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ABSTRACT. The special izat ion of the  theory  of cellular spaces (cellular au tomata )  to those 
spaces which compute  par t ia l  recursive funct ions is presented.  Neighborhood reduct ion and 
state-set reduct ion are shown to be pa r t i cu la r ly  simple in this  special theory,  and one dimen- 
sion is proved to be sufficient for computa t ion  universa l i ty .  Several computa t ion-un iversa l  
cellular spaces (CUCS's)  are exhibi ted  which are simple in the sense t h a t  each cell has only 
a small number  q of s ta tes  and a small  number  p of neighbors.  For  example, a 1-dimensional 
CUCS with pq = 36 is presented.  Two quite  different proofs of the  existence of a I -dimensional  
CUCS with only two neighbors  are given. Final ly ,  one of the  theorems derived is used to 
settle three open decidabi l i ty  questions.  
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Introduction 

This paper is a specialization of the general theory of cellular automata to that 
particular subset of cellular automata which perform computations of partial re- 
cursive functions. The general theory is presented in [11]. As will be seen, such speci- 
alization leads to substantial simplification over what was previously obtained in 
such areas as neighborhood reduction and state-set reduction. We will show the 
existence of quite simple computation-universal cellular spaces, where by "simple" 
is meant low state count and small neighborhood. These spaces are to be contrasted 
with the computation-universal spaces of yon Neumann [15], Thatcher [14], Codd 
[3], and Arbib [1]. The technique to be exploited in this paper is that of simulation 
of Turing machines by cellular automata. In particular, we use a special simulation 
technique called "wiring-in," the first example of which is described in the proof of 
Theorem 1 below. Such techniques will finally be used to answer several questions 
posed by Lieblein [6]. 

Definitior~ 

Cellular automata theory is of such a nature that it invites the use of quite colorful 
--or more descriptively, picturesque--terminology, especially in the 1-dimensional 
(l-D) and 2-dimensional (2-D) cases with which we will be most concerned here. 
We exploit this property of visualization in the following intuitive model of a cellu- 
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FIG. 1. Some common templates. 

lar space. The intuitive model is sufficient for our purposes here; a formal definition 
can be found in [11]. 

A cellular space can be visualized as an infinite chessboard in two dimensions or an 
infinite strip of film in one dimension, cach square or each frame of which represents 
a copy of a single finite-state automaton, or cell. The space is assumed to operate 
synchronously in discrete time steps. Each cell has associated with it three things: 
a neighborhood, a local transition function, and a quiescent state. The state of a cell at 
time t + 1 is given by the local transition function f and depends on both its state 
at time t and on the states at time t of the cells in its neighborhood, its neighbors. 
The neighborhood of a cell D is a finite set of cells in fixed positions relative to D. If 
all cells in a given cellular space Z have neighborhoods of the same shape, then the 
cellular space is said to be uniform. In this paper we shall be generally concerned with 
uniform cellular spaces. I t  is very probable that  uniformity will be relaxed in use of 
the cellular space model for studying, say, embryology theory where space-varying 
and time-varying neighborhoods may play an important  role. In uniform cellular 
spaces the one neighborhood type associated with all cells in a given space can be 
designated by a subset of chessboard squares called a template, is as indicated in 
Figure 1 (a), where we hatch the cell whose neighborhood this is. Thus the neighbor- 
hood of cell D is determined by translating the template associated with Z until the 
hatched template origin covers cell D. All cells under the template squares then form 
the neighborhood of D. A 1-D template in which each square, except the rightmost, 
shares its right edge with the square to its immediate right is said to be contiguous, 
and a corresponding cellular space is called a contiguous cellular space. The quiescent 
state q0 is defined such that  if a cell and all its neighbors are quiescent at time t, then 
at time t + I the cell is still quiescent. Besides these restrictions on each cell, there is 
often a restriction on the entire space: at time zero, the initial configuration--i.e, the 
initial assignment of states to each cell in the space--must  contain only a finite 
number of nonquiescent cells. Although the restriction is assumed throughout this 
paper, we shall not make it a requirement on initial configurations. To do so would 
preclude several interesting problems corresponding to infinitely inscribed initial 
Turing machine tapes and invalidate at least one paper in the field [5]. Given an ini- 
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tial configuration Co, the global transition function F (simultaneous invocation of the 
local transition function in each neighborhood of the cellular space) determines a 
sequence of configurations, the propagation (co}: 

CO , C l  , " " " , C t  , " " " ,  

where Ct+x = F (ct) = F T M  (Co) for all times t. Thus F (c) (C) = f ( N  (c, C) ) where C 
is a cell with neighborhood state N (c, C) in configuration c. 

Note that  each cell in a cellular space can be assigned a point in an integer lattice. 
Let Z be the integers. Then a configuration c in a d-dimensional space Z is a mapping 
c:Z d --~ Q, where Q is the state set of each cell in Z. Define the support of configura- 
tion c to be the set sup (c) of nonquiescent cells in v. Usually the term "configura- 
tion c" will be used loosely to mean c t sup (c). A configuration c is passive if F (c) = 
c. A configuration c' is a subconfiguration of c if c I sup (c') = c' [ sup (c'). By dis- 
joint configurations c and d we mean their supports are disjoint. By the notat ion 
c U d we mean the union of c and d, defined by 

if c and d are disjoint. 

