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ABSTRACT. Given N approximations to the zeros of an Nth-degree polynomial, N circular 
regions in the complex z-plane are determined whose union contains all the zeros, and each 
connected component of this union consisting of K such circular regions contains exactly K 
zeros. The bounds for the zeros provided by these circular regions are not excessively pessi- 
mistic; that is, whenever the approximations are sufficiently well separated and sufficiently 
close to the zeros of this polynomial, the radii of these circular regions are shown to overesti- 
mate the errors by at most a modest factor simply related to the configuration of the approxi- 
mations. A few numerical examples are included. 
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1. Introduction 

Suppose L distinct points zi,  z~, • • • ,  z: are given in the complex plane, and associ- 
ated with each zk is a positive integer Mk, the "multiplici ty" of zk ; suppose ~ Mk 
= N. These points zk, with their multiplicities Mk, are supposed to approximate the 
zeros ~1 , /~ ,  " "  , ~ of a monic polynomial 

N--I N 

P(~) -= ~ +  ~ a ~  ~ --- I I  (~ - ~)  
k,ffi0 k:.~l 

of degree N with given coefficients a0, a l ,  -. • , a~_l. For  example, we might assume 
that the set of zeros ~i, ~2, " ' " ,  ~N can be parti t ioned into L disjoint subsets, with 
Mk zeros in the kth subset all close to z~. 

Our object is to determine how close the zeros of P (z) are to the approximations 
zk. Toward  this goal we obtain circular regions containing all the zeros of P(z)  by 
applying Gerschgorin's theorems to a certain matrix R similar to the companion 
matrix of P (z). The  matrix R is dependent upon the polynomial and perhaps its 
derivatives at  the points zk. In  case the points z~ are "sufficiently well separated" 
and "significantly close" to the zeros of P (z ) ,  we bound the radii of these circular 
regions to show that  the radius of the circle about z~ overestimates the absolute error 
of the approximation z~ by  a factor near MkL. 
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2. A M a t r i x  R S imi lar  to P (z) ' s  Companion M a t r i x  C 

In this section we construct a certain N X N matrix R similar to the eompanio] 
matrix 

0 - - ao  
1 0 --al 

1 

C --- 

0 --  aN--2 

1 - -  a N - 1  

of the polynomial P(z);  the eigenvalues of C, and so of R, are the zeros of P ( z )  
In later sections we apply Gerschgorin's theorems (Taussky and Marcus [12]) tc 
another matrix similar to R to obtain circular regions containing all the zeros o: 
P ( z ) .  

Let L distinct points zk and L positive integers Mk be given such that ~ 1  Mj 
= N. Then we have 

LEWMA 1. For each k = 1, 2, • • • , L and each j ffi 1, 2, • • • , Mk , let 

/ d \ i - 1  
( j -  1)Ip,s ~ ~ z )  P(z) L~ ' 

and 

( M ~  - -  j ) ! h ~ j  ------ H ( z  - -  z~) - ~ '  . 
#~Jk 

I n  addition, let p" and h" be the row vectors 

( pu ,p~ ,  " " , p x ~ l , p 2 ~ ,  . ' . , p z ~ )  and (hn ,h~2 ,  . . . , h x K ~ , h 2 1 ,  . . . , h ~ u ~ ) ,  

respectively, where the superscript  r on a vector denotes the transpose of  the vector. 
Then the companion matr ix  C is s imi lar  to the matr ix  

R ~- J - p h  ~, 
where 

J2  Zk 

J ~ and Jk --~ 1 

J L ~ x ~  1 zk Mk×U~ 

PROOF. We propose to demonstrate that R = V C V  -~, where V is the N X N 
confluent Vandermonde matrix (Aitken [2, p. 119]): 

1 Zl Zl 2 • ~ 1 - 1  

0 1 2zl (N -- 1)z~ -~ 

v -~ 

N - 1  

Z2 Z22 " Z~ - 1  1 

0 1 M~za 
N - 1  
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For example, when L = 2, zl = a, Mi  = 3, z~ = ~, M2 = 2, and N = 5, 

1 2 ~  3 a  2 

V ~ 0 1 3 a  • 

First we can verify directly that  

VC = J V  - p(O, O, . . . ,  O, 1). (1) 

Next observe that  the columns of V -~ are the coefficients of generalized La- 
grange-Hermite interpolating polynomials and so, from the formulation of these 
polynomials given by Spitzbart [10], discover that  the vector h" is the final row of the 
inverse of V. Hence 

R V  = J V  - p(0, 0, - . . ,  0, 1). (2) 

Combining (1) and(2) shows that  the matrix R is similar to the companion 
matrix C. 

