha t each set in the refined parti t ion can be assigned to a single module. To obtain
the refined parti t ion for each component type, one essentially solves an integer
program. In the following discussion, the prototype program is developed.

The subnetworks obtained in the coarse parti t ion are generally not connected in
the graph-theoretical sense. A cluster of connected components in a subnetwork is
called an atom, and the number of components in the cluster is called the size of the
atom. For example, let the subnetwork consist of the trigger flip-flops in the logic
design. Then, an a tom of size 1 is a single trigger flip-flop that is isolated from all
other similar flip-flops, and an a tom of size 3 is a collection of three trigger flip-flops
tha t are interconnected in some way but are otherwise isolated from all other flip-
flops of the same type. A given subnetwork is characterized by the vectors n =
(n~ , n2, . . . , n t) and s = (s~ , s2, " ' , s t) , where the subnetwork contains n~ atoms
of size s~. The problem is to parti t ion the collection of atoms into the fewest possible
sets, each containing atoms whose total size is no greater than m. By assumption,
s < m where s is the size of the largest atom. If any a tom is found to have a
size larger than m, then the a tom must be divided into two or more smaller a toms so
that no atomic size after division is larger than m. The problem of dividing atoms is
not treated in this paper because such algorithms necessarily depend on the con-
straints of the technology in which the design is implemented.

A set of a toms is said to be admissible if the sum of sizes of the atoms in the
set is less than m and the set contains n~ or fewer atoms of size s~. The number
of admissible sets is a function of m, s, and n, and it is finite since m, s, and n
are finite. Let the number of admissible sets be denoted by k, and let A = [aii]
be a matrix of dimension t X /~ that is a natural representat ion of the admissible
sets. Tha t is, a~j is equal to the number of atoms of size s~ in the j t h admissible set.

Journal of tile Association for Computing Machinery, Vol, 17, No. 1, January 1970

An Algorithm for Modular Partitioning 185

The partitioning problem can now be formulated as the following integer linear
program. Minimiz'e

k

xi (1)
i=1

subject to

Ax T > n r (2)

where x = (x l , x2, . - - , xk) and each xi is a nonnegative integer. In eq. (2),
both x and n are t reated as column vectors. The components of x correspond to
the admissible sets of a toms tha t form a parti t ion of the logic subnetwork. The
value of xi in the final solution is the number of logic modules which have atoms
whose sizes ark distributed as specified by t h e j t h admissible set.

It is noteworthy tha t this problem is a special ease of the cutting-stock problem
for one-dimensional stock tha t has been studied by Gilmore and Gomory [1, 2].
The key difference between their approach and tile approach taken here is tha t
the special character of the logic partitioning problem leads to possible reductions
that it may not be possible to make in the more general ease. Gilmore and Gomory
have studied the relationship of the cutting-stock problem to the knapsack problem
[2, 4] and have developed algorithms for it that are similar but not identical to the
algorithm presented here. I t is also noteworthy that the machine-sequencing
problem studied by Held and Karp [5] is identical to the problem at hand if there
are no precedence constraints. In tha t problem, one is given a set of jobs to perform
where n~ instances of the i th task nmst be performed and it takes t~ time units to
perform each instance at a machine station. I f the entire set of tasks must be per-
formed in m units of time, then the problem is to lind the minimum number of
machine stations tha t can be used to assure completion of the tasks within the
allotted time.

The inequality in eq. (2) can be treated as an equality because of a property of
admissible sets. Given any x tha t minimizes eq. (1) and does not satisfy eq. (2)
with equality, we can find another solution x' by the following process. Because
x fails to satisfy" eq. (2) with equality, there must be at least one component of A x r,
say tile i th component, which is greater than n~. This means that the selection of
sets corresponding to x results in the selection of too many of the i th atoms. To
obtain the desired solution, one must find any selected set that contains the i th
atom and delete at least one occurrence of that a tom from the set. The resulting
subset is also admissible.

We may repeat the process of deleting atoms from selected sets until we have
precisely ni a toms of size s, for all i. The collection of subsets that results corre-
sponds to tha t selected by, some vector x' which satisfies the appropriate constraints.
We have not increased the number of selected sets, and since x is a minimal solution,
x' does not reduce the number of selected sets. The vector x' therefore is a minimal
solution that satisfies eq. (2) with equality.

