
Samplesort: A Sampling Approach to Minimal
Storage Tree Sorting

W. D. FRAZER*

IBM Corporation,t Yorktown Heights, New York

AND

A. C. MCKELLAR~

Princeton University,§ Princeton, New Jersey

ABSTRACT. The methods currently in use and previously proposed for the choice of a root in

minimal storage tree sorting are in reality methods for making inefficient statistical estimates
of the median of the sequence to be sorted. By making efficient use of the information in a
random sample chosen during input of the sequence to be sorted, significant improvements
over ordinary minimal storage tree sorting can be made.

A procedure is proposed which is a generalization of minimal storage tree sorting and which
has the following three properties: (a) There is a significant improvement (over ordinary
minimal storage tree sorting) in the expected number of comparisons required to sort the input
sequence. (b) The procedure is statistically insensitive to bias in the input sequence. (c) The
expected number of comparisons required by the procedure approaches (slowly) the informa-
tion-theoretic lower bound on the number of comparisons required. The procedure is, there-
fore, "asymptotically optimal."

KEY WORDS AND P H R A S E S : algorithms, comparison, minimal storage, probability, Quicksort,
random sample, sorting, tree sorting

CR CATEGORIES : 5.31

Introduction

Genera l pu rpose sor t ing rout ines commonly a p p r o a c h the p rob l e m of sorting a
ve ry large file, one whose size g rea t ly exceeds ava i l ab le high speed s torage capacity,
b y b reak ing the sor t ing process in to two or more " p h a s e s " [2]. I n the initial, "in-
t e rna l so r t i ng" phase , subse ts of t h e file which can be a c c o m m o d a t e d in the avail-
able m e m o r y are sor ted, and the resul t ing sor ted sequences t rans fe r red to backup
s torage. T h e subsequen t phase (s) a t t e n d to t he merg ing of severa l such sorted
sequences to p roduce a sor ted file. Signif icant economies can be effected b y making
the size of t he subsets sor ted in the in i t ia l phase as large as possible, provided this
can be done in an efficient way. A corol la ry of this is the r equ i r emen t t h a t auxiliary
" w o r k i n g " s torage requi red b y an in te rna l sor t ing a lgo r i thm (in excess of the
s to rage necessary to hold the i t ems being so r t ed) be minimized .

* This work was done while the author, on leave from IBM Corporation, was with the Depart-
ment of Electrical Engineering, Princeton University, Princeton, N. J.
t Thomas J. Watson Research Center.

Present address: Polytechnic Insti tute of Brooklyn, Brooklyn, N. Y.
§ Department of Electrical Engineering.

Journa] of the Association for Computing Machinery, Vol. 17, No. 3, July 1970, pp. 496-507.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321592.321600&domain=pdf&date_stamp=1970-07-01

Samplesort: A Sampling Approach to Minimal Storage Tree Sorting 497

A measure of the working efficiency of an internal sorting algorithm is provided by
matching the expected number of comparisons it requires against the information-
theoretic lower bound of log2 (n!) comparisons [1, 8], provided comparisons con-
stitute the bulk of the algorithm's operations.

The two most efficient methods for minimal storage internal sorting are (a) that
of Shell [9] as modified by Frank and Lazarus [3], or by Hibbard [4], and (b) the
Quicksort tree sorting procedure of Hoare [6], modified to minimal storage form by
Hibbard [4, 5]. Although the former requires essentially no auxiliary storage space
and makes approximately n X log2 (n) comparisons [3, 5], the additional work
involved, aside from comparisons, seems in practice to make it less efficient than
minimal storage Quicksort for large n. For small n, however, it is quite attractive [5].

Qnicksort constructs a binary tree whose vertices correspond to the items in the
input set, and whose formation is governed by the following rule, applied recur-
sively: if item x0 is assigned to vertex i of the tree under construction, then any item,
x, which is assigned to the subtree rooted at vertex i will be assigned to the left
subtree of vertex i if x < x0 and to the right subtree of vertex x0 if x > x0. (For con-
venience in analysis, the elements in the input set are assumed to be distinct.)
Under the assumption that all permutations of the input set are equally likely, it
has been shown [4, 11] that the expected number of comparisons, E(Cq), using
minimal storage Quicksort on an input sequence of size n is given by:

E(Cq) = 2 (n + 1) ~ _ _ 1 _ 2n
1 i 'q- 1 (1)

~- 1.39(n -t- 1) lo8 (n) -- 2.85n + 2.15.