3. Gerschgorin's Theorems and Circular Regions Containing the Zeros of P ( z )  

For any N X N matrix A ~ (a~j), Gersehgorin's theorems applied to the columns of 
A say that  all the eigenvalues of A lie in the union of the disks 

N 

I z -  akk[ _< ~ l a ~ k l  
i = l  

in the complex z-plane, and tha t  each connected component, of this union consisting 
of K such disks contains exactly K eigenvalues of A. We apply this theorem to a 
matrix A diagonally similar to R. 

THEOREM 1. Let there be given L distinct points zk approximating the zeros 

of P(z), and associated with each zk , a positive integer Mk representing the multipli- 

city of the approximationzk;suppose ~ 1 M k  = N. For k = 1, 2, . . .  , L and j = 

1, 2, . . . ,  M s ,  define the circles 
Mk 

: I z - [ _< -= (1 - + L I [ I lee ' - i ,  
mml  

where the e~ are arbitrary positive numbers, 6~s is the Kronecker delta, and pky and h~j 
are defined in Lemma 1. Then the union of the N circular regions Fki (ek ) contains all 
the zeros of P (z ). Any  connected component of this union consisting of just K circles 
r~s(ek) contains exactly K zeros of P (z). 

PROOF. Apply Gerschgorin's theorems to the columns of the matrix E-XRE, 
where E is a block diagonal matrix with L blocks 

Ek ------ ~-k diag (e~ k-~, e~ k-2, --- , ek, 1) 

and 

~ . k ~ ( ~ l ,  i f a l l p , j = O f o r j = l ,  2 , . . . , M ~ ,  

pk,~ [e~ -u~ otherwise. 
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When Mk > 2, we can determine iteratively an upper bound for the positive root 
of the polynomial eq. (3) by  applying the Newton-Raphson method to the reciprocal 
polynomial of (3) computing its 0nly real zero 1 /gk .  The Newton-Raphson iteration 
will converge to this zero 1/gk provided only that  the initial iterate is positive. 

The calculation of gk is considerably cheaper than the calculation of e~* since the 
calculation of ek* requires the solutions to at least one and perhaps several equations 
like (3). In addition, when we have good well-separated approximations to the 
zeros of P (z), the advantage of the best value ek* over the estimate gk of ek* is neglig- 
ible. Hence, for most applications of Theorem 1, we believe that  it is worthwhile to 
use gk in place of ek*. 

We comment here that  if the points zk are distinct but  otherwise arbitrary com- 
plex numbers, we can compute each hk~ for Mk > 1 in fewer than N long complex 
operations (X o r / )  and N short complex operations ( ~  or - ). To illustrate this 
point, we use the results of Burnside and Panton [4], who express the coefficients 
of a power series, representing the reciprocal of a polynomial, in terms of sums of 
powers of the polynomial's zeros. Since the quantities hk~ are derivatives of the 

L reciprocal of the polynomial ~I~l:~,~k (z - z~) M~ evaluated at z = zk, then we 
have from the results of Burnside and Panton [4], for j  = M k  --  1, M k  --  2, . .  • , 2, 1, 

Mk 
hkj = ( i k  -- j)-~ ~ Sk.m_jh~, (5) 

where 
L L 

Ski ~ ~ M,~__ and hk~k ~ I I  (zk - z.~) -M~ 
m=l (Zm -- Zk) i m=l 

m.~k m.~k 

Some experiments have been performed with the above techniques for computing 
h '  the ki s. So far, these techniques have not displayed numerical instability. 

4. Upper  B o u n d s  for  the R a d i i  of  the Circular  Regions  of  Theorem 1 

We now apply Theorem 1 to an Nth-degree polynomial P (z) using L well-separated 
approximations z l ,  z2, • • • , ZL close to the zeros of P (z). Our goal is to show that  the 
regions I~j (gk) of Theorem 1 are small and overestimate the error of the approxima- 
tion z~ by at  most a factor near M k L ,  where Mk is the "multiplicity" of the kth 
approximation. Under certain circumstances it is shown that, if the radii of the 
regions of Theorem 1 about zk are reduced by more than this factor near M k L ,  these 
smaller circular regions are certain to contain fewer than Mk zeros of P (z). 

Before stating these results, let us define the expression "close well-separated 
approximation." 