By way of example, let us consider the problem of partitioning atoms of sizes
s = (1,3,4,5) with distribution n = (1,1,2,4) into modules of size 11. Admissible
subsets include {1,3,4}, {1,4,5}, and {1,5,5}, among others, but {1,1,4,4} is inad-
missible because there is only one a tom of size 1, and {3,4,5} is inadmissible because
its size is greater than 11. All together there are 18 admissible subsets, and the A

Journal of the Association for Computing Machinery, Vol. 177, No. 1, J muary 1970

186 HAROLD S. STONE

A T O M S

1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

4 1 1 1 2 1 2 1 2

5 1 1 1 2 1 ! 1 1 2

A M A T R I X

FIG. 1. T h e A m a t r i x f o r a s a m p l e p r o b l e m

matrix that corresponds to them is shown in Figure 1. The unique minimal solution
to eq. (1) that satisfies eq. (2) with equality corresponds to the selection of sub-
sets {3,4,4}, {1,5,5}, and {5,5}. This solution corresponds to the case x9 = x13 =
x~s = 1, where all other x~ = 0.

3
Although several methods are available for the solution of integer programs,

it is quite naive to assume that the dimensions of the problem are small enough
to fit into present-day computers. With moderate-sized problems it is likely that the
A matrix could contain 106 or more columns. In order to reduce the size of the
problem and the amount of computation, it is both necessary and desirable to
make use of information that is pcculiar to modular partitioning problems. The
type of algorithm acceptable for this problem is one which allows us to focus at-
tention on a small subset of columns of the A matrix. To guard against the possi-
bility of even this subset exceeding the capacity of the computer, we develop a
method for generating each column of the subset one-at-a-time when needed. The
reduction techniques are described in Section 4.

4. Reduction Techniques

Reduction techniques in integer programs involve operations oil the rows or col-
umns of the A matrix that reduce its size, and are usually accompanied by the
determination of values for one or more components of the solution vector x.
In our case, the reductions take the form of the deletion of columns and rows of the
A matrix. Suppose, for example, that it carl be determined that the value of xj is c.
Then the j th column of A can be deleted and n can be replaced by n ' where ~n 'T =

T n -- c A e j . If any component of n ' is 0, then all atoms of the corresponding
size have been assigned to sets, and a row of the A matrix can be deleted. All col-
umns with nonzero entries in the row to be deleted correspond to sets that cannot
be selected in the reduced problem. Hence these columns can also be deleted.

Figure 2 contains an example that serves to clarify the explanation of the re-
duction techniques. Figure 2(a) shows an A matrix, a n vector appearing as
column to the left of the A matrix, and the solution vector x appearing as a row
above the matrix. Examination of Figure 2(a) shows that we must select the
fourth set five times in a minimal solution, because no other set contains the first
atom. Then 5 is added to the present value of x4, and n is reduced by 5 times
the fourth column of A. The 0 in the first coordinate of n permits us to delete the
first row from the matrix as well as all columns with nonzero entries in the first

See Lawler and Wood [6] for a survey of integer programming techniques.
4 e~ is the unit column vector with a 1 in the jth coordinate and O's elsewhere.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An Algorithm for Modular Partitioning

x 0 0 0 0 x

n x 1 x 2 x 3 x 4 n

5 1 0

2 1 1 2

4 1 1 2 4

7 2 1 2

(a)

0 0

x I x 2

i
!

1

1 1

0

x 3

1

2

2

(b)

5

x 4

187

x

n

0 -

1

2

0

0 0 1 5 0 1 1 5

x 1 x 2 x 3 x 4 x I x 2 x 3 x 4

I _1 I _

I

I I

x

n

0 -

1 -[

o 1 I
I

0 -

(c) (d)

FIG. 2. A s e q u e n c e of r e d u c t i o n s a p p l i e d t o a s a m p l e p a r t i t i o n i n g p r o b l e m

row. This is shown symbolically in Figure 2(b) by the lines passing through row 1
and column 4. Figures 2(c) and 2(d) show the results of two more reductions, and
since the matrix in this example can be reduced completely, a minimal solution is
x = (1 , 1 , 1 , 5) .

For the remainder of this section we concentrate oil rules for reductions. The
example points out a trivial case.