The choice of a root is critical, for the more nearly balanced the tree resulting from
the algorithm, the fewer the comparisons required to complete the sort. Although it
makes no difference under the assumption above, Hoare proposed choosing an ele-
ment at random from the input sequence as the root of the sort tree, in order to
circumvent bias which may in practice be present. He further realized, but did not
pursue, the fact that one might obtain a more balanced expected sorting tree by
choosing the median of a small sample as the root of each sort tree. Hoare's proposal
amounts to making an estimate of the median of the input sequence from a sample
of size one, and the idea he did not pursue to making an estimate from a sample of
larger size. We demonstrate that by estimating instead the cumulative distribution
function of the input sequence from a sample, and by choosing the appropriate sub-
tree roots on the basis of this estimate, one can arrive at a minimal storage tree
sorting procedure (a) which yields significant improvement over Qnicksort in the
expected number of comparisons (1) over the range of n of practical interest, even
without the assumption of an unbiased input sequence, and (b) for which the ex-
pected number of comparisons approaches (slowly) the information-theoretic lower
bound, and which is, therefore, asymptotically optimal.

Description and Implementation of the Procedure

The procedure we propose is a generalization of minimal storage Quicksort. For
purposes of description, its operation is best divided into three distinct phases,
although the minimal storage requirement forces the three phases to be intermingled
in implementation. In the first phase, a sample chosen at random from the input

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

498 W . D . F R A Z E R AND A. C. MCKELLA~

sequence is sorted. In the second phase, this sample is "inserted" (literally or figura-
tively, depending upon implementation) into the input sequence to form the apex
of the sort tree. In the final phase, the remaining subsequences are sorted, one at a
time. The manner in which the sample is sorted in the first phase, and that in which
the subsequences are sorted in the final phase, are not critical to the success of the
procedure; however, we assume for convenience of analysis that minimal storage
Quicksort is used throughout.

Remarks concerning the generation and sorting of the random sample required
for the first phase of our procedure are deferred until later. Assuming, however, that
we have a random sample sorted by some method, we come to the second phase oi
the procedure, wherein the sample is used to form the apex of the sort tree. We
describe two approaches to implementation of this "insertion" phase of the pro-
cedure; other approaches are possible, however.

Examination of the description of minimal storage tree sorting reveals that the
root need not be chosen from the input sequence; the root, y, need only be com-
parable with the items of the input sequence X. It is inefficient not to choose y from
the input sequence, but it is unnecessary to insert y physically into the sorted se-
quence, X, immediately. The simplest implementation of the method we propose
takes advantage of this fact.

The root for the initial partition of the "remainder sequence" (i.e. the input se-
quence less the sample) is chosen to be the median of the (sorted) sample. The root
for the next subtree sort is chosen to be the lower or upper quartile point of the
sample, depending upon whether the initial or terminal segment, respectively, re-
sulting from the first partition was shorter. One continues in this way, deciding which
subsequence to partition next on the basis of the two minimal storage rules of Hib-
bard [4], and choosing as root the appropriate percentile point of the sample, until
no more such percentile points of the sample are available. One then sorts the re-
maining subsequences by means of, say, ordinary minimal storage Quicksort,
choosing the remaining roots as usual from the subsequences being sorted, and in-
serting them at once. At any stage in this process one has in auxiliary storage a list
of pointers indicating which subsequences remain to be sorted; as with ordinary
minimal storage Quicksort, the size of this list is bounded by log n. Depending upon
its level, each such subsequence will be sorted on the basis of a root chosen either
from the sample or the subsequenee itself.

At the conclusion of this process, one has two separate sorted sequences: the
sample and the remainder sequence. These are then merged during output to yield a
sorted sequence. If one has tagged those items of the remainder sequence which
immediately precede insertion points for items of the sample, few comparisons need
be made during the merging. This is referred to subsequently as method I.