Let the zeros of the Nth-degree polynomial be grouped into L clusters such that  
for each k, the point zk approximates the Mk zeros ~1, ~k~, - "  , ~k~ of the kth 

L cluster. Suppose ~ 1  M~ = N. Define for each k = 1, 2, • • • , L, 

oh =- m a x  I z~ - ~ I, a~ --- r a i n  I z~ - z ,  I, ¢~ --- o ~ / ~ ,  v~ ~= m a x  o , / [  z~ - z ,  I" 
j i~k  i~k  

Clearly the point zk is close to a cluster of Mk zeros of P (z) when Ok is small, and is 
well separated when Ak is large. Hence to the extent that  ~k is small, zk is a close well- 
separated approximation. Also, to the extent that  ~k is small, the remaining points 

Journal of the Association for Computing Machinery, Vol. 17, No. 4,' 0otober 1970 



666 BRIAN T. SMmTa 

g l  , Z2 , " • " , Z k - - I  , Z k + l ,  Z k + 2  , " " " , Z L  are close approximations well separated from 
the point zk but  not necessarily separated from each other. 

We now give upper bounds for the radii of the regions rk#(gk), k = 1, 2, - . - ,  Mk 
in terms of these measures Ok, xIfk, and ~ of close weU-separated approximations. 

L~MMA 2. For any k, the radii p~(gk) of the circular regions r~(g~) .for j = 1, 2, 
• . .  , M~ cannot exceed 

(X. max ((1 ~,..) + N - - j - -  for M~ < Y ,  
_ _ / I ,~<-k\ -- ( M . - - J l )  (~''~'-'~ 

[X~ for M~ = N, 

where 

X, ~ 0k/[{1 q- (N - Mk),I,,} {(1 + L -1 

X {1 -t- ( N -  Mk),I,k}-~{1 q- ,I,k}~*-~) 1 /~k-  1}] 

and g~ is the positive root of eq. (3). 
PROOF. Without loss of generality, assume k = 1. First we obtain upper bounds 

for [ hl~iplj [, j = 1, 2, • . .  , M1. Consider the product representation of both pn 
and hlgl ,  namely 

L M i L M i 

pn~-  ~ I I X ( z l -  ~,,~) and hl~, =- ~ ~ (zl - z,) -1. 

Using the triangle inequality, an upper bound for the factor (zl -- ~,~) in pu is 
]zl -- z~] + e~. Each factor (Zx -- ~=) for i > 2 in pli has a corresponding factor 
(Zl -- Z i )  - 1  i n  hlMl* Since 0~/I zl -- z~ [ < ~1, we have [h~,,pn [ < e ~  ~ (1 -q- (]~1) N-MI. 

To obtain upper bounds for I hl~lpl#l for j > 2, we differentiate the product repre- 
sentation of pn with respect to zl and use the triangle inequality upon each factor 
(zl -- ~ )  as above. Hence terms in Pli of the form (zl -- ~,~) for i > 2 can be 
bounded by [zl - z~](1 q- ¢1). Finally, each time an expression in pn such as 
(zz -- ~ )  for i _> 2 is differentiated, one of the factors (zl -- z~) -1 in h l ~  will not 
match with its corresponding expression (Zl ~ ~,~) in plj,  and so [zl - zi [-i is 
replaced by its upper bound A~ "1. Combining the above steps, we see that  the ex- 
pression 

• X ~ N - M 1  

1 (~X)$"-1 (01 -~ X)M1 (1  "q- ~1 "q- ~ 1 '  z=-~0 
( j -  1)! 

is an upper bound for I hiM~pu [. Applying Leibniz's rule for the (j - I )-th deriva- 
tive of a product of two functions, we obtain 

,1 C e~,+l_i .~ - 1 I hl~,pl#[ <_ j 1 ~ = o  m \A1]  

,~-1(.~. N -- U l  -- i ) (1 + o1)N--M1 "-m @ 

, = .  \ M 1  - -  j -b 2 + i ' 
But  

--,( N:M,-/  ) 
~ \ M t _ j + ~ q ~ i  -< ( N - M , )  ~ 
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and 

Hence 

667 

)( E -- 1 ( N -  M~)O~Y ~ ~=0 m ~ ]  = (1 + ( N - -  M1)~i) ~-~. 

M 1 )  + + (N - (6) 
\ 

I h l ~ l p l ~ l _  < j _ 1 0~+I - i (1  ~)N--M~(1 /1)~I'~)J--1 

NOW we bound the ratio I hu/hiM1 ]. First assume Mk < N. From the definition 
of hkj in Lemma 1, this ratio I hlffhlM1 I involves sums of products of (Zl - zi) -1, 
i = 2, 3, • • • , L. Since an upper bound for the reciprocals [zl - z, 1-1 is A1-1, an 

is (N -- j -- 1) A~_M~ upper bound for ] hlffhIM1 ] \ M1 -- j . 1 . Now when Mk = N, hlj = ~M~. 

Hence 

h~i _~ ( ( N ~ J - - 1 ) A ' - M ~ , ~  j for M~ ( N , f o r  M1 = N. (7) 

Now we are ready to place upper bounds on the radii pu (g~), where gl is the root of 
eq. (3). From eq. (4) using the upper bound (7) for ] hljhlM~ ], the radii pay (gl) 
are bounded above by 

plj(gl) ~ 1 - -  ~ j ~  -~- M1 - -  j \ h i /  / for Mi < N, 

for M1 = N. 

