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ABSTRACT. The methods currently in use and previously proposed for the choice of a root in 

minimal storage tree sorting are in reality methods for making inefficient statistical estimates 
of the median of the sequence to be sorted. By making efficient use of the information in a 
random sample chosen during input of the sequence to be sorted, significant improvements 
over ordinary minimal storage tree sorting can be made. 

A procedure is proposed which is a generalization of minimal storage tree sorting and which 
has the following three properties: (a) There is a significant improvement (over ordinary 
minimal storage tree sorting) in the expected number of comparisons required to sort the input 
sequence. (b) The procedure is statistically insensitive to bias in the input sequence. (c) The 
expected number of comparisons required by the procedure approaches (slowly) the informa- 
tion-theoretic lower bound on the number of comparisons required. The procedure is, there- 
fore, "asymptotically optimal." 
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Introduction 

Genera l  pu rpose  sor t ing  rout ines  commonly  a p p r o a c h  the  p rob l e m of sorting a 
ve ry  large file, one whose size g rea t ly  exceeds ava i l ab le  high speed s torage  capacity, 
b y  b reak ing  the  sor t ing  process in to  two or  more  " p h a s e s "  [2]. I n  the  initial,  "in- 
t e rna l  so r t i ng"  phase ,  subse ts  of t h e  file which can be  a c c o m m o d a t e d  in the  avail- 
able  m e m o r y  are  sor ted,  and  the  resul t ing  sor ted  sequences t rans fe r red  to backup 
s torage.  T h e  subsequen t  phase  (s) a t t e n d  to  t he  merg ing  of severa l  such sorted 
sequences to  p roduce  a sor ted  file. Signif icant  economies can be effected b y  making 
the  size of t he  subsets  sor ted  in the  in i t ia l  phase  as large as possible,  provided this 
can be done in an  efficient way.  A corol la ry  of this  is the  r equ i r emen t  t h a t  auxiliary 
" w o r k i n g "  s torage  requi red  b y  an  in te rna l  sor t ing  a lgo r i thm (in excess of the 
s to rage  necessary  to  hold the  i t ems  being so r t ed )  be minimized .  

* This work was done while the author, on leave from IBM Corporation, was with the Depart- 
ment of Electrical Engineering, Princeton University, Princeton, N. J. 
t Thomas J. Watson Research Center. 

Present address: Polytechnic Insti tute of Brooklyn, Brooklyn, N. Y. 
§ Department of Electrical Engineering. 

Journa] of the Association for Computing Machinery, Vol. 17, No. 3, July 1970, pp. 496-507. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321592.321600&domain=pdf&date_stamp=1970-07-01


Samplesort: A Sampling Approach to Minimal Storage Tree Sorting 497 

A measure of the working efficiency of an internal sorting algorithm is provided by 
matching the expected number of comparisons it requires against the information- 
theoretic lower bound of log2 (n!) comparisons [1, 8], provided comparisons con- 
stitute the bulk of the algorithm's operations. 

The two most efficient methods for minimal storage internal sorting are (a) that  
of Shell [9] as modified by Frank and Lazarus [3], or by Hibbard [4], and (b) the 
Quicksort tree sorting procedure of Hoare [6], modified to minimal storage form by 
Hibbard [4, 5]. Although the former requires essentially no auxiliary storage space 
and makes approximately n X log2 (n) comparisons [3, 5], the additional work 
involved, aside from comparisons, seems in practice to make it less efficient than 
minimal storage Quicksort for large n. For small n, however, it is quite attractive [5]. 