The second implementation which we discuss inserts the sample physically into
the remainder sequence during construction of the sort tree. Although this alleviates
the need for merging at the time of output, it necessitates a few additional data
transfers during the course of the procedure. For this procedure, we assume that the
sorted sample is separated initially into two portions, one half stored in locations
preceding the remainder sequence and the other half following it. The procedure
itself follows closely the pattern of operations of ordinary minimal storage Quick-
sort.

Assume, without loss of generality, that the median of the sample is stored ad-

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Samplesort: A Sampl ing Approach to M i n i m a l Storage Tree Sorting 499

jacent to the initial item of the remainder sequence. The median, ym, is used as the
root of the sort tree; it is transferred to a temporary location and compared, as
before, with the items of the remainder sequence beginning with the last and work-
ing forward. When the first item, in location j~, is found which is less than ym, xil
is copied into the location at the beginning of the input sequence formerly occupied
by ym. ym is next compared with the items of the input sequence, beginning with
the first, until an item is encountered which is smaller; this item is then copied from
its location,/1, into location j~. The process is now repeated, beginning with location
(j~ - 1) and working backward to the next item, in location ./2, less than ym. This
item is then copied into location i~, and so on. At the end of this process, when the
i and j pointers converge to adjacent locations, y,~ is copied into the location from
which the last item was transferred. Those items in locations following that of Ym
now have values greater than ym, and those in locations preceding that of ym have
values less than ym. Suppose that ym lies before the midpoint location of the re-
mainder sequence; then, as required by minimal storage protocol, those items in the
second quartile of the sample are exchanged with the items of the remainder
sequence which immediately precede y,~. The initial subsequence of the remainder
sequence now looks just like the entire remainder sequence did at the beginning of
the process: it is preceded by a sorted sequence containing one half of the sample
elements to be inserted into it, and followed by a sorted sequence containing the
other half. The lower quartile point is now inserted just as the median was pre-
viously. The case in which the final subsequence is the shorter is handled analogously.

One continues in this way, choosing the subsequence to be processed next ac-
cording to the rules described previously, and surrounding a subsequence with the
items to be inserted into it before making any insertions, until no more sample items
remain to be inserted. Each such resulting subsequence is then sorted by means of,
say, ordinary minimal storage Quicksort. At the conclusion of this process, one has
a completely sorted sequence and no further operations, other than output, are
necessary. This will be referred to in the sequel as method II.

There is a variant of method II which does not require the added data transfers.
The transfers are eliminated by moving the items of the sample only when they
are required as roots of some (sub-) tree. The bookkeeping for this method is quite
complex in the latter stages, however, for items of an unsorted subsequence, rather
than being in consecutive memory locations, are interspersed with items of the
sample sequence. Further, an additional log (n - l) locations are required for
pointers to enable one to find these items.

Analysis

Let C be the number of comparisons required to sort n items by the method proposed.
Then the expected value of C is given by:

E (C) = E(C1) + E(C2) -~ E(C3) , (2)

where C1 is the number of comparisons required to sort the sample, C2 is the number
of comparisons required to insert the sample, and C3 is the number of comparisons
required to sort the segments of the remainder sequence. In order to compute the
expected values of C1, C2, and C3, we introduce the following notation.

Let X = {x l , • • • , Xn} be the set of input items with items numbered such that

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

5 0 0 w . D . F R A Z E R A N D A. C. M c K E L L A R

x~ < x~+l. Le t Y = {yl, • • • , yz} be the r andomly chosen subset of X also numbered
such t h a t y~ < y~+l. T h e insert ion process, described previously, par t i t ions the set
X - Y into l -t- 1 subsets, X0, • • • , Xz , where:

X0 = {x : x < yl},

X~ = {x : yi < x < yi+l}, 1 _< i < l,

X~ = {x : y~ < x/ .

