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ABSTRACT. This paper is concerned with efficient ways to find optimal solutions to AND/OR 
graphs. Although the general methods are still at large, we have found an efficient way to ob- 
tain optimal solutions to AND/OR series-parallel graphs. This is achieved by reducing an 
AND/OR series-parallel graph to an AND/OR tree. Once a graph is reduced to a tree, all the 
known exact and heuristic methods of tree searching can be applied. 
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1. Introduction 

I t  has been pointed out by many artificial intelligence researchers tha t  problem- 
solving procedures can be represented by A N D / O R  trees [3, 6, 8]. A natural exten- 
sion of the A N D / O R  tree representation is the A N D / O R  graph representation. 
Consider Figure 1. Interpret  all the vertices with arcs through their departing 
edges as AND-vertices. Interpret  all the other vertices as OR-vertices (we shall 
follow this rule in the rest of this paper) .  Then Figure 1 depicts that  problem A 
can be solved only by solving both problems B and C. Problem B is solved by 
either solving problem D or solving problem E. All the terminal vertices represent 
problems tha t  have already been solved. The numbers labeled on the edges repre- 
sent costs. For  example, in Figure 1, since edge EG is labeled 6, edge EH is labeled 
5, and vertex E is an AND-vertex,  the to ta l  cost of solving problem E is 6 + 5 = 11. 

A solution to an A N D / O R  graph G is a subgraph of G and is defined in the same 
fashion as solutions to an A N D / O R  tree [6]. Three solutions of the A N D / O R  graph 
of Figure 1 are given in Figure 2. 

Nilsson in [6] mentioned two cost functions, the sum-cost and the max-cost. 
Briefly, the sum-cost of a solution G is the sum of all the edge costs of G, while the 
max-cost is based on the concept of a path  through the solution. 

Let  us now assume that  the sum-cost is used. Consider Figure 3. The total cost 
of the tree can be found easily by working backwards: 

C(D) = c(n, F) + c(D, G), 
C(E) = c(E, H) + c(E, I) ,  
C(B) = c(B, D) -.[- C(D), 
C(C) = c(C, E) + C(E), 
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FIG. 1. An AND/OR graph. 
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Three solutions to the A N D / O R graph in Figure 1. 

and 

C(A) = c(A, B) + C(B) + c(A, C) + C(C). 

Consider Figure 4. The cost of the A N D / O R  graph cannot be found easily as 
in the previous case. A common mistake is to use the following formulas: 

C(D) 
C(B) 
C(C) 

= c(D, E) q- c(D, F), 
= c(B, D) -q- C(D), 
= c(C, D) q- C(D), 
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and 

C(A) = c(A, B) + C(B) + c(A, C) + C(C) 
= c(A, B) + c(A, C) + c(B, D) -{-c(C, D) + 2c(D, E) + 2c(D, F). 

One can see immediately that  this is not correct. The cost of vertex D is counted 
more than once. Imagine that  D represents a theorem which can be proven by 
using axioms E and F. Then, once theorem D is proved, it will be stored in the com- 
puter  memory as a proved theorem and one can use it without having to prove it 
again. 

Thus, for a very  large and complex A N D / O R  graph G, it is by no means easy 
to obtain optimal solutions to G. In this paper, we shall show that  one can reduce 
a series-parallel graph to a directed tree without changing the cost of optimal solu- 
tions. Exact  or heuristic techniques can then be applied to the A N D / O R  tree and 
the resulting solution can be easily transformed into a solution to the original 
A N D / O R  series-parallel graph. If the solution is optimal for the tree, then the 
transformed solution is optimal for the series-parallel graph. This result is later 
extended to hyper-series-parallel graphs. 