Reduction 1. If all atoms of a particular size carl be assigned to one and only
one subset, then a minimal solution must contain enough copies of the subset to
account for all the atoms of that size. In matrix terms, if the ith row of A contains
a single nonzero entry, say in the j t h column, then the value of xj must be at least
ni/aij. (The value of xj is actually exactly ni/a,v, and moreover, a,v]ni, because
we can always satisfy eq. (2) with equality.)

A less obvious reduction can be made when a set contains two atoms whose
sizes sum to m.

Reduction 2. If there exists a set, say the j th set, that contains precisely two
atoms whose sizes sum to m, then this set can be selected c times, where c is the
largest integer such that n -- c A ei >_ 0.

PROOF. We have to show that a solution to the reduced problem contains no
more modules than a solution to the original problem. Let the atoms in the j th
set have sizes y~ and y2. Consider any minimal solution to the original problem

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

1 8 8 H A R O L D S. STONE

in which yl and y2 are not paired as frequently as they would be if Reduction 2
had been performed. Then the minimal solution must contain at least one subset
with a yl a tom and no y2 atom, and a subset with a y2 a tom and no y~ atom. Con-
sider the a toms associated with Yl in its subset. The sum of their sizes must be less
than or equal to y2, because y~ + y~ = m, and the size of any subset is limited
by m. Then y~ and the associates of y~ can be exchanged in their respective subsets
to form a new minimal solution in which y~ and y2 are paired together. The process
can be repeated until all possible pairs of yl and y2 atoms are placed together, but
this solution is of the form produced by Reduction 2. Therefore, the minimal
solution to a program to which Reduction 2 has been applied is also a minimal
solution to the unreduced program.

For the next reduction we introduce the notion of slack. The slack of a set of
a toms is by definition the difference between m and the sum of the atomic sizes.
For m = 5, the slack of the sets [1,2} and {2,2} is 2 and 1, respectively. Reduction
2 generalizes in the following manner.

Reduction 2'. I f an admissible set contains two atoms of sizes y~ and y2 whose
sum is strictly less than m, and if there is no admissible set containing either yl
or y2 with less slack than the slack of the set containing just Yl and y2, then Re-
duction 2 applies to the set containing y~ and y2 •

PROOF. The proof follows the proof of Reduction 2. In any minimal solution,
either y~ and y2 are paired or they can be paired by interchanging y2 with the
associates of y~.

Up to this point, we have consistently assumed tha t all admissible sets must be
considered when applying Reductions 1, 2, and 2'. In fact, this is not true. I t is
possible to perform reductions by considering a small subset of the admissible
sets. To show this we introduce two new definitions.

A set of a toms A is said to cover a set B if the following conditions hold:
(a) B can be parti t ioned into disjoint subsets of a toms such tha t the total size

of the a toms in each subset is less than or equal to the size of an a tom of A ;
(b) each a tom of A covers at most one subset of B for (a) to hold.
Intui t ively, if A covers B then B can be obtained from A by splitting the atoms

of A and possibly discarding some atoms. The set {3,4} covers the sets {1,2,4},
[3,2,2}, and {2,2,2}. I t does not cover {3,4,1} or {5,2}. Note tha t the covering
property is transitive.

An admissible set is said to be maximal with respect to the collection of admissible
sets if it is not covered by another admissible set.

THEOREM 1. Let y be the size of the largest atom. I f there exists a unique maximal
set containing atoms of size y among the collection of maximal sets, then Reduction 1
can be applied to that set.

PROOF. Since y is the size of the largest atom, all sets containing atoms of size
y must be covered by the unique maximal set containing atoms of size y. Following
the method of proof of Reduction 2, we see tha t if in a minimal solution a y atom
did not appear in a maximal set, then its set could be t ransformed into a maximal
set by a series of exchanges of atoms. This is true because a toms of a nonmaximal
set can be exchanged with other a toms to form a maximal set. Thus the minimal
solution of the reduced problem has no more modules than the minimal soluti(m
of the unrcduccd problem.

Theorem 1 and Reductions 1, 2, and 2' form the basis of the following algorithm.

Journal of tho Associatioa for Computing Mathinery, Vol. 17, No. 1, January 1970

An Algorithm for Modular Partitioning 189

Step 1. Find all pairs of atoms whose sizes sum to m. Reduction 2 can be applied to the
doubleton sets containing these atoms.

Step 2. Find all atoms that cannot be paired with other atoms. Reduction 1 can be applied
to the singleton sets containing these atoms.