Le t n~ be the n u m b e r of e lements in X~, 0 < i < l.
I n order to compute the expected values of C2 and C3 we need a va r i e ty of prob-

abi l i ty dens i ty functions. Le t q~ (j) denote the p robabi l i ty t h a t y~ = x j , i.e. t h a t y~
is the j t h e lement of the sor ted set. I t is a rout ine m a t t e r to show tha t :

-- n - - j

T h e as sumpt ion t h a t Y is a r a n d o m sample is implici t in (3) bu t no assumptions
are made abou t the dis t r ibut ion of i tems in X, nor abou t the order in which they
appea r in the input sequence. Wi th the usual definition of the b inomial coefficient,
q~ (j) is zero except for i _< j < n -- 1 -~ i as required.

Le t p~ (j) be the p robabi l i ty t h a t n~ = j . L e m m a 1 shows t h a t p~ (j) is independent
of i, i.e. the n~ are identical ly d is t r ibuted r a n d o m variables, a l though they are
not s ta t is t ical ly independent . Hence, in the sequel, p~ (j) is denoted b y p (j) .

LEMMA 1.

PROOf. Fo r i = 0 and i = l, the l e m m a follows immedia t e ly f rom (3). For
0 < i < 1, w e h a v e :

n - - l - -] + i

p~(j) = ~ q~(t)q~+l(t + j + l ly~ = xt), (5)
t=i

which follows f rom considerat ion of the joint dens i ty funct ion for the posit ion of
y~ and y~+l in X. Observing t h a t the condit ional p robabi l i ty in (5) is jus t ql (j -F 1)
for a sample of size (1 - i) f rom a set of size (n - t), we have, on subs t i tu t ion from
(3),

P~(J) = ~-~J+~(ti-- l l) (n ~ t - - J - - - - i - - 1 . (6)

Equa t i on (4) can be der ived f rom (6) b y b inomial coefficient identi t ies or induction
on i. Hence the l e m m a is proven.

N o t surprisingly, it follows f rom (4) t h a t the expected value of nl is (n -- 1)/
(l + 1).

W h e n I is a n u m b e r of the form 2 k -- 1, C2 is (n - l) log2 (1 -~ 1). For o ther values
of l, C2 becomes a r a n d o m variable. L e m m a 2 shows t h a t (n -- l) log2 (1 + 1) is a
reasonable approx imat ion for the expected value of C~ for all values of l.

LEM~,~A 2.

(n -- 1) log2 (l + 1) _< E(C2) < (n - /)[0.0861 + log2 (l -~ 1)]. (7}

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

,Samplesort: A Sampling Approach to Minimal Storage Tree Sorting 501

PROOF. L e t

It follows that

l = 2 k - 1 + m , 0 < m < 2 k. (8)

E(C~) = (n - l)k + 2(n - 1)m/ (l + 1), (9)

:since (n -- l)h is the number of comparisons required to insert 2 k - 1 items, and the
remaining m items are inserted into disjoint subsets of X - Y whose expected size
is 2E (n~). I t is easily verified that

f (m) = E(C2) / (n - l) - log2 (1 + 1) (10)

has a maximum at

m = (2 1 n 2 - - 1)2 k. (11)

:Since the value of this maximum is less than 0.0861, the lemma follows.
We now address the problem of evaluating the expected value of C3. Toward this

end, we need:
LEMMA 3.

n--~

E(C3) = (1 + 1) ~ p (j) E (c (j)) , (12)
j~0

where E (e (j)) is the expected number of comparisons required to sort a set of size j.
PnooF. C3 is the sum of the random variables wl, 0 ~ i < l, where wl is the num-

ber of comparisons required to sort the i th segment of the remainder sequence.
Using the fact that the expectation of a sum is the sum of the expectations,

l

E(C3) = ~ E (w ~) . (13)
i=O

Now, expressing E (w~) as

E (w3
n - - l

= ~ E(w~ [ni = j) p (j) , (14)
j~O

we obtain, after interchanging the order of summation,
n - - l l

E(C3) = ~ ~ E(w~ [n~ = j)p(j) . (15)
i~=o i=o

But E(w~] nl = j) is just E (c (j)) ; hence the lemma follows.
Equation (12) is valid regardless of the method used to sort the (l + 1) subsets.

In this analysis, we postulate the use of minimal storage Quicksort for which E (c (j))
is given by (1).

