
Tree Structures for Optimal Searching

L. E. STANFEL

Colorado State University,* Fort Collins, Colorado

ABSTRACT. I t is shown tha t , owing to cer ta in res t r ic t ions placed upon the se t of admissible
structures, some previous solutions have not characterized trees in which expected search time
is minimized. The more general problem is shown to be a special case of a coding problem,
which was previously formulated and solved as a linear integer programming problem, and in
the special case of equally probable key requests is found to be solvable almost by inspection.
Some remarks are given regarding the possibility of realizing a shorter computational pro-
cedure than would be expected from an integer programming algorithm, along with a com-
parison of results from the present method with those of the previous.

K E Y W O R D S A N D P H R A S E S : file searching, information retrieval, trees, double chaining, mini-
mum expected search time, variable length keys, integer programming

CR CATEGORIES: 3.70, 3.73, 3.74, 5.41

The purpose here is to discuss certain aspects of tree storage, including the material
in E. H. Sussenguth's M a y 1963 paper [1]. To employ terminology consistent with
tha t of Sussenguth, we call the set of all nodes lying on paths of unit length from a
node i the filial set of node i. Nodes lying on paths of length K - 1 from a root of
the tree are said to lie on the K t h level of the tree, roots lying on level 1. A sequence
of edges leading from a root to a node on level m Jr 1 is called a path of length m.
The structure of interest is illustrated by the typical example shown in Figure 1.
Here, A, B, C, D are roots and lie on level 1; {El is the filial set of node F and lies on
level 3; {H, I , J , K} is the filial set of node G; AMQP identifies a path of length 3;
* denotes end of key.

Terminal nodes correspond to the pieces of information stored and intermediate
nodes to components of the keys, a key being tha t which serves to label or identify
the associated piece of information. For example, in an accounting system a record
might consist of an account number and a name, the former serving as the key, the
lat ter as the piece of information. In such a case the tree structure might appear as
shown in Figure 2. Here, account 11456 has associated the name J. Farquard.

Referring to Figure 1, we describe the search procedure. Suppose it is desired to
find tha t information associated with a given key. We compare the first key com-
ponent to A, and if there is a match, compare the second key component to M.
Otherwise, the first key component is compared to B. I f the second key component
matches M, the third component is compared to N; otherwise the second component
is compared to F, etc. In short the search proceeds from left to right within a filial
set, and when a match occurs begins with the first node in the filial set of the node
which matched. To locate terminal node K in Figure 1, for example, nodes would

A portion of this work was completed at the University of Florida, Gainesville, Fla., under
Project THEMIS, Contract ARO-D DAH-CO4-68C-0002.
* Department of Mechanical Engineering.

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970, pp. 508-517.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321592.321601&domain=pdf&date_stamp=1970-07-01

Tree Structures for Optimal Searching 509

./

A c

A

F I G . 1

©

D /
9 l e e

8

J. Farquard
FIG. 2

be examined in the order A, B, O, L, G, H, I, J, K. We imagine that a two-dimen-
sional chaining scheme exists which enables one to proceed both within a filial set
and from a given node into its fiilial set.

Sussenguth's measure of search time is the number of chaining links traversed
in the course of the search, where it is assumed that one link must be traversed to
enter a filial set. Thus, in Figure 1, five links are required to locate P, four links for E,
nine links for K, etc. Once in a filial set of S elements the expected number of links
necessary to traverse is ½(S - 1), given that the node sought is equally likely to be
any of those within the set.

Letting

number of nodes on level i
s~ = number of filial sets on level i '

the expected search time (expected number of chaining links traversed) is then
given [1] as

h

t = ½ ~ (s i W 1) . (1)

We should observe, however, that eq. (1) holds only if all terminal nodes lie on level
h of the tree.

At any rate, Sussenguth then proves that the minimization of t dictates that all
s~ must be of identical size, 3.6 nodes, whereupon the optimal h may be calculated
and is log3.~ N, where N is the number of terminal nodes (number of items stored).

It was concluded, therefore [1], that "when it is possible freely to manipulate
the keys, the key elements should be selected so that :

(i) all paths from a root to a leaf have the same length, h;
(ii) all filial sets have the same number of members, s; and

(iii) the common filial set size s is near 3.6 and h is log, N . "
These results raise certain questions. In particular:
(1) In what sense is the solution obtained optimal?
(2) The problem of structuring the tree so as to minimize search time is integer

in nature, so how are the noninteger results to be interpreted and implemented?
(3) How is the optimal tree structure to be deduced when the items of informa-

tion have a nonuniform probability of being requested?