Qnicksort constructs a binary tree whose vertices correspond to the items in the 
input set, and whose formation is governed by the following rule, applied recur- 
sively: if item x0 is assigned to vertex i of the tree under construction, then any item, 
x, which is assigned to the subtree rooted at  vertex i will be assigned to the left 
subtree of vertex i if x < x0 and to the right subtree of vertex x0 if x > x0. (For con- 
venience in analysis, the elements in the input set are assumed to be distinct.) 
Under the assumption that  all permutations of the input set are equally likely, it 
has been shown [4, 11] that  the expected number of comparisons, E(Cq), using 
minimal storage Quicksort on an input sequence of size n is given by: 

E(Cq) = 2 ( n +  1) ~ _ _ 1  _ 2n 
1 i 'q- 1 (1) 

~- 1.39(n -t- 1) lo8 (n) -- 2.85n + 2.15. 

The choice of a root is critical, for the more nearly balanced the tree resulting from 
the algorithm, the fewer the comparisons required to complete the sort. Although it 
makes no difference under the assumption above, Hoare proposed choosing an ele- 
ment at random from the input sequence as the root of the sort tree, in order to 
circumvent bias which may in practice be present. He further realized, but did not 
pursue, the fact that  one might obtain a more balanced expected sorting tree by 
choosing the median of a small sample as the root of each sort tree. Hoare's proposal 
amounts to making an estimate of the median of the input sequence from a sample 
of size one, and the idea he did not pursue to making an estimate from a sample of 
larger size. We demonstrate that  by estimating instead the cumulative distribution 
function of the input sequence from a sample, and by choosing the appropriate sub- 
tree roots on the basis of this estimate, one can arrive at a minimal storage tree 
sorting procedure (a) which yields significant improvement over Qnicksort in the 
expected number of comparisons (1) over the range of n of practical interest, even 
without the assumption of an unbiased input sequence, and (b) for which the ex- 
pected number of comparisons approaches (slowly) the information-theoretic lower 
bound, and which is, therefore, asymptotically optimal. 

Description and Implementation of the Procedure 

The procedure we propose is a generalization of minimal storage Quicksort. For 
purposes of description, its operation is best divided into three distinct phases, 
although the minimal storage requirement forces the three phases to be intermingled 
in implementation. In the first phase, a sample chosen at random from the input 

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970 



498 W . D .  F R A Z E R  AND A.  C. MCKELLA~ 

sequence is sorted. In the second phase, this sample is "inserted" (literally or figura- 
tively, depending upon implementation) into the input sequence to form the apex 
of the sort tree. In the final phase, the remaining subsequences are sorted, one at a 
time. The manner in which the sample is sorted in the first phase, and that in which 
the subsequences are sorted in the final phase, are not critical to the success of the 
procedure; however, we assume for convenience of analysis that minimal storage 
Quicksort is used throughout. 

Remarks concerning the generation and sorting of the random sample required 
for the first phase of our procedure are deferred until later. Assuming, however, that 
we have a random sample sorted by some method, we come to the second phase oi 
the procedure, wherein the sample is used to form the apex of the sort tree. We 
describe two approaches to implementation of this "insertion" phase of the pro- 
cedure; other approaches are possible, however. 

Examination of the description of minimal storage tree sorting reveals that the 
root need not be chosen from the input sequence; the root, y, need only be com- 
parable with the items of the input sequence X. It  is inefficient not to choose y from 
the input sequence, but it is unnecessary to insert y physically into the sorted se- 
quence, X, immediately. The simplest implementation of the method we propose 
takes advantage of this fact. 

The root for the initial partition of the "remainder sequence" (i.e. the input se- 
quence less the sample) is chosen to be the median of the (sorted) sample. The root 
for the next subtree sort is chosen to be the lower or upper quartile point of the 
sample, depending upon whether the initial or terminal segment, respectively, re- 
sulting from the first partition was shorter. One continues in this way, deciding which 
subsequence to partition next on the basis of the two minimal storage rules of Hib- 
bard [4], and choosing as root the appropriate percentile point of the sample, until 
no more such percentile points of the sample are available. One then sorts the re- 
maining subsequences by means of, say, ordinary minimal storage Quicksort, 
choosing the remaining roots as usual from the subsequences being sorted, and in- 
serting them at once. At any stage in this process one has in auxiliary storage a list 
of pointers indicating which subsequences remain to be sorted; as with ordinary 
minimal storage Quicksort, the size of this list is bounded by log n. Depending upon 
its level, each such subsequence will be sorted on the basis of a root chosen either 
from the sample or the subsequenee itself. 