The form of our next result is much more instructive if we make use of the follow-
ing clever identity, suggested by D. E. Knuth [7]:

LEMMA 4.

k=0 n + 1 -- k m k=m+l k"

PROOf. Equation (16) is easily verified for m = 0 and for m _> n. Its validity for
0 < m < n can be established by an inductive argument. We show that validity of
the identity for m _< n _~ (N - 1) implies validity for m _~ n = N; together with

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

5 0 2 w . D . F R A Z E R A N D A. C. M c K E L L A R

the previously established validity for m = 0 and m = n, this implies that the identity
is valid for all m, n. Assume that (16) holds for m _< n < (N -- 1) :

~(2 1 ~ ~ ~1(~~)
(17)

k=0 N -t- 1 -- k k=m N + 1 - k i==m--1 m -- 1 ~1()~
= ~ i 1 (18)

. . . . 1 m - - 1 k = i % l N - I - 1 - k

~()~ = ~ i 1

i=m--1 m - 1 k=l k
•--2 (19)

-t-- ~ (i) 1 (raN-- I l)
i 1 m - - 1 ~ - - / +

Combining the last two terms and invoking the induction hypothesis yields:

(2 1 (N) 2 1 (N) ~ 1 (20)
k=o N - t - l - - k = m k + m - - 1 m k"

Combining these terms, we arrive at the desired result:

~ (k) 1 : (hr + 1 ~ II- (21)
k=0 m N + 1 - k m / , ,~+ lk '

and (16) is true for m < n = N, as required.
We next address the question of evaluating E (Ca).
THEOREM 1. If Quicksort is used to sort the (1 ~ 1) subsets, then

E(C3) = 2(n --t- 1) ~ 1 2(n -- l) (22a)
i f l -~ - I i zc 1

-< 2(n"~- l) l n (n / l) - - 2 [(n - 1) - t - n - t - ll-t-1 21" (22b)

PROOF. Substi tution of (1) and (4) in (12) yields

E(C3) - 1Jr 1 ~ 1 i + 1 2j . (23)

Interchanging the order of summation, (23) can be east as

~-~() ~ () E(C3) - l-t- 1 ~ ~ 2 n - - j - - 1 j + 1 l + 1 2j n - j - - 1 (24)
(~) i=, ~=1 l - - 1 i + 1 (~) j=~ l - - 1 "

Using the identity

~(n:~ 1) (~1) () ~, j=i -- 1 = ~l ~ ~ i n--1 i

(24) can be written as

E(C~) -

~1 (~) l-t- 1 ~__~ 2 n - - (26)

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

.Samplesort: A Sampl ing Approach to M i n i m a l Storage Tree Sorting 503

Making use of Lemma 4, w e obtain, as required:

= 2(n - I - 1) ~ 1 2 (n - - l). (. . . 22a)
i~+1 i + 1

Equation (22b) comes from the usual approximation for partial sums of the harmonic
:series [4, 11].

It is instructive to compare (22a) with (1); the latter may be viewed as a special
~case of the former, with sample size l = 0.

In view of (1), (2), (7), and (22b) we have:
COROLLARY 1. I f n, l, and (n -- l) are large,

E (C) =" V (n . 4 - 1) I n (n + 1) - - (n - - l) ln (14 - - 1) + ~ (l + 1)
L

- (n + 1 + 1) - logs (l + 1)

=" 1.386n log2 n -- 0.386(n -- l) log2 i -- 2n -- 0.846l. (28b)

If l is not a number of the form 2 k -- 1, the coefficients of n and 1 should be modified
:according to the upper bound of Lemma 2. For values of n in the range of interest,
n, l, and n -- 1 are sufficiently large that the approximations made in arriving at (28)
:are valid. If method I is used without tags and if the final merging process cannot be
overlapped with output, E (C) should be increased by n.