Step 3. Find the atom of the largest size and generate the maximal sets that contain atoms
of this size. If there is a unique such set, apply Theorem 1 and Reduction 1. If any reductions
occur, return to step 2; otherwise, continue.

Step 4. Generate the doubleton sets, if any, that satisfy Reduction 2' and apply the reduc-
tion. If any reductions occur, then return to Step 2; otherwise, terminate this part of the
process.

I t is rather interesting to note tha t all the steps can be carried out without con-
structing the A matrix. An algorithm for generating the maximal admissible sets
is given in the Appendix.

The following example illustrates the use of the algorithm above. Suppose that
we are to partition atoms of size s = (2,4,5,6,7,8,9) into sets of size 9 with n =
(8,4,5,2,4,3,3).

We apply step 1 and find that a minimal solution contains 4 copies of each
of the doubleton sets {7,2} and {5,4}. The reduction leaves n = (4,0,1,2,0,3,3)
and only atoms of size 2, 5, 6, 8, and 9 remain.

Application of step 2 shows that atoms of size 8 and size 9 must be assigned
to singleton sets. Therefore, a minimal solution contains three sets with atoms of
size 8 and three sets with atoms of size 9. After reduction, n = (4,0,1,2,0,0,0).

Ill step 3 we note that the largest remaining atoms can be assigned to the unique
maximal set { 6,2}. We place two copies of this set in the minimal solution and reduce
again, leaving n = (2,0,1,0,0,0,0) and only atoms of size 2 and 5 remaining.

Step 3 can be reapplied, since a new atom has maximal size. The second applica-
tion of step 3 assigns the set {5,2,2} to the minimal solution and the problem is
complete.

Although the example does not illustrate the application of step 4 explicitly, the
mechanics involved are similar to those in steps 1, 2, and 3.

This completes the development of the reduction algorithm. In Section 5 we
consider techniques for solving the reduced program.

5. Branch-and-Bound Techniques for Solving Reduced Modular
Partitioning Problems

In the most general case, it is not possible to solve partitioning problems by reduc-
tion techniques alone. While it is true that standard linear program techniques can
be used on the reduced program, the peculiarities of partitioning problems make it
more attractive to devise special techniques for their solution.

In the present situation, given a reduced program, we can create a sequence of
smaller programs such that a minimal solution of the original program is the
minimal solution of one program in the sequence. To create a sequence of programs
we can select an arbitrary variable, say x j , and solve the programs that result from
setting xs = O, 1, . . . , up to the largest possible value of x j . One need not solve
every program in the sequence in order to find the minimal solution. As each new
program is created, a lower bound on the number of modules in its solution is cal-
culated. The programs that are treated in successive steps are those with the lowest
lower bounds.

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

190 H A R O L D S. STONE

Suppose then tha t we find tha t the programs with x~ = 0 and 1 have the lowest
bounds on the minimum number of modules required. Then to each of these pro-
grams we apply the algorithm of Section 4 to obtain a further reduction. I f the
reduction results in a complete solution tha t at tains the lower bound, then we are
finished. If a solution is found tha t at tains a number higher than the lowest lower
bound, then we can ignore all programs whose lower bounds are equal to or greater
than this current solution, but we still must check those programs with better
lower bounds. If a subprogram cannot be reduced completely by the reduction
algorithm, then its reduction must be placed in the list of subprograms tha t require
further analysis.

The branch-and-bound approach described above is well known [6]. For the
class of modular parti t ioning problems, the interesting aspects of the problem
concern the calculation of the lower bound and the choice of variable for the branch-
ing operation.

As mentioned earlier, a lower bound for a solution to a program is <n/m} where n
is the sum of the atoms to be assigned and m is the module size. If in a subprogram
we select a set c times, and tha t set has slack v, then a new lower bound
is ((n -~- cv)/m}. Thus lower bounds are straightforward to compute for reduced
programs. The problem of selecting a variable for branching is a much more diffi-
cult problem.

I t is wise to proceed along branches tha t tend to arrive at the minimal solution
with the least amount of processing. To do this, select variables tha t correspond
to admissible subsets tha t are very likely to be in the minimal solution. The fol-
lowing theorem guides us in this choice.

THEOREM 2. Let y be the atom of maximal size. Then the min imum solution which
is constrained to place as many y atoms as possible in maximal admissible sets has no
more sets than the unconstrained minimal solution.

