
Simple Computation-Universal Cellular Spaces

ALVY R A Y S M I T H I I I *

New York University, The Bronx, New York

ABSTRACT. The special izat ion of the theory of cellular spaces (cellular au tomata) to those
spaces which compute par t ia l recursive funct ions is presented. Neighborhood reduct ion and
state-set reduct ion are shown to be pa r t i cu la r ly simple in this special theory, and one dimen-
sion is proved to be sufficient for computa t ion universa l i ty . Several computa t ion-un iversa l
cellular spaces (CUCS's) are exhibi ted which are simple in the sense t h a t each cell has only
a small number q of s ta tes and a small number p of neighbors. For example, a 1-dimensional
CUCS with pq = 36 is presented. Two quite different proofs of the existence of a I -dimensional
CUCS with only two neighbors are given. Final ly , one of the theorems derived is used to
settle three open decidabi l i ty questions.

KEY WORDS AND P H R A S E S : cellular au tomata , cellular space, tessel lat ion au tomata , tessel la-
tion space, i t e ra t ive array, modular computer , universal computer , template , stencil , Tur ing
computable, complexity trade-offs, tag system, min imum neighborhood, axiom system, PC-
simple, pr imi t ive configuration, yon Neumann neighborhood

CR CATEGORIES: 5 . 2 2

Introduction

This paper is a specialization of the general theory of cellular automata to that
particular subset of cellular automata which perform computations of partial re-
cursive functions. The general theory is presented in [11]. As will be seen, such speci-
alization leads to substantial simplification over what was previously obtained in
such areas as neighborhood reduction and state-set reduction. We will show the
existence of quite simple computation-universal cellular spaces, where by "simple"
is meant low state count and small neighborhood. These spaces are to be contrasted
with the computation-universal spaces of yon Neumann [15], Thatcher [14], Codd
[3], and Arbib [1]. The technique to be exploited in this paper is that of simulation
of Turing machines by cellular automata. In particular, we use a special simulation
technique called "wiring-in," the first example of which is described in the proof of
Theorem 1 below. Such techniques will finally be used to answer several questions
posed by Lieblein [6].

Definitior~

Cellular automata theory is of such a nature that it invites the use of quite colorful
--or more descriptively, picturesque--terminology, especially in the 1-dimensional
(l-D) and 2-dimensional (2-D) cases with which we will be most concerned here.
We exploit this property of visualization in the following intuitive model of a cellu-

* Depar tment of Electr ical Engineering. Por t ions of th is paper were presented a t the I E E E
[968 Nin th Annual Symposium on Switching and A u t o m a t a Theory. The work was performed
ruder a N a t i o n a l Science Founda t ion Traineeship a t S tanford Univers i ty .

ournal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971 pp. 339-353

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321650.321652&domain=pdf&date_stamp=1971-07-01

340 A.R. SMITH III

IFAI

(o) (b)

2 - D H i I - O H i

(c I (d I

2 - D K I - D K
I

FIG. 1. Some common templates.

lar space. The intuitive model is sufficient for our purposes here; a formal definition
can be found in [11].

A cellular space can be visualized as an infinite chessboard in two dimensions or an
infinite strip of film in one dimension, cach square or each frame of which represents
a copy of a single finite-state automaton, or cell. The space is assumed to operate
synchronously in discrete time steps. Each cell has associated with it three things:
a neighborhood, a local transition function, and a quiescent state. The state of a cell at
time t + 1 is given by the local transition function f and depends on both its state
at time t and on the states at time t of the cells in its neighborhood, its neighbors.
The neighborhood of a cell D is a finite set of cells in fixed positions relative to D. If
all cells in a given cellular space Z have neighborhoods of the same shape, then the
cellular space is said to be uniform. In this paper we shall be generally concerned with
uniform cellular spaces. I t is very probable that uniformity will be relaxed in use of
the cellular space model for studying, say, embryology theory where space-varying
and time-varying neighborhoods may play an important role. In uniform cellular
spaces the one neighborhood type associated with all cells in a given space can be
designated by a subset of chessboard squares called a template, is as indicated in
Figure 1 (a), where we hatch the cell whose neighborhood this is. Thus the neighbor-
hood of cell D is determined by translating the template associated with Z until the
hatched template origin covers cell D. All cells under the template squares then form
the neighborhood of D. A 1-D template in which each square, except the rightmost,
shares its right edge with the square to its immediate right is said to be contiguous,
and a corresponding cellular space is called a contiguous cellular space. The quiescent
state q0 is defined such that if a cell and all its neighbors are quiescent at time t, then
at time t + I the cell is still quiescent. Besides these restrictions on each cell, there is
often a restriction on the entire space: at time zero, the initial configuration--i.e, the
initial assignment of states to each cell in the space--must contain only a finite
number of nonquiescent cells. Although the restriction is assumed throughout this
paper, we shall not make it a requirement on initial configurations. To do so would
preclude several interesting problems corresponding to infinitely inscribed initial
Turing machine tapes and invalidate at least one paper in the field [5]. Given an ini-

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

Simple Computation-Universal Cellular Spaces 341

tial configuration Co, the global transition function F (simultaneous invocation of the
local transition function in each neighborhood of the cellular space) determines a
sequence of configurations, the propagation (co}:

CO , C l , " " " , C t , " " " ,

where Ct+x = F (ct) = F T M (Co) for all times t. Thus F (c) (C) = f (N (c, C)) where C
is a cell with neighborhood state N (c, C) in configuration c.

