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ABSTRACT. I t  is shown  tha t ,  owing to cer ta in  res t r ic t ions  placed upon  the se t  of admissible 
structures, some previous solutions have not characterized trees in which expected search time 
is minimized. The more general problem is shown to be a special case of a coding problem, 
which was previously formulated and solved as a linear integer programming problem, and in 
the special case of equally probable key requests is found to be solvable almost by inspection. 
Some remarks are given regarding the possibility of realizing a shorter computational pro- 
cedure than would be expected from an integer programming algorithm, along with a com- 
parison of results from the present method with those of the previous. 
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The purpose here is to discuss certain aspects of tree storage, including the material 
in E. H. Sussenguth's M a y  1963 paper  [1]. To employ terminology consistent with 
tha t  of Sussenguth, we call the set of all nodes lying on paths of unit length from a 
node i the filial set of node i. Nodes lying on paths of length K - 1 from a root of 
the tree are said to lie on the K t h  level of the tree, roots lying on level 1. A sequence 
of edges leading from a root to a node on level m Jr 1 is called a path  of length m. 
The  structure of interest is illustrated by  the typical example shown in Figure 1. 
Here, A, B, C, D are roots and lie on level 1; {El is the filial set of node F and lies on 
level 3; {H, I ,  J ,  K} is the filial set of node G; AMQP identifies a path  of length 3; 
* denotes end of key. 

Terminal  nodes correspond to the pieces of information stored and intermediate 
nodes to components of the keys, a key being tha t  which serves to label or identify 
the associated piece of information. For  example, in an accounting system a record 
might consist of an account number  and a name, the former serving as the key, the 
lat ter  as the piece of information. In  such a case the tree structure might appear  as 
shown in Figure 2. Here, account 11456 has associated the name J. Farquard. 

Referring to Figure 1, we describe the search procedure. Suppose it is desired to 
find tha t  information associated with a given key. We compare the first key com- 
ponent  to A, and if there is a match,  compare the second key component  to M. 
Otherwise, the first key component  is compared to B. I f  the second key component 
matches M, the third component  is compared to N;  otherwise the second component 
is compared to F, etc. In  short the search proceeds from left to right within a filial 
set, and when a match  occurs begins with the first node in the filial set of the node 
which matched. To locate terminal node K in Figure 1, for example, nodes would 
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be examined in the order A, B, O, L, G, H, I, J, K. We imagine that  a two-dimen- 
sional chaining scheme exists which enables one to proceed both within a filial set 
and from a given node into its fiilial set. 

Sussenguth's measure of search time is the number of chaining links traversed 
in the course of the search, where it is assumed that  one link must be traversed to 
enter a filial set. Thus, in Figure 1, five links are required to locate P,  four links for E,  
nine links for K, etc. Once in a filial set of S elements the expected number of links 
necessary to traverse is ½(S - 1), given that  the node sought is equally likely to be 
any of those within the set. 

Letting 

number of nodes on level i 
s~ = number of filial sets on level i ' 

the expected search time (expected number of chaining links traversed) is then 
given [1 ] as 

h 

t = ½ ~ ( s i W 1 ) .  (1) 

We should observe, however, that  eq. (1) holds only if all terminal nodes lie on level 
h of the tree. 

At any rate, Sussenguth then proves that  the minimization of t dictates that  all 
s~ must be of identical size, 3.6 nodes, whereupon the optimal h may be calculated 
and is log3.~ N, where N is the number of terminal nodes (number of items stored). 

It  was concluded, therefore [1], that  "when it is possible freely to manipulate 
the keys, the key elements should be selected so that :  

(i) all paths from a root to a leaf have the same length, h; 
(ii) all filial sets have the same number of members, s; and 

(iii) the common filial set size s is near 3.6 and h is log, N . "  
These results raise certain questions. In particular: 
(1) In what sense is the solution obtained optimal? 
(2) The problem of structuring the tree so as to minimize search time is integer 

in nature, so how are the noninteger results to be interpreted and implemented? 
(3) How is the optimal tree structure to be deduced when the items of informa- 

tion have a nonuniform probability of being requested? 
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Regarding question (1), consider the case of 16 items. Sussenguth's results in- 
dicate that  the optimal tree is that  shown in Figure 3. For this arrangement, the 
expected search time, from eq. (1), is ½.2.5 = 5. The numbers near the terminal 
nodes in Figure 3 are the numbers of chaining links required to reach the correspond- 
ing nodes. The expected search time could therefore be calculated by summing 
those numbers and dividing by 16, i.e. 