PROOF. In any solution in which a y a tom is not placed in a maximal admissible
set, the atoms associated with y can be exchanged with atoms of other sets so that
the set containing y becomes maximal.

The implication of Theorem 2 is tha t we should branch on variables correspond-
ing to maximal admissible sets tha t contain the largest atom. A complete partition-
ing algorithm, therefore, is composed of the reduction techniques outlined in
Section 4, the algorithm for generating maximal sets described in the Appendix,
s tandard branch-and-bound techniques, and a criterion imposed by Theorem 2
on the selection of the branch variables.

To show how the branch-and-bound algorithm works, consider the following
example. Let a toms have sizes s = (1,3,4,5,7), n = (1,2,1,4,1), and let m = 13.
The problem cannot be reduced by any of the reductions of Section 4; thus it is
necessary to branch and bound. Since the atomic sizes sum to 38, the initial lower
bound on the number of modules is 3.

To obtain the first branch variable we have to generate the maximal sets that
contain a toms of size 7. These are found to be the sets {7,3,3} and {7,5,1}. We
arbitrari ly select the variable corresponding to {7,3,3} to be the first branch variable.
We can select this set either once or not at all, so tha t two new subproblems are
candidates for solution. In this case there is no slack in the subset, and therefore
both subproblems have the same lower bound for a minimal solution, 3 modules.

Let us consider the subproblem in which {7,3,3} is selected once. The n vector

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

An Algorithm for Modular Partitioning 191

for this problem is (1,0,1,4,0). The largest atom has size 5, and it is a member
of the unique maximal set {5,5,1} We apply Theorem 1 and note that we must
select {5,5,1}. The problem reduces to a problem with n = (0,0,1,2,0). Further
reductions apply and force us to select sets {5,5} and {4} for our solution. Since
there are four modules in this solution and the lower bound on the unchecked branch
is 3, we must backtrack.

In the branch with lower bound 3, we do not select set {7,3,3}, which in turn
forces us to select {7,5,1}, by Theorem 2. Its selection reduces to the problem in
which n = (0,1,2,3,0). In this problem the largest atomic size is 5, and it is a
member of the unique maximal set {5,5,3}. We apply Theorem 1 once, reduce, and
find that the remaining elements form the set {5,4,3}, which satisfies Theorem 1.
In taking the current branch, we have selected the three sets {5,5,3}, {5,4,3}, and
{7,5,1} and have found a solution that satisfies the lower bound for a minimal
solution. This solution is therefore minimal.

6. Some Final Remarks

The partitioning process described here is guaranteed to find a minimal solution to
the modular partitioning problem, but the minimal solution is not necessarily a
unique minimal solution. In a design-automation environment, the partitioning
algorithm ought to be used to find a first-order approximation to the assignment
of gates to modules. The first-order approximation might then be improved by
algorithms that take into consideration the constraints peculiar to a particular
technology. If the partition found by the algorithm is to be used as a first-order
approximation, then it may be worthwhile to produce suboptimal partitions in
order to decrease computation. One convenient way of finding good suboptimal
solutions quickly is to apply the algorithm given in this paper with limited back-
tracking.

It has been mentioned in passing that the algorithm solves a special case of the
cutting-stock problem. The algorithm can be applied to one-dimensional cutting-
stock problems provided that the cost function depends linearly on the waste. An
important facet of cutting-stock problems is that there may be several stock
lengths from which to select, whereas we have considered that class in which there
is only a single length. It may be the case that the algorithm presented here can be
generalized to solve the multiple-stock-length problem and similar variants of the
cutting-stock problem with less computation than with presently known algorithms.

ACKNOWLEDGMENT. The stimulus for the problem treated in this paper was pro-
vided by Drs. Karl Levitt and Abraham Waksman of Stanford Research Institute.
The author is particularly indebted to Mr. Charles L. Jackson of Signatron, Inc.,
Lexington, Mass., for many suggestions and comments that contributed to the de-
velopment of the partitioning algorithm.

APPENDIX. An Algorithm for Generating Maximal Admissible Sets

Let each maximal admissible set be ordered so that si < sj if i < j. Then we can
define a lexicographic ordering of the maximal admissible sets in one of two natural
ways, ascending or descending order. The algorithm described in this appendix
generates the maximal admissible sets in ascending lexicographic order.