(c U d) (C) = I 
c(C), if C E sup(c),  

d(C) ,  if C C sup(d) ,  

q0, else, 

The terminology above is essentially tha t  of Thatcher  [14] and Codd [3]. However,  
the following definition of computat ion is a slight generalization of their definitions. 
First, we need several preliminary concepts at hand. From recursive function theory 
(see [8] for details) we know tha t  there exist effective enumerations of the partial  
recursive functions. Let  the sequence (¢~) be an enumeration of all partial recursive 
functions of one variable. We will have occasion to use the following well-known 
theorem. 

UNIVERSAL TURING MACHINE THEORE~I. There exists a j and a total recursive 
function e of two variables such that, for all i and x, Cj (e ( i, x) ) = ¢i ( x ) i f  ¢i (x ) is de- 
fined and is undefined if  ¢i (x ) is undefined. (We will call ¢~ in this case a universal 
Turing machine function and e the encoder function associated with ¢i .  ) 

Consider the configurations with finite support  in cellular space Z. Clearly there 
is an effective enumeration, or indexing of these configurations. Let  the sequence 
(xl) be such an enumeration. Then we will speak of partial  recursive functions from 
(xi) into (xi), instead of from N into N where N is the set of natural  numbers.  
Now we can define computat ion in a cellular space. 

Definition 1. Given a cellular space Z with global transition function F, configura- 
tion c, and partial recursive function g :N ~ N, c computes g if: 

(1) there is a sequence of configurations (dn), each disjoint from c, which is an 
effective enumerat ion of (not necessarily all) configurations; 

(2) there is a partial  recursive function h: (xi) ~ (Xl) such that ,  if g(n)  is de- 
fined, then there exists a t ime to such tha t  h(Ft°(c U dn)) = do(n) (see Remark  1 
below) ; and 

(3) there is an m > 1 and a recursive function ~': (X~) m ~ {0, 1} for determining 
from a finite sequence of m configurations tha t  to has occurred--i .e.  ~- (ct, ct+l, • • • , 
ct+,,-1) = 1 if and only if t = to (see Remark  2 below). 
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Remark i .  The decoding function h is assumed to be simple in the sense that  the 
cellular space does the computing, not h. h is merely intended to indicate which cells 
of a given configuration are to be interpreted as the "resul t"  configuration dg(~). 
For example, we would not want h to be as powerful as a universal Turing machine 
function, nor would we want h = g. The important  point is that  h is the same for 
many different functions g. 

Remark 2. In this paper, the procedure ~" for determining completion of a compu- 
tation is either 7r(ct, ct+l) = 1 if and only if ct = ct+l (hence t > to) or a closely re- 
lated variation for which detailed explanation is delayed until presentation of 
Theorem 1. Thus completion of a computation is signaled by the cellular space (ex- 
cept, perhaps, the extremities of its support)  becoming passive. 

Definition 2. Z is a computation-universal cellular space (CUCS) if there exists a 
set U of configurations in Z such that  for any partial recursive function g, one can 
effectively find a c C U such that  c computes g. 

I t  is the CUCS which is here our major concern. The principal investigative tool is 
"simulation," a term defined below. We shall require cellular spaces to simulate 
other computing devices such as Turing machines. In general, a monogenic (cf. de- 
terministic) logical string-manipulation "sys tem" is one for which, given a string S, 
there is at most one string S' which can be obtained from S in one step. We call the 
straightforward generalization of the concept of string to d dimensions a pattern. 
Thus a string is a 1-D pattern,  and a configuration with finite support in a d-D 
cellular space is a d-D pattern. A cellular space is then a "pattern-manipulation 
system," as is a Turing machine or a Post tag system. 

Definition 3. A pattern-manipulation system T is an ordered pair (P, v), where P 
is an effectively indexed set of finite patterns so that  v:N --~ N may be considered as 
mapping patterns;  thus T is monogenic. 

Definition 4. Consider cellular space Z and pattern-manipulation system T. 
Let  kl and k2 be positive integers; let i index patterns in P ;  and let C be the set of 
all configurations in Z with finite support. Then Z simulates T in k2/kl times real-time 
if and only if there exist effectively computable and injective mappings ,~:N --~ C 
and ~ of recursive functions into recursive functions such that  

F ~2 (,y ( i ) )  = ~ (v ~' ( i ) ) ,  

where F = ~(v). We are particularly interested in the following three cases: (1) 
kl = 1, k2 = k > 1 (ktimesreal-time); (2) kl = k > 1, k2 = I (kspeed-up); 
(3) kl = k2 = 1 (real-time). 

Remark. As with function h in Definition 1, we assume functions ~ and ~ do 
not exceed a fixed level of computational complexity in some well-defined hierarchy 
of computational complexities, although we shall not specify such a hierarchy here. 
For example, the functions might be restricted to those requiring at most linear time 
to compute by a single-tape off-line Turing machine. 

A Turing machine is then a pattern-manipulation system where P is a set of 
"instantaneous descriptions" and v is uniquely determined by the next-state func- 
tion of the control head of the Turing machine. Note that  we have implicitly 
assumed that  when a Turing machine or tag system "halts," the associated sequence 
of patterns continues forever but  is passive [i.e. v(i) = i]. 