2. Series-Parallel Graphs 

A graph is a pair (V, r) in which V is a set of elements called vertices and r is a 
binary, symmetric, irreflexive relation defined on V. If vrv', then we say that  there 
is an edge joining v and v'. A directed graph is a pair (V, R) in which V is a set of 
elements called vertices, and R is a subset of V X V. In this section we shall define 
the set of series-parallel graphs and show how the edges of a series-parallel graph 
can be assigned a natural orientation so that  the graph may be considered a directed 
graph. 
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A two-terminal graph is a 4-tuple (V, r, v, v') in which (V, r) is a graph, and v 
and v' are distinguished vertices called the first terminal and second terminal, re- 
spectively. A two-terminal graph (V, r, v, v') is called the series composition of two- 
t e r m i n a l g r a p h s ( V l , r l , v l , v ( )  a n d ( V 2 , r 2 , v 2 , v 2 ' ) i f V  = Vi 0 V2,V1 n V2 = 
{vl'}, r = rl 0 r2, v = vl , v' = v(, and Vl' = v2 . A two-terminal graph (V, r, v, 
v') is called the parallel composition of two-terminal graphs (V1, rl , Vl, vl ') and 
(V2,r2,v2,v2 ')  if V = V1 [3 V2, V1 n V2 ={v ,v '} ,  r = rl (J r~, v = vl = v2, 
and v' = vl' = v2: Examples of series and parallel compositions of two-terminal 
graphs are given in Figures 5 and 6, respectively. 

The unit graph of two vertices is the graph containing only the two vertices and 
the edge joining them. The class of two-terminal series-parallel (s-p) graphs is the 
smallest class of two-terminal graphs which contains the unit graphs and is closed 
under series and parallel compositions; tha t  is, if ( V i ,  rl,  vl, v~') and (V2 , r2, v2, 
v2') are in the class, then (1) Vl' = v2 and V~ N V2 = {v~'} imply that  the series 

' and V1 N composition of these two graphs is in the class and (2) Vl = v2, Vl' = v2, 
V2 = {v~, Vl'} imply that  the parallel composition of these two graphs is in the class. 

A graph (V, r) with distinguished vertices (v, Vl , . . - ,  v,) is said to be a series- 
parallel (s-p) graph if it is a two-terminal s-p graph or if the two-termilml graph 
(V', r', v, v') is a two-terminal s-p graph, where (V', r', v, v') is obtained from (V, 
r, v, vl, . . . ,  v~) by including a new vertex v' and edges {v', vi} for i = 1, . . - ,  n. 
The graph (V', r', v, v') is called the two-terminal s-p graph associated with (V, r, 
v, vl, • •. ,  vn) for n > 1. If n = 1 and (V, r, v, v~) is a two-terminal s-p graph, then 
it is its own associated graph. An example of an s-p graph and its associated two- 
terminal s-p graph is given in Figure 7. Figure 8 shows a graph that  is not series- 
parallel. 

An s-p graph (V, r, v, vt, " . . ,  vn) is called the series composition of a two-ter- 
minal s-p graph (V1, r l ,  v, v*) and an s-p graph (V2, r2, v*, vl, . . . ,  vn) if V = 

a. 2 

a4  

a 4  

al 

a 3 a2  a3 

> 
a 4  

FIG. 5. Series compos i t ion  of two- t e rmina l  g raphs .  
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Fro. 6. Parallel composition of two-terminal graphs. 
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V1 U V~, V1 f ' lV,  = {v*},andr  = rl 0 r 2 . A n s - p g r a p h  ( V , r , v ,  vl, . . . , v ~ ) i s  
called the parallel composition of s-p graphs (V1, r l ,  v, x l ,  . . . ,  xk) and (V2, r2, 
v, y l ,  "" ", ym) if the associated two-terminal s-p graph (V, r, v, v') is the parallel 
composition of the two-terminal s-p graph (V1, r l ,  v, v') associated with (V~, r l ,  
v, x~, . . . ,  x,)  and the two-terminal s-p graph (V2, r2, v, v ~) associated with (V2, 
rs : v, Yl, • • ", ym). Figures 9 and 10 give examples of the series and parallel compo- 
sitions of s-p graphs, respectively. I t  follows from the definition of the class of s-p 
graphs that  each s-p graph, other than the unit graph, is either the series or par- 
allel composition of two s-p graphs. 

The edges of an s-p graph can be assigned a natural orientation using the notion 
of semipath. A semipath from vertex vl to vertex vn of a graph (V, r) is a finite se- 
quence of distinct vertices (Vl, v2, . ' . ,  vn) such that  (v~, v~+l) E r for 1 < i < 
n - 1. For any two-terminal graph (V, r, v, v'), the link relation R is said to hold 
between vertices x and y if x immediately precedes y in some semipath from v to 
v'. I t  is shown in [2] tha t  for any two vertices x and y joined by an edge in a two- 
terminal s-p graph, either (x, y) E R or (y, x) E R but  not both. R establishes a 
natural orientation for each edge. Given an s-p graph, we let the orientation of each 
edge be given by the orientation of the corresponding edge in its associated two- 
terminal s-p graph. In the following sections we shall consider an s-p graph as a 
directed graph. 