Note that each cell in a cellular space can be assigned a point in an integer lattice.
Let Z be the integers. Then a configuration c in a d-dimensional space Z is a mapping
c:Z d --~ Q, where Q is the state set of each cell in Z. Define the support of configura-
tion c to be the set sup (c) of nonquiescent cells in v. Usually the term "configura-
tion c" will be used loosely to mean c t sup (c). A configuration c is passive if F (c) =
c. A configuration c' is a subconfiguration of c if c I sup (c') = c' [sup (c'). By dis-
joint configurations c and d we mean their supports are disjoint. By the notat ion
c U d we mean the union of c and d, defined by

if c and d are disjoint.

(c U d) (C) = I
c(C), if C E sup(c),

d(C) , if C C sup(d) ,

q0, else,

The terminology above is essentially tha t of Thatcher [14] and Codd [3]. However,
the following definition of computat ion is a slight generalization of their definitions.
First, we need several preliminary concepts at hand. From recursive function theory
(see [8] for details) we know tha t there exist effective enumerations of the partial
recursive functions. Let the sequence (¢~) be an enumeration of all partial recursive
functions of one variable. We will have occasion to use the following well-known
theorem.

UNIVERSAL TURING MACHINE THEORE~I. There exists a j and a total recursive
function e of two variables such that, for all i and x, Cj (e (i, x)) = ¢i (x) i f ¢i (x) is de-
fined and is undefined if ¢i (x) is undefined. (We will call ¢~ in this case a universal
Turing machine function and e the encoder function associated with ¢i .)

Consider the configurations with finite support in cellular space Z. Clearly there
is an effective enumeration, or indexing of these configurations. Let the sequence
(xl) be such an enumeration. Then we will speak of partial recursive functions from
(xi) into (xi), instead of from N into N where N is the set of natural numbers.
Now we can define computat ion in a cellular space.

Definition 1. Given a cellular space Z with global transition function F, configura-
tion c, and partial recursive function g :N ~ N, c computes g if:

(1) there is a sequence of configurations (dn), each disjoint from c, which is an
effective enumerat ion of (not necessarily all) configurations;

(2) there is a partial recursive function h: (xi) ~ (Xl) such that , if g(n) is de-
fined, then there exists a t ime to such tha t h(Ft°(c U dn)) = do(n) (see Remark 1
below) ; and

(3) there is an m > 1 and a recursive function ~': (X~) m ~ {0, 1} for determining
from a finite sequence of m configurations tha t to has occurred--i .e. ~- (ct, ct+l, • • • ,
ct+,,-1) = 1 if and only if t = to (see Remark 2 below).

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

342 A . R . S M I T H III

Remark i . The decoding function h is assumed to be simple in the sense that the
cellular space does the computing, not h. h is merely intended to indicate which cells
of a given configuration are to be interpreted as the "resul t" configuration dg(~).
For example, we would not want h to be as powerful as a universal Turing machine
function, nor would we want h = g. The important point is that h is the same for
many different functions g.

Remark 2. In this paper, the procedure ~" for determining completion of a compu-
tation is either 7r(ct, ct+l) = 1 if and only if ct = ct+l (hence t > to) or a closely re-
lated variation for which detailed explanation is delayed until presentation of
Theorem 1. Thus completion of a computation is signaled by the cellular space (ex-
cept, perhaps, the extremities of its support) becoming passive.

Definition 2. Z is a computation-universal cellular space (CUCS) if there exists a
set U of configurations in Z such that for any partial recursive function g, one can
effectively find a c C U such that c computes g.

I t is the CUCS which is here our major concern. The principal investigative tool is
"simulation," a term defined below. We shall require cellular spaces to simulate
other computing devices such as Turing machines. In general, a monogenic (cf. de-
terministic) logical string-manipulation "sys tem" is one for which, given a string S,
there is at most one string S' which can be obtained from S in one step. We call the
straightforward generalization of the concept of string to d dimensions a pattern.
Thus a string is a 1-D pattern, and a configuration with finite support in a d-D
cellular space is a d-D pattern. A cellular space is then a "pattern-manipulation
system," as is a Turing machine or a Post tag system.

Definition 3. A pattern-manipulation system T is an ordered pair (P, v), where P
is an effectively indexed set of finite patterns so that v:N --~ N may be considered as
mapping patterns; thus T is monogenic.

Definition 4. Consider cellular space Z and pattern-manipulation system T.
Let kl and k2 be positive integers; let i index patterns in P ; and let C be the set of
all configurations in Z with finite support. Then Z simulates T in k2/kl times real-time
if and only if there exist effectively computable and injective mappings ,~:N --~ C
and ~ of recursive functions into recursive functions such that

F ~2 (,y (i)) = ~ (v ~' (i)) ,

where F = ~(v). We are particularly interested in the following three cases: (1)
kl = 1, k2 = k > 1 (ktimesreal-time); (2) kl = k > 1, k2 = I (kspeed-up);
(3) kl = k2 = 1 (real-time).

Remark. As with function h in Definition 1, we assume functions ~ and ~ do
not exceed a fixed level of computational complexity in some well-defined hierarchy
of computational complexities, although we shall not specify such a hierarchy here.
For example, the functions might be restricted to those requiring at most linear time
to compute by a single-tape off-line Turing machine.

A Turing machine is then a pattern-manipulation system where P is a set of
"instantaneous descriptions" and v is uniquely determined by the next-state func-
tion of the control head of the Turing machine. Note that we have implicitly
assumed that when a Turing machine or tag system "halts," the associated sequence
of patterns continues forever but is passive [i.e. v(i) = i].