We will often refer to an (m, n) Turing machine. By this is meant a Turing ma- 
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chine with m symbols and n states which is specified by  a state table of the follow- 
ing form (only one typical entry shown) : 

s t a t e s  

qo  q l  • • • q n - 1  

x o  

symbol x~ 
: X E {R(right) ,  L( le f t )  }, 

xiX/qj  0 < i < m-- 1, 
xm-1 O < j _ < n - - 1 .  

Cellular Automata Which Compute 

The first theorem below appears essentially unchanged from its presentation by  
Smith [10]. I t s  proof is repeated here in some detail, however, because it clearly 
demonstrates the simulation technique utilized throughout this paper  and intro- 
duces easily the idea of "pseudosuppor t"  and the "end-of- tape" problem, two con- 
cepts frequently encountered in the remainder of the paper. 

THEOREM ]. For an arbitrary (m, n) Turing machine T, there exists a 2-D, 7- 
neighbor, max (m + 1, n + 1 )-state cellular space Zr which simulates it in real-time. 

PROOF. Each cell of Z r  is provided with a set Q of M = max (m + 1, n + 1) 
states. Without loss of generality, let Q = {0, 1, . . .  , M - 1} so tha t  (i + 1) cor- 
responds to symbol xi of T for 0 < i < m - 1 and state (j  + 1) corresponds to 
Turing machine state q~ for 0 _< j < n -- 1.0 is the quiescent s tate  of Z r  and never  
corresponds to a Turing machine state or symbol. The geometry of ZT will be utilized 
to distinguish a cell whose state Q1 C A = {1, " "  , m} corresponds to a Turing 
machine symbol from a cell whose state Q2 C B = { 1, • • • , n} corresponds to a Tur-  
ing machine state. In  particular, ZT has the neighborhood template  shown in Figure 
2(a). 

( o ) 

HEAD CELL h 

-4-~ -'I--'F-*-+-t-/~'-+- i- -;- -;.--i-4--;-- 
', , a : ! : i f ' :  ! ! ! , l , , ' 

----'l- -- i" --_ "I-" -- ~- -- ~- -- J-- -- t-l.u..,.l----l-- -- ~- -- ~- -- -I -- . . . . . . .  -I- -- -~- -- 4- -- I-- -- 

'. I I C E L L  o--q,- I P I ! - , P - C E L L  b ,  i , I I 
l I ' I " I ' , I 

f I I I U41 I O , I i I I 
I I I ! I I I / I  I I I I I I I I 

--I--I" --T -'T-- T - -r- -q~.71-- -i- - ?- - I- --F-- r --r- --r- -l--- 

/ 

SCANNED CELL s 

( b )  
Fio. 2 
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We cause ZT to simulate T by embedding a configuration in it which "looks like" 
T. Tha t  is, one row of cells in ZT is the " tape"  of the embedded Turing machine--  
one cell of ZT per tape square of T - - a n d  one cell in an adjacent row is the "head." 
Thus the embedded Turing machine configuration will have the form indicated in 
Figure 2 (b) at any one instant. As indicated in Figure 2 (b), a and b are always 
labels for the cells to the left and right, respectively, of the head cell h. All other 
symbols are state assignments: Sk E A is always the state of the tape cell at distance 
I k l from the scanned cell in the direction determined by the sign of k as indicated; 
and P E B is the state of head cell h. Cx is used to designate the cell immediately to 
the X C {R, L} of a finite embedded tape. All cells other than the head and tape cells 
are assumed to be in the quiescent state 0. Thus CR and CL are always in state 0. 

Head cell h is made to "move"  along the tape subconfiguration simulating the 
head moves of T by suitable specification of the transition function f for a cell in 
Z r .  This is simply done. Unless the cell is a, b, h, s, CR, or CL, it does not change 
state. For these six cases, let the Turing machine state-table entry for symbol x, and 
state qv be denoted (xu, qv). T h e n f  is given for cells a, b, h, s, CR, and CL as indicated 
in Table I when (xu, qv) = xpX/qq .  The last two entries require some explanation. 

We must distinguish the blank symbol from the quiescent state in this simula- 
tion, else a tape symbol in the tape row could act as a head for the next row of 
cells interpreted as an entirely blank tape. This creates the end-of-tape problem: The 
simulated Turing machine requires, in general, an infinite tape, but  the initial con- 
figuration is assumed to have finite support. Hence the last two entries are "tape 
extenders" which convert the quiescent state to the blank symbol at either end of 
the necessarily finite embedded tape configuration. 

The description of the encoding function '7 for the simulation of T by Zr  is com- 
pleted as follows: There is a state w E B in each cell of Zr  which corresponds to the 
starting state of T. The nonblank portion of the (finite) initial tape of T is embedded 

TABLE I 

Cell C Neigkborkood state of C Next stale of C Conditions 

P 
8 ~-~--1 SO* S1 p 

0 0 0 

0 
h 0 P* 0 0 

S_1 So $1 

0 
a 0 O* P fO 

S-2 S_i So ~ (q + 1) 

0 
b P 0* 0 f(q + 1) 

SO S1 $2 

0 
CR Sk O* 0 1 

0 0 0 

0 
C L 0 O* S~ 1 

0 0 0 

S o = u + l  
p E A  
p = v + l  

in all c a s e s  

i fX  = R 
i fX  = L, (q+  1) E B 

i fX  = R 
i fX  = L 

1 E A is the "blank" symbol 

a s  for CR 

* State of cell C. 
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in one row of Z r .  The cell above the cell corresponding to the leftmost nonblank 
square is set to state w and hence represents the initial position of the tape head of 
T. Then the global transition function F causes the cellular tape subconfignration to 
be modified (in a real-time simulation) just as would be the tape of T. 