In a directed graph (V, R),  a vertex y is called a successor (predecessor) of a 
vertex x if (x, y) E R [(y, x) E R]. The set of successors (predecessors) of a vertex 
x is denoted by T(x) (T-l(x)). The outdegree and indegree of a vertex x are de- 
fined as [ T(x) [ and ] T-~(x) [, respectively, where I I denotes cardinality. A v e r -  
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FiG. 7. An s-p graph and its associated two-terminal s-p graph. 

tex of indegree zero is called a root. In an s-p graph (V, r, v0, vl, . . . ,  v.), it is easily 
shown that, relative to the link relation R, v0 is the unique root and vl, • •.,  vn are 
the only vertices with outdegree zero. 

3. Reduction of Series-Parallel Graphs to Directed Trees 

In this section we shall define the notion of a "solution" to an A N D / O R  directed 
graph as in [6], and shall introduce the concept of series-parallel decomposability 
of a cost function. We shall show that  the commonly used cost functions, the sum- 
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FIG. 8. A non-s -p  g raph .  
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FIG. 9. Series compos i t i on  of s-p g raphs .  

cost and the max-cost, are decomposable. Finally, we present the main contribution 
of this paper in the form of a theorem, i.e. an s-p graph can be reduced to a di- 
rected tree in a manner which permits a correspondence to be made between solu- 
tions of the tree and solutions of the graph; and if the cost function is s-p decom- 
posable, then this correspondence preserves the cost of a solution. 

Let (V, R) denote a directed graph with unique root v0. Let the vertices of 
(V, R) having outdegree greater than zero be partitioned into sets A (denoting 
the "and" vertices) and 0 (denoting the "or" vertices). A subgraph of (V, R) is a 
directed graph (X, B) such that X c V and B c R. A solution to ( V, R) is a sub- 
graph (X, B) having the following properties: 

(1) v0 E X, 
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Parallel composition of s-p graphs. 

(2) v E X N A  implies tha tv '  C X and (v, v') C B for each v' C T(v), 
(3) v E X f lO impf i e s tha tv '  E X a n d  (v,v') E B f o r s o m e v '  C T(v). 
Condition (1) states that the root of (V, R) must be in the solution. Conditions 

(2) and (3) state that if v is in the solution and is an "and" ("or") vertex, then 
each (at least one) immediate successor v' of v is in the solution and the directed 
edge (v, v') is in the solution. 

The following results are easily proven by induction on the size of the graph and 
the fact that each s-p graph other than the unit graph is either the series or parallel 
composition of two s-p graphs: 

LEMMA 1. A solution to an s-p graph is an s-p graph. 
LEMMA 2. I f  an s-p graph (V, R) is the series (parallel) composition of s-p 

graphs (V1, R1) and (V2 , R2), and if (Xj  , Bi) is a solution to (Vs , R~) for j = 1, 
2, then the series (parallel) composition of (X1, B1) and (X2, B2) is a solution to 
(V,R).  

Let S denote the set of s-p graphs with edge costs defined on them. A cost func- 
tion is a mapping from S to the real numbers. A cost function C is called s-p de- 
composable if the following condition holds: If an s-p graph (V, R) is the series 
(parallel) composition of s-p graphs (V1, R1) and (V2, R2), and an s-p graph 
(V,/~) is the series (parallel) composition of s-p graphs (?1,  R1) and (V,,/~2), 
then (1) C(V~ , Rs) = C(? i  , l~j) fo r j  = 1, 2 implies that C(V, R) = C(?,  1~), 
and (2) C(Vi ,  Ri) _< C ( ? i ,  1~) fo r j  = 1, 2 implies that C(V, R) _< C(?,  1~). 