We will often refer to an (m, n) Turing machine. By this is meant a Turing ma-

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

Simple Computation-Universal Cellular Spaces 343

chine with m symbols and n states which is specified by a state table of the follow-
ing form (only one typical entry shown) :

s t a t e s

qo q l • • • q n - 1

x o

symbol x~
: X E {R(right) , L(le f t) },

xiX/qj 0 < i < m-- 1,
xm-1 O < j _ < n - - 1 .

Cellular Automata Which Compute

The first theorem below appears essentially unchanged from its presentation by
Smith [10]. I t s proof is repeated here in some detail, however, because it clearly
demonstrates the simulation technique utilized throughout this paper and intro-
duces easily the idea of "pseudosuppor t" and the "end-of- tape" problem, two con-
cepts frequently encountered in the remainder of the paper.

THEOREM]. For an arbitrary (m, n) Turing machine T, there exists a 2-D, 7-
neighbor, max (m + 1, n + 1)-state cellular space Zr which simulates it in real-time.

PROOF. Each cell of Z r is provided with a set Q of M = max (m + 1, n + 1)
states. Without loss of generality, let Q = {0, 1, . . . , M - 1} so tha t (i + 1) cor-
responds to symbol xi of T for 0 < i < m - 1 and state (j + 1) corresponds to
Turing machine state q~ for 0 _< j < n -- 1.0 is the quiescent s tate of Z r and never
corresponds to a Turing machine state or symbol. The geometry of ZT will be utilized
to distinguish a cell whose state Q1 C A = {1, " " , m} corresponds to a Turing
machine symbol from a cell whose state Q2 C B = { 1, • • • , n} corresponds to a Tur-
ing machine state. In particular, ZT has the neighborhood template shown in Figure
2(a).

(o)

HEAD CELL h

-4-~ -'I--'F-*-+-t-/~'-+- i- -;- -;.--i-4--;--
', , a : ! : i f ' : ! ! ! , l , , '

----'l- -- i" --_ "I-" -- ~- -- ~- -- J-- -- t-l.u..,.l----l-- -- ~- -- ~- -- -I -- -I- -- -~- -- 4- -- I-- --

'. I I C E L L o--q,- I P I ! - , P - C E L L b , i , I I
l I ' I " I ' , I

f I I I U41 I O , I i I I
I I I ! I I I / I I I I I I I I I

--I--I" --T -'T-- T - -r- -q~.71-- -i- - ?- - I- --F-- r --r- --r- -l---

/

SCANNED CELL s

(b)
Fio. 2

Journal of the Association for Computing Machinery, VoL 18, No. 3, July 1971

344 A . R . SMITH II I

We cause ZT to simulate T by embedding a configuration in it which "looks like"
T. Tha t is, one row of cells in ZT is the " tape" of the embedded Turing machine--
one cell of ZT per tape square of T - - a n d one cell in an adjacent row is the "head."
Thus the embedded Turing machine configuration will have the form indicated in
Figure 2 (b) at any one instant. As indicated in Figure 2 (b), a and b are always
labels for the cells to the left and right, respectively, of the head cell h. All other
symbols are state assignments: Sk E A is always the state of the tape cell at distance
I k l from the scanned cell in the direction determined by the sign of k as indicated;
and P E B is the state of head cell h. Cx is used to designate the cell immediately to
the X C {R, L} of a finite embedded tape. All cells other than the head and tape cells
are assumed to be in the quiescent state 0. Thus CR and CL are always in state 0.

Head cell h is made to "move" along the tape subconfiguration simulating the
head moves of T by suitable specification of the transition function f for a cell in
Z r . This is simply done. Unless the cell is a, b, h, s, CR, or CL, it does not change
state. For these six cases, let the Turing machine state-table entry for symbol x, and
state qv be denoted (xu, qv). T h e n f is given for cells a, b, h, s, CR, and CL as indicated
in Table I when (xu, qv) = xpX/qq . The last two entries require some explanation.

We must distinguish the blank symbol from the quiescent state in this simula-
tion, else a tape symbol in the tape row could act as a head for the next row of
cells interpreted as an entirely blank tape. This creates the end-of-tape problem: The
simulated Turing machine requires, in general, an infinite tape, but the initial con-
figuration is assumed to have finite support. Hence the last two entries are "tape
extenders" which convert the quiescent state to the blank symbol at either end of
the necessarily finite embedded tape configuration.

The description of the encoding function '7 for the simulation of T by Zr is com-
pleted as follows: There is a state w E B in each cell of Zr which corresponds to the
starting state of T. The nonblank portion of the (finite) initial tape of T is embedded

TABLE I

Cell C Neigkborkood state of C Next stale of C Conditions

P
8 ~-~--1 SO* S1 p

0 0 0

0
h 0 P* 0 0

S_1 So $1

0
a 0 O* P fO

S-2 S_i So ~ (q + 1)

0
b P 0* 0 f(q + 1)

SO S1 $2

0
CR Sk O* 0 1

0 0 0

0
C L 0 O* S~ 1

0 0 0

S o = u + l
p E A
p = v + l

in all c a s e s

i fX = R
i fX = L, (q+ 1) E B

i fX = R
i fX = L

1 E A is the "blank" symbol

a s for CR

* State of cell C.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Simple Computation-Universal Cellular Spaces 345

in one row of Z r . The cell above the cell corresponding to the leftmost nonblank
square is set to state w and hence represents the initial position of the tape head of
T. Then the global transition function F causes the cellular tape subconfignration to
be modified (in a real-time simulation) just as would be the tape of T.