1 4 +  18 + 22 + 26 80 
16 16 

Let  us consider an alternative structure for a tree of 16 terminal nodes (see Figure 
4). The numbers ~near the terminal nodes function as before. For this arrange- 
ment ~ = 77//16 = 4.81. 

Since we have discovered an expected search time less than 5 links, it is clear that 
in the usual sense Sussenguth's result definitely does not yield an optimal tree. 
I t  possesses, however, a certain "minimax" quality, for the subtrees of Figure 3 
may be permuted in any fashion with fi remaining invariant. The structure in Figure 
4, on the contrary, does not possess this attribute. For, consider Figure 5. Here, 

= 5.5 chaining links. 
If one is interested in storing a file in tree format, however, with minimization of 

expected search time the objective, the effect upon search time of perturbations of 
this kind is not the deciding factor. I t  is clear that  the assumption of a common level 
for all terminal nodes in an optimal tree is invalid and has led to a nonoptimal 
result. 

In [1] it is apparently assumed that  all possible input keys have identical length. 
Free manipulation of the keys is taken to mean that  there exists a 1:1 transforma- 
tion T:K ~ K'(h), where K is the set of all possible keys with which the system 
will have to deal and K'(h) is a set of strings of symbols of length h, where h is 
determined as a value in a certain minimization problem. The system must be 
capable of determining k'(h) from a given k (including those k it has not previously 
seen), or else a translation must take place before input. 

In this paper, free manipulation of keys is taken to mean that  there exists a 1 : 1 
transformation C:K --~ L, where L is a set of symbol strings of variable length, the 
particular lengths being integers obtained from a minimization problem (to be 
formulated below). 

2 5 4 5 3 4 5 6 '4 5 6 7 5 6 7 8 
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This relaxation of restrictions on the set of admissible solutions enables one to 
improve upon the result obtained by employing (i)-(iii) in every instance, although 
key translation may become more complicated in cases. (Key translation time in 
any situation should rightfully become a part  of the expected search time. If this 
were a sufficiently costly process, one might prefer to allow no manipulation of 
keys, although this modification of objective function will not be carried out here.) 

Let us now consider question (2). Since we are interested in finding an optimal 
tree, we must be concerned with quantities such as the number of nodes in a filial 
set, the number of chaining links required to reach a given terminal node, etc. 
These quantities are all integers, of course, and any description of an optimal tree 
must also be in integer terms. 

If this optimization problem is mathematically formulated in the most straight- 
forward fashion, one obtains an integer programming problem, which is quite large 
and unwieldy, and further complicated by certain nonlinearities within the con- 
straints. Without giving this formulation, let us pursue a less straightforward ap- 
proach which results in a formulation much more amenable to solution. Motivated 
by considerations of practicality, we do choose to add one further constraint to the 
formulation. I t  seems reasonable to expect that  the file designer has a priori knowl- 
edge of the number of symbols available for use as key elements-- the keys may have 
to be bina~';  it may be that  the keys are to be strings composed of the elements 
{0, 1, 2, • • • , 9} ; or, the key-coding alphabet may be the set of Latin letters; etc. 
Therefore, we assume we are given a maximum number of possible key elements, 
allowing that  if it is possible to do better  with less than all of them, then we expect 
our solution procedure to so advise. 

In a 1960 paper [2], Richard Karp treated the problem of constructing minimum 
redundancy prefix encodings in the event the coding symbols have rational, but  
perhaps unequal, costs--a set of circumstances which preclude the use of Huffman's 
well-known procedure. Karrp was able to cast this problem into the following form. 