Now an upper bound for g~ is the positive root of the equation 

Mi( M1 1) \~][g~-I 
g~' = L(1 + ¢ , )~-~ '  0~ '  ~ 1  m - -  (1 --[- (N - U~)~l)  ~-1 , (8) 

which is derived from eq. (3) by substituting the upper bounds (6) for the terms 
I hlM,plm h m = 1, 2, . . .  , M1. 

Using the identity in x, 

x ~-~  = (1  + x )  ~ - x M~ 
,~=1 m 1 

with 

x = ~ (1  + ( Y  - M1) , I ,~ ) ,  

it can be verified that  X~ is the positive root of eq. (8). Hence the radii Olj (gl) are 
bounded above by  

{ ( ( N - j - l )  (~-~M~-'~ 
p~(gl) ~ ~1 1 - ~M~ + M1 - - j  \ A i /  ] for M1 ( N, 

~1 for M~ = N. 

This completes the proof of Lemma 2. 
Using Lemma 2, we now analyze the behavior of Theorem l 's  regions as the 

parameters 0k and @~ decrease to zero. 
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As we expect, the regions F~s(gk), j = 1, 2, - - - ,  Mk become small as Ok becomes 
small. In addition, when fits and ~k are small, pk~ (gk) is approximately 

Ok 
(1 + ( l / L ) )  u M k -  1 

In order to obtain this linear variation of pkj (gk) with the error Ok, we must restrict 
the sizes of Ck and ,I~k as follows: 

for Ms = 1, 4~k << ( N -  1) -1, 

f o r l  < M k  < N, ,Ilk<< ( N - -  Mk)-I and 

@k << log, (1 + ( 1 / L ) ) L / ( L M ~ ( N  - M~)) ,  

for Ms = N, no restriction on ~k or Ok is necessary. 

Notice that,  in order to obtain small radii pki (gk), we seem to require a more accurate 
approximation zk when Mk > 1 than when Mk = 1. 

Finally, Lemma 2 gives the following theorem which indicates by  how much the 
radfi p~ (g~) can overestimate the error 04 when none of the regions r~+ (g~) intersects 
the regions F~(g~), i ~ k. 

THEOREM 2. Suppose none of the regions Fk+(g~), j = 1, 2, • • • ,  M s ,  about z~ 
intersects the regions r ~ ( g i ) ,  j = 1, 2, • • • , M,  for i ~ k. Define for each i = 1, 2, 
• • • ,  L ,  

O~ ~ max {Iz -- z~ I I z ~ connected component of U F~n(gm) containing z~} , 
m~ rt 

~ ~ Ok/ak,  

~k ~ max  (O,/I z~ -- z~ I), 

and 

. . . .  ~ M s L(1 + (N -- Mk)~k) ] 

l~j--<Mk / \ ~ /  1" 

Then at least one zero of P (z) lies in the annular region 

3~ max  pk: (gk ) _< [ z -- zk I ~ max  pki (gk ). 
i i 

PROOF. Clearly ~k and '~k are upper bounds for ~k and Ck respectively. Hence 
fk max~ pkj (gk) is a lower bound for Ok and so the annular region 

A m a x  (gk) _< I z - zk J _< m a x  
i i 

contains at least one zero of P (z). This completes the proof of Theorem 2. 
Notice for small ~k and ~k, this factorfk -1 is approximately ( (1 + 1 / L )  11~k -- 1 )-~, 

which is less than LMk/ log ,  (1 + ( l /L ) )L .  Hence, if the radii of the regions Fki (gk), 
j = 1, 2, . .  • , Mk are reduced by  a factor near LMk  for small ffzk and ~k, these smaller 
regions are certain to contain fewer than Ms zeros of P (z). 
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In case an approximation zk is close to a cluster of Mk zeros of the polynomial and 
well separated from the remaining approximations, we can prove that  circular regions 
about zk, smaller than those of Theorem 1 by  a factor at most L and often near L, 
contain exactly Mk zeros of P (z). These results appear elsewhere (Smith [9]). 

We comment here tha t  Cauchy's theorem (Marden [7, Th. 27.1]) concerning a 
circular region about the origin containing all the zeros of a polynomial is the 
special case L = 1, M~ = N, and z~ = 0 of Theorem 1. In addition, the lower 
bound for the zero of largest magnitude given by  Birkoff [3] is the lower bound of 
Theorem 2 for the special case L = 1, M~ = N, and z~ -~ 0. 