The most commonly used cost functions are the sum-cost and the max-cost [6]. 
The sum-cost of a solution (X, B) is defined by 

C.u~(X, B) = ~c (b ) .  
bEB 

A path of a directed graph (X, B) is a sequence of distinct vertices (vl, v2, • •., 

Journa l  of the A~ociation for Computing Machinery,  Vol. 18, No. 3, J u l y  1971 



362 R. SIMON AND R. C. T. LEE 

3 $ 

FIG. 11 

v=) such that (v~, V~+l) C B, 1 < i < n -- 1. The edges (vi, vi+l) are called the 
edges of the path. The cost of a path P of a solution (X, B) is defined as the sum 
of the edge costs in the path P. The max-cost Cm~x (X, B) of a solution (X, B) is 
the cost of the path of (X, B) having maximum path cost. 

Figure 11 shows one solution graph to a certain AND/OR directed graph. On 
each edge is labeled the cost of that edge. The sum-cost of this solution is C .... = 
3 ~ 5 + 4 44- 7 + 1 + 2 = 22. The max-cost of this solution is 

Cmax - ~  max{3 + 4 + 1,3 + 4 + 2,5 + 7 + i, 5 + 7 + 2} 
= max {8, 9, 13, 14} 
= 1 4 .  

LEMMA 3. The sum-cost is s-p decomposable. 
PROOF. If an s-p graph (V, R) is the series or parallel composition of s-p graphs 

(V1, R1) and (V2, R:), then the sum-cost C can be written 

C ( V , R )  = ~ c ( r )  
rER 

= ~ c(r) + ~ c(r) 
rER 1 rER2 

= C ( V 1 ,  R1)  -~- C ( W 2 ,  R 2 ) .  

It follows easily that the sum-cost is s-p decomposable. Q.E.D. 
LEMMA 4. The max-cost is s-p decomposable. 
PROOF. Let an s-p graph (V, R) be the series composition of s-p graphs (V1, 

R1) and (V2, R2), and let C( ) denote the max-cost. If pl and p2 are paths of 
maximum cost in (V1, R1) and (V2, R2) respectively, then the catenation of p, 
and P2 is a path of maximum cost in (V, R). Thus, 

C ( V , R )  = C(V1,R1) + C(V2,R2). (1) 

Suppose that (V, R) is the parallel composition of (V1, R1) and (V~, R2). By 
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definition of parallel composition~ any path of (V, R) is either a path of (V1, R1) 
or a path of (V2, R2). Thus, 

C(V, R) = max{C(Yl, R1), C(V2, R2)}. (2) 
It follows from (1) and (2) that the max-cost C is s-p decomposable. Q.E.D 
A solution to an s-p graph is said to be optimal if it has minimum cost. The cost 

of an optimal solution to (V, R) is denoted C*( V, R); that is, 

C*(V, R) = min(~.D) C(Y, D), 

where the minimum is taken over the set of solutions to (V, R). 
LEMMA 5. I f  an s-p graph ( V, R) either ( a ) is the series composition of s-p graphs 

(V1, R1) and (V2, R2), or (b) has an "and" vertex as its root and is the parallel 
composition of s-p graphs (V1, R1) and (V2, R2), and if relative to an s-p decom- 
posable cost function (X~ , B~.) is an optimal solution to (V~ , R~) for j = 1, 2, then 
in case (a) the series composition and in case (b ) the parallel composition of (Xi ,  Bi) 
and (X2, B2) is an optimal solution to (V, R). 

PROOF. Let (Y, D) be an optimal solution to (V, R). Let Y~ -- Y n V~ and 
Dj = D N Ri fo r j  = 1, 2. It is easily shown that (Yj, Di) is a solution to (Vj, 
Ri) for j  = 1, 2 and that (Y, D) is the composition of (Y1, D1) and (Y2, D2). 
Thus, C(Yj ,  Dj) > C(X~, Bi) fo r j  = 1, 2. From the s-p decomposability of C 
it thus follows that C(Y, D) ~_ C(X, B), where (X, B) is the composition of 
(X1, B1) and (X~, B2). Thus, (X, B) is an optimal solution to (V, R). Q.E.D. 

LEMMA 6. I f  an s-p graph ( V, R) has an "or" vertex as its root and is the parallel 
composition of s-p graphs (V, R) and (V2, R2), and if relative to an s-p decomposable 
cost function (X~, B~) is an optimal solution to (Vj, Rj) for j = 1, 2, then either 
(X1, B1) or (X~ , B2) or the parallel composition of (X1, B1) and (X2 , B2) is an 
optimal solution to (V, R). 