Approximating the partial sums of the harmonic series in the usual way [4, 11],
approximating E (C2) by (n - l) log2 (l -4- 1), and equating to zero the partial
derivative of E (C) with respect to l, we have, on neglecting small terms:

~ - - (, + 1> [,n(,+ 1)-P 2'yln2-11] -'- (l + 2 1 n 2 -- 1) [ln (l + 1) -- 0.51]. (29)

Figure 1 (a) shows E (C) as a function of 1 for several values of n. These curves were
~btained by computer from the exact formulas for E (C). Figure 1 (b), for n = 5000,

I000

'h. ffl o~
IJJI-

W Z
~ 0

X ~

8

0 0 0 <> O 0 <~ 0

z~ Z~ Z~ Z~ Z~ ~ Z~ A

I0 '
IO

o
o o o o o o o

o n= 5 ,000
a n= 15,000
o n = 30 ,000

I 0 0 1000 I0 ,000
SAMPLE SIZE, 2

(a)

F I G . 1.

68

o'i,':
~ 65
~ _ : 64

~ 6 3
I.,J~ 62 l - z

S 58C-
5;)
o~
I0

}
t
/
i %,

, /
%,,, ?

/
i

~ b . 4" "%~/ '

I00 I000
SAMPLE SIZE, ..l

(b)
n = 5000 (enlarged)

Expected comparisons as function of sample size

10,000

Journal of the Association for Computing Machinery, Vol. 17, No . 3, J u l y 1970

504 W . D . FRAZER AND A. C. MCKELLAI~

has an expanded scale to show the shape of the curves in the neighborhood of the
o p t i m u m value of 1. T h e discontinuit ies in the slope which occur whenever 1 = 2 k - 1
are of course due to the propert ies of E (C2) as given by (9). Fo r all cases examined in
detai l the o p t i m u m choice of 1 was a n u m b e r of the fo rm 2 ~ -- i and the following dis-
cussion provides evidence which indicates s t rongly t h a t this is t rue a t least for
n _< 50,000.

Fo r l ~ 2 k -- 1, we consider the following measure of the cu rva tu re of E (C (1))::

1
E (C (1)) -- ~ [E(C(1 + 1)) + E (C (l -- 1))]

(n -t- 1) (2 k + 1 - m) -- l(1 + 2) (30)

l(l + 1) (/ + 2)

where I = 2 k -- 1 + m; 0 < m < 2 k. This is easily seen to be a mono tone decreasing
funct ion of 1. Thus the shape of Figure 1 (b) be tween 1 = 511 and I = 1023 is typical.
Fo r a given value of n, suppose t h a t of the numbers of the fo rm 2 ~ - 1, l = 2 ~ - 1
is the one which minimizes E (C). I t follows t h a t if 2 ~ -- 1 is not the o p t i m u m choice.
for l, then l = 2 r -- 2 mus t yield a smaller expected n u m b e r of comparisons. Fur-
thermore , it is reasonable to suppose t h a t the critical values of n are those with the
p rope r ty t h a t for n -- 1 i tems to be sorted, 1 = 2 r - 1 - 1 is the o p t i m u m choice of the ~
form 2 k - 1. All such points in the range 1000 < n < 50,000 were tes ted b y computer.
T h e results showed t h a t for this range of n, our procedure is opt imized by setting
1 = 2 k -- 1 and tak ing the o p t i m u m choice of k. Tab le I indicates the range of n for
which each choice of k is appropr ia te .

While it is appa ren t ly possible t h a t there exists a value of n for which our pro-
cedure is not opt imized b y an 1 of the fo rm 2 k - 1, this would be of academic interest
only. Any saving achieved b y allowing a rb i t r a ry choice of l would be small and would
p robab ly be nullified b y the result ing compl ica t ion to the procedure.

One can gain fur ther insight into the source of the i m p r o v e m e n t achieved by the
me thod we propose f rom an examina t ion of the difference be tween E (Cq) and E (C).
This difference has the app rox ima te form:

E(Cq) - - E (C) --" (n -- /)[(2 in (l + 1) + 23,) -- (log2 (1 + 1) -t- 2)]. (31}

T h e two t e rms of (31) have interest ing in te rpre ta t ions : the first represents the ex-
pec ted n u m b e r of compar isons required to insert the l sample i tems into the re-
ma inder sequence in a r a n d o m manner , while the second represents the expected
n u m b e r required to insert t h e m sys temat ica l ly (i.e. median first, etc.). I t is also in-
teres t ing to observe t h a t (31) is easily shown to have the same funct ional form as
E (C2).