5. Theorems 1 and 2 Applied to a Class of Polynomials 

In most applications, we need to locate the zeros of a polynomial for which the value 
of the polynomial and its derivatives at the points zk are not primary data  but  are 
computed from some representation of the polynomial, involving primary data, 
in the presence of rounding errors. As a result, we often have only upper and lower 
bounds for the magnitudes of the polynomial and its derivatives; namely, for 
k = 1 , 2 , - . . , L a n d j  = 1,2,  . . . , M k ,  

( d y - '  P(z,) _< 15ki. 
O _< p~ _< \ ~ /  (]---i)! 

(Such upper and lower bounds can be computed using Kahan's  error analysis (Smith 
[8] or Adams [1]) or interval arithmetic).  Hence, in order to locate the zeros of a 
particular polynomial P (z), we must locate the zeros of all polynomials in a class 
of polynomials of which P (z) is a member. 

We now restate the special case e~ = gk of Theorem 1 and Theorem 2 for a class 
of polynomials. 
THEOREM 1'. Given the class (P of polynomials 

~- {Q(z) Ip~i _< \dzj(~d~' (JQ(Zk)" ! =  i)  

~_ ~kj for t~ = 1 , 2 , . - . ,  L and j = 1, 2, " '"  , Mk}, 

let ~ be the root of eq. (3) for which all the pkj are replaced by Pkg. Then the union of the 
N regions r~j (~) contains the zeros of each polynomial in (P. Any connected component 
of this union consisting of just K circles FkS (~k) contains exactly K zeros of each 
polynomial in 6'. 

PROOF. We need only note that  gk is an increasing function of each pk, and pkj (gk) 
is an increasing function of gk. 

TH~ORE~ 2'. Given the same class (P of polynomials as above, let gk be the root of 
eq. (3) with all the Phi replaced by pk~ , and let fk be the fk defined in Theorem 2 but 
computed from PkS(~k). Suppose none of the regions FFkj(~k), j = 1, 2, . . .  , Mk about 
z~ intersects the regions r ~ ( ~ ) ,  j = 1, 2, . . .  , M~ for i ~ k. Then at least one zero of 
each polynomial in (P lies in the annular region 

hmaxpk / (gk )  ~ [z -- zk[ ~ maxpki(~k). 
/ i 

PaOOF. We need only note tha t  fk is a decreasing function of the radii pk,. (gk). 

Journal of the Association for Computing Machinery, Vol. 17, No. 4, October 1970 



6 7 0  BRIAN T. SMITH 

Theorems 1' and 2' show us how to apply and interpret our theorems in case of 
imprecise data. However, there is one other important interpretation of Theorem 2 
which we give below. 

Suppose Theorem 2' is applicable about a point zk to a class (e of polynomials where 
for all k and j, pk~ = 0. Then there exists a smallest region ~E containing zk and at 
the same time Mk zeros of every polynomial in (P. Now Theorem 2' says that the 
largest circular region Yk~(~k), j = 1, 2, " " ,  M~. of Theorem 1' centered at zk 
is at most a factor 1/fk ~.~ LMk larger than the smallest possible circle centered at zk 
containing 9T~. 

6. Distinct Approximations (Mk = 1) Versus Confluent Approximations (Mk > 1) 
for a Multiple Zero 

Zero-finding algorithms such as ZERPOL (Smith [8] ) usually give distinct approxi- 
mations to the multiple zeros of a polynomial. The natural question is: If the distinct 
approximations to a multiple zero are replaced by a confluent approximation, say 
the average of the distinct approximations (Daniels [5] ), will the union of the regions 
of Theorem 1 centered at this confluent approximation be smaller than the union of 
the regions of Theorem 1 centered at the distinct approximations to that multiple 
zero? A brief analysis of this question is impeded, first, by the uncertain effect of 
rounding errors when computing the polynomial and its derivatives, and second, by 
the unknown distribution of the distinct approximations given by the zero-finding 
algorithm. Hence, we leave the analysis of this question to our thesis (Smith [9]) 
and only summarize our experimental results below for this paper. 

For these experiments, we use the subroutine ZERPOL to fred the distinct ap- 
proximations to the multiple zeros and use Kahan's error analysis (Smith [8] or 
Adams [1]) for the evaluation of a polynomial in order to obtain upper bounds for 
the magnitudes of a polynomial and its derivatives. 

From our experiments, we find that the size of the regions rk~(gk) obtained from the 
distinct approximations is very sensitive to the distribution of the distinct approxi- 
mations and to the upper bound for the rounding errors which accumulate when 
computing the polynomial and its derivatives. On the other hand, the size of the 
regions rks (gk) obtained from this confluent approximation (that is, the average of 
the distinct approximations) is not nearly as sensitive to the distribution of the 
distinct approximations or to the upper bound for the rounding errors. In addition, 
the union of the regions rk~ (gk) obtained from the distinct approximations is, in 
all our experiments, larger than the union of the regions obtained from this confluent 
approximation. 