Define the pseudosupport of configuration c to be the set psup (c) of all non- 
quiescent and nonblank cells in c. Then the procedure ~- for determining completion 
of a computation is defined by ~- (ct, ct+l) = 1 if and only if ct [ psup (ct) = ct+l I" 
psup (ct+l) (cf. Remark 2 after Definition 1 ). Q.E.D. 

Remark. I t  is necessary to distinguish the quiescent state from the state simulat- 
ing the blank symbol in the proof above in order to get a small state count. Clearly 
this distinction would not have to be made if we gave m 9- n states to Z r ,  m states 
to simulate Turing machine states and n states to simulate Turing machine symbols, 
or if we gave mn states to Z r ,  each with two coordinates. In the latter case, Zr  
need have only one dimension and this is the simulation given by Balzer [2]. 

We contrast the construction in the proof above, in which the cell design de- 
pends on the Turing machine to be simulated, with the cellular spaces of von Neu- 
mann, Thatcher,  Codd, and Arbib, in which any Turing machine can be simulated 
once the cell design is set. The difference between the Turing-machine-dependent 
cell constructions and the Turing-machine-independent cell constructions is un- 
important when the simulated Turing machine of interest is the universal machine, 
as, for example, in the corollaries below. In this case the machine-dependent cells 
are clearly superior in the sense that  all simulations are real-time (or "almost"  real- 
time, as will be specified in other theorems to follow) as opposed to the very slow 
simulations in, say, the von Neumann space in which each simulated step requires 
muting of signals through hundreds and even thousands of cells. Of course, a real- 
time simulation of a universal Turing machine is not real-time with respect to the 
original Turing machine simulated by the universal machine. 

COROLLARY 1.1. There exists a max (m q- 1, n + 1)-state computation-universal 
cellular space for every (m, n)  universal Turing machine. 

COROLLARY 1.2. There exists a 2-D, 7-state computation-universal cellular space. 
PROOF. Minsky [7] has cited a (6, 6) universal Turing machine. Q.E.D. 
Previous work with cellular spaces has often employed the 5-cell yon Neumann, 

or H1, neighborhood of Figure 1 (a). The 7-neighbor spaces of the type used in prov- 
ing the theorem above can be replaced easily with spaces having the H~ neighbor- 
hood, as the next theorem indicates. 

THEOREM 2. For an arbitrary (m, n)  Turing machine T, there exists a 2-D, 
max (2m -t- 1, 2n --b 2)-state cellular space Zr with the H~ neighborhood which simu- 
lates it in 3 times real-time. 

PROOF. The configuration in Zr  which simulates an instantaneous description of 
T occupies two rows of Z r  as in the proof of Theorem 1, but  the information about 
head moves stored in the 7-cell neighborhood is here encoded into an enlarged state 
set. In particular, for b E {0, 1}, Zr  will have state S~b for each state q~ of T and state 
Sjb for each symbol xj of T. Suppose ZT is to simulate a step of T in state ql and scan- 
ning symbol xj ,  with corresponding state table entry x~X/qv. Thus, for some time t, 
clepending on whether the last move was right or left respectively, there will be a 
configuration in Zr  of the form: 

• .- 0 @s~oO 0 . . . . . .  0 0 S~o@O . . .  
o r  

• " "  Su ,  o S x l S i o S ~ o S z o  . . . . . .  8 w o S ~ o S j o S ~ l S z O  " ' ' .  
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The top row is the "head"  row and the bot tom row is the "tape" row. The purpose 
of special state ~ will become clear below where the steps in the simulation of one 
step of T are pictured. Subscripts b -- 0 and b = 1 correspond to X = R and X = L 
respectively: 

t + 1: - . .  0 0 svl0 0 . . -  
• " "  8 w O S z O S ~ b S y O S z O  " " "  

t + 2 :  . . . 0  @s,b@O . . .  
" ' "  8 w O S z O S u l S y O S z O  " " "  

t + 3: . . .  0 0 @s~oO "-" 
S~oS~oSulS~oS~o . . .  if b = 0, 

t - - } -3:  ""  0 s~o~O 0 . ' .  
• " SwoS=oSulS~oSzo .." if b = 1. 

Thus at t + 3 the space is ready to simulate another step of T; hence the simulation 
proceeds in 3 times real-time. I t  is a simple mat ter  to specify a transition function f 
to accomplish this simulation, so we leave the details to the interested reader. Note 
that  f must handle the end-of-tape problem as in Theorem 1. Q.E.D. 