TABLE I. OPTIMUM CHOICE OF ~ FOR 1000 __< n ~ 50,000

k 2 k -- 1
Range o f n

From To

8 255 5,000 2,008
9 511 2,009 4,521

10 1023 4,522 10,058
11 2047 10,059 22,154
12 4095 22,155 48,392
13 8191 48,393 50,900

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Samplesort: A Sampling Approach to Minimal Storage Tree Sorting 505

'~ 2 Q0

• 15.0

0
~m I0.0
~B
JO

5.0

:~ 0
~ O

A ~ A A Z~
o o o o

o

Z~ PER-CENT EXCESS COMPARISONS OVER
LOWER BOUND

o PER-CENT COMPARISONS SAVED OVER
QUICKSORT

i i i i k

~0,0 O0 2 0.000 ~ 0,0100 4 0,()00

NUMBER OF ITEMS TO BE SORTED

I

!i0.0
9 . 0 o m

8 .0
o 7.6=~

6o~°~x
Z r n 5 . 0 o c0

4 .0 ¢n
o

3 ,0 m <
2 .0 :~

1.0
I 0 m

50,000

FzG 2. Performance of Samplesort in range of practical interest

Note tha t the value of 1 which maximizes this difference (31) is the same as that
given by (29). Figure 2 shows this difference as a percentage of E (Cq) for the best
choice of I of the form 2 k -- 1. For current memory sizes, we can expect an improve-
ment of 15-20 percent. Further, we note tha t our procedure becomes more at tract ive
as the size of internal storage and (hence n) increases.

We now proceed to compare E (C) with the information theoretic lower bound of
log2 (n!). For this purpose, we have:

LEMMA 5. For n > 1000,

E (C) -- log2 (n!) 0.387 [ln (ln l) + 0.15] < (32)
log2 (n!) In (1) + In (ln (1)) -- 1"

PROOF. Using an upper bound for E (C) derived from (1), (7), and (22b) and the
lower bound for log2 (hi) given by:

logs (n!) > logs e (n in n -- n) , (33)
we have

E (C) - - log2(n!) < (2 - - l o g s e) (n l n n - - n l n l + l l n l - - n)

~ (1) (34)
- t - 0 . 0 8 6 1 n - - . 9 3 2 l - + 2 - ~ l o g s e l n n + 8 .

Choosing l by n = 1 In 1 and eliminating n, we have:

I
(2 -- log2 e)[l in 1 (In In l) + 0.15/In l]

J E(C)-log2(n!) < + [- . 9 3 2 / - 2] n / + 2 - (l n /Wln ln /)+8] . (35)

log2 (n!) - log2 e(l in 11n 1 + 11n l In In l - l In l)

It is readily verified tha t for n > 1000 and hence 1 > 100, the second term in the
numerator of (34) is negative. Thus the lemma follows.

Lemma 5 is also valid for much smaller values of n but that fact is of no interest.
As a corollary of Lemma 5, we have:

THEOREM 2.

lim E(C) _ 1. (36)
~= log2 (n!)

T h u s in t h e l imi t , as n (and h e n c e l) t e n d s to in f in i ty , E (C) a p p r o a c h e s t h e lower

bound, a n d ou r p r o c e d u r e is a s y m p t o t i c a l l y o p t i m a l . F i g u r e 2 i nd i ca t e s t h e r a t e a t

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

5 0 6 w . D . F R A Z E R AND A. C. M c K E L L A

which this convergence takes place and shows that for practical storage size
Theorem 2 is of academic interest only. Figure 2 was obtained by using Stirling
approximation for n! and (28b) for E (C). The corresponding improvement ow
Quicksort approaches 28 percent in the limit.

For values of n in the range of interest (i.e. current core storage sizes) the optimm
value of 1 is roughly 0.1 n. This validates the conditions of Corollary 1. In addition, i
suggests tha t one might consider sorting the sample using our procedure rather tha
Quicksort. This would reduce E (C) only by about 2 percent in the range of practic~
interest, however; hence it is unlikely to be worthwhile.