At the conclusion of this process, one has two separate sorted sequences: the 
sample and the remainder sequence. These are then merged during output to yield a 
sorted sequence. If one has tagged those items of the remainder sequence which 
immediately precede insertion points for items of the sample, few comparisons need 
be made during the merging. This is referred to subsequently as method I. 

The second implementation which we discuss inserts the sample physically into 
the remainder sequence during construction of the sort tree. Although this alleviates 
the need for merging at the time of output, it necessitates a few additional data 
transfers during the course of the procedure. For this procedure, we assume that the 
sorted sample is separated initially into two portions, one half stored in locations 
preceding the remainder sequence and the other half following it. The procedure 
itself follows closely the pattern of operations of ordinary minimal storage Quick- 
sort. 

Assume, without loss of generality, that the median of the sample is stored ad- 
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jacent to the initial item of the remainder sequence. The median, ym, is used as the 
root of the sort tree; it is transferred to a temporary location and compared, as 
before, with the items of the remainder sequence beginning with the last and work- 
ing forward. When the first item, in location j~, is found which is less than ym, xil 
is copied into the location at the beginning of the input sequence formerly occupied 
by ym. ym is next compared with the items of the input sequence, beginning with 
the first, until an item is encountered which is smaller; this item is then copied from 
its location,/1, into location j~. The process is now repeated, beginning with location 
(j~ - 1 ) and working backward to the next item, in location ./2, less than ym. This 
item is then copied into location i~, and so on. At the end of this process, when the 
i and j pointers converge to adjacent locations, y,~ is copied into the location from 
which the last item was transferred. Those items in locations following that  of Ym 
now have values greater than ym, and those in locations preceding that  of ym have 
values less than ym. Suppose that  ym lies before the midpoint location of the re- 
mainder sequence; then, as required by minimal storage protocol, those items in the 
second quartile of the sample are exchanged with the items of the remainder 
sequence which immediately precede y,~. The initial subsequence of the remainder 
sequence now looks just like the entire remainder sequence did at the beginning of 
the process: it is preceded by a sorted sequence containing one half of the sample 
elements to be inserted into it, and followed by  a sorted sequence containing the 
other half. The lower quartile point is now inserted just as the median was pre- 
viously. The case in which the final subsequence is the shorter is handled analogously. 

One continues in this way, choosing the subsequence to be processed next ac- 
cording to the rules described previously, and surrounding a subsequence with the 
items to be inserted into it before making any insertions, until no more sample items 
remain to be inserted. Each such resulting subsequence is then sorted by means of, 
say, ordinary minimal storage Quicksort. At the conclusion of this process, one has 
a completely sorted sequence and no further operations, other than output,  are 
necessary. This will be referred to in the sequel as method II. 

There is a variant of method II  which does not require the added data transfers. 
The transfers are eliminated by moving the items of the sample only when they 
are required as roots of some (sub-) tree. The bookkeeping for this method is quite 
complex in the latter stages, however, for items of an unsorted subsequence, rather 
than being in consecutive memory locations, are interspersed with items of the 
sample sequence. Further,  an additional log (n - l) locations are required for 
pointers to enable one to find these items. 

Analysis 

Let C be the number of comparisons required to sort n items by the method proposed. 
Then the expected value of C is given by: 

E ( C )  = E(C1)  + E(C2)  -~ E(C3) ,  (2) 

where C1 is the number of comparisons required to sort the sample, C2 is the number 
of comparisons required to insert the sample, and C3 is the number of comparisons 
required to sort the segments of the remainder sequence. In order to compute the 
expected values of C1, C2, and C3, we introduce the following notation. 