Define the pseudosupport of configuration c to be the set psup (c) of all non-
quiescent and nonblank cells in c. Then the procedure ~- for determining completion
of a computation is defined by ~- (ct, ct+l) = 1 if and only if ct [psup (ct) = ct+l I"
psup (ct+l) (cf. Remark 2 after Definition 1). Q.E.D.

Remark. I t is necessary to distinguish the quiescent state from the state simulat-
ing the blank symbol in the proof above in order to get a small state count. Clearly
this distinction would not have to be made if we gave m 9- n states to Z r , m states
to simulate Turing machine states and n states to simulate Turing machine symbols,
or if we gave mn states to Z r , each with two coordinates. In the latter case, Zr
need have only one dimension and this is the simulation given by Balzer [2].

We contrast the construction in the proof above, in which the cell design de-
pends on the Turing machine to be simulated, with the cellular spaces of von Neu-
mann, Thatcher, Codd, and Arbib, in which any Turing machine can be simulated
once the cell design is set. The difference between the Turing-machine-dependent
cell constructions and the Turing-machine-independent cell constructions is un-
important when the simulated Turing machine of interest is the universal machine,
as, for example, in the corollaries below. In this case the machine-dependent cells
are clearly superior in the sense that all simulations are real-time (or "almost" real-
time, as will be specified in other theorems to follow) as opposed to the very slow
simulations in, say, the von Neumann space in which each simulated step requires
muting of signals through hundreds and even thousands of cells. Of course, a real-
time simulation of a universal Turing machine is not real-time with respect to the
original Turing machine simulated by the universal machine.

COROLLARY 1.1. There exists a max (m q- 1, n + 1)-state computation-universal
cellular space for every (m, n) universal Turing machine.

COROLLARY 1.2. There exists a 2-D, 7-state computation-universal cellular space.
PROOF. Minsky [7] has cited a (6, 6) universal Turing machine. Q.E.D.
Previous work with cellular spaces has often employed the 5-cell yon Neumann,

or H1, neighborhood of Figure 1 (a). The 7-neighbor spaces of the type used in prov-
ing the theorem above can be replaced easily with spaces having the H~ neighbor-
hood, as the next theorem indicates.

THEOREM 2. For an arbitrary (m, n) Turing machine T, there exists a 2-D,
max (2m -t- 1, 2n --b 2)-state cellular space Zr with the H~ neighborhood which simu-
lates it in 3 times real-time.

PROOF. The configuration in Zr which simulates an instantaneous description of
T occupies two rows of Z r as in the proof of Theorem 1, but the information about
head moves stored in the 7-cell neighborhood is here encoded into an enlarged state
set. In particular, for b E {0, 1}, Zr will have state S~b for each state q~ of T and state
Sjb for each symbol xj of T. Suppose ZT is to simulate a step of T in state ql and scan-
ning symbol xj , with corresponding state table entry x~X/qv. Thus, for some time t,
clepending on whether the last move was right or left respectively, there will be a
configuration in Zr of the form:

• .- 0 @s~oO 0 0 0 S~o@O . . .
o r

• " " Su , o S x l S i o S ~ o S z o 8 w o S ~ o S j o S ~ l S z O " ' ' .

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

346 A . R . SMITH III

The top row is the "head" row and the bot tom row is the "tape" row. The purpose
of special state ~ will become clear below where the steps in the simulation of one
step of T are pictured. Subscripts b -- 0 and b = 1 correspond to X = R and X = L
respectively:

t + 1: - . . 0 0 svl0 0 . . -
• " " 8 w O S z O S ~ b S y O S z O " " "

t + 2 : . . . 0 @s,b@O . . .
" ' " 8 w O S z O S u l S y O S z O " " "

t + 3: . . . 0 0 @s~oO "-"
S~oS~oSulS~oS~o . . . if b = 0,

t - - } -3: "" 0 s~o~O 0 . ' .
• " SwoS=oSulS~oSzo .." if b = 1.

Thus at t + 3 the space is ready to simulate another step of T; hence the simulation
proceeds in 3 times real-time. I t is a simple mat ter to specify a transition function f
to accomplish this simulation, so we leave the details to the interested reader. Note
that f must handle the end-of-tape problem as in Theorem 1. Q.E.D.

A consequence of Theorem 2 is a 5 X 14 2-D computation-universal cellular
space obtained by applying the theorem to the (6, 6) universal Turing machine2
Here the notation p X q cellular space is short for p-neighbor, q-state cellular
space. This might be compared for simplicity to the 5 X 8 2-D CUCS of Codd [3],
although such a comparison is difficult. The 14-state computation-universal con-
figuration occupies two rows of its space and simulates a Turing machine in 3 times
real-time, whereas the 8-state configuration covers hundreds of rows of its space and
simulates in time on the order of n 2 times real-time, where n is the length of the
encoded program and tape of the simulated Turing machine.

Utilization of only two rows of a 2-dimensional space implies immediately the
existence of a 3 X 196 1-D CUCS: Use a state set with two coordinates of 14 values
each; they simulate the head and tape rows respectively. But Theorem 3 does bet ter
for the 1-D case.

THEOREM 3. For an arbitrary (m, n) Turing machine T, there exists a l-D, 6-
neighbor, max (m --~ 1, n + 1)-state cellular space ZT which simulates it in real-time.