Of more importance is the effect that the size of 1 has on the generation of th
random sample. Although the generation of such a random sample adds complexit
to the overall sorting algorithm, it is of little consequence in practice, since the sele(
tion of the sample can normally be concurrent with input of the sequence to be sorte(
Since the optimal value of 1 is a significant fraction of n, it seems reasonable to at
sume that for most applications one could generate the sample by choosing ever
(n/1)-th i tem from the input sequence. An even simpler (but riskier) heuristic woul
be to choose the first 1 items from the input sequence. The objective, of course, is t
generate a sample whose cumulative distribution function provides an unbiased est
mate for the cumulative distribution function of the input sequence and thus ensm
that the probability distribution of (3) is the appropriate one. The selection of
simple heuristic to accomplish this depends upon the nature of the bias present in th
input sequence for a particular application.

Summary and Remarks

We have presented here a new method for minimal storage internal sorting, one whic
can provide both an increase in efficiency and a decrease in sensitivity to bias in th
input sequence.

At the outset of this investigation, we thought in terms of a small sample. Th
well-known Kolmogorov-Smirnov [10] result concerning the maximum difference b(
tween the cumulative distribution functions between two samples from an arbitrar
continuous distribution suggests that for a fixed sample size, l, this maximum d~
ference should be nearly independent of n. Tile surprising fact is, however, that s
one continues to increase n, the efficiency decreases unless 1 is also increased.

Perhaps the most striking feature of this sorting procedure, apart from the iF
provement over minimal storage Quicksort shown in (31) and Figure 2, is that thi
procedure should be almost insensitive to bias which may be present in the input se
quence. In fact, this insensitivity to bias would be guaranteed if one were actually t
choose a random sample, but, in view of the size of sample that is required, it woul
seem more practical to employ one of the coarse approximations to random samplin
which were suggested previously.

Another interesting (and reassuring) feature of the procedure we propose is it
asymptotic optimality. Although convergence to the absolute minimum is slo~
room for further improvement is small even in the range of current practical interesl

There are several ways in which one can achieve additional small improvements i
efficiency. As mentioned above, our method rather than Quicksort could be used t
sort the sample, thus reducing the number of comparisons by roughly 2 percent ov~
the range of interest (in the limit, the percentage improvement gained by this tacti

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Samplesort: A Sampling Approach to Minimal Storage Tree Sorting 507

tends to zero). Since the expected size of the subsequences which remain after the
insertion process is roughly 10 for most existing computers, Shell's method [9],"shuttle
sort," or some other procedure might be used to sort them. However, the additional
storage required for the program would reduce the size of the input sequence which
could be accommodated, and hence it is an open question as to whether or not the
efficiency of the total sorting process could be improved in this way.

REFERENCES

1. BELL, D . A . The principles of sorting. Computer J . 1, 1 (1958), 71-77.
2. GOTLIEB, C . C . Sorting on computers. Comm. ACM 6, 5 (May 1963), 194-201.
3. FRANK, R. M., AND LAZARUS, R . B . A high-speed sorting procedure. Comm ACM 3, 1

(Jan. 1960), 20---22.
4. HIBBARD, T. N. Some combinatorial properties of certain trees with applications to

searching and sorting. J. ACM 9, 1 (Jan. 1962), 13-28.
5. - - . An empirical s tudy of minimal storage sorting. Comm. ACM 6, 5 (May 1963),

206-213.
6. HOARE, C. A . R . Quicksort. Computer J. 5 (1962), 10-15.
7. KNUTH, D . E . Personal communication.
8. MORRIS, R. Some theorems on sorting. SIAM J. Appl. Math. 17, 1 (Jan. 1969), 1-6.
9. SHELL, D . L . A high-speed sorting procedure. Comm. ACM 2, 7 (July 1959), 30-32.

10. SIEGEL, S. Nonparametric Statistics. McGraw-Hill , New York, 1956.
11. WINDLEY, P . F . Trees, forests and rearranging. Computer J . 3, 2 (1960), 84-88.

RECEIVED DECEMBER, 1968; REVISED JULY, 1969

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