Let X = {x l ,  • • • , Xn} be the set of input items with items numbered such that  
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x~ < x~+l. Le t  Y = {yl, • • • , yz} be the  r andomly  chosen subset  of X also numbered 
such t h a t  y~ < y~+l. T h e  insert ion process, described previously,  par t i t ions  the set 
X - Y into l -t- 1 subsets,  X0,  • • • , Xz ,  where:  

X0 = {x : x < yl}, 

X~ = {x :  yi < x < yi+l}, 1 _< i < l, 

X~ = {x : y~ < x/ .  

Le t  n~ be the  n u m b e r  of e lements  in X~, 0 < i < l. 
I n  order  to compute  the  expected values of C2 and C3 we need a va r i e ty  of prob- 

abi l i ty  dens i ty  functions.  Le t  q~ ( j)  denote  the  p robabi l i ty  t h a t  y~ = x j ,  i.e. t h a t  y~ 
is the  j t h  e lement  of the  sor ted set. I t  is a rout ine  m a t t e r  to show tha t :  

-- n - - j  

T h e  as sumpt ion  t h a t  Y is a r a n d o m  sample  is implici t  in (3) bu t  no assumptions 
are made  abou t  the  dis t r ibut ion of i tems in X,  nor  abou t  the  order  in which they 
appea r  in the  input  sequence. Wi th  the  usual  definition of the  b inomial  coefficient, 
q~ ( j )  is zero except  for i _< j < n -- 1 -~ i as required. 

Le t  p~ ( j )  be the  p robabi l i ty  t h a t  n~ = j .  L e m m a  1 shows t h a t  p~ ( j )  is independent  
of i, i.e. the  n~ are identical ly d is t r ibuted  r a n d o m  variables,  a l though they  are 
not  s ta t is t ical ly  independent .  Hence,  in the  sequel, p~ ( j )  is denoted b y  p ( j ) .  

LEMMA 1. 

PROOf. Fo r  i = 0 and i = l, the  l e m m a  follows immedia t e ly  f rom (3). For 
0 < i < 1, w e h a v e :  

n - -  l - - ] + i  

p~(j) = ~ q~(t)q~+l(t + j + l ly~ = xt),  (5) 
t=i  

which follows f rom considerat ion of the  joint  dens i ty  funct ion for the  posit ion of 
y~ and y~+l in X.  Observing t h a t  the  condit ional  p robabi l i ty  in (5) is jus t  ql ( j  -F 1 ) 
for a sample  of size (1 - i )  f rom a set of size (n - t),  we have,  on subs t i tu t ion  from 
(3), 

P~(J) = ~-~J+~(ti-- l l ) ( n ~ t - - J - -  - - i - -  1 . (6) 

Equa t i on  (4) can be der ived f rom (6) b y  b inomial  coefficient identi t ies or induction 
on i. Hence  the  l e m m a  is proven.  

N o t  surprisingly,  it follows f rom (4) t h a t  the  expected value  of nl is (n -- 1)/ 
( l +  1). 

W h e n  I is a n u m b e r  of the  form 2 k -- 1, C2 is (n - l) log2 (1 -~ 1 ). For  o ther  values 
of l, C2 becomes a r a n d o m  variable.  L e m m a  2 shows t h a t  (n --  l) log2 (1 + 1) is a 
reasonable  approx imat ion  for the  expected value of C~ for all values  of l. 

LEM~,~A 2. 

(n -- 1) log2 (l + 1) _< E(C2) < (n - /)[0.0861 + log2 (l -~ 1)]. (7} 
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PROOF. L e t  

It follows that  

l = 2 k -  1 + m ,  0 < m < 2 k. (8) 

E(C~)  = (n - l )k  + 2(n - 1 )m/ ( l  + 1), (9) 

:since (n -- l)h is the number of comparisons required to insert 2 k - 1 items, and the 
remaining m items are inserted into disjoint subsets of X - Y whose expected size 
is 2E (n~). I t  is easily verified that  

f ( m )  = E(C2) / (n  - l) - log2 (1 + 1) (10) 

has a maximum at 

m = ( 2 1 n 2 - -  1)2 k. (11) 