A consequence of Theorem 2 is a 5 X 14 2-D computation-universal cellular 
space obtained by applying the theorem to the (6, 6) universal Turing machine2 
Here the notation p X q cellular space is short for p-neighbor, q-state cellular 
space. This might be compared for simplicity to the 5 X 8 2-D CUCS of Codd [3], 
although such a comparison is difficult. The 14-state computation-universal con- 
figuration occupies two rows of its space and simulates a Turing machine in 3 times 
real-time, whereas the 8-state configuration covers hundreds of rows of its space and 
simulates in time on the order of n 2 times real-time, where n is the length of the 
encoded program and tape of the simulated Turing machine. 

Utilization of only two rows of a 2-dimensional space implies immediately the 
existence of a 3 X 196 1-D CUCS: Use a state set with two coordinates of 14 values 
each; they simulate the head and tape rows respectively. But  Theorem 3 does bet ter  
for the 1-D case. 

THEOREM 3. For an arbitrary (m, n )  Turing machine T, there exists a l-D, 6- 
neighbor, max (m --~ 1, n + 1)-state cellular space ZT which simulates it in real-time. 

PROOF. Let  ZT have the 6-cell neighborhood template of Figure 3 (a). The em- 
bedded Turing machine configuration is as illustrated in Figure 3 (b);  the tape 
squares occupy every other cell in the space. The transition function f leaves the 
state of a cell C unchanged except in the six cases a, b, s, h, Cs,  and CL (as in the 
proof of Theorem 1 ). The function f is easily specified and is omitted here. I t  should 
be noted that  tape extenders are required here as in Theorem 1 to convert quiescent 
cells to cells simulating the blank symbol at the tape "ends." Q.E.D. 

COROLLARY 3.1. There exists a l-D, 6-neighbor, max (m ~ 1, n + 1)-state com- 
putation-universal cellular space for every (m, n)  universal Turing machine T. 

COROLLARY 3.2. There exists a l-D, 6 X 7 computation-universal cellular space. 
PROOF. Let  T be Minsky's (6, 6) universal Turing machine. Q.E.D. 

1 A very simple proof exists for Theorem 2 with Zr  having max (m + 1, 3n + 1) states. This 
yields, however, a 5 X 19 CUCS. We leave discovery of this proof to the interested reader. 
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Fio. 4 

Theorem 2 is a neighborhood reduction result for the special case of computing 
cellular spaces in 2-D. Similarly, the next theorem is a specialized neighborhood re- 
duction result in 1-D. 

THEOREM 4. For an  arbitrary (m, n )  Tur ing  machine  T,  there exists a I -D ,  

(m + 2n )-state, 3-neighbor cellular space Z r  which s imulates  it in  at most  2 t imes real- 

time, with the 1-D H i  template [see Figure  1 (b)]. 
PROOF. Provide Zr  with the 1-D Hi template, and embed a Turing machine 

configuration in Zr  as indicated in Figure 4. The transition function f leaves the 
state of all cells unchanged except in the cases a, h, and s. I t  is a simple mat ter  to 
frill in the details of this function such that  tape configurations like • • • Xox~qx2x3 • • • , 

simulating a right move into new state q' after changing symbol x~ to x~', appear in 
time as 

• " "  Z o X l q X 2 X 3  " ' "  

• . .  X o X l X 2 t q P x 3  . . . .  

Similarly, a left move looks like 

• . .  XoXlqX2x3 . . .  
f ! 

• • • xoxlq~ x2 x3 • • • 
! ! 

• . .  x o q x l x 2 x 3 . . . .  

Thus two states, q and qL, are needed to represent each Turing machine state. In 
this case, the blank symbol is simulated by the quiescent state; hence there is no 
end-of-tape problem (cf. Remark after Theorem 1). Q.E.D. 

Either the (6, 6) universal Turing machine or the (4, 7) universal Turing machine 
(also due to Minsky [7] ) and Theorem 4 produce the next result. 

COROLLARY 4.1• There is  a l-D, 3 X 18 computat ion-universal  cellular space. 
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There is nothing sacred about the von Neumann (H4) neighborhood, of course• 
In 1-D spaces, the H~ neighborhood can be reduced to the K~ neighborhood [see 
Figures 1 (b) and 1 (d)] quite readily, as the next theorem attests• 

THEORmi 5. For an arbitrary (m, n )  Tur ing  machine  T,  there exists a l-D, 
m ( n  + 3)-state cellular space Z r  wi th  the 2-cell K1 template which simulates  T in  2 
t imes real-time. 

PROOF• This proof proceeds much like that  of Theorem 4. The major difference 
is that  the simulated instantaneous descriptions of T shift in time through the space 
Z r .  Thus an instantaneous configuration such as . . .  xoxlqx2x3x~ . . .  is simulated 
by state pairs in Zr  as indicated below for left and right moves respectively: 

L: • " " ( X o  

• " * ( X l  

• " " ( X l  

, 0 ) ( x ~ , 0 ) ( x ~ , q ) ( x 3 , 0 )  . . .  
, 1 )  (x2', q ' ) ( x 3 , 2 ) ( x 4 ,  1 )  . . .  
, q') (x2', O)(x3, O) ( x 4 , 0 )  . . .  

R: • . .  (xo, O) (xl, o) (x2 
• . .  ( x l ,  1 )  ( x 2 ' ,  2 )  ( z 3  

• . .  (x~, O) (x2', O) (x3 

, q )  ( x 3 , 0 )  . . .  