PROOF. Let ZT have the 6-cell neighborhood template of Figure 3 (a). The em-
bedded Turing machine configuration is as illustrated in Figure 3 (b); the tape
squares occupy every other cell in the space. The transition function f leaves the
state of a cell C unchanged except in the six cases a, b, s, h, Cs, and CL (as in the
proof of Theorem 1). The function f is easily specified and is omitted here. I t should
be noted that tape extenders are required here as in Theorem 1 to convert quiescent
cells to cells simulating the blank symbol at the tape "ends." Q.E.D.

COROLLARY 3.1. There exists a l-D, 6-neighbor, max (m ~ 1, n + 1)-state com-
putation-universal cellular space for every (m, n) universal Turing machine T.

COROLLARY 3.2. There exists a l-D, 6 X 7 computation-universal cellular space.
PROOF. Let T be Minsky's (6, 6) universal Turing machine. Q.E.D.

1 A very simple proof exists for Theorem 2 with Zr having max (m + 1, 3n + 1) states. This
yields, however, a 5 X 19 CUCS. We leave discovery of this proof to the interested reader.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Simple Computat ion-Universal Cellular Spaces

I I I M I
| 0 |

347

o s h b

(b)

Fio. 3

0 fl $

Fio. 4

Theorem 2 is a neighborhood reduction result for the special case of computing
cellular spaces in 2-D. Similarly, the next theorem is a specialized neighborhood re-
duction result in 1-D.

THEOREM 4. For an arbitrary (m, n) Tur ing machine T, there exists a I -D ,

(m + 2n)-state, 3-neighbor cellular space Z r which s imulates it in at most 2 t imes real-

time, with the 1-D H i template [see Figure 1 (b)].
PROOF. Provide Zr with the 1-D Hi template, and embed a Turing machine

configuration in Zr as indicated in Figure 4. The transition function f leaves the
state of all cells unchanged except in the cases a, h, and s. I t is a simple mat ter to
frill in the details of this function such that tape configurations like • • • Xox~qx2x3 • • • ,

simulating a right move into new state q' after changing symbol x~ to x~', appear in
time as

• " " Z o X l q X 2 X 3 " ' "

• . . X o X l X 2 t q P x 3

Similarly, a left move looks like

• . . XoXlqX2x3 . . .
f !

• • • xoxlq~ x2 x3 • • •
! !

• . . x o q x l x 2 x 3

Thus two states, q and qL, are needed to represent each Turing machine state. In
this case, the blank symbol is simulated by the quiescent state; hence there is no
end-of-tape problem (cf. Remark after Theorem 1). Q.E.D.

Either the (6, 6) universal Turing machine or the (4, 7) universal Turing machine
(also due to Minsky [7]) and Theorem 4 produce the next result.

COROLLARY 4.1• There is a l-D, 3 X 18 computat ion-universal cellular space.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

348 A . R . S M I T H I I I

There is nothing sacred about the von Neumann (H4) neighborhood, of course•
In 1-D spaces, the H~ neighborhood can be reduced to the K~ neighborhood [see
Figures 1 (b) and 1 (d)] quite readily, as the next theorem attests•

THEORmi 5. For an arbitrary (m, n) Tur ing machine T, there exists a l-D,
m (n + 3)-state cellular space Z r wi th the 2-cell K1 template which simulates T in 2
t imes real-time.

PROOF• This proof proceeds much like that of Theorem 4. The major difference
is that the simulated instantaneous descriptions of T shift in time through the space
Z r . Thus an instantaneous configuration such as . . . xoxlqx2x3x~ . . . is simulated
by state pairs in Zr as indicated below for left and right moves respectively:

L: • " " (X o

• " * (X l

• " " (X l

, 0) (x ~ , 0) (x ~ , q) (x 3 , 0) . . .
, 1) (x2', q ') (x 3 , 2) (x 4 , 1) . . .
, q') (x2', O)(x3, O) (x 4 , 0) . . .

R: • . . (xo, O) (xl, o) (x2
• . . (x l , 1) (x 2 ' , 2) (z 3

• . . (x~, O) (x2', O) (x3

, q) (x 3 , 0) . . .

,q')(x4, 1) . . .

, q')(x4, o)

Any q must be distinct from 0, 1, and 2. Hence the first element of each state pair
has m values and the second has n + 3 values. The reader is invited to complete the
formal simulation from this sketch• Q.E.D.

Remark . Here the definition of "c computes g" (Definition 1) is not valid as
stated, because the computing configuration c is not disjoint from the tape con-
figuration dn. However, the coordinates of the state space representing c are dis-
tinct from those representing dn. When this is the case for a 1-D space, then the
space can always be interpreted as two rows of a 2-D space as in Theorem 1. Under
this interpretation, the definition is valid. The computing cellular spaces of the type
described in [2] (see Remark after Theorem 1) also require this interpretation of
Definition 1. The definition can be formally generalized [11] for those cellular spaces,
but we have chosen not to do so for simplicity•

The (4, 7) universal machine yields the following corollary.
COROLLARY 5•1. (a) There exists a l -D , 2-neighbor computat ion-universal cellu-

lar space• (b) I n particular, there is a l-D, 2 X 40 CUCS.
We now prove Corollary 5.1(a) again but in a much different way. Of course, the

purpose of the next theorem is not the re-proof of this corollary but rather the in-
troduction of another tool for the study of computation in cellular space : simulation
of Post tag systems. Kilmer [4] has proved several unsolvability results in his study
of finite sequential iterative networks by designing networks to simulate Post tag
systems• We find similar results for cellular spaces--i.e, infinite sequential iterative
networks--also by simulation of tag systems• However, the simulation technique
used below differs substantially from that of Kilmer. His cell design must be changed
if the initial string (axiom) of the simulated tag system changes• We are able to
avoid this in the cell designs below and at the same time use fewer states per cell.