:Since the value of this maximum is less than 0.0861, the lemma follows. 
We now address the problem of evaluating the expected value of C3. Toward this 

end, we need: 
LEMMA 3. 

n--~ 

E(C3) = (1 + 1) ~ p ( j ) E ( c ( j ) ) ,  (12) 
j~0 

where E (e (j)  ) is the expected number of comparisons required to sort a set of size j.  
PnooF. C3 is the sum of the random variables wl, 0 ~ i < l, where wl is the num- 

ber of comparisons required to sort the i th segment of the remainder sequence. 
Using the fact that  the expectation of a sum is the sum of the expectations, 

l 

E(C3) = ~ E ( w ~ ) .  (13) 
i=O 

Now, expressing E (w~) as 

E (w3 
n - - l  

= ~ E(w~ [ni = j ) p ( j ) ,  (14) 
j~O 

we obtain, after interchanging the order of summation, 
n - - l  l 

E(C3) = ~ ~ E(w~ [ n~ = j )p( j ) .  (15) 
i~=o i=o 

But E(w~ ] nl = j )  is just E ( c ( j ) ) ;  hence the lemma follows. 
Equation (12) is valid regardless of the method used to sort the (l + 1 ) subsets. 

In this analysis, we postulate the use of minimal storage Quicksort for which E (c ( j ) )  
is given by (1). 

The form of our next result is much more instructive if we make use of the follow- 
ing clever identity, suggested by D. E. Knuth  [7]: 

LEMMA 4. 

k=0 n + 1 -- k m k=m+l k" 

PROOf. Equation (16) is easily verified for m = 0 and for m _> n. Its validity for 
0 < m < n can be established by an inductive argument. We show that  validity of 
the identity for m _< n _~ (N - 1) implies validity for m _~ n = N;  together with 
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the previously established validity for m = 0 and m = n, this implies that  the identity 
is valid for all m, n. Assume that  (16) holds for m _< n < (N -- 1 ) : 

~(2  1 ~ ~ ~1(~~ ) 
(17) 

k=0 N -t- 1 -- k k=m N + 1 - k i==m--1 m -- 1 ~1( )~ 
= ~ i 1 (18) 

. . . .  1 m - -  1 k = i % l  N - I -  1 - k 

~( )~  = ~ i 1 

i=m--1 m -  1 k=l k 
•--2 (19) 

-t-- ~ ( i ) 1 ( raN-- I  l )  
i . . . .  1 m - - 1  ~ - - / +  

Combining the last two terms and invoking the induction hypothesis yields: 

( 2  1 ( N ) 2 1  ( N ) ~ 1  (20) 
k=o N - t - l - - k  = m k +  m - -  1 m k" 

Combining these terms, we arrive at the desired result: 

~ ( k )  1 : ( hr + 1 ~  II- (21) 
k=0 m N + 1 - k m / , ,~+ lk '  

and (16) is true for m < n = N, as required. 
We next address the question of evaluating E (Ca). 
THEOREM 1. If Quicksort is used to sort the (1 ~ 1) subsets, then 

E(C3) = 2(n --t- 1) ~ 1 2(n -- l) (22a) 
i f l -~ - I  i zc 1 

-< 2(n"~- l ) l n ( n / l ) - -  2 [ ( n - 1 ) - t - n - t -  ll-t-1 21" (22b) 

PROOF. Substi tution of (1) and (4) in (12) yields 

E(C3) - 1Jr 1 ~ 1 i +  1 2j . (23) 

Interchanging the order of summation,  (23) can be east as 

~-~( ) ~ (  ) E(C3) - l-t- 1 ~ ~ 2 n - - j - -  1 j + 1 l +  1 2j n - j - -  1 (24) 
( ~ )  i=, ~=1 l - - 1  i +  1 ( ~ )  j=~ l - -  1 " 

Using the identity 

~(n:~ 1) (~1) ( ) ~, j=i -- 1 = ~l ~ ~ i  n--1 i 

(24) can be written as 

E(C~) - 

~1 (~) l-t- 1 ~__~ 2 n - -  (26) 
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Making use of Lemma 4, w e  obtain, as required: 

= 2(n  - I -  1) ~ 1 2 (n  - -  l). ( . . .  22a) 
i~+1 i + 1 

Equation (22b) comes from the usual approximation for partial sums of the harmonic 
:series [4, 11]. 