,q')(x4, 1 )  . . .  

, q')(x4, o) . . . .  

Any q must be distinct from 0, 1, and 2. Hence the first element of each state pair 
has m values and the second has n + 3 values. The reader is invited to complete the 
formal simulation from this sketch• Q.E.D. 

Remark .  Here the definition of "c computes g" (Definition 1) is not valid as 
stated, because the computing configuration c is not disjoint from the tape con- 
figuration dn. However, the coordinates of the state space representing c are dis- 
tinct from those representing dn.  When this is the case for a 1-D space, then the 
space can always be interpreted as two rows of a 2-D space as in Theorem 1. Under 
this interpretation, the definition is valid. The computing cellular spaces of the type 
described in [2] (see Remark after Theorem 1) also require this interpretation of 
Definition 1. The definition can be formally generalized [11] for those cellular spaces, 
but  we have chosen not to do so for simplicity• 

The (4, 7) universal machine yields the following corollary. 
COROLLARY 5•1. (a) There exists a l -D ,  2-neighbor computat ion-universal  cellu- 

lar space• (b ) I n  particular,  there is  a l-D, 2 X 40 CUCS. 
We now prove Corollary 5.1(a) again but  in a much different way. Of course, the 

purpose of the next theorem is not the re-proof of this corollary but rather the in- 
troduction of another tool for the study of computation in cellular space : simulation 
of Post tag systems. Kilmer [4] has proved several unsolvability results in his study 
of finite sequential iterative networks by designing networks to simulate Post tag 
systems• We find similar results for cellular spaces--i.e, infinite sequential iterative 
networks--also by simulation of tag systems• However, the simulation technique 
used below differs substantially from that  of Kilmer. His cell design must be changed 
if the initial string (axiom) of the simulated tag system changes• We are able to 
avoid this in the cell designs below and at the same time use fewer states per cell. 

The general tag system (see Minsky [7] for details) to be simulated has alphabet 
X = {xl, x2, • • • , xm}, deletion number P ,  and associated with the m possible initial 
letters there are respectively m eonsequents Ci , C2, • • • , C,, of lengths al , a2 , • • • , am, 

respectively. The axiom is an arbitrary finite string of letters in X. 

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 



Simple Computation-Universal Cellular Spaces 349 

THEOREM 6. For an arbitrary Post tag system T, there exists a l-D, 2-neighbor 
cellular space Zr with the K1 template which simulates it in (P + 1 ) times real-time. 

PROOF. ZL is chosen to have state set K X I, where K = {0, 1, 2, • • • , m, m + 1, 
m + 2, . . . , m  + P , m  + P + 1, . . . , m  + P + a}, a = maxiei a i , a n d I  = 
{0, 1, . . .  , m/. Then states of the form (k, i) ,  m + 1 < k < m + P,  i > 0, are 
marker states which, in effect, remove the first P letters of a string in the tag system 
which is (initially) represented by a string of cells in the cellular space. The state 
(0, 0) is the quiescent state. States (k, 0), 1 < k < m, represent letters in the axiom. 
States (k, i) ,  1 _< k < m, i > 0, represent letters in the string after the first pro- 
duction; the index i indicates which consequent should be appended to the present 
string. States (k, i) ,  m + P + 1 _< k < m + P + a, i > 0, are consequent-C~- 
generating states. 

The simulation proceeds as follows: The axiom is coded as a string of cells where 
letter xi in the axiom is represented by a cell in state (i, 0). The transition function f 
of the space is such that  this string of states always moves left at one cell per time 
step. At the left end of the string, however, a marker state is set up which does not 
propagate left. If the leftmost letter of the string is xj ,  then the first marker state is 
(m + 1, j ) .  As the string moves left into this marker state, the state "gobbles up"  
the first P letters--i .e,  its first element increases by one at each step until marker 
state (m + P, j )  is reached. The string continues to propagate left, but  the fact that  
the first letter of the antecedent just cut off was xi is recorded in the second element 
of the state as a j .  This information is not propagated left but  is held stationary until 
the right end of the string advances to the cell holding this index. Here the consequent- 
Ci-generating state (m + P + 1, j )  is set up. I t  remains stationary, only increasing 
its first element by one at each step until state (m + P + ai ,  1) is reached. This set 
of aj states essentially feeds consequent Cj to the left, one element per time step. 
Meanwhile a new marker state has been set up to remove P more letters from the 
left end of the left-propagating string. 

Every P + 1 steps there will exist (if termination has not occurred) a string of 
states of the form 

(kl ,  i l )  (k2, i2) . . .  ( k , ,  i , )  . . .  (k~, i~) ,  

where 1 < kq _< m for 1 < q < n. If i n # 0 but  iq = 0 for allq > p, then this string 
corresponds in the simulated tag system to string 

Xk~Xk~ "'" xk~Cip "'" C~C~. 

If i~ # 0, then k~ > m + P + 1 and the state string corresponds to tag string 

X k l X k 2  " ' "  X k n _ l C i ( k n _ _ m _ p ) C i ( k n _ m _ P + l )  " ' "  C i a i C i n _ l  . . .  C i 2 C i l  , 

where C~ is the j th  component of consequent C~. Thus this is the algorithm for re- 
covering the tag system string every P + 1 time steps. 