Journal of the Association for Comput ing Machinery, Vol. 17, No. 3, Ju ly 1970

510 L.E. STANFEL

Regarding question (1), consider the case of 16 items. Sussenguth's results in-
dicate that the optimal tree is that shown in Figure 3. For this arrangement, the
expected search time, from eq. (1), is ½.2.5 = 5. The numbers near the terminal
nodes in Figure 3 are the numbers of chaining links required to reach the correspond-
ing nodes. The expected search time could therefore be calculated by summing
those numbers and dividing by 16, i.e.

1 4 + 18 + 22 + 26 80
16 16

Let us consider an alternative structure for a tree of 16 terminal nodes (see Figure
4). The numbers ~near the terminal nodes function as before. For this arrange-
ment ~ = 77//16 = 4.81.

Since we have discovered an expected search time less than 5 links, it is clear that
in the usual sense Sussenguth's result definitely does not yield an optimal tree.
I t possesses, however, a certain "minimax" quality, for the subtrees of Figure 3
may be permuted in any fashion with fi remaining invariant. The structure in Figure
4, on the contrary, does not possess this attribute. For, consider Figure 5. Here,

= 5.5 chaining links.
If one is interested in storing a file in tree format, however, with minimization of

expected search time the objective, the effect upon search time of perturbations of
this kind is not the deciding factor. I t is clear that the assumption of a common level
for all terminal nodes in an optimal tree is invalid and has led to a nonoptimal
result.

In [1] it is apparently assumed that all possible input keys have identical length.
Free manipulation of the keys is taken to mean that there exists a 1:1 transforma-
tion T:K ~ K'(h), where K is the set of all possible keys with which the system
will have to deal and K'(h) is a set of strings of symbols of length h, where h is
determined as a value in a certain minimization problem. The system must be
capable of determining k'(h) from a given k (including those k it has not previously
seen), or else a translation must take place before input.

In this paper, free manipulation of keys is taken to mean that there exists a 1 : 1
transformation C:K --~ L, where L is a set of symbol strings of variable length, the
particular lengths being integers obtained from a minimization problem (to be
formulated below).

2 5 4 5 3 4 5 6 '4 5 6 7 5 6 7 8

FiG. 3 FIG. 4

Fie. 5

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Tree Structures for Optimal Searching 511

This relaxation of restrictions on the set of admissible solutions enables one to
improve upon the result obtained by employing (i)-(iii) in every instance, although
key translation may become more complicated in cases. (Key translation time in
any situation should rightfully become a part of the expected search time. If this
were a sufficiently costly process, one might prefer to allow no manipulation of
keys, although this modification of objective function will not be carried out here.)

Let us now consider question (2). Since we are interested in finding an optimal
tree, we must be concerned with quantities such as the number of nodes in a filial
set, the number of chaining links required to reach a given terminal node, etc.
These quantities are all integers, of course, and any description of an optimal tree
must also be in integer terms.

If this optimization problem is mathematically formulated in the most straight-
forward fashion, one obtains an integer programming problem, which is quite large
and unwieldy, and further complicated by certain nonlinearities within the con-
straints. Without giving this formulation, let us pursue a less straightforward ap-
proach which results in a formulation much more amenable to solution. Motivated
by considerations of practicality, we do choose to add one further constraint to the
formulation. I t seems reasonable to expect that the file designer has a priori knowl-
edge of the number of symbols available for use as key elements-- the keys may have
to be bina~'; it may be that the keys are to be strings composed of the elements
{0, 1, 2, • • • , 9} ; or, the key-coding alphabet may be the set of Latin letters; etc.
Therefore, we assume we are given a maximum number of possible key elements,
allowing that if it is possible to do better with less than all of them, then we expect
our solution procedure to so advise.

In a 1960 paper [2], Richard Karp treated the problem of constructing minimum
redundancy prefix encodings in the event the coding symbols have rational, but
perhaps unequal, costs--a set of circumstances which preclude the use of Huffman's
well-known procedure. Karrp was able to cast this problem into the following form.