It is instructive to compare (22a) with (1); the latter may be viewed as a special 
~case of the former, with sample size l = 0. 

In view of (1), (2), (7), and (22b) we have: 
COROLLARY 1. I f  n, l, and (n -- l) are large, 

E ( C )  =" V ( n . 4 -  1 ) I n ( n +  1 ) - -  ( n - -  l) ln ( 14 - -  1) + ~ ( l +  1) 
L 

- (n + 1 + 1) - logs (l + 1) 

=" 1.386n log2 n -- 0.386(n -- l) log2 i -- 2n -- 0.846l. (28b) 

If l is not a number of the form 2 k -- 1, the coefficients of n and 1 should be modified 
:according to the upper bound of Lemma 2. For values of n in the range of interest, 
n, l, and n -- 1 are sufficiently large that the approximations made in arriving at (28) 
:are valid. If method I is used without tags and if the final merging process cannot be 
overlapped with output, E (C) should be increased by n. 

Approximating the partial sums of the harmonic series in the usual way [4, 11], 
approximating E (C2) by (n - l) log2 (l -4- 1), and equating to zero the partial 
derivative of E (C) with respect to l, we have, on neglecting small terms: 

~ - - ( , +  1> [,n(,+ 1)-P 2'yln2-11] -'- (l + 2 1 n 2  -- 1 ) [ ln ( l  + 1) -- 0.51]. (29) 

Figure 1 (a) shows E (C) as a function of 1 for several values of n. These curves were 
~btained by computer from the exact formulas for E (C). Figure 1 (b), for n = 5000, 
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has an expanded scale to show the shape  of the  curves in the  neighborhood of the  
o p t i m u m  value of 1. T h e  discontinuit ies in the  slope which occur whenever  1 = 2 k - 1 
are of course due to the  propert ies  of E (C2) as given by  (9). Fo r  all cases examined in 
detai l  the  o p t i m u m  choice of 1 was a n u m b e r  of the  fo rm 2 ~ --  i and  the  following dis- 
cussion provides evidence which indicates s t rongly t h a t  this is t rue  a t  least for  
n _< 50,000. 

Fo r  l ~ 2 k --  1, we consider the  following measure  of the  cu rva tu re  of E (C (1)):: 

1 
E ( C ( 1 ) )  -- ~ [E(C(1 + 1)) + E ( C ( l  --  1))] 

(n  -t- 1 ) (2  k + 1 - m )  --  l(1 + 2) (30) 

l(l + 1 ) ( / +  2) 

where I = 2 k -- 1 + m; 0 < m < 2 k. This  is easily seen to be  a mono tone  decreasing 
funct ion of 1. Thus  the  shape of Figure 1 (b)  be tween 1 = 511 and  I = 1023 is typical. 
Fo r  a given value of n, suppose t h a t  of the  numbers  of the  fo rm 2 ~ - 1, l = 2 ~ - 1 
is the  one which minimizes E (C). I t  follows t h a t  if 2 ~ -- 1 is not  the  o p t i m u m  choice. 
for l, then  l = 2 r -- 2 mus t  yield a smaller  expected n u m b e r  of comparisons.  Fur- 
thermore ,  it is reasonable  to suppose t h a t  the  critical values of n are those with the  
p rope r ty  t h a t  for n --  1 i tems to be  sorted,  1 = 2 r - 1  - 1 is the  o p t i m u m  choice of the ~ 
form 2 k - 1. All such points  in the  range  1000 < n < 50,000 were tes ted b y  computer.  
T h e  results showed t h a t  for this range of n, our  procedure  is opt imized by  setting 
1 = 2 k --  1 and tak ing  the  o p t i m u m  choice of k. Tab le  I indicates the  range of n for  
which each choice of k is appropr ia te .  