Minimize 

~ jP~Y~j 
i=1 5=1 

subject to 

~ Y ~ . +  be_< ~ b i _ c K ,  j = 1, . . . , m ,  (P1) 
i=l  K~I 

~ Y i j  = 1, i = 1, . . - , n ,  

with b0 = 1, b~ = 0 for q < 0 and Yii, b] nonnegative integers. 
To explain the remainder of the notation in Karp's problem, n was the number of 

code words; {P~} was a set of stationary probabilities where Pr [code word i is 
sent} = P,: ; the costs of the r available code symbols were C1, C2, • • • , C~ (integers) ; 
m was an upper bound on the cost of code words (m an integer), and bi-cg was the 
number of prefixes of cost j which terminate with the Kth  symbol. Karp was able to 
reduce the number of variables in the problem by introducing certain bounds and 
solving a sequence (perhaps only one) of problems of the form (P1), each with some 
of its variables fixed. The result was that  problems with a larger number of variables 
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could still be effectively t reated.  Some computa t ional  results are reported in his 
paper.  The  solution procedure was Gomory ' s  all-integer cut t ing plane method [3] 
implemented on the I B M  704 computer .  

We now show tha t  the problem of construct ing an  opt imal  doubly  chained tree is 
bu t  a special case of Karp ' s  problem and one, therefore, for which a very  well-defined 
solution procedure already exists. I t  is assumed t h a t  there are r symbols available as 
key  components  and tha t  the  number  of chaining links necessary to reach a terminal 
node must  be no greater  t han  some given positive integer m. Now consider a prefix 
encoding of n words over an a lphabet  of r characters,  the symbols 1, 2, • • • , r for 
example. The  graph of such an encoding would appear  as in Figure 6, where symbols 
are assigned in ascending order within a filial set. Here  the code words are {11, 121, 
122, - . .  , r l ,  r2, r31}. 

Suppose in such a coding tree we let the cost of the symbol  i = i, i = 1, • • • , r. 
Then  the cost of a code word is exactly the number of chaining links required to reach the 
terminal node associated with that code word, if one searches th rough  the s t ructure  as if 
it were a doubly  chained tree. This is clear f rom Figure 6, as well as f rom the con- 
s truct ion of the tree. 

Now if an encoding had, in any  of the filial sets in its tree, the symbols in an order 
other  than  1, 2, • • • ,  r, then it would no t  always be the case tha t  the cost of a code 
word equals the number  of chaining links required to reach the associated terminal 
node. But ,  clearly, every filial set in the tree of an optimal encoding will have the 
symbols ordered in the desired fashion--otherwise ,  the encoding would not  be opti- 
mal. Thus,  if we can construct  a min imum redundancy  prefix encoding for n words 
over an r -symbol  alphabet ,  where the cost of symbol  i is i, i = 1, • • • , r, then we 
have also found tha t  tree s t ructure  whose expected search t ime is minimized. 

We emphasize tha t  the tree structures obtained will be opt imal  over all those trees 
in which no key prefixes another ,  since Karp ' s  approach  locates opt imal  prefix codes. 

Now in the  event  the  i tems of informat ion have equal probabilities of being sought, 
we m a y  simplify problem (P1) and obtain  (P2) :  

Minimize 

Zjj 

subject  to 

Z i +  bl _< b0 = 1, 

Z2 + b2 < bl + bo, 

Z3 + b3 _< b2 + bl -4- bo, 

Zi + bi ~_ ~ ~ b j-i, 
i=1 

(P2) 

Z m + b m < ~ b m _ i ,  
i=l 

~ Z j  = n, 
j=l 

and bj, Zi are noimegat ive  integers, j = 1, • • • , m. 
(P2) remains a linear, integer p rogramming  problem, bu t  now we have a problem 

tha t  can be solved vir tual ly by  inspection. 
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FIG.  6 

Let us proceed to give an algorithm for solving (P2), illustrate its use by example, 
and then prove that  it is effective. In what follows we speak in terms of code words 
and codes rather than keys, trees, etc. 