Minimize

~ jP~Y~j
i=1 5=1

subject to

~ Y ~ . + be_< ~ b i _ c K , j = 1, . . . , m , (P1)
i=l K~I

~ Y i j = 1, i = 1, . . - , n ,

with b0 = 1, b~ = 0 for q < 0 and Yii, b] nonnegative integers.
To explain the remainder of the notation in Karp's problem, n was the number of

code words; {P~} was a set of stationary probabilities where Pr [code word i is
sent} = P,: ; the costs of the r available code symbols were C1, C2, • • • , C~ (integers) ;
m was an upper bound on the cost of code words (m an integer), and bi-cg was the
number of prefixes of cost j which terminate with the Kth symbol. Karp was able to
reduce the number of variables in the problem by introducing certain bounds and
solving a sequence (perhaps only one) of problems of the form (P1), each with some
of its variables fixed. The result was that problems with a larger number of variables

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

512 L . E . STANFEL

could still be effectively t reated. Some computa t ional results are reported in his
paper. The solution procedure was Gomory ' s all-integer cut t ing plane method [3]
implemented on the I B M 704 computer .

We now show tha t the problem of construct ing an opt imal doubly chained tree is
bu t a special case of Karp ' s problem and one, therefore, for which a very well-defined
solution procedure already exists. I t is assumed t h a t there are r symbols available as
key components and tha t the number of chaining links necessary to reach a terminal
node must be no greater t han some given positive integer m. Now consider a prefix
encoding of n words over an a lphabet of r characters, the symbols 1, 2, • • • , r for
example. The graph of such an encoding would appear as in Figure 6, where symbols
are assigned in ascending order within a filial set. Here the code words are {11, 121,
122, - . . , r l , r2, r31}.

Suppose in such a coding tree we let the cost of the symbol i = i, i = 1, • • • , r.
Then the cost of a code word is exactly the number of chaining links required to reach the
terminal node associated with that code word, if one searches th rough the s t ructure as if
it were a doubly chained tree. This is clear f rom Figure 6, as well as f rom the con-
s truct ion of the tree.

Now if an encoding had, in any of the filial sets in its tree, the symbols in an order
other than 1, 2, • • • , r, then it would no t always be the case tha t the cost of a code
word equals the number of chaining links required to reach the associated terminal
node. But , clearly, every filial set in the tree of an optimal encoding will have the
symbols ordered in the desired fashion--otherwise , the encoding would not be opti-
mal. Thus, if we can construct a min imum redundancy prefix encoding for n words
over an r -symbol alphabet , where the cost of symbol i is i, i = 1, • • • , r, then we
have also found tha t tree s t ructure whose expected search t ime is minimized.

We emphasize tha t the tree structures obtained will be opt imal over all those trees
in which no key prefixes another , since Karp ' s approach locates opt imal prefix codes.

Now in the event the i tems of informat ion have equal probabilities of being sought,
we m a y simplify problem (P1) and obtain (P2) :

Minimize

Zjj

subject to

Z i + bl _< b0 = 1,

Z2 + b2 < bl + bo,

Z3 + b3 _< b2 + bl -4- bo,

Zi + bi ~_ ~ ~ b j-i,
i=1

(P2)

Z m + b m < ~ b m _ i ,
i=l

~ Z j = n,
j=l

and bj, Zi are noimegat ive integers, j = 1, • • • , m.
(P2) remains a linear, integer p rogramming problem, bu t now we have a problem

tha t can be solved vir tual ly by inspection.

lournaKof the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Tree S t r u c t u r e s f o r O p t i m a l S e a r c h i n g 513

FIG. 6

Let us proceed to give an algorithm for solving (P2), illustrate its use by example,
and then prove that it is effective. In what follows we speak in terms of code words
and codes rather than keys, trees, etc.

Denote by b e * the maximum value that the variable bK may assume. For example,
bJ 1, b2* 2, b~* ~ = 1 * , = b i -~ , • • • . Let us determine two costs, K + 1

bK+l) < and K + 2, as follows. We want n > bg+l and (n -- _ bK+2 -- bK+l. Clearly,
from the nature of the bi*, (K + 1) and (K + 2) are uniquely determined. At this

$ $
point we let bK+l words assume cost (K + 1) and (n - bK+l) words assume cost
(K + 2). The constraints of (P2) are satisfied with Z1 = Z2 Z K = ZK+3 =