The general tag system (see Minsky [7] for details) to be simulated has alphabet
X = {xl, x2, • • • , xm}, deletion number P , and associated with the m possible initial
letters there are respectively m eonsequents Ci , C2, • • • , C,, of lengths al , a2 , • • • , am,

respectively. The axiom is an arbitrary finite string of letters in X.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Simple Computation-Universal Cellular Spaces 349

THEOREM 6. For an arbitrary Post tag system T, there exists a l-D, 2-neighbor
cellular space Zr with the K1 template which simulates it in (P + 1) times real-time.

PROOF. ZL is chosen to have state set K X I, where K = {0, 1, 2, • • • , m, m + 1,
m + 2, . . . , m + P , m + P + 1, . . . , m + P + a}, a = maxiei a i , a n d I =
{0, 1, . . . , m/. Then states of the form (k, i) , m + 1 < k < m + P, i > 0, are
marker states which, in effect, remove the first P letters of a string in the tag system
which is (initially) represented by a string of cells in the cellular space. The state
(0, 0) is the quiescent state. States (k, 0), 1 < k < m, represent letters in the axiom.
States (k, i) , 1 _< k < m, i > 0, represent letters in the string after the first pro-
duction; the index i indicates which consequent should be appended to the present
string. States (k, i) , m + P + 1 _< k < m + P + a, i > 0, are consequent-C~-
generating states.

The simulation proceeds as follows: The axiom is coded as a string of cells where
letter xi in the axiom is represented by a cell in state (i, 0). The transition function f
of the space is such that this string of states always moves left at one cell per time
step. At the left end of the string, however, a marker state is set up which does not
propagate left. If the leftmost letter of the string is xj , then the first marker state is
(m + 1, j) . As the string moves left into this marker state, the state "gobbles up"
the first P letters--i .e, its first element increases by one at each step until marker
state (m + P, j) is reached. The string continues to propagate left, but the fact that
the first letter of the antecedent just cut off was xi is recorded in the second element
of the state as a j . This information is not propagated left but is held stationary until
the right end of the string advances to the cell holding this index. Here the consequent-
Ci-generating state (m + P + 1, j) is set up. I t remains stationary, only increasing
its first element by one at each step until state (m + P + ai , 1) is reached. This set
of aj states essentially feeds consequent Cj to the left, one element per time step.
Meanwhile a new marker state has been set up to remove P more letters from the
left end of the left-propagating string.

Every P + 1 steps there will exist (if termination has not occurred) a string of
states of the form

(kl , i l) (k2, i2) . . . (k , , i ,) . . . (k~, i~) ,

where 1 < kq _< m for 1 < q < n. If i n # 0 but iq = 0 for allq > p, then this string
corresponds in the simulated tag system to string

Xk~Xk~ "'" xk~Cip "'" C~C~.

If i~ # 0, then k~ > m + P + 1 and the state string corresponds to tag string

X k l X k 2 " ' " X k n _ l C i (k n _ _ m _ p) C i (k n _ m _ P + l) " ' " C i a i C i n _ l . . . C i 2 C i l ,

where C~ is the j th component of consequent C~. Thus this is the algorithm for re-
covering the tag system string every P + 1 time steps.

The transition function f which performs the simulation outlined above is given in
Table II. All other cases are assumed passive. Q.E.D.

Remark 1. No at tempt was made to minimize the number of states in the con-
struction above. Hence the (m + 1) (m + P + a + 1) states required are probably
extragavant. There are several states never used--e.g, states (k, 0), m + P + 1
k ~ m + P + a .

Remark 2. Essentially the same proof works for monogenic normal systems.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

350 A . R . SMITH I I I

TABLE II

Neighborhood state of cell C Next state of C Conditions

(0, 0)*(k', i') (m + 1, U) 1 < k' _< m
(k, O)*(k', O) (k', O) 0 < k' _< m, 1 < k < m
(k, i)*(U, i') (k + 1, i) m + 1 < k < m + P, i > 0
(m -{- P, i)*(0, 0) (0, 0) i > 0
(m + P, i)*(k', i') f (k', i) 1 < k' _< m

(k ~',i) m + P + 1 _< k' < m + P--t- a/ ,
xk" = Ct,(~'-m -P) , i, i r > 0

(k,i)*(0,0) f (k + 1, i) m + P + 1 < k < m + P + a t - 1, i > 0
(0,0) k = m + P + ai, i > 0

(k, i)*(k', i') (k', i) 1 <_ k, k' < m, i > 0
(k, i)*(0, 0) (m + P + 1, i) i < k < m, i > 0
(k, i)*(k', i') (k", i) 1 < k < m, i, i' > O, m + P + 1 < k' <

m + P + a t ' , x , , = C~ , (k , -m-P)

* State of cell C.

FIG. 5

2ND PROOF OF COROLLARY 5.1(a). Cocke (see Minsky [7, p. 270]) has shown
the existence of a Post tag system for simulating a given arbitrary Turing machine.
In particular, design ZT to simulate a tag system T which simulates a universal
Turing machine. Q.E.D.