PROOF. It is easily shown that any solution to (V, R) consists of either (a) a 
solution to (V1, Ri) for some i E {1, 2} or (b) the parallel composition of a solu- 
tion to (V1, R1) and a solution to (V2, R2). Let (Y, D) be an optimal solution to 
(V, R) and assume that (Y, D) consists of the parallel compositior~ of (Y1, D1) 
and (Y2, D2), where (Y1, D1) is a solution to (V1, R1) and (Y2, D2) is a solution 
to (V2, R2). Thus, C(Y i ,  Di) ~_ C(X~, B~.); since C is s-p decomposable, it fol- 
lows that C(Y, D) ~_ C(X, B), where (X, B) is the parallel composition of (X1, 
B1) and (X2, B2). Since (Y, D) is optimal, it follows that  (X, B) is an optimal 
solution to (V, R). 

Suppose instead that (Y, D) is an optimal solution to (V, R) and that it is a 
solution to (V~, R~) for either i = 1 or i = 2. Thus, C(Y, D) > C(X~, B~). Since 
(Xe, Be) is a solution to (V, R), it follows that (X~, Be) is an optimal solution to 
(V, R). Q.E.D. 

We shall now show that if a cost function C is s-p decomposable, then the in- 
duced function C* is also s-p decomposable. The s-p decomposability of C* is to be 
interpreted as in the definition of s-p decomposability with the additional stipula- 
tion that, in the case of parallel composition, the roots of (V, R) and (? , /~ )  must 
be either both "and" vertices or both "or" vertices. 

LEMMA 7. I f  C is s-p decomposable, then C* is s-p decomposable. 
PROOF. Let (V, R) be an s-p graph which is the series (parallel) composition 

of s-p graphs (V1, R1) and (V2, R2). Let (? ,  R) be an s-p graph which is the series 
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(parallel) composition of s-p graphs (V1, .Ri) and (?2,/~2). Let (Xs, B~.) be an 
optimal solution to (Vi ,  Ri) for j  = 1, 2, and let (Xi,/~¢) be an optimal solution 
to ( ? j , / ~ j )  for j  = 1, 2. Let (X, B) be the composition of (X: ,  B~) and (X2, B2), 
and let (2,  B) be the composition of (21,  B1) and (2~ , /~ ) .  We shall distinguish 
two cases. 

Case 1: Either we are dealing with series compositions or we are dealing with 
parallel compositions in which the roots of V and ? are both "and" vertices. If 
C*(V~, Rj) = C*(?j, ]~j) for j  = 1, 2, then C(X¢, B~) = C(2 j ,  1~i) for j  = 1, 
2. It follows from the s-p decomposability of C that C(X, B) = C(.X, B). It follows 
from Lemma 5 that (X, B) and (X, ]~) are optimal solutions to (V, R) and (?,  
i~), respectively. Thus, C*(V, R) = C*(V, R). 

If C*(V~, R~) _< C*(V~, ]~i) fo r j  = 1, 2, then the same argument as above is 
valid when "=" is replaced by " < " .  Thus, C*(V, R) ~ C*(?, 1~). 

Case 2: (V, R) is the parallel composition of (V:,  R:) and (V2, R2), (? , /~)  is 
the parallel composition of (71, R:) and (?2,/~2), and the roots of V and ? are 
both "or" vertices. If C*(Vi, Ri) = C*(? i , /~ j )  for j  = 1, 2, then C(X~., Bj) = 
C(X¢, /~¢) for j = 1, 2. It follows from the s-p decomposability of C that C(X, 
B) = C(X, B). From Lemma 6 it follows that either (X: ,  B:) or (X2, B2) or 
(X, B) is an optimal solution to (V, R), and that either (Xi,/~1) or (.X2,/~2) or 
(X,/~) is an optimal solution to (? , /~) .  It follows that C*(V, R) = C*(?, 1~). 

If C*(Vj, Rj) < C*(75, l~j) for j  = 1, 2, then the same argument as above is 
valid when "=" is replaced by "~_". Thus, C*(V, R) ~ C*(?, t~). Q.E.D. 

For the rest of this section, we shall discuss the reduction of s-p graphs. 
A parallel component of an s-p graph (V, R) is a two-terminal s-p subgraph 

(? ,  R) which is the parallel composition of distinct two-terminal s-p subgraphs. 
Figure 12 depicts an s-p graph and its parallel components. 