The transition function f which performs the simulation outlined above is given in 
Table II. All other cases are assumed passive. Q.E.D. 

Remark 1. No at tempt  was made to minimize the number of states in the con- 
struction above. Hence the (m + 1) (m + P + a + 1) states required are probably 
extragavant. There are several states never used--e.g, states (k, 0), m + P + 1 
k ~ m + P + a .  

Remark 2. Essentially the same proof works for monogenic normal systems. 
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TABLE II 

Neighborhood state of cell C Next state of C Conditions 

(0, 0)*(k', i') (m + 1, U) 1 < k' _< m 
(k, O)*(k', O) (k', O) 0 < k' _< m, 1 < k < m 
(k, i)*(U, i') (k + 1, i) m +  1 < k < m + P, i > 0 
(m -{- P, i)*(0, 0) (0, 0) i > 0 
(m + P, i)*(k', i') f (k', i) 1 < k' _< m 

(k ~',i) m +  P + 1 _< k' < m + P--t- a/ ,  
xk" = Ct,(~'-m -P ) ,  i, i r > 0 

(k,i)*(0,0) f (k + 1, i) m + P +  1 < k < m +  P + a t -  1, i > 0 
(0,0) k = m + P +  ai, i > 0 

(k, i)*(k', i') (k', i) 1 <_ k, k' < m, i > 0 
(k, i)*(0, 0) (m + P +  1, i) i < k < m, i  > 0 
(k, i)*(k', i') (k", i) 1 < k < m, i, i' > O, m + P + 1 < k' < 

m + P +  a t ' , x , ,  = C~ , ( k , -m-P)  

* State of cell C. 

FIG.  5 

2ND PROOF OF COROLLARY 5.1(a).  Cocke (see Minsky [7, p. 270]) has shown 
the existence of a Post tag system for simulating a given arbitrary Turing machine. 
In  particular, design ZT to simulate a tag system T which simulates a universal 
Turing machine. Q.E.D. 

Since a 1-cell neighborhood template offers only finite memory, it is clear that  the 
2-cell K1 template used, for example, in Corollary 5.1 is the minimal neighborhood 
possible for computation universality. Thus, for p X q CUCS, p = 2 is the minimum 
p. What  is the minimum q? What  is the minimum product  pq? The answer to the 
first question is q = 2, from the general theory of state set reduction. The second 
question is not so easy. Establishing the minimum product pq is a problem which is 
probably as difficult as finding the minimum product m n  for (m, n)  universal Turing 
machines, but  we can establish an upper bound on the minimum pq by applying 
general cellular automata results. Corollary 7.1 below, which gives this bound, also 
lists the "sizes" in which CUCS are available, and the different spaces illustrate 
some of the various tradeoffs possible between state-set size and neighborhood size. 

THEORE~ 7. For an arbitrary (m, n )  Tur ing  machine T, there exists a I-D, 4- 
neighbor, (m + n )-state cellular space ZT which simulates it i n  real-time. 

PROOF. Give ZT the template of Figure 5. Then the simulation of T proceeds in a 
manner very similar to that  in the proof of Theorem 4, but  here the neighborhood is 
large enough so that  the simulation occurs in real time. We leave the details of this 
proof to the reader. Q.E.D. 

COROLLARY 7.1. There exist 1-D p X q computation-universal cellular spaces with 

p X q = (1) 4 X 11, (2) 6 X 7, (3) 8 X 5, (4) 9 X 4, (5) 13 X 3, and (6) 

2 1 X 2 .  
PROOF. Let  T in Theorem 7 be the (4, 7) universal Turing machine to obtain 

result (1). Result (2) is just the result stated in Corollary 3.2. The other results are 
consequences of the following lemma from the general theory [11]. I t  is stated here 
without its proof, which requires a great amount  of additional material. 
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STATE REDUCTION LEMMA. For any 1-D p' X q' contiguous cellular space Z', 
there is a 1-D p X q cellular space Z which simulates Z' in real-time, where p = N (p' 
1) + k - 1, N is the smallest integer such that qP ~ qN __ N, and k is the smallest in- 
teger such that N < qk _ 2 ~ ~ 2k -- 1. 

The concept underlying the lemma is the relatively simple idea of a q-ary, N-digit 
encoding of a configuration in Z' cell-by-cell into Z. Another code, of length k, is 
required to position each encoded state of Z' in Z. I t  is this additional code which 
complicates the proof of the lemma; hence the proof is delayed to a forthcoming 
paper [12]. See also [13]. 

Apply the state reduction lemma to the 3 X 18 CUCS of Corollary 4.1 to get re- 
sult (3). Apply it to the 2 X 40 CUCS of Corollary 5.1 to get (4), (5), and (6). 

Q.E.D. 
Thus Corollary 7.1 gives 36 as the upper bound on the minimum product pq. A 

lower bound is, of course, 4. 
The binary CUCS in the corollary above is not the first binary CUCS to be ex- 

hibited, but  it is the first in one dimension. Codd [3] presents an 85 X 2 CUCS in 
2-D obtained by simulating his 5 × 8 CUCS (also a 2-D space). We note that  a 
d-D state reduction theorem of Smith [11] would yield a 2-D binary CUCS with at  
most 38 neighbors when applied to the 5 X 8 space. 