Denote by b e *  the maximum value that  the variable bK may assume. For example, 
bJ  1, b2* 2, b~* ~ = 1  * . . . . .  , = b i -~  , • • • . Let us determine two costs, K + 1 

bK+l)  < and K + 2, as follows. We want n > bg+l and (n -- _ bK+2 -- bK+l. Clearly, 
from the nature of the bi*, (K + 1 ) and (K + 2) are uniquely determined. At this 

$ $ 
point we let bK+l words assume cost (K + 1) and (n - bK+l) words assume cost 
(K + 2). The constraints of (P2) are satisfied with Z1 = Z2 . . . . .  Z K  = ZK+3 = 

. . . .  Zm = 0; bj  = bi* ,  . . .  , j = 1, . .  . , K ,  b~+l = O, bK+2 = 0. N e x t w e t a k e  
bK* of the words of cost (K + 1 ) and let them each assume cost K. Now, b~ = 0, 

$ 
ZK = b e * ,  Zr:+l = bK+l - -  bK*,  bg+l = 0, and if the (K + 2)-nd constraint is still 
satisfied, we stop. Otherwise, we increase ZK+I by reducing ZK and increasing bK 

simultaneously until the (K + 2)-nd constraint is just satisfied (bK+2 = 0). 
The claim is tha t  the resulting code is optimal. First, we give two examples. 
Let r = 5, n = 11, m = 7. (If m is not formally specified in the tree problem 

the procedure does not suffer.) We first generate the bj*; bl* = 1, b2* = 2, b3* = 4, 
b4* = 8, b~* = 16, and this will suffice. According to the algorithm we allocate 8 
words to cost 4, 3 words to cost 5. The pertinent constraints of (P2) then appear: 

Z ~ + b 4 _ ~  b 3 + b ~ + b l + b o ,  

Z5 + b5 GG b4 + b3 + b~ + bl + b9, 

o r  

and 

8 + 0 = 4 + 2 + 1 + 1 = 8 ,  

3 + b 5 ~ 4 + 2 + 1 + 1  = 8 ,  

0 < b 5 < 5 .  

Next, we allocate 4 words to cost 3, keeping 4 of cost 4, 3 of cost 5. 

Z3 + b 3  ~ b2 + bl + b0. 

But if Z3 = 4, b3 = 0, since b3* = 4. Next we have 

Z 4 +  b4 L~ b3 + b2 + bl + b0, 

4 + 0 = 0 + 2 + 1 + 1 = 4 .  
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Finally, 

Z5 -~- b5 < b4 + b3 -k b2 "4- bl -t- b0, 

3 -~- b5 _~ 0 + 0 --k 2 -~- 1 -~- 1. 

All constraints are satisfied, and we stop. 
Next, consider the c a s e r  = 5, n = 14, m = 7. A few of the b~* are, again, 

bl* = 1, b2* = 2, b~* = 4, b4* = 8, bs* = 16. 
The algorithm states tha t  we first allocate 8 words to cost 4, 6 words to cost 5. 

Next  we allocate 4 words to cost 3, keeping 4 of cost 4, 6 of cost 5. Examining the 
constraints of (P2) then, we find: 

Z3"~- b3 ~ b~ + bl + b0 

o r  

SO 

4 + b3 __< 4, 

b3 = 0. 

o r  

Z 4 +  b4 < b3 + b2--~ bl + b0 = b2 -~- bl--k b0 

4 + b4 < 4, 

s o  

b4 -~ 0 .  

Zs-~-bs_< b 4 W b ~ + b 2 - ~ - b l - - ~ b 0  = b 2 + b l + b 0 ,  

6 -t- b5 _< 4, 

and the fifth constraint cannot be satisfied. 
If, however, we decrease Z3 by  2, b3 may  increase by  2. Then Z4 may  be increased 

by  2, the fourth constraint remains satisfied, and the fifth constraint is then just 
satisfied with b5 = 0, and the resulting code has 2 words of cost 3, 6 of cost 4, 6 of 
cost 5. 

The process of determining the structure of the code (or tree) is entirely simple, 
regardless of the magnitudes of n, r, m. Once the bj* are generated, the problem is es- 
sentially solved by  inspection. For large values of the parameters  n, r, m, a computer 
could easily generate the required numbers- -cer ta in ly  both programming time and 
execution t ime would be negligible for this procedure. 

The final task here is to demonstrate  tha t  the result obtained does constitute an 
optimal solution to the problem. 

We may  observe tha t  the result is optimal among all those codes with minimum- 
cost words having cost K or greater, since it has tha t  number  of words of cost K which 
allows the number  of words of cost K + 2 to be minimized and has no words of cost 
greater than  K + 2. 

The next step is to establish tha t  introducing words of cost less than K cannot 
improve upon the result already obtained. 