While  it is appa ren t ly  possible t h a t  there  exists a value of n for which our pro- 
cedure is not  opt imized b y  an  1 of the  fo rm 2 k - 1, this would be of academic  interest  
only.  Any  saving achieved b y  allowing a rb i t r a ry  choice of l would be small  and would 
p robab ly  be nullified b y  the  result ing compl ica t ion  to the  procedure.  

One can gain fur ther  insight into the  source of the  i m p r o v e m e n t  achieved by  the 
me thod  we propose  f rom an examina t ion  of the  difference be tween  E (Cq) and E (C). 
This  difference has the  app rox ima te  form:  

E(Cq)  - -  E ( C )  --" (n --  /)[(2 in (l + 1) + 23,) --  (log2 (1 + 1) -t- 2)]. (31} 

T h e  two t e rms  of (31) have  interest ing in te rpre ta t ions :  the  first represents  the ex- 
pec ted  n u m b e r  of compar isons  required to insert  the  l sample  i tems into the re- 
ma inder  sequence in a r a n d o m  manner ,  while the  second represents  the  expected 
n u m b e r  required to insert  t h e m  sys temat ica l ly  (i.e. median  first, etc. ). I t  is also in- 
teres t ing to observe t h a t  (31) is easily shown to have  the  same funct ional  form as 
E (C2). 

TABLE I. OPTIMUM CHOICE OF ~ FOR 1000 __< n ~ 50,000 

k 2 k -- 1 
Range o f  n 

From To 

8 255 5,000 2,008 
9 511 2,009 4,521 

10 1023 4,522 10,058 
11 2047 10,059 22,154 
12 4095 22,155 48,392 
13 8191 48,393 50,900 
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FzG 2. Performance of Samplesort in range of practical interest 

Note tha t  the value of 1 which maximizes this difference (31) is the same as that  
given by (29). Figure 2 shows this difference as a percentage of E (Cq) for the best 
choice of I of the form 2 k -- 1. For current memory  sizes, we can expect an improve- 
ment of 15-20 percent. Further,  we note tha t  our procedure becomes more at tract ive 
as the size of internal storage and (hence n)  increases. 

We now proceed to compare E (C) with the information theoretic lower bound of 
log2 (n!). For this purpose, we have: 

LEMMA 5. For n > 1000, 

E ( C )  -- log2 (n!) 0.387 [ln (ln l) + 0.15] < (32) 
log2 (n!) In (1) + In (ln (1)) -- 1" 

PROOF. Using an upper bound for E (C) derived from (1), (7), and (22b) and the 
lower bound for log2 (hi) given by: 

logs (n!) > logs e (n in n -- n) ,  (33) 
we have 

E ( C ) - -  log2(n!)  < ( 2 - -  l o g s e ) ( n l n n - -  n l n l +  l l n l - -  n) 

~ ( 1 ) (34) 
- t - 0 . 0 8 6 1 n - - . 9 3 2 l -  + 2 -  ~ l o g s e  l n n + 8 .  

Choosing l by n = 1 In 1 and eliminating n, we have: 

I 
(2 -- log2 e)[l in 1 (In In l) + 0.15/In l] 

J E(C)-log2(n!) < + [ - . 9 3 2 / - 2 ] n / +  2 -  ( l n /Wln ln / )+8 ]  . (35) 

log2 (n!) - log2 e(l in 11n 1 + 11n l In In l - l In l) 

It is readily verified tha t  for n > 1000 and hence 1 > 100, the second term in the 
numerator of (34) is negative. Thus the lemma follows. 