A proper parallel component of (V, R) is a parallel component which is not (V, 
R) itself. 

If (V, R, ~, ~') is a parallel component of an s-p graph (V, R), then the reduction 
of (V, R) by (?, 1~, ~, ~') is the graph (V,/~) defined as 

??= ( v - ? ) U { ~ , ¢ } ,  

= (R - ~ )  U {(~, ~')}. 

Intuitively, (V, /~) is obtained from (V, R) by replacing (V, /~, ~, g') by the 
vertices ~ and ~' and an edge from ~ to ~'. The reduction of the s-p graph of Figure 
12 by the first of its depicted parallel components is shown in Figure 13(a). The 
reduction of the resulting graph by its unique parallel component is shown in 
Figure 13(b). 

In [2], an admissible graph is defined as a connected two-terminal graph such 
that, for any edge {x, y}, either (x, y) ~ R or (y, x) ~ R where R is the link rela- 
tion. Theorem 4.12 of [2] states that a two-terminal graph G is series-parallel if and 
only if G is admissible and its link relation is asymmetric. Using this result, it is 
easily shown that the reduction of an s-p graph by one of its parallel components 
is an s-p graph. 

We now present the main contribution of this paper. 
THEOREM. Let (V, R) denote the reduction of an s-p graph (V, R) by a proper 

parallel component (?, 1~, ~, ~'). In (?, R) define c(~, ~') = C*(V, R), and let the 
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The reduction of an s-p graph by one of its parallel components. 

costs of all other edges remain unchanged. I f  C is s-p decomposable, then C*( V, R) = 
C*(¢, R). 

PROOF. The proof will be accomplished by induction on the size of R. If [ R I = 
1, then the result is vacuously true because (V, R) contains no parallel components. 
Assume that I R I = N and that the theorem is true for I R [ < N. Since (? ,  R) is 
an  s-p graph, and since (V, R, ~, ~') is a proper parallel component of (V, R), it 
follows that (? ,  R) is not a unit graph but is the composition of s-p graphs (71, 
R1) and (?2,  /~2). Without loss of generality it may be assumed that the edge 
(~, ~') is contained in (71, R]). If (Vi , R1) is the graph obtained from (71, R1) 
by replacing (~, #') with (?, R, ~, ~'), then it is easily seen that (?1,  R) is the reduc- 
tion of (V1, R1) by (V, /~, ~, ~') and that (V, R) is the composition of (V1, R1) and 
(?2,/~2). Since I R1 I < N, it follows from the induction hypothesis that C*(71, 
1~1) = C*(V1, R1), where in (71,/~1) we define c(~, 5') = C*(?, 1~). It follows 
from the s-p decomposability of C and from Lemma 7 that the cost of an optimal 
solution to the composition of (71,/~1) and (?2, R2) equals the cost of an optimal 
solution to the composition of (V1 , R1) and (?2 ,/~2); that is, C*(?, R) = C* 
(V, R). Q.E.D. 

The above theorem can be utilized in the following manner. Given an s-p graph 
(V, R), select any proper parallel component (V, R, ~, ~') and construct the reduc- 
tion of (V, R) by (?, /~,  ~, ~'). The edge (~, ~') in the reduced graph is then labeled 
by the cost of an optimal solution to (I~, /~, ~, ~'). If the parallel component is 
"minimal" in the sense that it properly contains no parallel component, an optimal 
solution to (V,/~, ~, ~') can be easily obtained by inspection. The procedure is then 
repeated on the reduced graph, etc. This procedure will terminate in a finite num- 
ber of steps with an s-p graph having no proper parallel component. The resulting 
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The reduction of an s-p graph to a directed tree. 

graph is thus either a directed tree or is itself a minimal parallel component. An 
example illustrating this procedure is given in Figure 14. 

If the reduced graph is a directed tree, any available technique to efficiently 
search for an optimal solution to a directed A N D / O R  tree can be applied. In this 
paper, we shall mention two approaches: the dynamic programming approach [1] 
and the branch-and-bound approach [4]. For a more comprehensive discussion of 
tree searching techniques, see [7]. 