Journal of the Association for Computing Machinery, Vol. 17, No. 1. January 1970

192 HAROLD S. STONE

The algorithm given in the text of the paper requires the generation of maximal
admissible sets tha t contain the largest atom. I f the largest element has size s t ,

then a suitable algorithm is one which generates all the maximal admissible sets
of size m - s t under the constraint tha t one fewer a tom of size st is available than
is available in the original problem. This gives the desired result because all maxi
mal admissible sets tha t contain at least one a tom of size st are maximal admissible
sets of size m - s t in the reduced problem, and conversely. (Any set tha t covers a
set in the reduced problem also covers it in the unreduced problem, and conversely.)

The technique used to generate the maximal admissible sets is a backtracking
technique tha t is similar to the column-generation procedures of Gilmore and
Gomory [2]. The method involves generating a maximal admissible set of total
size r where r < m. Then an a tom of size s < m - r can be added to the set to
make a maximal admissible set of size r + s if and only if the addition of the
a tom of size s does not create a subset of a toms whose size is precisely the size of
an unassigned atom. Special processing is required in the last step of the algorithm
if the slack is nonzero.

The algorithm requires tha t there be two vectors N and L of dimension t, where
t is the number of distinct atomic sizes. N is a vector whose i th component N~
contains the number of unassigned atoms of size s l . The vector L records in its
i th position the number of atoms of size s~ tha t have been selected. The indices are
arranged so tha t s~ < s j if i < j. Hence the largest atomic size is s t . A third vector
P is used to record the sizes of subsets of selected atoms in order to guarantee that
the size of no subset is exactly equal to tha t of an unselected item. The sth entry
of P is set to a positive number if there is at least one subset of selected atoms
whose size totals s, and to 0 otherwise. The dimension of P is s t , the size of the
largest atom.

The algorithm proceeds as follows.

Step 1. In i t ia l ize t he en t r i e s of L and P to 0, a n d se t t he v a l u e s of N to the c o m p o n e n t s
of t h e v e c t o r n = (n l , n 2 , . . - , n t) .

Se t s are f o r m e d b y a d d i n g a t o m s of s u c c e s s i v e l y s m a l l e r s izes . T h e p a r a m e t e r i is u sed to
i ndex in d e s c e n d i n g o rder t h r o u g h t h e a tomic s izes s t a r t i n g w i t h st and e n d i n g w i th s~.
T h e p a r a m e t e r q r e p r e s e n t s t h e a m o u n t of s l a c k in t he c u r r e n t a s s i g n m e n t . I n genera l , af ter
i n s p e c t i n g a t o m s of size sl and poss ib ly m a k i n g an a s s i g n m e u t of one or more a t o m s of this
size to a s u b s e t , we c o m p u t e a new q and a t t e m p t to f ind m a x i m a l admis s ib l e a s s i g n m e n t s
for a t o m s of size si_~ or less to s u b s e t s of size q. To con t ro l t h i s p rocess we in i t ia l ize i and
q in s t e p 2.

S tep 2. In i t i a l i ze i to t he v a l u e t, a n d q to t h e v a l u e m.
S t ep 3. I n t h i s s t e p we g e n e r a t e new m a x i m a l admis s ib l e s e t s t h a t c o n t a i n 0, 1, 2 . . . a toms

of s ize s~ , in a d d i t i o n to t he d i s t r i b u t i o n of a t o m s de sc r i bed b y t he p r e s e n t e n t r i e s of L.
T h e m a x i m u m n u m b e r of a t o m s of size si to be a s s i g n e d is t he s m a l l e r of N i and [q/si].

There are two special cases to be considered. If q is exactly equal to s~, then at
most one a tom of size s~ can be assigned to the current maximal admissible set.
Since this assignment covers all those assignments for which 0 atoms of size s~
are added to the current set, it is not necessary to investigate further assignments
in which 0 atoms of s~ are added to the current set. This case is recognized in step
3b.