Simple computation-universal cellular spaces are not the only byproducts of the 
simulation method. We now use it to answer several questions raised by Lieblein 
[6]. In his terminology, a cellular space as we have defined it is called a simple 
axiom system. The "axiom" is the initial configuration, and "simple" means only 
one rule of inference--i.e, one local transition function. In particular, Lieblein studies 

special case called a PC-simple axiom system which is a binary cellular space with 
initial configuration restricted to be the primitive configuration (PC) cpc defined 
(form C Z a ) b y  

= /1, if m is the origin, 
epc(m ) ( 0, else, 

where 0 is the quiescent state. Thus, in a simple axiom system, each configuration in 
the propagation of the axiom can be thought of as a theorem. Another view is to 
treat each of these configurations as a word in a language. The language is finite if 
the cellular space producing its words becomes passive or cyclic; else it is infinite. 

THEOREM 8. For an arbitrary (m, n) Turing machine T on an initially blank 
tape, there exists a 1-D contiguous p X m cellular space Zr' which simulates T with 
Co ~-- Cpc. 

PROOF. Assume that  the symbol set of T is {0, 1, 2, . . .  , m - 1}. We require 
that no subconfiguration can be interpreted by a cell as part  of cpc. This is accom- 
plished by the way tape symbols are encoded in the cellular space. In particular, let 
a symbol i be coded in Z r  as three adjacent cells in states 110. The state of T is 
simulated by an m-ary N-tuple represented by the states of N cells in Z r ,  where N 
is the integer just greater than or equal to logmn. Delineate the N "head"  cells by 
three adjacent cells in states 111 on the left and three adjacent cells in states 111 on 
the right. Thus Z r  might be programmed as in Figure 6(a) for the binary case. Then 
it is not difficult to check that  the template of Figure 6(b) has enough information 
for simulation of T. 
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- - - I '  I '  i ° l  ' I '  t ° l  ' I '  I '  I I ,  t, I o l o l o l ,  I '  I ° l  "'" 
Y " S C A N N E D  

" H E A O  " S Q U A R E  " 

( o )  

( b ) 

FIO.  6 

Thus, during the first time step, transition function f '  of the desired cellular space 
ZT' sets up the head described above by recognizing cpc. By design, this can only 
happen at t = 0. Note that the blank tape is automatically set up because 0 is 
coded by cells in states 000 only. Then at the second time step, f '  proceeds to func- 
tion just as would transition function f of the cellular space ZT described above. 

Q.E.D. 
COROLLARY 8.1. There does not exist an algorithm that will determine, for a given 

1-D PC-simple axiom system, i f  the system represents a finite or an infinite language. 
PROOF. Let T be a Turing machine which, if started on blank tape, has an un- 

solvable halting problem (see [7, ~. 150]). Let T~ be the (2, n) equivalent of T. 
Then design p X 2 cellular space Zr~ as in the proof of Theorem 8. I t  is undecidable 
then whether the language of Z~ 2 is finite or infinite. See [9] for T~. Q.E.D. 

COROLLARY 8.2. I t  is undecidable, given a configuration c and a 1-D PC-simple 
axiom system Z, whether c is a theorem of Z. 

PROOF. Let T2 be the 2-symbol equivalent of T, a Turing machine for which it 
is undecidable whether it will ever print a given symbol [7, p. 150]. Then Z is Z'T~ 
which simulates T~ as in the proof of Theorem 8. Q.E.D. 

COROLLARY 8.3. I t  is undecidable, given an arbitrary I-D simple axiom system 
, 

with global transition function F and any two configurations c and c ,  whether or not 
! 

there exists an m such that F m (c) = c .  
PROOF. Design Z T2 as in the first paragraph of the proof of Theorem 8 for T2 as 

in the proof of Corollary 8.2. Q.E.D. 

Summary and Conclusions 

Several methods are presented above for obtaining substantial computing power 
from quite simple cellular automata. In particular, one dimension is shown to be 
sufficient for universality on the set of partial recursive functions. A cellular autom- 
aton with this power is called a computation-universal cellular space (CUCS). We 
have demonstrated several examples of such spaces which are "simple" in the sense 
that their neighbor-state product is small (e.g. Corollary 7.1 presents a CUCS with 
this product equal to 36). Hence we conclude that early work with cellular auto- 
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mats uses spaces of undue complexity. Most  notable of these is the 5-neighbor, 29- 
state CUCS in [15] which requires two dimensions. 

Several techniques for simulating Turing machines and tag systems by  cellular 
automata are also described above (in which cases we say the Turing machine, or 
tag system, is "wired in"). Our work is related to tha t  of Wagner  [16], who in effect 
wires "spider a u t o m a t a "  into cellular spaces (with Mealy- type cells), because a de- 
generate spider is a Turing machine. These techniques, coupled with results from 
the general theory of cellular automata ,  lead in two different ways to the proof of the 
existence of a CUCS with only two neighbors. This is at  first a surprising result since 
computation universality implies a two-way flow of information whereas a 2-neigh- 
bor space seems to be capable of only a one-way flow. 

Finally, the techniques are used to obtain several unvolvabil i ty results which 
arise when a cellular au tomaton  is employed as a language generator. 
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