A careful count of the number of arithmetic operations required to compute the 
hk~ using (5) and pkj using Homer's scheme shows that N ~ + (N - L) (L -- 3) + 
L ( L  - -  1 )/2 complex additions and subtractions, and N 2 + (L --1 ) (2N - L) + L 
complex multiplications and divisions, are required. Hence the number of operations 
required to compute the pk~ and h~j for confluent approximations is less than the 
number of operations to compute the pkj and hks for distinct approximations. How- 
ever, to compute the regions of Theorem 1 for confluent approximations, we must 
determine upper bounds for the roots of eqs. (3) for k = 1, 2,- • • , L. The computa- 
tion of such upper bounds for the roots of these equations using Newton's method 
requires approximately 2N(n + 2) real multiplications and divisions and 2N(n + 2) 
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real additions and subtractions, assuming n Newton iterations are required to solve 
each eq. (3). Thus, overall, the computations of the regions using confluent approxi- 
mations cost slightly more than the computations for the regions using distinct 
approximations. 

7. Numerical Examples 

Before examining the numerical examples in Tables I and II, we explain in detail 
how the results are obtained. Our polynomial zero-finding routine ZERPOL (Pro- 
grammer's Reference Manual [11] or Smith [8]) determines approximations with 27 
binary bits in the fractional part to the zeros of our example polynomials. These 
approximations are expanded to 16 decimal digits and rounded to the number of 
places given in the tables. The discrepancy between an approximation accurate to 
16 digits and the corrresponding approximation given in the tables is added to the 
radfi of Theorem 1 and the sum, rounded upward to 3 digits, appears in Table II 
under the column headed "Radii of Theorem 1." 

The values of the polynomial and its derivatives at the approximations are com- 
puted using double precision arithmetic on the IBM 7094-II. We use Kahan's error 
analysis (Adams [1] or Smith [8]) to ensure that upper bounds for the magnitudes of 
the polynomial and its derivatives at the approximations are obtained. These upper 
bounds are used to compute the radii of Theorem 1, which implies that the radii of 
Theorem i displayed in the tables give regions containing the zeros of all polynomials 
in a certain class (P (see Section 5) for which the polynomial given in the left column 
of the tables is a member. 

Finally we remark here that a dagger (t)  beside a radius indicates that the Pki's 
used to compute the particular radii are dominated by rounding errors. In terms 
of the class ~, this implies that p~/s equal zero. 

Now we briefly comment on the results in Table I, which display the radii of 
Theorem 1 for a few polynomials taken from Henrici and Watkins [6]. 

The first polynomial illustrates the use of Theorem 1 when the approximations 
are reasonably well separated. As Theorem 2 indicates, the radii of the regions Fkl 
are approximately four times larger than the errors I zk -- ~kll. 

The second and third polynomials have multiple zeros. These polynomials show 
that in some cases the regions of Theorem 1 obtained from distinct approximations 
to multiple zeros do not overestimate excessively the errors [zk -- ~ki!. Notice that 
the region r31 for the third polynomial does not contain any zeros of this polynomial 
and yet as Theorem 2 states, the union of the regions r u ,  F2~, F3~ contains all the 
zeros of this polynomial. 

The union of the regions rkj (gk) for the fourth polynomial does not contain the 
zeros for this polynomial given by Henrici and Watkins nor the zeros given in the 
correction to their paper by Thomas [13]. The zeros given by Thomas are the exact 
zeros of the fifth polynomial which differs from the fourth polynomial a t  the co- 
efficient as. 

The large differences in the bounds between the fourth and fifth polynomial seem 
startling since the polynomials only differ by two units in the last place of the co- 
efficient as. However, notice that the approximations of the fifth polynomial for 
which the bounds are vastly different in magnitude are the exact zeros of that  poly- 
nomial. Hence the bounds for these approximations are small but not zero because 
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TABLE I. 