The second special case occurs when i = 1. For this case the assignment that
assigns the maximum number of atoms of size s~ to the subset covers all assignments
which assign fewer a toms of size s~. Moreover, the exact slack in the admissible

Journal of tho Association for Computing Machinery, Vol. 17, No. 1. January 1970

An Algorithm for Mo d u l a r Par t i t ion ing 193

ass ignment is k n o w n a t t h i s p o i n t a n d can be t a k e n i n t o a c c o u n t . I f a f t e r a s s i g n i n g

atoms of size s , , t h e r e s u l t i n g se t is f o u n d to be m a x i m a l , i t is one of t h e m a x i m a l

admissible se t s to be r e p o r t e d b y th i s a l g o r i t h m . P r o c e s s i n g fo r t h e s e c o n d spec ia l

ease occurs in s t e p s 3 i -3k .

The expl ic i t p r o c e s s e s fo r s t e p 3 a re o u t l i n e d as fo l lows:

Step 3a. I f i = 1, then go to s t ep3 i .
Step 3b. (Generate sets with atoms smaller than s~ .) If q ~ s~ then apply s tep 3 with i

decreased by 1. In the recursive application implied here we assume that control returns
to this point with the value of i unchanged.

Step 3c. (Test to see if no more atoms of size sl can be added.) I f N i = 0 or q < s l , then
go to step 3h for backtracking.

Step 3d. (Add one more atom of size s~ to the current set of atoms.) Increase L~ by l, de-
crease Ni by 1, and decrease q by sl . Li now contains the number of selected atoms of size
si , and N~ contains the number of unassigned atoms of size s~ .

Step 3c. (Update P vector.) Scan the P vector s ta r t ing at position st - si , indexing down-
ward to si + 1. If a nonzero ent ry is encountered at index j , then some subset of previously
selected atoms has total size j. Since we have added an atom of size s~ , there is a new sub-
set of atoms of size j + si . To reflect this fact, inspect Pj+~i and set it nonzero if it is 0.
To simplify the backtracking process, the quant i ty entered in P~+.~ is the number " + i . "
After completing the scan of the P vector, " + i " is entered at P~ if L~ = l, to reflect that
a singleton set of size s~ has been created for the first time.

At the completion of this s tep there is a nonzero quant i ty in Pi for sl G j < st if and
only if a subset of selected atoms has total size j.

Step 3f. (Guarantee tha t current subset is maximal.) If some subset of atoms has been
created that is precisely equal in total size to the size of an unassigned atom, then the cur
rent assignment is not maximal. To check this condition, scan the N vector from N~+i to
N~. If Ni is greater than 0 for some j, check Psi • If it is nonzero, then go to s tep 3h for
backtracking. The reason is tha t there is a subset of atoms of total size si and at least one
unassigned atom of size s~ . Hence, the current subset is not maximal.

Step 3g. If q = 0, a maximal set with 0 slack has been found. In this case, go to step 3k.
Otherwise, go to s tep 3b.

Step3h. (Backtrack.) I f i = t then terminate. S e t N , t o n i + L ~ . S e t q t o q + L~.S~ .Se t
L~ to 0. Scan the P vector from s; to I. If P i i s " + i , " set P i to 0. This returns P to its s tate
prior to the selection of atoms of size si . Increase the index of i and return control to the
point from which step 3 was applied.

Step 3i. (Process for i = 1.) Set L~ to the minimum of N~ and [q/si]. Set N~ to N~ - L~ .
Set q to q -- Lt .s , . We have now assigned L~ atoms of size s~ to the current set.

Step 3j. (Guarantee tha t subset is maximal.) The current assignment is maximal if and
only if there is no subset of atoms whose total size is equal to the size of an unassigned
atom or is no more than q units less than the size of an unassigned atom, To determine this
condition we update the P vector. First we scan P backwards from P~t-.~ to P~,+~ . If I)j ~ 0
then for 1 < k < L~, examine Pi+k.,~ and set each one to 1 if it is 0. After scanning the P
vector, examine Pk.~i for 1 < k < L~ and set Pk.~ to 1 if it is 0.
Now scan the N vector from N2 to Nt searching for nonzero entries. For each nonzero N i

in the N vector, check the entries P~i_k, 1 ~ k < q. If there exists a P,i_~ tha t is nonzero,
then there is an unassigned atoin of size si that covers the subset of size P~i-~ within the al-
lowed slack q. If this is the case, go to s tep 3h for backtracking, since the current subset is
not maximal.
Step 3k. Output the current s ta te of the vector L. It is a maximal assignment. (Io to s tep

3h. (This completes the algorithm.)