The essential concept of the dynamic programming approach is backward re- 
cursion. Applied to AND-OR tree searching, this means that  we can work back- 
wardly, starting with the terminal vertices. In this way, we can associate an optimal 
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o o/q oo/q 
0 0 0 0 

FIG. 15 

cost with every vertex v of the tree (V, R),  including the root v0 • The basic equa- 
tions governing the calculation of the costs are as follows: 

(1) L(v) = 0 if v is a terminal vertex. 
(2) Otherwise, 

Case l : v  E A. 
( l a )  : Sum-cost 
i ( v )  = ~ (c(v, v') + L(v ' ) ) .  

vIEr(~) 

( lb )  : Max-cost 
L(v) = max {c(v, v') -4- L(v')}.  

vtET(v) 
Case 2 :v  E O. 
For both sum-cost and max-cost, 
L(v) = rain {c(v, v') + L(v')}.  

vtET(v) 

For every v E 0, let h(v) be the element of T(v) at which L is a minimum. We 
then can find an optimal solution (X, B) to the directed tree by the following re- 
cursive rules: 

(1) Vo E X; 
(2) v E X n A implies that  T(v) c X and (v, v') E B for each v' E T(v); 
(3) v E X n 0 implies tha t  X O T(v)  = {h(v)} and (v, h(v)) E B. 
I t  is easy to show that  (X, B)  is an optimal solution and that  its cost is L(vo). 

Tha t  this backward reeursion approach is indeed efficient is elegantly discussed by 
Nemhauser [5]. 

The above method can be further improved by adopting a branch-and-bound 
approach [4]. Consider Figure 15, for example. I t  is obvious that  one does not have 
to probe the tree below v2 because c(v, v2) = 19 > c(v, Vl) + L(Vl). Similarly, one 
does not have to probe the tree below va either. For a discussion of this kind of 
cutoff, consult [9]. 
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~. H~per-Series-Parallel Graphs 

The reduction technique described in Section 3 is applicable to some non-s-p graphs. 
Consider, for example, the graph shown in Figure 16(a). This graph consists of the 
s-p graph shown in Figure 16(b) linked with the s-p graph shown in Figure 16(c). 
If vertex v is an "and" vertex, then the graph of Figure 16(a) is equivalent to the 
s-p graph of Figure 16(b) if the cost of the edge (v, v') is redefined as c(v, v') = 
c(v, v') + C*[16(c)], where C*[16(c)] denotes the cost of an optimal solution to 
the graph shown in Figure 16(c). Thus, one must first find an optimal solution to 
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the s-p graph of 16(c), and then find an optimal solution to the s-p graph of 16(b) 
with c(v, v') redefined as above. Each of these steps involves utilizing the reduction 
algorithm described in Section 3. Quite complex non-s-p graphs can be treated in 
this manner. 

A directed graph (V, R, vl) with root vl is the composition of a directed graph 
(V~, R~, v~) with unique root v~ and a directed graph (V2, R2, v2) with unique 
root v2, if V = V1 U V2, V1 n V2 = {v~}, and R = R~ (J R2. The vertex v2 is 
called the vertex of connection of (V1, R1, Vl) and of (V2, R2, v2). The class of 
hyper-series-parallel (hyper-s-p) graphs is the smallest class containing the s-p graphs 
and having the property that the composition of any two graphs in the class is 
again in the class. 

A hyper-s-p graph can thus be decomposed into s-p graphs. An example of a 
hyper-s-p graph is given in Figure 17. If each vertex of connection of a decomposi- 
tion of a hyper-s-p graph is an "and" vertex, then an optimal solution for the hyper- 
s-p graph can be obtained as follows: 

(a) Identify the "minimal" components as those s-p graphs whose only vertex 
of connection is its root. 

(b) Find an optimal solution for each minimal component, using the reduction 
procedure of Section 3. 
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Finding an optimal solution to a hyper-s-P graph. 

(c) If (V, R, v) is a minimal component with root v, and if v' ~ T(v) but v' 
is not in V, then delete the minimal component (except for v) and relabel 
c(v, v') = c(v, v') + C*(V, R, v). Do this for each minimal component. 

(d) If the resulting graph is not an s-p graph, then return to step (a); other- 
wise, apply the reduction procedure of Section 3 to the resulting s-p graph. 

For the graph of Figure 17, this algorithm is illustrated in Figure 18. I t  is as- 
lined that each edge cost is initially unity and that  the sum-cost is to be used. 
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