. . . . Zm = 0; bj = bi* , . . . , j = 1, . . . , K , b~+l = O, bK+2 = 0. N e x t w e t a k e
bK* of the words of cost (K + 1) and let them each assume cost K. Now, b~ = 0,

$
ZK = b e * , Zr:+l = bK+l - - bK*, bg+l = 0, and if the (K + 2)-nd constraint is still
satisfied, we stop. Otherwise, we increase ZK+I by reducing ZK and increasing bK

simultaneously until the (K + 2)-nd constraint is just satisfied (bK+2 = 0).
The claim is tha t the resulting code is optimal. First, we give two examples.
Let r = 5, n = 11, m = 7. (If m is not formally specified in the tree problem

the procedure does not suffer.) We first generate the bj*; bl* = 1, b2* = 2, b3* = 4,
b4* = 8, b~* = 16, and this will suffice. According to the algorithm we allocate 8
words to cost 4, 3 words to cost 5. The pertinent constraints of (P2) then appear:

Z ~ + b 4 _ ~ b 3 + b ~ + b l + b o ,

Z5 + b5 GG b4 + b3 + b~ + bl + b9,

o r

and

8 + 0 = 4 + 2 + 1 + 1 = 8 ,

3 + b 5 ~ 4 + 2 + 1 + 1 = 8 ,

0 < b 5 < 5 .

Next, we allocate 4 words to cost 3, keeping 4 of cost 4, 3 of cost 5.

Z3 + b 3 ~ b2 + bl + b0.

But if Z3 = 4, b3 = 0, since b3* = 4. Next we have

Z 4 + b4 L~ b3 + b2 + bl + b0,

4 + 0 = 0 + 2 + 1 + 1 = 4 .

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

51,~ L . E . STANFE[

Finally,

Z5 -~- b5 < b4 + b3 -k b2 "4- bl -t- b0,

3 -~- b5 _~ 0 + 0 --k 2 -~- 1 -~- 1.

All constraints are satisfied, and we stop.
Next, consider the c a s e r = 5, n = 14, m = 7. A few of the b~* are, again,

bl* = 1, b2* = 2, b~* = 4, b4* = 8, bs* = 16.
The algorithm states tha t we first allocate 8 words to cost 4, 6 words to cost 5.

Next we allocate 4 words to cost 3, keeping 4 of cost 4, 6 of cost 5. Examining the
constraints of (P2) then, we find:

Z3"~- b3 ~ b~ + bl + b0

o r

SO

4 + b3 __< 4,

b3 = 0.

o r

Z 4 + b4 < b3 + b2--~ bl + b0 = b2 -~- bl--k b0

4 + b4 < 4,

s o

b4 -~ 0 .

Zs-~-bs_< b 4 W b ~ + b 2 - ~ - b l - - ~ b 0 = b 2 + b l + b 0 ,

6 -t- b5 _< 4,

and the fifth constraint cannot be satisfied.
If, however, we decrease Z3 by 2, b3 may increase by 2. Then Z4 may be increased

by 2, the fourth constraint remains satisfied, and the fifth constraint is then just
satisfied with b5 = 0, and the resulting code has 2 words of cost 3, 6 of cost 4, 6 of
cost 5.

The process of determining the structure of the code (or tree) is entirely simple,
regardless of the magnitudes of n, r, m. Once the bj* are generated, the problem is es-
sentially solved by inspection. For large values of the parameters n, r, m, a computer
could easily generate the required numbers- -cer ta in ly both programming time and
execution t ime would be negligible for this procedure.

The final task here is to demonstrate tha t the result obtained does constitute an
optimal solution to the problem.

We may observe tha t the result is optimal among all those codes with minimum-
cost words having cost K or greater, since it has tha t number of words of cost K which
allows the number of words of cost K + 2 to be minimized and has no words of cost
greater than K + 2.

The next step is to establish tha t introducing words of cost less than K cannot
improve upon the result already obtained.

I t is instructive to first observe what occurs when a word of cost (K - 1) is intro-

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Tree Structures for Optimal Searching 515

duced into our result. Suppose we select a word of cost K and let it assume cost K - 1.
Immediately, bK-1 must decrease by 1, be may remain unchanged, but bg+l must de-
crease by 1. But bg+l was zero, so a word of cost (K + 1) must assume cost (K -t- 2)
at least, and, at best, we realize no improvement.