T h e use of t h e a l g o r i t h m is i l l u s t r a t e d by a n e x a m p l e f r o m t h e t ex t . H e r e we

have s = (1 ,3 ,4 ,5 ,7) , n = (1 ,2 ,1 ,4 ,1) , a n d m = 13. T h e p r o b l e m is to g e n e r a t e

all m a x i m a l s u b s e t s t h a t c o n t a i n a t l eas t one a t o m of size 7. T o so lve t h e p r o b l e m

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

1 9 4 H A R O L D S . S T O N E

i = 1

N (1 , 2 , L 4)

L (0 ,0 ,0 ,0)

q 6

S = (1 ,3 ,4 ,5)

L ~ (0 ,0 ,0 ,o)

q : 6 A

L = (0 ,0 ,0 ,1)

a = 1

= 2

L = (0 ,0 ,0 ,0)

q = 6

= 3

L = (0 ,0 ,0 ,0)

q = 6

i = 4 m

L = (1 ,0 ,0 ,0)

q = 5

L. = (0 ,0 ,1 ,0)

L = (0 ,2 ,0 ,0)

q = 0

I q = 3

M A X I M A L

I L = (1 , 1 , o , o)

q = 2

N O T N O T N O T
M A X I M A L M A X I M A L M A X I M A L

L = { o ,o , l ,O)

q ~ 2

L = (1 , 0 , 1 , 0)

q = 1

L = (o ,o ,0 ,1)

q : 1

L = (0 ,0 ,0 ,1)

(1,0,0,1)

0

M A X I M A L

FIG. 3. The decision tree resulting from the application of the maximal admissible algorithm

we generate the maximal sets of size 6 using s = (1,3,4,5) and n = (1,2,1,4).
In steps 1 and 2 of the algorithm we initialize P to (0,0,0,0,0) and L to (0,0,0,0).

The decision tree that results from followiag the algorithm is shown in Figure 3.
It is worthwhile to remark on the efficiency of the maximal subset algorithm.

The backtrack nature of the algorithm leads to a natural upper bound on the
computational complexity of the algorithm. This bound is exponential in the
number of atomic sizes. In spite of the pessimistic upper bound, the algorithm
can lead to efficient implementations for two reasons. First, the pruning charac-
teristic of backtrack algorithms often leads to substantially less computation than
is indicated by the overly pessimistic bounds. Second, for the modular partitioning
application, the problem parameters are sufficiently small that the exponential
upper bound on complexity is not a serious matter. This is particularly true when
the atomic sizes are nearly as large as the module size. In the cutting-stock situation,
quite the opposite may be true because the problems become much larger, and the
exponential nature of the algorithm is a severe obstacle to practical implementation.

REFERENCES

1. GILMORE, P. C., AND GOMORY, R. E. A Linear programming approach to the cutting-
stock problem. Oper. Res. 9, 6 (Nov.-1)ec. 1961), 849 859.

2. - - A N D - - . A linear programming approach to the cutting-stock problem--Pt. II.
Op. Res. 11.6 (May-June 1963), 863-888.

3. - - AND - - - . Multi-stage cutting stock problems of two and more dimensions. Oper.
Res. 13:1 (Jan.-Feb. 1965), 94-120.

4. - - - - AND ----. The theory and computation of knapsack functions. Oper. Res. 14, 6 (Nov.-
Dec. 1966), 1045-1074.

5. HELD, M., AND KAnt, R.M. A dynamic programming approach to sequencing problems.
SIAM J. Numer. Anal. 10, 1 (Mar. 1962), 196-210.

J o u r n a l o f t h e A s s o c i a t i o n for C o m p u t i n g M a c h i n e r y , V o l . 17, N o . 1, J a n u a r y 1970

An Algorithm for Modular Partitioning 195

6. LAWLER, E. L., a~D WOOD, D . E . Branch and bound methods: A survey. Oper. Res. 14,
4 (July-Aug. 1966), 699-719.

7 . - - . Electrical assemblies with a minimum number of interconnections. I R E Trans.
EC-11 (Feb. 1962), 86-88.

8. - - - - , LEVITT, K. N., AND TURNER, J. B. Module clustering to minimize maximum delay in
digital networks. I E E E Trans. EC-17 (Feb. 1969).

RECEIVED OCTOBER, 1968

Journal of the Association for Computing Machinery, Vol. 17, No. 1, January 1970