BRIAN T. SMITH 

CIRCULAR REGIONS OF THEOREM 1 FOR SEVERAL POLYNOMIALS TAKEN FROM 
HENRICI AND WATKINS [6] 

Polynomial 
1~o.. a ~  x Approximations zk p(z) 

]~-- Exact zeros Radii of Theorem 1 

h a k 
Real part Imaginary part 

0 105105 
1 310205 --1.05 --1.0500001610 0.000000000000 0.644,0 -- 6 

2 410100 - - I  --0.9999998510 0.(KD000000000 0.5971o -- 6 

3 305000 --0 .5  --}- ,~/--0.751 --0.5000000000 0.866602562368 0.2551o -- 8 
4 100000 --0 .5  -- .~/--0.751 --0.5000000000 --0.866602562368 0.2551o -- 8 

0 18 
1 21 - 3  -2.9999999702 0.37000597,0 - 3 0.5561o - 3 
2 8 --3 --2.9999999702 --0.370005971o -- 3 0.55610 -- 3 
3 1 --2 --2.0000000000 0.000000000000 t0.167~o -- 12 

0 1000O6 
1 300012 -1.00006 -1.0001358000 0.000000000000 0.1501o - 3 
2 300006 - 1  -0.9999177000 0.000000000000 0.150,o - 3 
3 100000 - 1  -1.0000065000 O.O0000(DO0~O t0.1751o - 5 

0 - 1980O0OO0 
1 -364800000 30.0000000000 0.000000000000 0.104,o - 7 
2 -197170000 -10.0000000000 10.000000000000 0.1741o - 6 
3 -37313000 -10.0000000000 -10.0000000~)000 0.1741o - 6 
4 -53510400 -5.0000001790 0.000000000000 0.18510 - 6 
5 -88653098 -1.0000000000 1.000000000000 0.4161o - 7 
6 --50761800 --1.0000000000 --I.000000000000 0.41610 -- 7 

7 --9133400 --1.0000000000 1.095445156000 0.508,o -- 7 
8 --460800 --1.0000(O0000 --1.0954451560(O 0.50810 -- 7 
9 --2500 --1.4999998510 0.000000000000 0.3141o -- 7 

10 1000 --1.0000000300 0.000000000000 0.1191o -- 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

- -  198000000 
-364800000 30 30.0000000000 0.000000000000 t0.3341o - 12 
--197170000 - 1 0  -t- ~/--100 -10.0800000000 10.000000000000 t0.830~o - 12 

-37313000 - 1 0  -- ~ / - 1 0 0  -10.0000000000 -10.000000000000 t0.830,o - 12 
--53510400 - 5  -5.00(0000000 0.000000000000 t0.2911o - 12 
--88653100 --1 + ~/--1  -1.0000000000 1.000000000000 t0.6811o - 13 
--56761800 --1 -- ~ / - 1  -1.0000000000 -1.000000000000 t0.6811o - 13 

-9133400 - 1  .-}- ~ / - 1 . 2  -1.0000000000 1.095445111400 0.36210 - 7 
--460800 - - I  -- ~/--1.2 --I.00000000~ --1.095445111400 0.3621o -- 7 

--2500 --1 .5  --1.5000000000 0.000000000000 t0.168,o -- 12 
1000 --1 --1.0000000000 0.000000000000 t0.8251o -- 13 

t The magni tude  of pkl is dominated  by K ah an ' s  upper  bound for the rounding errors. 

of r o u n d i n g  e r rors .  O n  t h e  o t h e r  h a n d ,  t h e  a p p r o x i m a t i o n s  g i v e n  fo r  t h e  z e r o s  of  the  

f o u r t h  p o l y n o m i a l  a r e  n o t  t h e  e x a c t  ze ros  b u t  o n l y  a p p r o x i m a t i o n s  w h i c h  a g r e e  wi th  

t h e  e x a c t  ze ros  t o  7 o r  8 d ig i t s .  

T a b l e  I I  d e m o n s t r a t e s  h o w  t h e  r e g i o n s  of  T h e o r e m  1 c a n  v a r y  w h e n  we  rep lace  

t h e  d i s t i n c t  a p p r o x i m a t i o n s  t o  a c l u s t e r  of  ze ros  w i t h  t h e  a v e r a g e  of  t h e  d i s t i nc t  

a p p r o x i m a t i o n s  t o  t h a t  c lu s t e r .  F o r  t h e  c o n f l u e n t  a p p r o x i m a t i o n s  i n  t h i s  t ab l e ,  we 

g ive  o n l y  t h e  r ad i i  of  t h e  l a r g e s t  r e g i o n  c e n t e r e d  a t  t h e  c o n f l u e n t  a p p r o x i m a t i o n .  
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Distant approximations Radii of Confluent Radii of 
Polynomial k Theorem 1, k approximations Theorem 1, con- 

distinct /', uent approx- 
Real part Imaginary part approximations A pproximations Mk imations 

(z - 1)4(z - 2)2(z - 3) 1 1.ooo4282o o.ooooooooo t0.445,o - 2 1 1.00oooo015 4 t t0.842*e - 3 
2 O. 99999990 O. 42807,0 - 3 tO. 794*0 - 2 
3 0.99999990 - 0 . 4 2 8 0 7 , 0  - 3 t0.794*e - 2 
4 O. 99957200 O. 000000000 tO. 43ho - -  2 
5 1.99999980 0.000000000 t0.78010 - -  4 2 1.999999985 2 t t0.337*e - -  5 
6 2.00000010 0.000000000 t0.794,* - -  4 
7 3.00000000 0.000000000 t0.933,0 - -  n 3 3.000000000 1 to.400~o - 11 