Suppose we select a word of cost (K + 1) to assume cost (K - 1). Again, bg-i is
reduced by 1 and, as a result, one of ZK, bK must be reduced by 1 also. (If, in fact,
b~ ~ 0. I t may be tha t there is no choice.) Suppose be is reduced by 1. Then, since
bK+l = 0 and ZK+i was already reduced by 1, ZK+~ must be reduced one more, and the
corresponding word cannot assume cost (K + 2), because the (K + 2)-nd constraint
is iust satisfied with bE+2 = 0, which in turn results from the fact tha t bK was non-
zero in the first place. So the cost of the displaced word increases by 2, and since the
right side of the (K + 2)-nd constraint involves bE, which was reduced by 1, at
least one other word of cost (K + 2) must assume cost (K ~ 3), and consequently
the average word cost has been increased. In similar fashion we would find tha t de-
creasing ZK, rather than bE, yields the same conclusion, and the same sort of argu-
ments will show tha t introducing a word of cost (K - 1) at the expense of ZK+2 also
worsens the average word cost.

So no improvement is possible upon introducing one new word of cost K - 1,
~nd clearly the same conclusion is unavoidable if more words of cost K - 1 are
introduced.

More generally, suppose there exist codes with minimum cost K -- p, p _> l,
which give lower average cost than our originally obtained code, W. Denote the best
code of this set W~, and let us proceed to operate upon W~, which has minimum-cost
word with cost K -- p, p >_ 1. Suppose we decrease ZK_p by 1. Then bK-~ may be
increased by 1; bg-p+~, by 1; be-p+2, by 2; b~_,n3, by at least 3 (when r = 2, the
possible increase would be 3) ; • • • ; b~-p+s, by a t least F~, where F¢ = j t h Fibonacci
number. (F0 = 1, F1 = 1, Fi = F~_i + Fi-2, i ~ 2.)

We find, in particular, tha t bg may be increased by at least Fp. We propose to al-
low our deleted word of cost K -- p to assume cost K, which allows b~ or
consequently ZK to be increased at least Fp - 1, at the expense of costlier words.

With each of these F~ -- 1 remaining words we can save a t least one unit of cost.
Now ZK+I may also be increased at least 1 at the expense of costlier words, since
bK-~ has increased. Suppose we save just one more unit of cost.

We have, then, reduced total cost Fp -- 1 + 1 = Fp and increased it p. But
Fp > p, all p. Thus we have not increased the total cost. Continuing in this fashion,
increasing the cost of words having cost less than K by allowing them to assume cost
K, we either reconstruct our original code W and find tha t it gives as good a result
as the hypothesized one, W~, or we discover strict improvement at some point along
the way. In either case, we contradict the assumption tha t W~ gives an average word
length smaller than any other. Consequently, the code W must be optimal.

Conclusions

We were able to formulate the problem as a linear integer programming problem,
solvable by a var iety of existing techniques, bu t nevertheless, for a large number of
variables and constraints, not a problem for which extremely efficient algorithms are
available. However, in the event of a uniform probabil i ty distribution, probably the
most important case, the problem has been found to be quite easily solved--almost
by inspection, in fact.

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

5 1 6 L . E . STANFEL

For the general probability distribution, no such attractive result can be expected,
but there is a possibility that computational savings might be realized even in this
more general case. If we write out the constraints of (P1) we notice that the first
m-n columns are precisely those of an ordinary transportation problem. Now this
array itself is unimodular; that is, every minor has value 0 or :t:1, and this property
guarantees an optimal solution in integers, given that the constants in the constraints
are integers. If our entire matrix of coefficients in (P1) had this property, then we
could remove the integer requirements, solve (P1) as a linear programming problem,
and obtain an optimal solution in integers.

Unfortunately the array one finds ia (P1)--after converting to a system of
equalities--is not unimodular, but for small m, n it seems to be the case that many
nonsingular (m -~ n) X (m + n) arrays, which qualify as bases for the linear pro-
gramming solution procedure, do have determinant ~ 1. Therefore, we may expect
optimal solutions obtained for the linear programming problem to be integer more
frequently than in general. Further, it would be more likely to find an alternative
optimal solution in integers than in general. Alternative optima are quite easily
generated once the linear programming problem has been solved, and exploring these
possibilities before entering the actual integer programming procedure (it is typical
of integer programming algorithms to first solve the problem sans integer require-
ments) might prove profitable. These latter remarks are, of course, conjecture, their
worth being dependent upon the frequency with which sets of m W n linearly in-
dependent columns from the matrix of constraint coefficients in (P1) have determi-
nant ~ 1.