I t  is instructive to first observe what  occurs when a word of cost (K - 1 ) is intro- 
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duced into our result. Suppose we select a word of cost K and let it assume cost K - 1. 
Immediately, bK-1 must  decrease by  1, be may remain unchanged, but  bg+l must  de- 
crease by 1. But  bg+l was zero, so a word of cost (K + 1 ) must  assume cost (K -t- 2) 
at least, and, at  best, we realize no improvement.  

Suppose we select a word of cost (K + 1 ) to assume cost (K - 1 ). Again, bg-i is 
reduced by 1 and, as a result, one of ZK, bK must  be reduced by  1 also. (If, in fact, 
b~ ~ 0. I t  may  be tha t  there is no choice.) Suppose be is reduced by  1. Then, since 
bK+l = 0 and ZK+i was already reduced by  1, ZK+~ must  be reduced one more, and the 
corresponding word cannot assume cost (K + 2), because the (K + 2)-nd constraint 
is iust satisfied with bE+2 = 0, which in turn results from the fact tha t  bK was non- 
zero in the first place. So the cost of the displaced word increases by  2, and since the 
right side of the (K + 2)-nd constraint involves bE, which was reduced by  1, at 
least one other word of cost (K + 2) must  assume cost (K ~ 3), and consequently 
the average word cost has been increased. In  similar fashion we would find tha t  de- 
creasing ZK, rather  than  bE, yields the same conclusion, and the same sort of argu- 
ments will show tha t  introducing a word of cost (K - 1 ) at  the expense of ZK+2 also 
worsens the average word cost. 

So no improvement  is possible upon introducing one new word of cost K - 1, 
~nd clearly the same conclusion is unavoidable if more words of cost K - 1 are 
introduced. 

More generally, suppose there exist codes with minimum cost K -- p, p _> l, 
which give lower average cost than our originally obtained code, W. Denote the best 
code of this set W~, and let us proceed to operate upon W~, which has minimum-cost  
word with cost K -- p, p >_ 1. Suppose we decrease ZK_p by  1. Then bK-~ may  be 
increased by  1; bg-p+~, by  1; be-p+2, by  2; b~_,n3, by at  least 3 (when r = 2, the 
possible increase would be 3) ; • • • ; b~-p+s, by a t  least F~, where F¢ = j t h  Fibonacci 
number. (F0 = 1, F1 = 1, Fi = F~_i + Fi-2, i ~ 2.) 

We find, in particular, tha t  bg may  be increased by at  least Fp.  We propose to al- 
low our deleted word of cost K -- p to assume cost K, which allows b~ or 
consequently ZK to be increased at  least Fp - 1, at  the expense of costlier words. 

With each of these F~ -- 1 remaining words we can save a t  least one unit of cost. 
Now ZK+I may  also be increased at  least 1 at  the expense of costlier words, since 
bK-~ has increased. Suppose we save just one more unit of cost. 

We have, then, reduced total  cost Fp -- 1 + 1 = Fp and increased it p. But  
Fp > p, all p. Thus we have not increased the total  cost. Continuing in this fashion, 
increasing the cost of words having cost less than  K by allowing them to assume cost 
K, we either reconstruct our original code W and find tha t  it gives as good a result 
as the hypothesized one, W~, or we discover strict improvement  at some point along 
the way. In  either case, we contradict the assumption tha t  W~ gives an average word 
length smaller than any other. Consequently, the code W must  be optimal. 

Conclusions 

We were able to formulate the problem as a linear integer programming problem, 
solvable by  a var iety of existing techniques, bu t  nevertheless, for a large number  of 
variables and constraints, not a problem for which extremely efficient algorithms are 
available. However, in the event of a uniform probabil i ty distribution, probably the 
most important  case, the problem has been found to be quite easily solved--almost  
by inspection, in fact. 
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For the general probability distribution, no such attractive result can be expected, 
but  there is a possibility that  computational savings might be realized even in this 
more general case. If  we write out the constraints of (P1) we notice that  the first 
m-n columns are precisely those of an ordinary transportation problem. Now this 
array itself is unimodular; that  is, every minor has value 0 or :t:1, and this property 
guarantees an optimal solution in integers, given that  the constants in the constraints 
are integers. If  our entire matrix of coefficients in (P1) had this property, then we 
could remove the integer requirements, solve (P1) as a linear programming problem, 
and obtain an optimal solution in integers. 