1 1.000000000 1 t0.480,o - 12 
2 2.000000000 2 t0.707~e - 5 

3 3.000000000 4 t0.32610 - 2 

( z -  1)(z - [2 )~ (z  - 3)4 1 1.00000000 0.0O0000000 t 0 . 1 1 2 1 0 -  11 
2 2.00000130 0.000000000 t0.491,0 - -  4 
3 1.99999870 0.000000000 10.504,o - -  4 
4 2.99894860 O.OOQO00000 1"0.56(he - -  1 
5 3.00105010 0.000000000 tO.ti8ho - -  1 
6 3.00000070 0.103425,0 - -  2 t0 .114  
7 3.00000070 --0.10342510 - -  2 tO . l14  

(z --  1)* 1 0.99998184 0.484111*0 --  3 "~0.390,o15 1 1.000000015 9 t'~0.4131o --  1 
2 0.99998184 --0.484111*0 - -  3 t0.390*015 
3 1.00040310 O. 000000000 70.119,016 
4 1.00012150 0. 000000000 t0.440*021 
5 1.00012040 O. 000000000 tO. 8~1021 
6 1.00011910 O. 000000000 tO.37ho21 
7 0.99970717 0.000000000 t0.517,o16 
8 0.99958629 0.000000000 t0.112*016 
9 0.99997886 0.000000000 tO.87ho17 

(z2 - -  1)2 1 --1.00000000 0.000000000 0.155,o - -  6 1 --1.000000000 2 t0.4721o --  7 
2 --0.99999996 0.000000000 0.122,e - -  6 
3 1.00000000 0.000000000 "i'0.149,o - -  6 2 1. 000000000 2 ?0.472,0 --  7 
4 0 99999998 0.000000000 t0.173,o - -  6 

lO~(z + l ) 2 ( z  -b 1.00006) 1 --1.00013580 0.000000000 O.150te - -  3 1 --1.000020000 3 0.413,o --  4 
2 --0.99991770 0.000000000 O. 15010 - -  3 
3 --1.00000650 0.000000000 tO. 1751, --  5 

t T h e  m a g n i t u d e s  of Pki f o r j  = 1 , 2 , . . . ,  Mk are d o m i n a t e d  b y  K a h a n ' s  u p p e r  b o u n d  for  t h e  r o u n d i n g  er rors .  
t t  T h e  m a g n i t u d e s  of Pkj f o r j  = 1 , 2 , . . . ,  Mk - -  1 a re  d o m i n a t e d  b y  K a h a n ' s  u p p e r  b o u n d  for t h e  r o u n d i n g  e r ro rs .  

These regions are determined from Theorem 1 by setting ek = gk where gk is the 
positive root of eq. (3). 

The first three polynomials of this table illustrate large variations in the size of 
the regions F~i (gk) when the distinct approximations to multiple zeros are replaced 
by the confluent approximation formed from the average of the distinct approxima- 
tions. The largest variation which we have observed so far appears in the third poly- 
nomial and the smallest change appears in the fourth polynomial. The changes in 
the first two polynomials are typical for most of our experiments. 

The fifth polynomial shows how the regions Fkj (gk) change when three distinct 
approximations are replaced by a confluent approximation of multiplicity three even 
though the polynomial does not have a zero of multiplicity three. 

We comment now that some of the results in Tables I and II appear to contradict 
Theorem 2. For instance, the bound for the error of the confluent approximation z, 
of the first polynomial in Table II overestimates the actual error by a factor near 
60,000, whereas Theorem 2 predicts that the bound of Theorem 1 does not over- 
estimate the actual error by more than a factor near 12 (LM, = 3 X 4). Remember, 
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however, that for these results we have only upper bounds for the magnitude of the 
polynomials and their derivatives and not the exact magnitudes for these quantities. 

8. Conclusion 

Given N approximations to the zeros of an Nth-degree polynomial, we compute N 
circular regions whose union contains all the zeros of the polynomial. For these 
circular regions, there is no danger of misplacing any of the zeros whenever some of 
these regions overlap. In addition, if the approximations are well separated and close 
to the zeros, these circular regions are small. Finally, whenever these circular regions 
about different centers do not overlap, some of the zeros of the polynomial will 
certainly be misplaced if the radii of these regions are reduced by a modest factor 
simply related to the degree of the polynomial and the "multiplicities" of the ap- 
proximations. 
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