Lemma 5 is also valid for much smaller values of n but  that  fact is of no interest. 
As a corollary of Lemma 5, we have: 

THEOREM 2. 

lim E(C)  _ 1. (36 )  
~= log2 (n!) 

T h u s  in  t h e  l imi t ,  as  n (and  h e n c e  l) t e n d s  to  in f in i ty ,  E (C)  a p p r o a c h e s  t h e  lower  

bound, a n d  ou r  p r o c e d u r e  is a s y m p t o t i c a l l y  o p t i m a l .  F i g u r e  2 i nd i ca t e s  t h e  r a t e  a t  
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which this convergence takes place and shows that  for practical storage size 
Theorem 2 is of academic interest only. Figure 2 was obtained by using Stirling 
approximation for n! and (28b) for E (C). The corresponding improvement ow 
Quicksort approaches 28 percent in the limit. 

For values of n in the range of interest (i.e. current core storage sizes) the optimm 
value of 1 is roughly 0.1 n. This validates the conditions of Corollary 1. In  addition, i 
suggests tha t  one might consider sorting the sample using our procedure rather tha 
Quicksort. This would reduce E (C) only by about 2 percent in the range of practic~ 
interest, however; hence it is unlikely to be worthwhile. 

Of more importance is the effect that  the size of 1 has on the generation of th 
random sample. Although the generation of such a random sample adds complexit 
to the overall sorting algorithm, it is of little consequence in practice, since the sele( 
tion of the sample can normally be concurrent with input of the sequence to be sorte( 
Since the optimal value of 1 is a significant fraction of n, it seems reasonable to at 
sume that  for most applications one could generate the sample by choosing ever 
(n/1)-th i tem from the input sequence. An even simpler (but riskier) heuristic woul 
be to choose the first 1 items from the input sequence. The objective, of course, is t 
generate a sample whose cumulative distribution function provides an unbiased est 
mate for the cumulative distribution function of the input sequence and thus ensm 
that  the probability distribution of (3) is the appropriate one. The selection of 
simple heuristic to accomplish this depends upon the nature of the bias present in th 
input sequence for a particular application. 

Summary and Remarks 

We have presented here a new method for minimal storage internal sorting, one whic 
can provide both an increase in efficiency and a decrease in sensitivity to bias in th 
input sequence. 

At the outset of this investigation, we thought in terms of a small sample. Th 
well-known Kolmogorov-Smirnov [10] result concerning the maximum difference b( 
tween the cumulative distribution functions between two samples from an arbitrar 
continuous distribution suggests that  for a fixed sample size, l, this maximum d~ 
ference should be nearly independent of n. Tile surprising fact is, however, that s 
one continues to increase n, the efficiency decreases unless 1 is also increased. 

Perhaps the most striking feature of this sorting procedure, apart  from the iF 
provement over minimal storage Quicksort shown in (31) and Figure 2, is that thi 
procedure should be almost insensitive to bias which may be present in the input se 
quence. In fact, this insensitivity to bias would be guaranteed if one were actually t 
choose a random sample, but, in view of the size of sample that  is required, it woul 
seem more practical to employ one of the coarse approximations to random samplin 
which were suggested previously. 

Another interesting (and reassuring) feature of the procedure we propose is it 
asymptotic optimality. Although convergence to the absolute minimum is slo~ 
room for further improvement is small even in the range of current practical interesl 

There are several ways in which one can achieve additional small improvements i 
efficiency. As mentioned above, our method rather than Quicksort could be used t 
sort the sample, thus reducing the number of comparisons by roughly 2 percent ov~ 
the range of interest (in the limit, the percentage improvement gained by this tacti 
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tends to zero). Since the expected size of the subsequences which remain after the 
insertion process is roughly 10 for most existing computers, Shell's method [9],"shuttle 
sort," or some other procedure might be used to sort them. However, the additional 
storage required for the program would reduce the size of the input sequence which 
could be accommodated, and hence it is an open question as to whether or not the 
efficiency of the total sorting process could be improved in this way. 
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