I t may be of interest to compare a few sample results with variable length keys
with those of the fixed length keys. In Table I, for thefixed length keys, we let the
average filial set size be 3.6, as required by (iii), and computed h to be the smallest
integer satisfying h > log3.6 N, from (iii), since h must be an integer. The numbers
in columns 2-5 are the average search times, measured in numbers of chaining links.

Regarding Table I, several remarks are appropriate. First, the values of N chosen
are of no particular significance--it was desirable to represent a range of magnitudes,
and the values chosen accomplish that.

The numbers of symbols for which we computed expected search time iu the vari-
able length case were chosen only to give a small range of values which included the
average filial set size of 3.6 for the fixed length keys.

I t should be realized that it is actually inequitable to compare the fixed length re-
sults with the variable length for two and three symbols, since if the common filial
set size is to be 3.6, there must be more than three symbols available. I t is the case,
however, that even the three-symbol result is superior to the fixed length, giving
better results for all N. The further improvement for four or five symbols is apparent.

T A B L E I

N = 50 N = 100 N=1000N=10,000

Fixed l eng th 9.2 9.2 13.8 18.4
Var i ab le - -2 symbo l s 8.2 9.7 14.4 19.2
Var iab le - -3 sy mbo l s 6.6 7.8 11.8 15.6
Variable---4 symbo l s 6.3 7.4 10.8 14.4
Var i ab le - -5 sy mbo l s 6.0 7.2 10.6 13.9

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

Tree Structures for Optimal Searching 517

It should also be observed that the differences obtained are not trifling--a signifi-
cant improvement is achieved when the keys may have variable length, and if there
were more symbols than five available, the results would appear even more favorable.

It must be pointed out that the simplest problem of the class described here,
namely, that in which the probability distribution of inquiries is uniform, with the
further assumption that the number of available key symbols is unlimited, has been
solved in quite different fashion [4]. As mentioned previously, an upper bound on the
number of available symbols is a realistic constraint.

It is felt that the present approach is preferable to that in [4], since the strong re-
lationship between the search problem and the coding problem is here evident--i t is,
in fact, exploited. Further, the fact that such trees as are obtained are optimal in a
prefix sense is clear from the coding context; otherwise, the distinction is not so ap-
parent.

A reviewer has noted the paper by Arora and Dent [5], and has suggested that
reference to it be made here. The two problems and the assumptions made in the two
differ in several significant respects.

In the context of [5], incoming items are already labeled in such a way as to con-
strain the tree eventually created; there are essentially but two key symbols avail-
able for use; there is no prefix requirement on keys; each vertex requires the storage
of three addresses (owing to the prefixing of keys by others).

In the present context, however, incoming items are essentially unlabeled and the
order of arrival has no effect upon the structure of the tree eventually obtained; the
number of available symbols is the parameter which affects the structure of the tree
and this number is utilized to greatest advantage; we have imposed a prefix require-
ment, which in fact increases the expected search time [6], and we have a two-address
system.

Thus, although both methods involve constructing and searching a file which pos-
sesses a tree form, the circumstances within which they are appropriate are quite
different.

REFERENCES

l. SUSSENGUTH, E . H . Use of tree s t ruc tures for processing files. Comm. A C M 6, 5 (May
1963), 272-279.

2. KARP, R . M . Min imum redundancy coding for the discrete, noiseless channel. I R E Trans.
IT-7 (1961), 27-35.

3. GOMORY, R. E. An algor i thm for integer solutions to l inear programs. In Recent
Advances in Mathematical Programming, Graves, R. L., and Wolfe, P. (Eds.), McGraw-
Hill, New York, 1963, pp. 269-302. (Firs t made known in 1958.)

4. PATT, Y. Variable length tree s t ruc tures having min imum average search time. Comm.
ACM 12, 2 (1969), 72-76.

5. ARORA., S. R., AND DENT, W.W. Randomized b inary search technique. Comm. A C M 12, 2
(1969), 77-80.

6. STANFEL, L . E . A comment on opt imal tree s t ructures . Comm. A C M 12, 10 (Oct. 1969),
582.

RECEIVED MARCH, 1969; REVISED DECEMBER, 1969

Journal of the Association for Computing Machinery, Vol. 17, No. 3, July 1970