Since a 1-cell neighborhood template offers only finite memory, it is clear that the
2-cell K1 template used, for example, in Corollary 5.1 is the minimal neighborhood
possible for computation universality. Thus, for p X q CUCS, p = 2 is the minimum
p. What is the minimum q? What is the minimum product pq? The answer to the
first question is q = 2, from the general theory of state set reduction. The second
question is not so easy. Establishing the minimum product pq is a problem which is
probably as difficult as finding the minimum product m n for (m, n) universal Turing
machines, but we can establish an upper bound on the minimum pq by applying
general cellular automata results. Corollary 7.1 below, which gives this bound, also
lists the "sizes" in which CUCS are available, and the different spaces illustrate
some of the various tradeoffs possible between state-set size and neighborhood size.

THEORE~ 7. For an arbitrary (m, n) Tur ing machine T, there exists a I-D, 4-
neighbor, (m + n)-state cellular space ZT which simulates it i n real-time.

PROOF. Give ZT the template of Figure 5. Then the simulation of T proceeds in a
manner very similar to that in the proof of Theorem 4, but here the neighborhood is
large enough so that the simulation occurs in real time. We leave the details of this
proof to the reader. Q.E.D.

COROLLARY 7.1. There exist 1-D p X q computation-universal cellular spaces with

p X q = (1) 4 X 11, (2) 6 X 7, (3) 8 X 5, (4) 9 X 4, (5) 13 X 3, and (6)

2 1 X 2 .
PROOF. Let T in Theorem 7 be the (4, 7) universal Turing machine to obtain

result (1). Result (2) is just the result stated in Corollary 3.2. The other results are
consequences of the following lemma from the general theory [11]. I t is stated here
without its proof, which requires a great amount of additional material.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Simple Computation-Universal Cellular Spaces 351

STATE REDUCTION LEMMA. For any 1-D p' X q' contiguous cellular space Z',
there is a 1-D p X q cellular space Z which simulates Z' in real-time, where p = N (p'
1) + k - 1, N is the smallest integer such that qP ~ qN __ N, and k is the smallest in-
teger such that N < qk _ 2 ~ ~ 2k -- 1.

The concept underlying the lemma is the relatively simple idea of a q-ary, N-digit
encoding of a configuration in Z' cell-by-cell into Z. Another code, of length k, is
required to position each encoded state of Z' in Z. I t is this additional code which
complicates the proof of the lemma; hence the proof is delayed to a forthcoming
paper [12]. See also [13].

Apply the state reduction lemma to the 3 X 18 CUCS of Corollary 4.1 to get re-
sult (3). Apply it to the 2 X 40 CUCS of Corollary 5.1 to get (4), (5), and (6).

Q.E.D.
Thus Corollary 7.1 gives 36 as the upper bound on the minimum product pq. A

lower bound is, of course, 4.
The binary CUCS in the corollary above is not the first binary CUCS to be ex-

hibited, but it is the first in one dimension. Codd [3] presents an 85 X 2 CUCS in
2-D obtained by simulating his 5 × 8 CUCS (also a 2-D space). We note that a
d-D state reduction theorem of Smith [11] would yield a 2-D binary CUCS with at
most 38 neighbors when applied to the 5 X 8 space.

Simple computation-universal cellular spaces are not the only byproducts of the
simulation method. We now use it to answer several questions raised by Lieblein
[6]. In his terminology, a cellular space as we have defined it is called a simple
axiom system. The "axiom" is the initial configuration, and "simple" means only
one rule of inference--i.e, one local transition function. In particular, Lieblein studies

special case called a PC-simple axiom system which is a binary cellular space with
initial configuration restricted to be the primitive configuration (PC) cpc defined
(form C Z a) b y

= /1, if m is the origin,
epc(m) (0, else,

where 0 is the quiescent state. Thus, in a simple axiom system, each configuration in
the propagation of the axiom can be thought of as a theorem. Another view is to
treat each of these configurations as a word in a language. The language is finite if
the cellular space producing its words becomes passive or cyclic; else it is infinite.

THEOREM 8. For an arbitrary (m, n) Turing machine T on an initially blank
tape, there exists a 1-D contiguous p X m cellular space Zr' which simulates T with
Co ~-- Cpc.

PROOF. Assume that the symbol set of T is {0, 1, 2, . . . , m - 1}. We require
that no subconfiguration can be interpreted by a cell as part of cpc. This is accom-
plished by the way tape symbols are encoded in the cellular space. In particular, let
a symbol i be coded in Z r as three adjacent cells in states 110. The state of T is
simulated by an m-ary N-tuple represented by the states of N cells in Z r , where N
is the integer just greater than or equal to logmn. Delineate the N "head" cells by
three adjacent cells in states 111 on the left and three adjacent cells in states 111 on
the right. Thus Z r might be programmed as in Figure 6(a) for the binary case. Then
it is not difficult to check that the template of Figure 6(b) has enough information
for simulation of T.

Journal of the Association for Computing Machinery, Vol. 18, No. 3, Ju ly 1971

352 h . R . SMITH I I I

- - - I ' I ' i ° l ' I ' t ° l ' I ' I ' I I , t, I o l o l o l , I ' I ° l "'"
Y " S C A N N E D

" H E A O " S Q U A R E "

(o)

(b)

FIO. 6

Thus, during the first time step, transition function f ' of the desired cellular space
ZT' sets up the head described above by recognizing cpc. By design, this can only
happen at t = 0. Note that the blank tape is automatically set up because 0 is
coded by cells in states 000 only. Then at the second time step, f ' proceeds to func-
tion just as would transition function f of the cellular space ZT described above.