Unfortunately the array one finds ia (P1)--after  converting to a system of 
equalities--is not unimodular, but for small m, n it seems to be the case that  many 
nonsingular (m -~ n)  X (m + n)  arrays, which qualify as bases for the linear pro- 
gramming solution procedure, do have determinant ~ 1. Therefore, we may expect 
optimal solutions obtained for the linear programming problem to be integer more 
frequently than in general. Further, it would be more likely to find an alternative 
optimal solution in integers than in general. Alternative optima are quite easily 
generated once the linear programming problem has been solved, and exploring these 
possibilities before entering the actual integer programming procedure (it is typical 
of integer programming algorithms to first solve the problem sans integer require- 
ments) might prove profitable. These latter remarks are, of course, conjecture, their 
worth being dependent upon the frequency with which sets of m W n linearly in- 
dependent columns from the matrix of constraint coefficients in (P1) have determi- 
nant ~ 1. 

I t  may be of interest to compare a few sample results with variable length keys 
with those of the fixed length keys. In Table I, for thefixed length keys, we let the 
average filial set size be 3.6, as required by (iii), and computed h to be the smallest 
integer satisfying h > log3.6 N, from (iii), since h must be an integer. The numbers 
in columns 2-5 are the average search times, measured in numbers of chaining links. 

Regarding Table I, several remarks are appropriate. First, the values of N chosen 
are of no particular significance--it was desirable to represent a range of magnitudes, 
and the values chosen accomplish that.  

The numbers of symbols for which we computed expected search time iu the vari- 
able length case were chosen only to give a small range of values which included the 
average filial set size of 3.6 for the fixed length keys. 

I t  should be realized that  it is actually inequitable to compare the fixed length re- 
sults with the variable length for two and three symbols, since if the common filial 
set size is to be 3.6, there must be more than three symbols available. I t  is the case, 
however, that  even the three-symbol result is superior to the fixed length, giving 
better results for all N. The further improvement for four or five symbols is apparent. 

T A B L E  I 

N = 50 N = 100 N=1000N=10,000 

Fixed l eng th  9.2 9.2 13.8 18.4 
Var i ab le - -2  symbo l s  8.2 9.7 14.4 19.2 
Var iab le - -3  sy mbo l s  6.6 7.8 11.8 15.6 
Variable---4 symbo l s  6.3 7.4 10.8 14.4 
Var i ab le - -5  sy mbo l s  6.0 7.2 10.6 13.9 
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It should also be observed that  the differences obtained are not trifling--a signifi- 
cant improvement is achieved when the keys may have variable length, and if there 
were more symbols than five available, the results would appear even more favorable. 

It must be pointed out that  the simplest problem of the class described here, 
namely, that  in which the probability distribution of inquiries is uniform, with the 
further assumption that the number of available key symbols is unlimited, has been 
solved in quite different fashion [4]. As mentioned previously, an upper bound on the 
number of available symbols is a realistic constraint. 

It  is felt that  the present approach is preferable to that  in [4], since the strong re- 
lationship between the search problem and the coding problem is here evident--i t  is, 
in fact, exploited. Further, the fact that  such trees as are obtained are optimal in a 
prefix sense is clear from the coding context; otherwise, the distinction is not so ap- 
parent. 

A reviewer has noted the paper by Arora and Dent [5], and has suggested that  
reference to it be made here. The two problems and the assumptions made in the two 
differ in several significant respects. 

In the context of [5], incoming items are already labeled in such a way as to con- 
strain the tree eventually created; there are essentially but two key symbols avail- 
able for use; there is no prefix requirement on keys; each vertex requires the storage 
of three addresses (owing to the prefixing of keys by others). 

In the present context, however, incoming items are essentially unlabeled and the 
order of arrival has no effect upon the structure of the tree eventually obtained; the 
number of available symbols is the parameter which affects the structure of the tree 
and this number is utilized to greatest advantage; we have imposed a prefix require- 
ment, which in fact increases the expected search time [6], and we have a two-address 
system. 

Thus, although both methods involve constructing and searching a file which pos- 
sesses a tree form, the circumstances within which they are appropriate are quite 
different. 
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