Q.E.D.
COROLLARY 8.1. There does not exist an algorithm that will determine, for a given

1-D PC-simple axiom system, i f the system represents a finite or an infinite language.
PROOF. Let T be a Turing machine which, if started on blank tape, has an un-

solvable halting problem (see [7, ~. 150]). Let T~ be the (2, n) equivalent of T.
Then design p X 2 cellular space Zr~ as in the proof of Theorem 8. I t is undecidable
then whether the language of Z~ 2 is finite or infinite. See [9] for T~. Q.E.D.

COROLLARY 8.2. I t is undecidable, given a configuration c and a 1-D PC-simple
axiom system Z, whether c is a theorem of Z.

PROOF. Let T2 be the 2-symbol equivalent of T, a Turing machine for which it
is undecidable whether it will ever print a given symbol [7, p. 150]. Then Z is Z'T~
which simulates T~ as in the proof of Theorem 8. Q.E.D.

COROLLARY 8.3. I t is undecidable, given an arbitrary I-D simple axiom system
,

with global transition function F and any two configurations c and c , whether or not
!

there exists an m such that F m (c) = c .
PROOF. Design Z T2 as in the first paragraph of the proof of Theorem 8 for T2 as

in the proof of Corollary 8.2. Q.E.D.

Summary and Conclusions

Several methods are presented above for obtaining substantial computing power
from quite simple cellular automata. In particular, one dimension is shown to be
sufficient for universality on the set of partial recursive functions. A cellular autom-
aton with this power is called a computation-universal cellular space (CUCS). We
have demonstrated several examples of such spaces which are "simple" in the sense
that their neighbor-state product is small (e.g. Corollary 7.1 presents a CUCS with
this product equal to 36). Hence we conclude that early work with cellular auto-

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

Simple Computation-Universal Cellular Spaces 353

mats uses spaces of undue complexity. Most notable of these is the 5-neighbor, 29-
state CUCS in [15] which requires two dimensions.

Several techniques for simulating Turing machines and tag systems by cellular
automata are also described above (in which cases we say the Turing machine, or
tag system, is "wired in"). Our work is related to tha t of Wagner [16], who in effect
wires "spider a u t o m a t a " into cellular spaces (with Mealy- type cells), because a de-
generate spider is a Turing machine. These techniques, coupled with results from
the general theory of cellular automata , lead in two different ways to the proof of the
existence of a CUCS with only two neighbors. This is at first a surprising result since
computation universality implies a two-way flow of information whereas a 2-neigh-
bor space seems to be capable of only a one-way flow.

Finally, the techniques are used to obtain several unvolvabil i ty results which
arise when a cellular au tomaton is employed as a language generator.

ACKNOWLEDGMENT. I wish to extend my warm thanks to Michael Arbib who in-
troduced me to the biological implications of cellular automata . This paper lays
some groundwork for investigation of these implications and is a direct result of his
inspiration.

REFERENCES

1. ARBIB, M.A. A simple self-reproducing universal automaton. Inform. Contr. 9 (1966),
188-189.

2. BALZER, R.M. Studies concerning minimal time solutions to the firing squad synchron-
ization problem. Ph.D. dissertation, Carnegie Inst. of Tech., Pittsburg, Pa., 1966.

3. CODD, E. F. Cellular Automata. ACM Monograph Series, Academic Press, New York,
1968.

4. KILMER, W.L. On dynamic switching in one-dimensional iterative logic networks. In-
form. Contr. 6 (1963), 399-415.

5. LEE, C.Y. Synthesis of a cellular computer. In Applied Automata Theory, J. T. Tau,
Ed., Academic Press, New York, 1968, pp. 217-234.

6. LIEBLEIN, E. A theory of patterns in two-dimensonal tessellation space. Ph.D. disser-
tation, University of Pennsylvania, Philadelphia, Pa., 1968.

7. MINSKY, M. Computation: Finite and Infinite Machines. Prentice-Hail, Englewood
Cliffs, N. J., 1967.

8. ROGERS, H., JR. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York, 1967.

9. SHANNON, C. E. A universal Turing machine with two internal states. In Automata
Studies, C. E. Shannon and J. McCarthy, Eds., Princeton U. Press, Princeton, N. J., 1956.

10. SMITH, A. R., III . Simple computation-universal cellular spaces and self-reproduction.
Proc. IEEE Ninth Annual Switching and Automata Theory Symp., pp. 269-277.

11. SMITH, A. R., III . Cellular automata theory. Tech. Rep. 2, Digital Systems Lab., Stan-
ford U., Stanford, Calif., 1970.

12. SMITH, A. R., III . Cellular automata complexity trade-offs. Inform. Contr. 18 (1971) (In
press).

13. SMITH, A. R., III . General shift-register sequences of arbitrary cycle length. IEEE
Trans. Comp. C-SO (1971), 456--459.

14. THATCHER, J .W. Universality in the yon Neumann cellular model. Tech. Rep. 03105-
30-T, ORA, U. of Michigan, Ann Arbor, 1964.

15. VON NEUMANN, J. The Theory of Self-Reproducing Automata, A. W. Burks, Ed. U. of
Illinois Press, Urbana, Ill. 1966.

16. WAGNER, E.G. An approach to modular computers I: Spider automata and embedded
automata. Tech. Rep. IBM RC 1107, IBM Watson Research Lab., Yorktown Heights,
N.Y., 1964.

RECEIVED MARCH 1970; REVISED FEBRUARY 1971

Journal of the Association for Computing Machinery, Vol. 18, No. 3, July 1971

